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This work focuses on the use of a finite-volume solver to describe the wall-bounded cyclonic flowfield that
evolves in a swirl-driven thrust chamber. More specifically, a non-reactive, cold-flow simulation is carried out
using an idealized chamber configuration of a square-shaped, right-cylindrical enclosure with eight tangential
injectors and a variable nozzle size. For simplicity, we opt for air as the working fluid and perform our
simulations under steady, incompressible, and inviscid flow conditions. First, a meticulously developed mesh
that consists of tetrahedral elements is generated in a manner to minimize the overall skewness, especially
near injectors; second, this mesh is converted into a polyhedral grid to improve convergence characteristics
and accuracy. After achieving convergence in all variables, our three velocity components are examined and
compared to an existing analytical solution obtained by Vyas and Majdalani (Vyas, A. B., and Majdalani, J.,
“Exact Solution of the Bidirectional Vortex,” AIAA Journal, Vol. 44, No. 10, 2006, pp. 2208-2216). We
find that the numerical model is capable of predicting the expected forced vortex behavior in the inner core
region as well as the free vortex tail in the inviscid region. Moreover, the results appear to be in fair agreement
with the Vyas–Majdalani solution derived under similarly inviscid conditions, and thus resulting in a quasi
complex-lamellar profile. In this work, we are able to ascertain the axial independence of the swirl velocity
no matter the value of the outlet radius, which confirms the key assumption made in most analytical models
of wall-bounded cyclonic motions. Moreover, the pressure distribution predicted numerically is found to be
in fair agreement with both theoretical formulations and experimental measurements of cyclone separators.
The bidirectional character of the flowfield is also corroborated by the axial and radial velocity distributions,
which are found to be concurrent with theory. Then using parametric trade studies, the sensitivity of the
numerical simulations to the outlet diameter of the chamber is explored to determine the influence of outlet
nozzle variations on the mantle location and the number of mantles. Since none of the cases considered here
promote the onset of multiple mantles, we are led to believe that more factors are involved in producing more
mantles than one. Besides the exit diameter, the formation of a multiple mantle structure may be influenced by
the physical boundary conditions, nozzle radius, inlet curvature, and length. In closing, we show that the latter
plays a significant role in controlling the development of backflow regions inside the chamber.

Nomenclature

𝐴inj total injection area
𝐴port port area of individual injector
𝐷 chamber diameter
𝐹 external body force
𝒈 gravity
𝐼 unit tensor
𝐿 chamber length
𝑁inj number of injectors
𝑝 normalized pressure
𝑃 static pressure
𝑟 radial coordinate
𝒖 velocity of the fluid
𝑢𝑟 normalized radial velocity
𝑢𝜃 normalized swirl velocity
𝑢𝑧 normalized axial velocity
𝑉 vortex Reynolds number
𝑧 axial coordinate
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𝐺𝑟𝑒𝑒𝑘

𝛽 normalized discharge radius
𝜇, 𝜌 fluid molecular viscosity and density
𝝉 dimensional stress tensor

I. Introduction

The characterization of wall-bounded cyclonic flows continues to receive attention in the propulsion community,
and this is mainly due to the favorable attributes associated with the onset of rotating motion in vortex engines

and other swirl-dominated thrust chambers [1]. By translating the basic characteristics of unconfined tornadoes and
hurricanes to propulsive devices [2], researchers are able to leverage the high energy density, self-sustaining capability,
self-cooling features, prolonged residence time, and effective mixing potential of cyclonic flows in efficient power
production and thrust generation applications [3].

In principle, confined cyclonic flows can be classified as unidirectional, bidirectional, and multi-directional,
depending on the number of longitudinal passes that a fluid entering the enclosure will undertake before existing [4].
The primary emphasis of the present investigation will be on the bidirectional cyclonic pattern, which comprises two
distinct swirling regions: the outer annular vortex, where the fluid spirals towards the headwall, and the inner vortex
region, where the flow targets the endwall, or the base of the chamber. A discrete rotating but non-translating layer,
known as the mantle, separates the two segments of the flow [5]. Swirl is sustained in accordance with the conservation
of angular momentum of a tangentially injected fluid, which is often introduced near the endwall.

The earliest studies of bidirectional swirling flows may be traced back to ter Linden [6] and his experimental
investigations of the geometric dimensions on the efficiency of cyclonic dust collectors. Then after four decades of
sporadic studies, Bloor and Ingham [7] develop a simple incompressible model for wall-bounded conical cyclones from
which they manage to extract a very useful closed-form solution. This is followed by a series of numerical simulations
of confined cyclonic motions by Hsieh and Rajamani [8], Monredon et al. [9] and Hoekstra et al. [10]. In addition
to their engagement in numerical investigations, some of these researchers also conduct experiments to validate their
computational results. Later, by shifting attention back to the development of a viable mathematical framework for
wall-bounded cylindrical and spherical cyclones, Vyas and Majdalani [5] and Majdalani and Rienstra [11] manage
to produce exact inviscid solutions for the bulk cyclonic motion starting from first principles. However, to overcome
the singularity that undermines the inviscid motion along its axis of rotation, Majdalani and Chiaverini [12] borrow
the tools of boundary-layer theory to obtain viscous corrections that capture the forced vortex behavior in the core
region of a bidirectional chamber. Along similar lines, Maicke and Majdalani [13] are able to overcome the inviscid
singularity by implementing a constant shear stress model near the centerline. The necessity of securing the velocity
adherence requirement near the sidewall is also investigated using matched-asymptotic expansions in a series of studies
that lead to viscous approximations for the core and wall boundary layers [14–16]. Shortly thereafter, Majdalani [3]
introduces several distinct families of helical motions of the “Beltramian” and “Trkalian” types that display rather
compelling cyclonic flow patterns. Other complementary studies are pursued for the purpose of incorporating the
effects of arbitrary headwall injection [17, 18], compressibility [19, 20], uniform sidewall injection [21, 22], and
hollow cylindrical air cores [23].

Apart from the filtration industry, where dedusters and hydrocyclones are commonplace, several thrust chambers
in the propulsion industry have been conceived to operate by leveraging the bidirectionality and swirl advantages of
cyclones. Among those, two particular concepts come to mind, namely, the Vortex Injection Hybrid Rocket Engine
(VIHRE), developed by Knuth et al. [24, 25], and the Vortex Combustion Cold-Wall Chamber (VCCWC), conceived by
Chiaverini et al. [26]. For the reader’s convenience, schematics of the VIHRE and VCCWC concepts are furnished in
Figs. 1a–1b. The VCCWC, which is more relevant to the central focus of this work, consists of a peculiar design where
the oxidizer is injected tangentially from the endwall of the chamber just above the nozzle. After entering the chamber
rather unconventionally, the oxidizer ascends along the walls in a spiraling motion that forms the “outer vortex” region.
As it approaches the headwall, the oxidizer then turns inwardly, mixes with the fuel, and combusts vigorously, even
as it heads down the centerline, where it is referred to as the “inner vortex” core. Through this helical trajectory, the
outer annular vortex confines the reactants to the core region and prevents the hot products and gaseous mixtures from
coming in contact with the walls. In practice, the resulting film cooling mechanism has been shown to be very effective
at protecting the walls from the high convective and radiative core temperatures [1].
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a) VIHRE
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Fig. 1. Schematics of ORBITEC’s a) Vortex Injection Hybrid Rocket Engine (VIHRE) conceived by Knuth et al.
[24] and b) the Vortex Combustion Cold-Wall Chamber (VCCWC) developed by Chiaverini et al. [27].

It can be inferred from a perfunctory literature review that most of the experimental studies related to confined
cyclonic motions have been carried out on cyclone separators or dust collectors. As such, most of the information
pertaining to bidirectional vortex engines remains either limited or proprietary; few cases can be found including
the cold-flow experimental and computational studies performed by Anderson et al. [28]. Their work considers a
laboratory-scale model of a simplified cyclonic chamber and produces tangential velocity data at three specific axial
locations using Particle Image Velocimetry (PIV). This PIV data is later used by Maicke and Majdalani [13, 29] to
guide their viscous and constant shear stress formulations.

The use of numerical models in the treatment of cyclonic flows has continued to receive attention due to the evolution
of hardware and affordability of resources relative to experimentation. In this vein, numerical simulations that describe
wall-bounded cyclones have continued to appear and these have attempted different turbulence models in the hope of
capturing the anisotropic behavior of the flow in the presence of a highly swirling environment. Despite these pursuits,
investigations of precession, flow instability, and breakdown, which are susceptible to numerical simulations, have
remained largely unattempted and unresolved. Moreover, the identification of appropriate turbulence models that are
capable of handling highly anisotropic conditions continues to be an open question. In what follows, some of the
pertinent efforts are briefly reviewed.

We begin with the design optimization study of Boysan et al. [30], where a two-phase algebraic turbulence model is
constructed for gaseous cyclones with entrained solid particles. Their model computes six Reynolds stress components,
thus leading to a numerical scheme that is capable of predicting grade-efficiency curves by means of stochastic particle
tracking techniques. Nearly a decade later, another detailed study is conducted by Concha et al. [31], where different
sets of equations are applied to each of six individual zones constituting a hydrocyclone. These equations are intended
to permit the computation of local velocities with considerable precision. Then using the momentum balance of particle
trajectories, the characteristic separation size is accurately deduced.

Along similar lines, Hoekstra et al. [10] carry out a comprehensive numerical investigation of cyclone separators
with gas as the working fluid. Their study provides a comparison between different turbulence models and experimental
results. Accordingly, the Reynolds stress transport model is found to be capable of producing more realistic predictions
relative to other turbulence models. A year later, Derksen and den Akker [32] extend this line of inquiry by using
large eddy simulations (LES) to predict the fundamental features of a reverse-flow cyclone separator. Their study also
discusses the precession patterns of the inner vortex and its stabilizing role. Advancing further in their investigation,
Derksen [33] applies this LES code to predict the separation performance of a high efficiency Stairmand-type cyclone
using frozen-field, eddy-lifetime, and periodic-flow approaches. Derksen et al. [34] also examine the effects of
incorporating two-phase flow effects on the fidelity of their computations by successfully implementing two-way
coupling. In the meantime, Hu et al. [35] modify the empirical constants for isotropization of their production and
convection model (IPCM) as well as the wall-reflection term of their pressure-strain model to better handle anisotropic
turbulence. This enables them to achieve an improved Reynolds stress model for strong swirling flows while dodging
the computational costs associated with LES. By way of confirmation, their three-dimensional computations are shown
to agree with measurements acquired in a cyclone separator using laser Doppler Velocimetry (LDV). In fact, this
sequence of studies builds up to a comprehensive review by Cortes and Gil [36], where different computational models
for reverse-flow cyclone separators are surveyed and cataloged based on their ability to predict the tangential velocity
distribution, pressure drop, and collection efficiency.
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Despite the existence of several numerical studies of cyclone separators, only few exist that devote themselves to
the VCCWC flow configuration using, for instance, the laminar 𝑘—𝜀 and Reynolds stress transport (RSM) models.
Among those, one may cite Fang and Majdalani [37], Anderson et al. [28], Murray et al. [38], Talamantes and Maicke
[39], Sharma and Majdalani [40], Maicke and Talamantes [41], and Majdalani and Chiaverini [1]. In this work, we
augment this line of inquiry by taking a close look at the cyclonic motion in an idealized VCCWC chamber using a
robust finite-volume solver. Since most previous studies have mainly focused on the tangential velocity distribution,
our emphasis here will be to perform cold-flow simulations that are capable of characterizing all three components
of the velocity and pressure profiles while exploring the effects of the outlet radius and nozzle extension size on the
positioning and formation of mantles and backflow regions.

II. Numerical Formulation

In previous work [40], the main objective was to compare numerical results to those of an exact complex-lamellar
solution derived by Vyas and Majdalani [5] directly from Euler’s equation. To do so, the geometry and boundary
conditions in the numerical model were chosen as plainly as possible in order to mirror those associated with the
theoretical framework. In view of the purely tangential injection assumed in the complex-lamellar model, special
consideration had to be made to align the projected injectors in a similar arrangement along the outer circumference
with no outward protrusions [40].

In the present work, we opt for a more realistic model, as depicted in Fig. 2, in order to reproduce a cyclonic motion
that resembles the VCCWC flowfield more closely. To this end, a three-dimensional computational domain is conceived
for an idealized depiction of the bidirectional vortex engine with eight protruding injectors. Our computational domain
is protracted using SolidWorks with dimensions that are identical to those used by Anderson et al. [28]. It is subsequently
meshed using a well-established meshing software (ICEM CFD). The discretized domain is then exported into our
finite-volume solver, which is part of a commercially available multiphysics package, where an implicit, incompressible,
Reynolds-averaged Navier-Stokes solver can be used [42]. The geometric details of the chamber and its injectors are
provided in Table 1 and illustrated in Fig. 2. In the interest of clarity, Fig. 2a presents an isometric view of the
idealized vortex chamber whereas Fig. 2b shows a side view that displays the actual dimensions used in the upcoming
simulations.

A. Mesh Generation and Quasi-Inviscid Model

Creating a complete and effective structured mesh remains, perhaps, one of the most labor-intensive components
of this study. The difficulty may be ascribed to the complications brought about by the need to carefully resolve and
refine the mesh in the region surrounding the tangential injectors as well as the sidewall. For example, the small angle

a) Isometric view

Nozzle radius 
of curvature 
RN = 0.64 cm

Injector radius 
RI = 0.305 cm

L = 6.1 cm

a = 2.54 cm

b) Sideview

Fig. 2. Academic engine concept for a compact, tangentially-driven, cyclonic chamber.
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Table 1. Geometric specifications
Parameter Definition Value Units

Chamber Geometry
𝐿 Chamber length 6.10 cm

𝐷𝑐 Chamber diameter 5.08 cm
𝐿/𝐷 Length-to-diameter ratio 1.2

Swirl Injectors (aft-end)
𝑁inj Number of injectors 8

𝐷port Individual port diameter 0.605 cm
𝐴port Injection area of individual port 1.1499 cm2

𝐴inj Total area of injection 9.1992 cm2

a) b)

Fig. 3. Meshed geometry depicting a) zoomed view of the polyhedral elements and b) the polyhedral mesh
elements inside the chamber.

between the injectors and the chamber wall causes the mesh elements in this region to become highly skewed. To
overcome this issue, a mesh consisting of tetrahedral elements is generated in a manner to minimize the skewness. The
mesher that we use helps to evaluate the normalized mesh quality by yielding zero for a highly skewed element and
unity for a perfect, unskewed element. Bearing this in mind while creating the mesh, the process is repeated until the
normalized quality of the mesh returns a value above the minimum recommended threshold of 0.3.

To make further headway, we recognize that a tetrahedral mesh requires a relatively large number of elements for
a given volume, thus increasing both the computation time and power requirements. As is customary, our tetrahedral
mesh elements are converted into polyhedral elements using the reverse Cuthill-McKee algorithm. This step reduces
computation time while improving convergence properties; in fact, it leads to simulation outcomes that are characteristic
of a fully structured hexahedral mesh. Figure 3a provides a pictorial representation of the meshed geometry near the
sidewall, where the inflation layers used to capture the wall boundary layers can be seen. The geometric mesh along
the chamber surface and injector openings is depicted in Fig. 3b.

After mesh generation and the specification of boundary types, the mesh is imported into a robust finite volume
solver. The simulation is then carried out using a steady, implicit, 3D, segregated solver. The computations are
performed using a quasi-inviscid model that assumes laminar motion with inviscid slip walls. This is done for the
purpose of facilitating the capture of stable and coherent cyclonic patterns that correspond to the available analytical
solutions. More specifically, the use of a strictly inviscid computational model proves infeasible (and will always
diverge) due to a well-known singularity affecting the tangential velocity at the centerline.

B. Conservation Equations

The conventional equations for conservation of mass and momentum are adapted for the flow in a cyclonic chamber.
Using 𝜌 and 𝒖 to represent the density and velocity, the fundamental equations that we solve are:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0 (conservation of mass) (1)
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𝜕

𝜕𝑡
(𝜌𝒖) + ∇ · (𝜌𝒖𝒖) = −∇𝑝 + ∇ · (𝝉) + 𝜌𝒈 + 𝑭 (conservation of momentum) (2)

where 𝑝 stands for the static pressure, 𝝉 contains the stress tensor, 𝜌𝒈 symbolizes the gravitational body force, and 𝑭
consists of the external body force. In this framework, 𝑭 accounts for other model-dependent source terms such as
porous media and user-defined sources [42]. The stress tensor, 𝝉, is given by

𝝉 = 𝜇

[(
∇𝒖 + ∇𝒖𝑇

)
− 2

3
(∇ · 𝒖) 𝐼

]
(3)

where 𝜇 denotes the molecular viscosity, 𝐼 contains the unit tensor, and the second term on the right-hand-side captures
the effect of volume dilation [42].

By taking advantage of the improved mesh and chamber configuration, the objective of the present study is to
characterize all three components of the velocity, including the axial and radial components, which were omitted in
previous work [39, 40], We also aim at exploring the effect of changing the outlet diameter on the flowfield in a
cyclonic chamber. To this end, the normalized outlet radius, 𝛽, is varied while keeping all other parameters fixed. The
normalized outlet radius, 𝛽, is simply the ratio:

𝛽 =
𝑏

𝑎
(4)

where 𝑏 is the outlet radius and 𝑎 represents the chamber radius. In our parametric trade analysis study, which is
summarized in Table 2, the values of 𝛽 are selected in a manner to coincide with their theoretical values for a cyclonic
motion with multiple mantles, as derived by Vyas and Majdalani [5] for the complex-lamellar family of solutions. The
same simulations can be as easily repeated using the multiple mantle locations associated with the Beltramian family
of solutions found by Majdalani [3]. The baseline geometry is chosen to match the one used by Anderson et al. [28].
Since the flow remains incompressible, the total pressure is specified at the injector inlet point, outside the chamber,
to be 100 psig with a static value of 98 psig, thus allowing for an inlet velocity of approximately 60 m/s. As for the
outlet, it is set to be atmospheric. We find it essential to set the inlet boundary conditions on the pressure in order to
mitigate the formation of multiple mantles. In other studies where velocity inlet conditions are used, multiple mantles
are reported, including the work of Anderson et al. [28] and Sharma and Majdalani [40]. With the inlet condition being
set as a pressure requirement, the robust SIMPLE algorithm is then used to couple the pressure with the velocity. In
this process, the pressure is discretized according to the standard scheme and the momentum equation is discretized
using a first-order upwind stencil. Other gradients are discretized using the Green-Gauss cell-based scheme. Finally,
to promote a reasonable degree of precision, stringent convergence criteria are set. These ensure that the residuals
remain consistently below a 10−6 tolerance level.

III. Results and Discussion

The primary aim of performing a numerical investigation of the bulk gaseous motion in a bidirectional vortex
engine is to better understand the flow physics and identify its controlling parameters. In this vein, we proceed with
a characterization of the axial and radial velocity components to complement previous results that mainly focused on
the tangential component [40]. In addition, a parametric study is conducted to evaluate the effect of varying the outlet
diameter on the flowfield. All velocities in this study are normalized by the average tangential injection speed, 𝑈.

In order to more effectively relate our computational results to existing analytical solutions, effort has been made to
ensure that the CFD problem takes into account most of the parameters that are used in the analytical model, including,
for example, the modified swirl number,

𝜎 =
𝑎2

𝐴inj
(5)

Table 2. Parametric study varying 𝜷

Case 1 2 3 4 5 6 7 8 9 10 11 12
𝜷 0.3535 0.408 0.5 0.628 0.638 0.648 0.667 0.677 0.707 0.866 0.913 0.935
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In the above, 𝑎 denotes the radius of the chamber and 𝐴inj refers to the total injection area. The second important
parameter is often dubbed the off-swirl parameter as it gauges the absolute magnitude of axial and radial velocities
relative to the tangential component, namely,

𝜅 =
1

2𝜋𝜎
𝑎

𝐿
(6)

where 𝐿 represents the chamber length. Note that a lower value of 𝜅 implies larger tangential-to-radial or tangential-
to-axial velocity ratios. In what follows, illustrative simulation results will be presented and these will correspond to
our baseline Case 1 with 𝛽 = 0.5 and 𝜅 = 1/(2𝜋 × 0.70132) × (2.54/6.1) = 0.0945, unless specified otherwise.

A. Velocity and Pressure Distributions

We begin with the tangential velocity distribution in Fig. 4a, where the radial variation of 𝑢𝜃 is illustrated at several
discrete axial stations, starting at 𝑧/𝐿 = 0.1 near the headwall and ending with a value of 0.8 near the outlet. To be
consistent with theory and tradition, such as Rankine’s free vortex plots, the tangential velocity is normalized using
the tangential speed, 𝑈𝑤 (𝑧) = 𝑢𝜃 (1, 𝑧), taken at the respective 𝑧/𝐿 locations. These results are shown side-by-side
with the corresponding swirl velocity contour plots in Fig. 4b. Despite the elongated scale used in Fig. 4a, it may be
seen that the axial variations of the swirl velocity are minimal. As one may expect, the maximum swirl velocity is
slightly higher near the injection site at 𝑧/𝐿 = 0.8 and decreases as the headwall is approached. This can be more
readily observed in the iso-velocity contours, which appear to be rather uniform along the length of the chamber, with
a very minor decrease in the width of the (𝑢𝜃 )max isoband as 𝑧 is increased. The corresponding behavior is reassuring
as it helps to confirm the axial invariance assumption of the swirl velocity, which is often used at the basis of deriving
cyclonic flow solutions. Furthermore, the existence of a forced vortex motion in the core region followed by a free
vortex tail beyond the point of maximum 𝑢𝜃 can be ascertained from the swirl velocity plot depicted in Fig. 4a. Note
that no values past 𝑧/𝐿 = 0.8 are shown to avoid nozzle entrance effects.

Next, we proceed to examine the pressure in Fig. 5, where it is normalized by its maximum radial value taken at
𝑟 = 1. Although all cases adopt the same inlet pressure at their injectors entry point, this maximum pressure value
at steady state will very slightly differ depending on the axial station within the chamber. Specifically, as we travel
within the outer annular vortex, the normalizing pressure value taken at the sidewall will very slightly diminish as the
headwall is approached. Here too, one may infer that the pressure gradient along the radius of the chamber remains

0.2 0.4 0.6 0.80 1
0

0.5

1.0

1.5

r

uq

          z/L
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

a) b)

Fig. 4. We show a) the radial distribution of the normalized swirl velocity at eight 𝒛/𝑳 locations and b) swirl
velocity contours [m/s] across a vertical 𝒓-𝒛 plane. We take 𝜷 = 0.5 and 𝜿 = 0.0945 everywhere unless specified
otherwise.
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          z/L
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 0.4
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 0.6
 0.7
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a) b)

Fig. 5. We show a) the radial distribution of the normalized pressure at eight 𝒛/𝑳 locations and b) pressure
contours [Pa] across a vertical 𝒓-𝒛 plane.

nearly independent of the axial distance, particularly in Fig. 5a, although minor deviations seem to occur near the axis
of rotation. Naturally, if we consider the outer vortex region corresponding to 𝑟 ≥ 0.5, the pressure near the headwall
must be slightly lower than the pressure near the injection site to force the upward convection of the incoming fluid.
In contrast, the pressure within the inner vortex will slightly diminish in the direction of the outflow, namely, as 𝑧/𝐿
increases from 0.1 to 0.8. Nonetheless, these variations appear to be minimal at steady state if we are to travel axially
along a constant 𝑟 line. A similar trend may be inferred from the pressure contours of Fig. 5b, where the axial invariance
of the pressure is fundamentally established across the entire domain. In fact, a similar pressure distribution is reported
by Hoekstra et al. [10], Hu et al. [35], Murray et al. [38], and Majdalani and Chiaverini [1]. In short, the radial values
of the pressure are found to be highest at the sidewall and lowest along the chamber axis, although axially, the sidewall
pressure is very slightly lower at the headwall than the endwall, and the converse is true for the core pressure, which
slightly decreases in the outflow direction.

As we turn our attention back to the axial velocity, its behavior is illustrated in Fig. 6a, where the radial distribution
of 𝑢𝑧 , normalized using the corresponding tangential speed at the wall, 𝑈𝑤 (𝑧), is shown at eight different values of
𝑧/𝐿. As usual, we start with a chained line at 𝑧/𝐿 = 0.1 and stop with a dashed line at a value of 0.8 near the outlet.
The companion Fig. 6b displays the axial velocity contours across the chamber. It is evident from the plot that there
exist two distinct regions that comprise an inner core and an outer, annular segment. Motion in the outer segment,
which is positive upward until roughly 𝑟 ≈ 𝛽 = 0.5, turns negative in the core region as the flow polarity switches and
becomes downward.

The so-called updraft and downdraft regions, with two opposing axial polarities, are the reason a cyclonic motion
is often dubbed bidirectional or bipolar. They are separated by a rotating but non-translating sheet or mantle, which
is depicted using a solid line in Fig. 6b. This corresponds to the locus of 𝑢𝑧 = 0, which evolves around a radius of
𝑟 ≈ 0.504, which is fairly close to the nozzle entrance radius 𝛽 for this configuration. It can also be confirmed in Fig. 6
that the magnitude of |𝑢𝑧 | increases in the core region as the fluid tries to leave the chamber. This behavior is further
corroborated in the axial velocity contours of Fig. 11a, where the red color denotes incoming fluid moving upwardly,
while the blue color marks the outgoing fluid on its way to exit the chamber.

Lastly, the radial velocity distribution in the chamber is explored in Fig. 7a, where symbols are used to represent
different axial stations and thus help to illustrate the statistical scatter of the solution around its average value. Here, it
can be seen that the average radial velocity is qualitatively similar to the theoretical form of 𝑢𝑟 predicted by the family
of analytical solutions described by Majdalani [3]. This includes the presence of a maximum absolute value for |𝑢𝑟 |
midway along the radius. Note that the solid line corresponds to a polynomial fit for the scatter plot and, as such, a
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Fig. 6. We show a) the radial distribution of the normalized axial velocity at eight 𝒛/𝑳 locations and b) axial
velocity contours [m/s] across a vertical 𝒓-𝒛 plane.
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Fig. 7. We show a) the radial distribution of the radial velocity at eight 𝒛/𝑳 locations and b) radial velocity
contours [m/s] across a vertical 𝒓-𝒛 plane. The solid line represents the data average.

rough representation of the average radial velocity obtained for this baseline case. The complementary radial velocity
contours in Fig. 7b confirm these trends across the whole chamber where the axial invariance of 𝑢𝑟 may be observed in
the upper three quarters of the domain. In the bottom quarter length, the bulging and contraction of the contours may
be attributed to the presence of finite injectors and a nozzle attachment in their vicinity, where a strong flow turning
activity is prominent.
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B. Effect of Outlet Sizing

Having showcased the capabilities of the numerically-computed flowfield at predicting the axial and radial velocities,
we now proceed to vary the outlet diameter to study its effects on the axial velocity, the mantle location, the swirl
velocity, and the pressure distribution. Naturally, with a fixed inlet pressure condition, varying the outlet diameter
directly affects the mass flow rate leaving the chamber. The corresponding parametric study is therefore performed to
better understand the influence of the normalized outlet radius, 𝛽, on the solution variables. Having already explored
the flow characteristics using a benchmark 𝛽 = 0.5, this value will serve as the control case for the remaining tests.
As we proceed, the normalized outlet radius will be varied between 0.3535 and 0.935, as shown in Figs. 8–10, where
the tangential velocity, pressure distribution, axial, and radial velocity plots are examined individually. We recall that
the specific values of 𝛽 are chosen because they correspond to the first theoretical investigation of multiple mantles
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 0.638
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 Constant shear stress
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Fig. 8. Radial distribution of the swirl velocity at different values of 𝜷 and 𝒛/𝑳 = 0.5 in Parts a) and b) .
Comparisons to the constant core shear model by Maicke and Majdalani [13] are provided for c) 𝜷 = 0.628 and
d) 𝜷 = 0.707.
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carried out by Vyas et al. [43], namely, where the locus of multiple mantles is identified and subsequently confirmed
to a certain degree by the experimental measurements and CFD simulations of Anderson et al. [28] and Rom [45].

Forthwith, Fig. 8 illustrates the behavior of the quasi-inviscid form of the tangential velocity, normalized by𝑈𝑤 (𝑧),
for various outlet diameters and a fixed station of 𝑧/𝐿 = 0.5. As expected, successive increments in the normalized
outlet radius serve to decrease the peak swirl velocity in the chamber such that (𝑢𝜃 )max is largest for 𝛽 = 0.353. Rather
interestingly, for 𝛽 > 0.707, the peak swirl velocity moves consistently outwardly closer to the sidewall to compensate
for an expanding outlet area. A similar pattern is reported by Talamantes and Maicke [39] in their preliminary
computational results. The magnitude of the normalized 𝑢𝜃 near the sidewall also approaches a value of unity with
successive increases in 𝛽, another trait that is apparent from the plots in Fig. 8.

Next, a pressure comparison is featured in Fig. 9 for the different cases of 𝛽 and 𝑧/𝐿 = 0.5. As before, the pressure
is normalized by its value taken at the wall. The first observation that we make in Fig. 9a is that the net pressure drop
at the centerline increases as the outlet area is enlarged. Although the wall pressure is not shown, we find that, in all
cases considered, the lowest pressure occurs at the centerline and the largest sidewall pressure is highest for the case
with the smallest outlet area, or lowest 𝛽. Moreover, for 𝛽 ≥ 0.707 in Fig. 9b, the pressure near the centerline seems
to flatten: the pressure gradient decreases, the peak pressure drops, and the pressure in the inner core plateaus to an
essentially constant value. This behavior can be attributed to the presence of a recirculation zone that becomes more
appreciable as the outlet area is enlarged. The reason for recirculation to occur will become apparent in the discussion
below and will be associated with the emergence of a backflow region for 𝛽 ≥ 0.707. Except for the backflow effects,
these trends seem to be comparable to those predicted theoretically by the Trkalian profile with no slip [3].

To further verify the trends exhibited by the CFD results, 𝑢𝜃 is compared to the tangential velocity profiles obtained
using the constant core shear model developed by Maicke and Majdalani [13]. As the name implies, the latter assumes
a constant shear stress to be dominant in the forced vortex region, which typically extends between the chamber axis
and 𝑟 = 𝑟max, where 𝑢𝜃 = (𝑢𝜃 )max. It then transitions over the 𝑟max ≤ 𝑟 < 𝑋 interval into a free vortex motion that
becomes prevalent for 𝑟 ≥ 𝑋 . This comparison is showcased in Fig. 8c and Fig. 8d for 𝛽 = 0.628 and 𝛽 = 0.707,
respectively. As one can infer from these plots, the profiles agree quite well with the constant core shear model for 𝑢𝜃 ,
namely, (

𝑢𝜃

𝑈𝑤

)
=


𝑈𝑒

𝑈𝑤

𝑟

𝑋2

[
1 − ln

(
𝑟2

𝑋2

)]
; 𝑟 ≤ 𝑋

𝑈𝑒

𝑈𝑤

1
𝑟

; 𝑟 > 𝑋

(7)

where 𝑋 = 𝑟max
√
𝑒, 𝑈𝑒 = 1

2 𝑒(𝑢𝜃 )max𝑟max ≈ 1.359(𝑢𝜃 )max𝑟max, and 𝑟max denotes the locus of (𝑢𝜃 )max. In this
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Fig. 9. Radial distribution of the pressure at different values of 𝜷 and 𝒛/𝑳 = 0.5.
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Fig. 10. Radial distribution of the axial velocity at different values of 𝜷 and 𝒛/𝑳 = 0.5.

comparison, we find the dimensionless values of 𝑋 ≈ 0.75 and 0.88 with 𝑟max = 0.455 and 0.535 for 𝛽 = 0.628
and 0.707, respectively. As for the normalizing speeds associated with our numerical simulations, we compute
𝑈𝑒/𝑈𝑤 = 0.728 and 0.820 for the two cases in question.

Next, by switching to the axial velocity in Fig. 10, and its respective contours in Fig. 11, one can infer that the peak
|𝑢𝑧 (0, 𝑧) | at the centerline decreases monotonically as the outlet area is increased. This behavior is consistent with
continuity and concurrent with the theoretical finding that a Beltramian profile with 𝛽 = 0.628 will be accompanied
by a higher axial velocity magnitude at the chamber outlet than the complex-lamellar profile with a larger 𝛽 = 0.707.
Such behavior is also corroborated in the axial velocity comparison presented by Majdalani [44] for the two types of
profiles. Naturally, the magnitude of the axial velocity at the sidewall follows suit, and increases with 𝛽, as shown in
Fig. 10. Note that for 𝛽 ≥ 0.707, flow recirculation can be surmised from the axial velocity distribution in Fig. 10b,
and this is caused by the development of a backflow region that protrudes deeper into the chamber with successive
expansions of the outlet diameter. More details on the backflow region and how to suppress it are provided further
below.

It can be gleaned from the axial velocity contours in Fig. 11 that the mantle tends to adapt to the outlet size,
particularly, by slightly repositioning itself to merge smoothly with the available outlet area. For outlet radii greater
than 𝛽 = 0.707, the mantle turns outwardly, as the flow approaches the outlet, to accommodate the larger outlet size.
In contrast, for 𝛽 < 0.628, it gradually turns inwardly while merging with the nozzle inlet. For in-between values of
0.628 ≤ 𝛽 ≤ 0.707, the diameter of the mantle remains nearly uniform as the flow exits the chamber.

It can also be remarked that as the exit radius is expanded in Fig. 11, a backflow region starts to form and
move upstream into the chamber with successive increases in the outlet diameter. Specifically, the backflow remains
secondary and confined within the nozzle section for 0.628 ≤ 𝛽 < 0.707, i.e., with limited impact on the computed
flowfield. However, for 𝛽 ≥ 0.707, the backflow region becomes gradually more prominent in size as it protrudes
deeper into the chamber with successive increases in 𝛽. The development of a backflow region may be ascribed to the
negative pressures that can occur in the core region, as predicted by Fig. 9.

Overall, the case with the largest 𝛽 = 0.935 is found to be the most unstable as observed in Fig. 11l. Therein,
the mantle tries to form but the outlet radius appears to be excessively large for the mantle to realign itself with the
available outlet area. Suppressing the backflow in this case, as in other such cases of internal backflow developments,
requires geometric adjustments that will be briefly outlined next.

Before leaving this section, it may instructive to note that the present simulations, which are based on fixed pressure
inlet conditions, do not give rise to multiple mantles. This leads us to speculate that the development of multiple
mantles is not solely dependent on the outlet diameter, but rather influenced by other factors that remain unexplored.
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a) 𝜷 = 0.3535 b) 𝜷 = 0.408 c) 𝜷 = 0.5 baseline d) 𝜷 = 0.628 Beltramian

e) 𝜷 = 0.638 f) 𝜷 = 0.648 g) 𝜷 = 0.667 h) 𝜷 = 0.677

i) 𝜷 = 0.707 complex-lamellar j) 𝜷 = 0.866 k) 𝜷 = 0.913 l) 𝜷 = 0.935

Fig. 11. Axial velocity contours that help to visualize the mantle for different cases of 𝜷.

These may include, for instance, the velocity-versus-pressure inlet conditions, the chamber aspect ratio, the nozzle
diameter, the nozzle length, and the nozzle radius of curvature, as well as the operating conditions themselves. In what
follows, the effect of the nozzle length and radius of curvature will be explored.

C. Effect of Outlet Transition

As we explore ways to prevent the backflow from forming, our initial step is to change the length of the nozzle
extension. However, we find that increasing the nozzle length further can be problematic, as it can lead to unstable
simulations. Conversely, reducing the nozzle length causes the backflow to penetrate deeper into the chamber. It thus
appears that a finite range of nozzle lengths will produce a stable cyclonic flowfield for any 𝛽 ≥ 0.628.

In lieu of the nozzle length, we find that increasing 𝑅𝑁 , the radius of curvature of the converging section of
the nozzle, can be quite effective at suppressing the undesirable backflow. After several iterations, a value of 0.84
cm is found to be suitable for 𝛽 = 0.628 and, similarly, a value of 1.04 cm is found to be adequate for 𝛽 = 0.707.
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a) 𝜷 = 0.628 b) 𝜷 = 0.707

Fig. 12. Axial velocity contours that help to visualize the mantle for a) 𝜷 = 0.628 and b) 𝜷 = 0.707 after
modifying the nozzle curvature in a manner to eliminate the backflow in Figs. 11d and 11i, respectively.

Recalling that the radius of the chamber is 2.54 cm, these curvatures translate into relative proportions of 0.33 and 0.41,
respectively. Then noting that the normalized distances measured from the sidewall correspond to (1− 0.628) = 0.372
and (1 − 0.707) = 0.293, we realize that the effective radii of curvature for both Beltramian and complex-lamellar
configurations correspond to the same constant value of 0.33 × 0.372 = 0.41 × 0.293 = 0.12. We can thus proceed
to eliminate the backflow from all other cases using an effective radius of curvature that is deducible from a simple
empirical relation, namely, 𝑅𝑁 = 0.12𝑎/(1 − 𝛽).

The immediate effect of suppressing the backflow is illustrated in Fig. 12, where the simulations are repeated with a
more optimal 𝑅𝑁 , and used to produce the axial velocity contours for the two baseline cases of 𝛽 = 0.628 and 0.707. On
comparing Figs. 12a–12b with Fig. 11d and Fig. 11i, the elimination of recirculatory zones is evident. These contours
also display quite distinctly the computationally-resolved mantle lines separating the outer (red) and inner (blue)
regions. Although these mantles remain rather uniform, as predicted by theory, their numerically computed averages of
0.51 and 0.53 are slightly reduced due to the inward shifting that is required to accommodate a rounded nozzle entrance.
These observations are reinforced in Fig. 13, where the radial distributions of the normalized 𝑢𝑧 midway through the
chamber are computed and displayed using our finite volume solver for the two nozzle configurations with and without
backflow. The CFD results are also compared to available theoretical predictions that correspond in Fig. 13a to the
Beltramian profile with 𝛽 = 0.628 [3] and, in Fig. 13b, to the complex-lamellar profile with 𝛽 = 0.707 [5]. As before,
both CFD and theoretical predictions are normalized using the tangential velocity at the sidewall, 𝑈𝑤 (𝑧). We note an
overall agreement between theory and computation in the flow patterns, especially in comparing the theoretical profiles
to their CFD predictions with no backflow. Nonetheless, the prediction of the mantle location by the CFD solution
with backflow (dashed lines) is found to be closer to its theoretical value. Interestingly, in suppressing the backflow, an
increased radius of curvature is required, thus leading to a smaller overall nozzle radius. In short, the effective radius
for the nozzle configuration that entails a backflow remains larger and, therefore, closer to the theoretical value of the
targeted 𝛽. We thus realize that by increasing the radius of curvature of the outlet nozzle, we constrict the outlet area
and cause the mantle location to shift radially inwardly relative to its theoretically predicted value.

Finally, we compare the radial distribution of the normalized 𝑢𝑟 in Fig. 14a and Fig. 14b for the two values of
𝛽, midway across the chamber, using the same CFD solutions that either allow or suppress the re-entrant backflow.
Also included are the strictly inviscid analytical predictions based on the Beltramian and complex-lamellar models
discussed previously [3, 5]. Despite the similarities in the spatial patterns displayed by these solutions, the computed
radial velocities remain smaller in magnitude than their theoretical counterparts. Such differences may be attributed
to the presence of viscous damping in the computational model, which seems to have a bearing on the radial velocity,
especially that the latter cannot be affected by the imposed slip wall requirement.
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Fig. 13. Radial distribution of the normalized axial velocity for a) 𝜷 = 0.628 and b) 𝜷 = 0.707 at 𝒛/𝑳 = 0.5,
both with and without backflow as per Figs. 11d and 11i and Figs. 12a and 12b, respectively. Also shown are the
corresponding Beltramian and complex-lamellar profiles.
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Fig. 14. Radial distribution of the normalized radial velocity for a) 𝜷 = 0.628 and b) 𝜷 = 0.707 at 𝒛/𝑳 = 0.5,
both with and without backflow as per Figs. 11d and 11i and Figs. 12a and 12b, respectively. Also shown are the
corresponding Beltramian and complex-lamellar profiles.

IV. Conclusion

Of the various computational studies that have undertaken the task of describing wall-bounded cyclonic flows,
most have focused on industrial cyclone separators. Only few have been specific to the bidirectional vortex motion
associated with a VCCWC chamber configuration. Furthermore, parametric studies related to outlet size variations
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remain either scarce or inaccessible. By imposing slip-wall conditions in concert with a laminar flow solver, we show
in this work that a judiciously constructed numerical model is capable of predicting the forced vortex behavior in the
inner core region, as well as the free vortex motion in the outer region. These particular regions are well approximated
analytically by a constant core shear stress model that entertains slip velocities along the walls and a constant shear
stress around the core region. In a sense, it emulates to a certain degree the quasi-inviscid assumptions used in the
numerical solver [13]. The work also confirms that a numerical model is somewhat effective at characterizing the
pressure distribution as well as other flow variables of interest. For example, the parametric trade analysis conducted so
far suggests that increasing the normalized outlet radius, 𝛽, can have an appreciable impact on the swirl velocity, axial
velocity, mantle location, and pressure distribution throughout the chamber. In fact, as the outlet area is increased,
the peak tangential velocity is reduced and drawn radially outwardly. The pressure drop along the chamber axis is
also increased until 𝛽 = 0.707, beyond which the pressure curves start to asymptote in the inner core region. The
same can be said of the mantle location, which seems to adapt itself to the expanding outlet diameter, until it can
no longer attach itself to the nozzle inlet circumference. Incidentally, when the outlet diameter becomes sufficiently
large, a backflow region seems to evolve in the nozzle area and then creep upstream into the chamber with successive
increases in 𝛽. Pursuant to a cursory investigation, the backflow formation is found to be quite sensitive to geometric
changes, especially in the nozzle region. To suppress this recirculatory zone, we find it useful to increase the radius
of curvature at the nozzle entrance region to the extent of reducing the final outlet diameter. In this process, we
identify a nozzle inlet curvature, 𝑅𝑁 = 0.12𝑎/(1 − 𝛽), that will prevent the backflow from occurring. Unsurprisingly,
increasing this curvature eliminates the backflow but causes the mantles to shift radially inwardly while compelling the
corresponding axial velocities to increase near the centerline, as in the classical case of vena contracta. Naturally, any
area contraction must be accompanied by an increase in the axial velocity magnitude, which is necessary to evacuate
the same amount of fluid across a narrower passage. This trend is further reflected in the higher axial velocities
observed in both CFD and analytical models of the Beltramian motion with 𝛽 = 0.628, i.e., when gauged against the
computational and complex-lamellar solutions with a larger 𝛽 = 0.707. Finally, as far as the development of multiple
mantles is concerned, we initially speculate that multiple flow passes may be triggered by the narrowing of the outlet
diameter. Nonetheless, despite the pre-selection of outlet diameters that are guided by the theoretical solutions of Vyas
et al. [43], we are unable to replicate any of the multiple mantle combinations reported numerically, nor those observed
experimentally in the works of Anderson et al. [28], Rom [45], Sharma and Majdalani [40], and others. Instead,
we find that the imposition of pressure rather than velocity inlet conditions in the solver will effectively mitigate the
development of multiple mantles. In future work, we hope to conduct a wider range of parametric trade permutations
to make it possible to determine the threshold values of the principal parameters that control the onset, precession, and
breakdown of wall-bounded cyclonic flows under both laminar and turbulent conditions.
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