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Abstract

We present two fast algorithms which apply inclusion–exclusion principle to sum over the bosonic
diagrams in bare diagrammatic quantum Monte Carlo and inchworm Monte Carlo method,
respectively. In the case of inchworm Monte Carlo, the proposed fast algorithm gives an extension
to the work [2018 Inclusion–exclusion principle for many-body diagrammatics Phys. Rev. B 98
115152] from fermionic to bosonic systems. We prove that the proposed fast algorithms reduce the
computational complexity from double factorial to exponential. Numerical experiments are
carried out to verify the theoretical results and to compare the efficiency of the methods.

1. Introduction

Open quantum systems, which characterize quantum systems coupled with environment, have been studied

extensively for many decades, as it arises in many context including quantum optics [9], quantum

computation [31], and dynamical mean field theory [20], just to list a few. The coupling between the system

and the environment leads to non-Markovian evolution of the quantum state of the system. In the weak

coupling limit, such evolution can be approximated by the Markovian process described by the Lindblad

equation [16, 17], which simplifies the numerical simulation. In the more challenging case where memory

effect has to be taken into account, a number of numerical methods have been proposed in the literature.

For example, the quasi-adiabatic propagator path integral [25, 26] method assumes finite memory length

and so that the path integral can be numerically computed iteratively; by assuming that the bath response

function has a special form, the hierarchical equations of motion can be applied [38, 39]; the method of

multiconfiguration time dependent Hartree [3] is developed based on ansatz of wave functions. While these

deterministic methods require some additional modeling of the open quantum system, the bare

diagrammatic quantum Monte Carlo (dQMC) method [22] applies Monte Carlo sampling to directly

compute the summations and high-dimensional integrals in the Dyson series expansion of the quantum

observable [37], and after applying Wick’s theorem [30], this approach can be represented as the

summation of all possible diagrams, each of which is determined by a finite time sequences and a partition

of them into pairs. However, such technique may encounter the notorious numerical sign problem [10–12],

meaning that the number of Monte Carlo samples is required to grow at least exponentially (with respect to

physical time) in order to keep the accuracy of the simulation.

Recently, the inchworm Monte Carlo method [1, 12–14, 18, 32] was proposed to mitigate the numerical

sign problem. It introduces bold lines as partial resummations of bare dQMC, so that the total number of

diagrams can be reduced, and the sign problem is hence suppressed. This approach is further improved in

[11] by writing the evolution of the bold lines as an integro-differential equation, which only requires to

sum over ‘linked’ diagrams, so that the computational cost can be further reduced. Even after such

reductions, however, as the number of points in the time sequence m increases, the total number of
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diagrams still grows as a double factorial O((m − 1)!!). The Monte Carlo sampling of these diagrams will

again contribute to the stochastic error, when a large m is needed.

One possible approach to reduce the stochastic error is to sum up all the diagrams with the same time

sequence using a deterministic method. As a direct summation is prohibitive due to the large number of

diagrams, it calls for designing better algorithms to circumvent the difficulty. The fermionic bath influence

functional in the bare continuous-time hybridization expansion (CTHYB) [27, 28, 36, 42], which is the

counterpart of bare dQMC for bosons, can be calculated in the form of a determinant [27, 42] and thus the

computational cost can be reduced to O(m3). In the inchworm method, which has less severe numerical

sign problem, such a method cannot be directly applied as inchworm expansion only sums over the linked

diagrams and thus corresponding bath influence functional cannot be written in a determinant form as in

CTHYB.

The recent work [8] tackles this challenge with an inverted algorithm, which takes the idea of [33] that

considers the sum of all linked diagrams at once and utilizes the massive cancellations between the

diagrams, leading to an exponential rather than factorial computational complexity. It has been shown that

the inverted algorithm can asymptotically achieve a computational cost at O(m3αm), which is significantly

smaller than the double factorial complexity for the direct summation of all linked diagrams. The work [8]

also developed another algorithm based on inclusion–exclusion principle which is even more efficient in

the sense that it can further reduce the constant α in the context of inchworm hybridization expansion. The

inclusion–exclusion principle describes how the cardinality (or other measures) of unions of sets can be

calculated, which is also well known through the Venn diagram. This principle has been applied in a

number of areas to reduce the computational complexity, including set partitioning [7], counting perfect

matchings [4] and computing matrix permanents [34]. The algorithm in [8] is designed by excluding all the

unlinked diagrams from the set of all diagrams, where the set of all the unlinked diagrams is represented by

the union of several non-disjoint sets. This allows the inclusion–exclusion principle to be applied to the

summation of diagrams, resulting in significant reduction of the computational time.

In this work, we aim to generalize these efforts on fermionic cases to bosonic cases for the simulation of

open quantum systems. For bare dQMC, instead of the determinant form, the bath influence functional

now holds the form of the matrix hafnian [2, 5]. By the inclusion–exclusion principle, we propose a fast

algorithm with computational cost O(2m), which is efficient for small values of m (around m � 20). We

then further generalize the idea to inchworm method for bosonic systems so that the summation of

diagrams with the same time sequence also requires only O(αm) operations. A sharp estimation of α will

also be provided for our algorithm.

The rest of this paper proceeds as follows: in section 2, we introduce the Dyson series and use

inclusion–exclusion principle to derive an algorithm which sums over the diagrams in the Dyson series

efficiently. In section 3, another fast algorithm based on inclusion–exclusion principle is designed to sum

over the linked diagrams appearing in the inchworm method. An optimization for this algorithm is further

proposed, and a complexity analysis is included to examine the computational cost of the optimized

algorithm. Section 4 verifies these theoretical results by numerical experiments. Finally, we draw our

conclusion in section 5.

2. Dyson series with inclusion–exclusion principle

We study an open quantum system described by the von Neumann equation

i
dρ

dt
= [H, ρ], (1)

where the density matrix ρ(t) and the Schrödinger picture Hamiltonian H above are both Hermitian

operators on the Hilbert space H = Hs ⊗Hb, with Hs and Hb representing respectively the Hilbert spaces

associated with the system and the bath of the open quantum system. The Hamiltonian H takes the form as

a combination of an uncoupled Hamiltonian H0 and a coupling term W. Here we assume that the coupling

term W takes the tensor-product form, so that we have

H = H0 + W := (Hs ⊗ Idb + Ids ⊗ Hb) + Ws ⊗ Wb,

where Hs, Ws ∈ Hs, Hb, Wb ∈ Hb, and Ids, Idb are respectively the identity operators for the system and the

bath.

We are interested in the evolution of the expectation for a given observable O = Os ⊗ Idb acting only on

the system part, defined by

〈O(t)〉 := tr(Oρ(t)) = tr(Oe−itHρ(0)eitH). (2)

2
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Due to the high dimensionality of the space Hb, it is usually impractical to solve e±itH directly. One feasible

approach is to apply the method of quantum Monte Carlo to approximate 〈O(t)〉 numerically. Below we

will first introduce the bare dQMC based on the Dyson series expansion of 〈O(t)〉, and then propose an

efficient method to compute a key term in the expansion known as the bath influence functional.

2.1. Introduction to the bare diagrammatic quantum Monte Carlo method

Upon assuming the initial density matrix has the separable form ρ(0) = ρs ⊗ ρb where the bath ρb

commutes with the Hamiltonian Hb, the expectation of observable 〈O(t)〉 can be represented by the

following Dyson series (for derivation, see [11]):

〈O(t)〉 =
+∞∑

m=0

im

∫ 2t

0

dsm

∫ sm

0

dsm−1 . . .

∫ s2

0

ds1 (−1)#{s<t}

× trs(ρsU
(0)(0, s1, . . . , sm, 2t)) · Lb(s1, . . . , sm). (3)

Here #{s < t} denotes the number of si which are less than t and trs takes trace of the system degree of

freedom.

In practice, one may truncate the series above at a sufficiently large M̄ and evaluate those

high-dimensional integrals on the right-hand side using Monte Carlo integration, resulting in the bare

dQMC. This requires us to evaluate the integrand in the Dyson series (3) for each sample. The explicit

formula for the propagator U (0) in given in appendix A, which contains the observable Os and is associated

with the system space. As for the bath influence functional Lb, we assume that the Wick’s theorem can be

applied so that

Lb(s1, . . . , sm) =

⎧

⎪⎪⎨

⎪⎪⎩

0, if m is odd;

∑

q∈Q(s)

∏

(sj ,sk)∈q

B(sj, sk), if m is even,
(4)

where B : {(τ1, τ2)|0 � τ1 � τ2} →C is the two-point bath correlation and the set Q(s1, . . . , sm) is the

collection of all possible ordered pairings of the time sequence (s1, . . . , sm):

Q(s1, . . . , sm) =
{

{(sj1 , sk1
), . . . , (sjm/2

, skm/2
)}

∣
∣
∣ { j1, . . . , jm/2, k1, . . . , km/2} = {1, . . . , m},

jl < kl for any l = 1, . . . , m/2} . (5)

For example, when m = 4, Lb(s1, s2, s3, s4) is given by

Lb(s1, s2, s3, s4) = B(s1, s2)B(s3, s4) + B(s1, s3)B(s2, s4) + B(s1, s4)B(s2, s3). (6)

In particular, when m = 0, the value of Lb(∅) is defined as 1. With such expression of bath influence

functional, the right-hand side of (3) only sums over the terms with even m. We may also express (6) using

many-body diagrams:

(7)

In the diagrammatic representation above, each diagram refers to a product B(·, ·)B(·, ·) where each arc

connecting a pair denotes the corresponding two-point correlation.

The major challenge on evaluating Lb(s1, . . . , sm) (m is even) is that its diagrammatic representation

includes in total (m − 1)!! diagrams, which leads to a double factorial growth in the computational cost on

calculating such a bath influence functional via direct method (i.e., direct summation over each diagram in

the expansion such as (7)). As this cost increases drastically when m gets larger, one needs to compute a

given Lb(s1, . . . , sm) using the Monte Carlo method (on top the Monte Carlo sampling of (s1, . . . , sm)),

leading to larger stochastic error. In this section, we will show how we can benefit from the well-known

inclusion–exclusion principle to greatly reduce the complexity of computing the bath influence functional.

2.2. Inclusion–exclusion principle for computing Lb(s1, . . . , sm)

Mathematically, the equation (4) is known to be the hafnian of an undirected graph [2]. Several fast

algorithms have been introduced to compute such quantity in the recent years [5, 6, 15, 21, 24, 29]. While

most algorithms aim for a good complexity for large values of m, here we are going to introduce a novel fast

algorithm for computing hafnians with small m based on the inclusion–exclusion principle.

3
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Given a function μ(·) satisfying the additivity such that μ
(⋃n

i=1 Ei

)
=

∑n
i=1 μ(Ei) for any disjoint sets

{Ei}n
i=1, the inclusion–exclusion principle reads

μ

(

S\
n⋃

i=1

Ai

)

= μ(S) −
n∑

i=1

μ(Ai) +
∑

1�i<j�n

μ(Ai ∩ Aj) − · · ·+ (−1)n μ(A1 ∩ . . . ∩ An), (8)

where S is a given finite universal set containing A1, A2, . . . , An.

The inclusion–exclusion principle plays important roles in a number of fast algorithms such as Ryser’s

algorithm for matrix permanents [34] and the diagrammatic resummation of quantum impurity models

[8]. To apply this principle on the evaluation of Lb(s1, . . . , sm), we set S as the collection of all combinations

of m/2 distinct pairs from s1, . . . , sm and Ai as all combinations of m/2 distinct pairs from s1, . . . , sm

except si:

S =
{(

(x1, y1), . . . , (xm/2, ym/2)
) ∣
∣ xj = sj1 , yj = sj2 ∈ {s1, . . . , sm}with j1 < j2

for any j = 1, . . . , m/2} ,

Ai =
{(

(x1, y1), . . . , (xm/2, ym/2)
) ∣
∣

xj = sj1 , yj = sj2 ∈ {s1, . . . , si−1, si+1, . . . , sm}with j1 < j2 for any j = 1, . . . , m/2
}
.

We point out that

• For any element of S or Ai, one pair may appear multiple times, e.g. ((s1, s2), (s1, s2)) ∈ S.

• The elements in S and Ai are ordered: The same pairs arranged in different orders form different

elements in these sets, e.g. ((s1, s3), (s1, s2)) and ((s1, s2), (s1, s3)) are different elements of S.

Below we provide all these sets for m = 4 represented by diagrams as an example:

Each diagram in the braces refers to a pairing in S or Ai whose first and second components are represented

by blue and red arcs respectively. For instance, we have

One can observe that si (the point marked in green) never occurs in Ai. Regardless of the blue/red color of

arcs, all diagrams of Ai are excluded from Q(s1, s2, s3, s4), which is the collection of the diagrams in the

diagrammatic representation of Lb(s1, s2, s3, s4). In fact, the union of Ai contains all diagrams that are not in

Q(s1, . . . , sm), and therefore S\
⋃m

i=1 Ai is the set formed by arranging all the pairings in Q(s1, . . . , sm) in all

4
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possible orders. Denote a set function μ(·) as

μ(E) :=
∑

(
(x1 ,y1),...,(xm/2,ym/2)

)
∈E

B(x1, y1) . . .B(xm/2, ym/2)for E = S, A1, . . . , Am

the left-hand side of inclusion–exclusion principle (8) is then given by

μ

(

S\
m⋃

i=1

Ai

)

= Lb(s1, . . . , sm) · (m/2)!. (9)

Here the combinatorial factor (m/2)! takes into account the possible permutations of pairs in

((sj1 , sk1
), . . . , (sjm/2

, skm/2
)) which all refer to the same element in the set.

On the other hand, the terms in the right-hand side of (8) are

μ(S) =

⎛

⎝
∑

1�i<j�m

B(si, sj)

⎞

⎠

m/2

,

μ(Ak1
∩ . . . ∩ Akl

) =
( ∑

1�i<j�m
i�=k1,j�=k1

...
i�=kl ,j�=kl

B(si, sj)
)m/2

for l = 1, . . . , m − 2 and 1 � k1 < . . . < kl � m.
(10)

Note that the intersection Ak1
∩ . . . ∩ Akl

does not include sk1
, . . . , skl

and thus the i, j indices in the

subscript of the summation can never be assigned as k1, . . . , kl. In addition, Ak1
∩ . . . ∩ Akl

is empty for

l = m − 1, m, and therefore the corresponding values of μ(·) is zero.

At this point, we can combine (10) with (9) and reach the following formula:

Theorem 1. Given the increasing time sequence (s1, . . . , sm) with m being an even number, Lb(s1, . . . , sm)

defined in (4) can be calculated by

Lb(s1, . . . , sm) =

⎡

⎣(Q)
m
2 −

m∑

k1=1

(
Qk1

)m
2 +

∑

1�k1<k2�m

(
Qk1k2

)m
2 − · · ·

. . .+
∑

1�k1<...<km−2�m

(
Qk1k2...km−2

)m
2

⎤

⎦

/
(m

2

)

! (11)

where

Q =
∑

1�i<j�m

B(si, sj) and Qk1k2...kn =
∑

1�i<j�m
i�=k1 ,j�=k1

...
i�=kn ,j�=kn

B(si, sj) for n = 1, . . . , m − 2.

The equation (11) can be used to calculate Lb(s1, . . . , sm) for given values of B(si, sj). Again in the

example of m = 4, this equation can be expanded as

Lb(s1, s2, s3, s4)

=
1

2

[

(B(s1, s2) + B(s1, s3) + B(s1, s4) + B(s2, s3) + B(s2, s4) + B(s3, s4))2

− (B(s2, s3) + B(s2, s4) + B(s3, s4))2 − (B(s1, s3) + B(s1, s4) + B(s3, s4))2

− (B(s1, s2) + B(s1, s4) + B(s2, s4))2 − (B(s1, s2) + B(s1, s3) + B(s2, s3))2

+ (B(s3, s4))2 + (B(s2, s4))2 + (B(s2, s3))2 + (B(s1, s4))2 + (B(s1, s3))2 + (B(s1, s2))2
]
. (12)

It can be checked by direct calculation that the cancellations among these two-point correlations will finally

lead to the same result as (6) from the definition of Lb(s1, . . . , sm), which justifies the equivalence between

the two approaches to evaluate the bath influence functional.

The formula (12) does not seem to hold any advantage at first glance. Indeed, for small values of m, the

formula (11) requires more operations than the direct approach using the definition (4). However, the

5
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computational cost of such inclusion–exclusion principle will become significantly cheaper when m is large,

which is

(m

0

)(m

2

)

+
(m

1

)(
m − 1

2

)

+ · · ·+

(
m

m − 2

)(
2

2

)

=

m−2∑

n=0

m!

n!(m − n)!
·

(m − n)!

2(m − n − 2)!
=

m(m − 1)

2
·

m−2∑

n=0

(
m − 2

n

)

∼ O(m22m). (13)

Here the binomial coefficient
(

m
n

)
is the number of terms in the summation in (11) with respect to

k1, . . . , kn, and the binomial coefficient
(

m−n
2

)
corresponds to the number of terms in the definition of

Qk1...kn . This cost grows considerably slower than the double factorial for the direct calculation of the bath

influence functional. We note that the reduction of computational complexity can be compared to the Ryser

formula [34] for computing the permanent of an m × m matrix, which is also derived from the

inclusion–exclusion principle with the computational cost also being O(m22m). In our case, we are able to

further reduce the computational cost to O(2m) by calculating Qk1k2...kn iteratively. Specifically, we define the

symmetrization of the two-point correlation as

¯

B(si, sj) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

B(si, sj) if si < sj,

0 if si = sj,

B(sj, si) if si > sj.

Below we use B̄ ∈ Cm×m to denote the symmetric matrix whose entries are B̄(si, sj). Based on such

definition, the desired bath influence functional is then computed by the hafnian [2] of the symmetric

matrix B̄, while Q and each Qk1k2...kn are expressed in terms of the summation over entries of B̄:

Q =
1

2

m∑

i=1

m∑

j=1

B̄(si, sj),

Qk1k2...kn =
1

2

∑

1�i�m
i�=k1
...

i�=kn

∑

1�j�m
j�=k1
...

j�=kn

B̄(si, sj).

Note that the constant 1
2

is needed here since we have taken into each term twice in the symmetrized

summation. From this definition, we can observe that Qk1k2...kn is a half of the sum over all the entries of B̄

excluding the kith rows and columns for i = 1, . . . , n. Thus the value of Qk1k2...kn can be obtained from the

Qk1k2...kn−1
by taking away the knth row and column. We are then inspired to define

R(i)
k1k2...kn−1

=

m∑

j=1

B̄(si, sj) −
n−1∑

j=1

B̄(si, skj
)

=
1

2

⎛

⎝

m∑

j=1

B̄(si, sj) −
n−1∑

j=1

B̄(si, skj
)

⎞

⎠+
1

2

⎛

⎝

m∑

j=1

B̄(sj, si) −
n−1∑

j=1

B̄(skj
, si)

⎞

⎠ (14)

which describes the summation over ith row and column except the k1th, k2th, . . . , kn−1th entries. The

underlined terms are subtracted since they do not exist in the sum Qk1k2...kn−1
, and the diagonal entry

B̄(si, si) is counted twice but this does not matter since it equals zero by definition. Now we can compute

Qk1k2...kn by

Qk1k2...kn = Qk1k2...kn−1
− R(kn)

k1k2...kn−1
. (15)

Note that this relation also holds for n = 1, for which the left-hand side of (14) becomes R(i), denoting the

sum of the ith row of the matrix B̄. The equation (15) reduces the computational cost of each Qk1k2...kn to

O(1) once the initial value Q is given, and each R(kn)
k1k2...kn−1

can also be obtained iteratively by only one

subtraction:

R(i)
k1k2...kn

= R(i)
k1k2...kn−1

− B̄(skn , si), (16)

which can be easily seen according to its definition.

For a more intuitive understanding, one may refer to figure 1 to visualize the procedures to compute a

simple example as Q24: each node is assigned with the value of the corresponding entry of the matrix B̄

6
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Figure 1. An example when m = 6 illustrating the calculation of Qk1k2
for k1 = 2 and k2 = 4.

Algorithm 1. Inclusion–exclusion principle for computing Lb(s1, . . . , sm).

1: set Q ← 1
2

∑m
i=1

∑m
j=1 B̄(si, sj) ⊲ Initial setting

2: for i from 1 to m do

3: R(i) ←
∑m

j=1 B̄(si, sj)

4: Qi ← Q − R(i)

5: for k̄ from 1 to i − 1 do

6: for n from 0 to max(min(m − 4, k̄ − 1), 0) do

7: for 1 � k1 < k2 < . . . < kn < k̄ do

8: R(i)

k1 ...kn k̄
← R(i)

k1 ...kn
− B̄(s̄k, si)

9: Qk1 ...kn k̄i ← Qk1 ...kn k̄ − R(i)

k1 ...kn k̄

10: end for

11: end for

12: end for

13: end for

14: compute Lb(s1, . . . , sm) according to (11) ⊲ Final step

15: return Lb(s1, . . . , sm)

(with the coefficient 1
2
), so Q is simply the summation over all such nodes. We can reach to the desired Q24

by the following two steps:

(a) Calculate R(2) (summation over the red lines) and obtain Q2 (summation over all nodes that are not

on red lines) using relation (15);

(b) Calculate R(4)
2 (summation over the blue lines excluding the two boxed nodes) using relation (16) and

get Q24 (summation over all nodes that are on neither red nor blue lines) again by relation (15).

Note that the nodes on the green diagonal are all equal to zero, which explains why the double counting

on the nodes of intersection on red/blue lines will not affect the result of the calculation as we have

mentioned previously.

To end this section, we examine the computational cost of such procedures which are written in details

as algorithm 1: the major complexity concentrates in the calculation of R(i)
k1k2...kn

and Qk1k2...kn in line 8 and 9,

both of which require 1 subtraction in each iteration for the total 2m iterations, and the evaluation of the

final step in line 13 whose cost is again 2m. Other computations such as the initial settings for R(i) and Q

need at most m2 operations and thus are minor. Consequently, algorithm 1 has the complexity at O(2m),

which is much cheaper compared to the original (13).

Compared with previous works on the computation of hafnians, this algorithm does not have the

optimal time complexity. In [5], Björklund et al have proposed an algorithm that computes the hafnian of a

m × m matrix with time complexity O(m32m/2), which requires computation of all the eigenvalues of 2m/2

matrices. Asymptotically, such an algorithm is faster than our algorithm for large m. However, according to

our experiments, algorithm 1 is not slower than Björklund’s algorithm up to m = 22 due to a relatively

smaller prefactor of the overall complexity, which is sufficiently efficient as a satisfactory convergence of

7
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Dyson series generally will not require a very large m. We have attached our MATLAB code for algorithm 1

in appendix B and one may compare the time efficiency of Björklund’s algorithm with ours.

3. Inchworm Monte Carlo method with inclusion–exclusion principle

The bare dQMC method can be only applied to short-time simulation, since the variance of the integrand

in the Monte Carlo method grows exponentially with simulation time, which is known as the dynamical

sign problem [27, 28, 35]. One approach to alleviate the sign problem is the inchworm Monte Carlo method

proposed in [12], which introduces the full propagator G(si, sf ) defined by (see [11] for a derivation)

G(si, sf) =

+∞∑

m=0
m is even

im

∫ sf

si

dsm

∫ sm

si

dsm−1 . . .

∫ s2

si

ds1

× (−1)#{s<t}U (0)(si, s1, . . . , sm, sf) · Lb(s1, . . . , sm)

(17)

for the initial time point si ∈ [0, 2t]\{t} and the final time point sf ∈ [si, 2t]\{t}. One may compare the

definition of such a full propagator with the desired expectation of observable (3) to find the relation

〈O(t)〉 = trs(ρsG(0, 2t)), suggesting that we should obtain 〈O(t)〉 by studying the evolution of G(si, sf ).

In [11, section 4], an integro-differential equation formulation for the full propagator is proposed as

∂G(si, sf)

∂sf

= sgn(sf − t)[iHsG(si, sf) +

+∞∑

m=2
m is even

im

∫ sf

si

dsm−1

∫ sm−1

si

dsm−2 . . .

∫ s2

si

ds1

× (−1)#{s�t}WsU(si, s1, . . . , sm−1, sf) · L
c
b(s1, . . . , sm−1, sf)]. (18)

Here we recall that Ws is the perturbation associated with the system, and the functional U is defined

similarly to U (0) in (17) with the bare propagator G(0)(·, ·) replaced by the full propagator G(·, ·). Its formula

together with some important properties of the full propagator are summarized in appendix A.

The definition of Lc
b is similar to (4):

Lc
b(s1, . . . , sm) =

∑

q∈Qc(s1,...,sm)

∏

(sj,sk)∈q

B(sj, sk), (19)

where Qc denotes the set of linked pairings:

Qc(s1, . . . , sm) = {q ∈ Q(s1, . . . , sm)|q is linked}.

By saying q is ‘linked’ in the diagrammatic representation, we mean that all points in a diagram are

connected with each other using arcs as ‘bridges’. In the same example (7) as when m = 4, the second

diagram on the right-hand side is considered to be linked since one may start from any of the four points

and reach to any other one going through the path formed by the union of the arcs. More rigorously, this

linkedness is defined as follows.

Definition 1 (Linked pairs). Two pairs of real numbers (s1, s2) and (τ 1, τ 2) satisfying s1 � s2 and τ 1 � τ 2

are linked if either of the following two statements holds:

(a) s1 � τ 1 � s2 and τ 1 � s2 � τ 2.

(b) τ 1 � s1 � τ 2 and s1 � τ 2 � s2.

Definition 2 (Linked sets of pairs). Given two sets of pairs q1 and q2, we say q1 and q2 are linked if there

exists (s1, s2) ∈ q1 and (τ1, τ2) ∈ q2 such that (s1, s2) and (τ 1, τ 2) are linked. We say a given set of pairs q is

linked if it cannot be decomposed into the union of two sets of pairs that are not linked.

When two sets of pairs q1 and q2 are linked, we also say that q1 is linked to q2 and vice versa.

For example, the first diagram on the right-hand side of (7) is not linked since it can be decomposed

into q1 ∪ q2 where q1 = {(s1, s2)} and q2 = {(s3, s4)} and obviously q1 is not linked to q2. For the same

reason, the third diagram is not linked either. Therefore, only the second diagram is linked and

Lc
b(s1, s2, s3, s4) = B(s1, s3)B(s2, s4) (20)

which is diagrammatically expressed as

8
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where Lc
b is denoted by a rounded box covering time sequence (s1, . . . , sm). Another example for this

many-body diagrammatic representation when m = 6 is given below:

(21)

We observe that the rounded box above only contains four linked diagrams, while the corresponding bath

influence functional Lb(s1, s2, s3, s4, s5, s6) is the summation of all possible ordered pairings including

diagrams like

(22)

which are not linked.

Compared with the Dyson series, the advantage of the equation (18) is that its series with respect to m

has a faster convergence than that in (3), leading to a less severe numerical sign problem. Also, the number

of diagrams in Lc
b(s1, . . . , sm) grows asymptotically as e−1(m − 1)!! [37], which is less than the number of

diagrams in Lb(s1, . . . , sm). To solve (19) numerically, one can apply Runge–Kutta type methods to

discretize the time sf , and the integrals on the right-hand side of (18) are approximated by the Monte Carlo

method, especially for large m. Thus, it can be expected that most of the computational time is spent on the

evaluation of Lc
b(s1, . . . , sm) defined in (19), and hence, a fast algorithm for Lc

b(s1, . . . , sm) is desirable.

Below, we are going to combine the result in section 2.1 and the technique developed in [8] to accelerate the

computation of Lc
b for large m.

3.1. Inclusion–exclusion principle for computing rounded box Lc
b(s1, . . . , sm)

Since any rounded box covering two points can be directly evaluated by the corresponding two-point

correlation, we only consider the calculation of Lc
b(s1, . . . , sm) with even m � 4 in the rest of this section. In

the inclusion–exclusion principle (8), we set

S = Q∗(s1, . . . , sm)

:=
{

{(sj1 , sk1
), . . . , (sjm/2

, skm/2
)}

∣
∣
∣ {j1, . . . , jm/2, k1, . . . , km/2} = {1, . . . , m},

kl − jl � 2 for any l = 1, . . . , m/2

}
(23)

equipped with the set function

μ(S) =
∑

q∈S

∏

(sj ,sk)∈q

B(sj, sk).

In (23), Q∗(s1, . . . , sm) is similarly defined as Q(s1, . . . , sm) in (5) but does not include any pair formed by

two adjacent time points, i.e., we do not consider any pair (sjl , skl
) with kl − jl = 2 in S. This difference in

definition is based on the fact that an ordered pairing with an arc connecting two adjacent points such as

the ones in (22) will never be linked, and thus is not considered in a rounded box. Note that S = ∅ when

m = 2, which explains why we restrict our discussion for m � 4 in this section. Upon further introducing

B∗(sj, sk) =

{
B(sj, sk), if k − j > 1,

0, if k − j = 0,

it is obvious that

L∗
b(s1, . . . , sm) :=μ(S) =

∑

q∈Q∗(s)

∏

(sj ,sk)∈q

B(sj, sk) =
∑

q∈Q(s)

∏

(sj ,sk)∈q

B∗(sj, sk). (24)

Diagrammatically, we express a given L∗
b(s1, . . . , sm) by a rectangular box. For example when m = 6, we

have

(25)

Similar as the bath influence functional Lb(s1, . . . , sm), the rectangular box above contains all linked

diagrams (the first four diagrams on the right-hand side). However, L∗
b(s1, . . . , sm) has only one unlinked

diagram (the last diagram) and does not include any unlinked diagrams with adjacent pairs. Such idea has

also been applied in [8] referred as ‘second optimization’ to eliminate some unlinked diagrams that will not

be used in inchworm method. By writing L∗
b(s1, . . . , sm) as the last formula of (24), we can again apply

9
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algorithm 1 to compute a given m-point rectangular box at the complexity of O(2m) upon setting all entries

on the subdiagonal and superdiagonal of the matrix in figure 1 to be zero.

To continue the inclusion–exclusion principle, we further let

AV = {q ∈ S | q has a linked component qV ∈ Q∗(V)}

given V := (si+1, . . . , si+2n) being a subsequence of (s1, . . . , sm−1),
(26)

where we have used the short-hand notation Q∗(V) to denote Q∗(si+1, . . . , si+2n). By saying qV is a linked

component of q, we mean qV ⊂ q is linked but not linked to q\qV . Each AV is a collection of some unlinked

diagrams since each of its elements q can be decomposed as q = qV ∪ (q\qV) where the two subsets are not

linked to each other. Note that it is sufficient to consider point sets V including successive time points

si+1, . . . , si+2n since any unlinked diagram contains at least one linked component with only successive time

points, and each V should contain at least four points due to the exclusion of the diagrams with arcs

connecting adjacent points. For example when m = 10, we have

• For |V| = 4:

(27)

• For |V| = 6:

(28)

• For |V| = 8:

(29)

All linked qV (marked in red) in the corresponding AV are eventually included in the rounded boxes which

are calculated as Lc
b(V). The rest of points in {s1, . . . , s10} are not linked to qV and they build up all possible

ordered pairings without any pair of adjacent two points. Therefore, we group these points in the

rectangular boxes and compute them by L∗
b({s1, . . . , s10}\V). Note that some rectangular boxes may be

divided by rounded boxes into several nonadjacent segments and we use ‘thin pumps’ to connect these

segments above the rounded boxes to indicate that the points covered by these segments are in the same L∗
b.

Consequently, the diagrams on the right-hand side above are expressed as the following formulas:

(30)

10
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The union of AV contains all the diagrams in S which are not linked. Note that in (29), we have neglected

the diagram with eight-point rounded box μ(A{s1,...,s8}), which equals zero as its rectangular box is formed

by the two adjacent points and thus L∗
b(s9, s10) = 0. Moreover, in the definition of AV in (23), we do not

need to consider the case where V includes the last time point sm. This is because, given any

V′ = {sm−2n+1, . . . , sm}, if we define AV′ as the set of diagrams with a linked component including all the

last 2n points, then each element in AV′ can be found in at least one of the AV’s defined in (23). For

example, the five diagrams of A{s7,s8 ,s9,s10} given by

can be found in A{s1,...,s6} and A{s2,s3,s4,s5}; the set A{s5,...,s10} has four elements which are all included in

A{s1,s2,s3 ,s4}. As a result, on the left-hand side of the inclusion–exclusion principle (8) we have

μ

(

S\
⋃

V

AV

)

= μ (Qc(s1, . . . , sm)) = Lc
b(s1, . . . , sm). (31)

On the right-hand side of (8), if the sets V1, . . . , Vl are mutually disjoint, we have

AV1
∩ . . . ∩ AVl

= {q ∈ S | q has l linked components qVi
∈ Q∗(Vi) for i = 1, . . . , l} ; (32)

if any Vi and Vj contain a common point si, then AV1
∩ . . . ∩ AVl

= ∅, which has no contribution in the

inclusion–exclusion principle. Thus, in the example of m = 10, the following intersections provide nonzero

contribution:

(33)

We have again neglected the intersection μ
(
A{s1,s2,s3,s4} ∩ A{s5,s6,s7,s8}

)
which contains the null-valued

rectangular box L∗
b(s9, s10). Now we insert (27)–(29) and (33) into (8) to get the diagrammatic

representation for Lc
b(s1, . . . , s10) using inclusion–exclusion principle as

(34)

At this moment, we have obtained an indirect approach based on inclusion–exclusion principle to

evaluate a given rounded box Lc
b(s1, . . . , sm): one may first expand a rounded box as (34) and then compute

the (bridged) rectangular boxes using formula (11) (or more efficiently algorithm 1). Each rounded box on

the right-hand side with length greater than 2 can again be evaluated by the same procedure. In the

subsequent section, we will further optimize the computational complexity of the calculation by an

improved algorithm.

3.2. Improved algorithm

The main idea of our improved algorithm is to combine the diagrams with the same rectangular boxes.

Specifically, in the example (34), the first two diagrams in the last line have the same rectangular box, and

they can be written together by the distributive law as [Lc
b(s2, s3, s4, s5)Lc

b(s6, s7, s8, s9) − Lc
b(s2, . . . , s9)]

L∗
b(s1, s10). For simplicity of notations, we define the dotted box:

(35)

In general, a dotted box with even time points represents the sum of all partitions of these time points by

rounded boxes with length greater than or equal to 4, and the sign of each term depends on the number of

11
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rounded boxes (even for + and odd for −). Two more examples are given below:

With the first two diagrams in the last line of (34) replaced by (35), the number of diagrams to be summed

over can be reduced by 1 and we now compute Lc
b(s1, . . . , s10) as

(36)

For rounded boxes with more points, more diagrams can be reduced. If the complexity of evaluating each

dotted box is not more expensive than a rounded box with the same length, a considerable reduction in

total computational cost using this optimization can then be expected for a large m. In the following

subsection, we consider an efficient approach to compute the dotted boxes.

3.2.1. Iterative method for computing dotted boxes

For any even integer m � 4, we denote each dotted box by Ld
b(s1, . . . , sm), which is calculated in formulas as

(37)

Note that the multiple summation in the second line above becomes one single rounded box Lc
b(s1, . . . , sm)

when the index j = 0.

For a more efficient implementation, we compute a given dotted box iteratively based on the previous

results of shorter dotted boxes. For example when m = 12, we have

(38)

where one can see that the computation requires only 3 multiplications and 3 subtractions. More generally,

such iteration is described by the lemma below:

Lemma 1. Given the increasing time sequence (s1, . . . , sm) with m � 4 being an even number, we have

or in formulas,

Ld
b(s1, . . . , sm) = −Lc

b(s1, . . . , sm) −

m/2−2
∑

k=2

Ld
b(s1, . . . , s2k)Lc

b(s2k+1, . . . , sm). (39)

Proof. We consider the following resummation of the original definition (37) by restricting the ‘length’ of

the last rounded box in the multiple summation, i.e., the term Lc
b(sij+1, . . . , sm):

12
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Ld
b(s1, . . . , sm) = −Lc

b(s1, . . . , sm) + Lc
b(s5, . . . , sm)

︸ ︷︷ ︸

length=m−4, ij=4

(−1)2Lc
b(s1, s2, s3, s4) + · · · · · ·+

+ Lc
b(sm−5, . . . , sm)

︸ ︷︷ ︸

length=6, ij=m−6

⌊m−6
4 ⌋

∑

j=1

(−1)j+1

m−4∑

i1=4
i1 is even

. . .

×
m−4∑

ij−1=ij−2+4

ij−1 is even

Lc
b(s1, . . . , si1 ) . . .Lc

b(sij−1+1, . . . , sm−6)

+ Lc
b(sm−3, . . . , sm)

︸ ︷︷ ︸

length=4, ij=m−4

⌊m−4
4 ⌋

∑

j=1

(−1)j+1

m−4∑

i1=4
i1 is even

. . .

×
m−4∑

ij−1=ij−2+4

ij−1 is even

Lc
b(s1, . . . , si1 ) . . .Lc

b(sij−1+1, . . . , sm−4).

By decreasing the index j in each term by 1, one may easily check these multiple summations will coincide

the definition (37) for shorter dotted boxes, i.e.,

Ld
b(s1, . . . , sm) = −Lc

b(s1, . . . , sm) − Lc
b(s5, . . . , sm)Ld

b(s1, s2, s3, s4) − · · · . . .−

− Lc
b(sm−5, . . . , sm)Ld

b(s1, . . . , sm−6) − Lc
b(sm−3, . . . , sm)Ld

b(s1, . . . , sm−4),

which proves (39). �

By comparing the number of diagrams that need to be summed up for a rounded box in the example

(34) with that for a dotted box in (38), one can easily see that computing a dotted box for a large m using

the above iterative method is even cheaper than computing a rounded box of the same size. Later in

section 3.3, we will carry out a complexity analysis on the computational cost of these dotted boxes in the

entire algorithm. Now we are ready to formulate the expansion of rounded boxes Lc
b(s1, . . . , sm) for an

arbitrary even m using only dotted and rectangular boxes, and propose an optimized algorithm to compute

the rounded boxes.

3.2.2. Inclusion–exclusion principle with optimization for computing rounded boxes

The example in the previous section suggests that a rounded box is computed by the summation of all

possible diagrams filled up by the nonadjacent dotted boxes covering at least four points excluding the right

end and a rectangular box covering rest of the time points. The formula is provided in the following

theorem:

Theorem 2. Given the increasing time sequence (s1, . . . , sm) with m � 4 being an even number, we have

Lc
b(s1, . . . , sm) = L∗

b(s1, . . . , sm) +
∑

1�i1<j1�m
j1−i1�4 and is even

Ld
b(si1 , . . . , sj1−1)L∗

b(rest of points)

+
∑

1�i1<j1<i2<j2�m
j1−i1�4 and is even
j2−i2�4 and is even

Ld
b(si1 , . . . , sj1−1)Ld

b(si2 , . . . , sj2−1)L∗
b(rest of points)

+ · · ·

+
∑

1�i1<j1<...<ik<jk�m
j1−i1�4 and is even

···
jk−ik�4 and is even

Ld
b(si1 , . . . , sj1−1) . . .Ld

b(sik , . . . , sjk−1)L∗
b(rest of points),

(40)

where k = ⌊m
5
⌋. The ‘rest of points’ denotes all time points in (s1, . . . , sm) which do not occur in the brackets of

any Ld
b in the same summand.

We remark that on the right-hand side of (40), the number of dotted boxes Ld
b(. . .) in each summand

does not exceed k = ⌊m
5
⌋ since all dotted boxes are pairwise nonadjacent and each of them includes at least

13
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Algorithm 2. Inclusion–exclusion principle with optimization.

1: for i from 1 to m − 4 do ⊲ Initial setting

2: Lc
b(si, si+1, si+2, si+3) ← B(si , si+2)B(si+1, si+3)

3: Ld
b(si, si+1, si+2, si+3) ←−B(si, si+2)B(si+1, si+3)

4: end for

5: for n from 3 to m
2
− 1 do

6: for k from 1 to m − 2n do ⊲ Compute kth rounded and dotted segment with length 2n

7: compute Lc
b(sk, . . . , sk+2n−1) according to (40) where each

L∗
b(rest of points) is computed according to algorithm 1

8: compute Ld
b(sk, . . . , sk+2n−1) according to (39)

9: end for

10: end for

11: compute Lc
b(s1, . . . , sm) according to (40) ⊲ Final step

12: return Lc
b(s1, . . . , sm)

four points. For example, the diagrams

are not allowed.

Now we arrive at an optimized algorithm based on inclusion–exclusion principle to calculate a rounded

box Lc
b(s1, . . . , sm): one writes the rounded box as the expansion (36) using theorem 2 and then apply

algorithm 1 to calculate the rectangular part and lemma 1 for the dotted segments. To avoid repeated

calculations caused by recursion, one should compute all rounded segments from short to long until the

entire rounded box is obtained. Such procedures in general are described by algorithm 2.

We have now finished the implementation of inclusion–exclusion principle for computing the

functional Lc
b(s1, . . . , sm). Similar as computing the bath influence functional, inclusion–exclusion principle

for the rounded box is less efficient than the direct summation of all linked diagrams for a small m.

However, our complexity analysis in the next section will show that the new algorithm will outperform the

direct method as m becomes large. The central idea is that, when m increases, the number of diagrams in

(36) will grow significantly slower than double factorial (the growth rate of the number of diagrams in the

direct method).

The proposed algorithm in this section can be regarded as the bosonic version of the algorithm

introduced in [8] for fermions. We have also further improved the algorithm by a more efficient scheme to

compute the dotted boxes (section 3.2.1).

3.3. Complexity analysis

In this section, we will show that the computational complexity of algorithm 2 based on inclusion–

exclusion principle is significantly smaller than double factorial, which is the growth rate of the direct

summation over all linked diagrams.

We denote the complexities of evaluating 2n-point rounded and dotted segment respectively by Crd(2n)

and Cdt(2n). The total computational cost for Lc
b(s1, . . . , sm) using algorithm 2 can be immediately written

down as

Copt(m) =

m/2−1
∑

n=2

(m − 2n) · (Crd(2n) + Cdt(2n)) + Crd(m), (41)

where the last term above refers to the cost of the final step in line 11 of algorithm 2. Based on the previous

calculations on the shorter segments, the computational complexity of a dotted box Cdt(2n) is simply

given by

Cdt(2n) = n − 3
︸ ︷︷ ︸

additions

+ n − 3
︸ ︷︷ ︸

multiplications

= O(n) (42)

according lemma 1. Therefore, we focus on the estimation of the complexity of rounded segments Crd(2n).

Inspired by the example (36), the computational cost for Lc
b(sk, . . . , sk+2n−1) in line 7 using theorem 2

can be estimated as

Crd(2n) �

n−1∑

k=0

a2n,2k · (Cb(2n − 2k) + k + 1). (43)

In the estimation above, a2n,2k is the number of diagrams where the total length of the dotted boxes is 2k.

Cb(2n − 2k) is the computational cost of a rectangular box with length 2n − 2k, which is at O(22n−2k) as we

have discussed at the end of section 2.2. ‘k’ and ‘1’ respectively counts the multiplications used among the
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rectangular part and dotted boxes within each diagram, and the addition between every two diagrams. For

example, the last two terms in the right-hand side of (36) read

whose computational cost contributes to the k = 4 term in the summation (43) for Crd(10). In each of the

a10,8 = 2 diagrams above, we compute a two-point rectangular box and need at most two multiplications

(for the second diagram). We further claim that a2n,2 = 0 since a two-point dotted box including two

adjacent points always has zero value, and thus there will not exist any diagram containing a two-point

dotted segment in inclusion–exclusion expansion of a given rounded box.

At this point, we only need to focus on the estimation for ap,2k (p can be odd), which essentially is the

number of nonadjacent partitions over the integers from 1 to p − 1 (the last point is excluded), where each

dotted segment covers at least four points and the total length of all dotted segments is 2k. The following

statement provides a useful recurrence relation for the sequence {ap,2k}:

Lemma 2. Given integers p � 1 and 0 � k � ⌊ p−1
2
⌋, the sequence {ap,2k} satisfies the recurrence relation

ap,2k = ap−1,2k + (ap−5,2k−4 + ap−7,2k−6 + ap−9,2k−8 + · · ·+ ap−(2k−3),4) + 1. (44)

Proof. For simplicity, we consider the diagrams with dotted boxes only, since the rectangular boxes

automatically include all the remaining points. Let the diagram

(45)

denote the set including all diagrams with a total number of 2k points inside an arbitrary number of

non-adjacent dotted boxes in the shaded area (each dotted box must contain at least 4 points), and let the

diagram

(46)

be the set of diagrams that add one dotted box as indicated to each of the diagrams in (45). For example,

Then ap,2k is the cardinality of the diagram set (45) or (46) if there are p − 1 points in the shaded area. Note

that in the definitions of (45) and (46), the rightmost point in any diagram is never included in the dotted

boxes, and in (46), the one point between the shaded area and the dotted box ensures that any two dotted

boxes are non-adjacent. By this definition, we claim that

(47)

where all diagrams have the same length p. Since all the sets on the right-hand side are disjoint (which can

be observed by focusing on the last dotted box of the diagrams), we immediately get (44) by counting the

number of diagrams on both sides.

To show (47), we can take any diagram on the left-hand side, and check the status of the last second

point:

• If the last second point is not included in any dotted boxes, then the diagram must belong to the first

set on the right-hand side of (47);

• If the last second point is included in a 2n-point dotted box (1 < n < k − 1), then the diagram must

belong to the nth set on the right-hand side of (47);
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• If the last second point is included in a 2k-point dotted box, then this diagram must be the one in the

last line of (47).

It is now clear that the left-hand side of (47) is a subset of its right-hand side. For the reverse direction,

the right-hand side is obviously a subset of the left-hand side since any diagram in any set on the right-hand

side of (47) has in total 2k points in dotted boxes, and the last point is never included into any boxes. This

completes the proof of the lemma. �

With the recurrence relation for the sequence {ap,2k}, we now consider a two-variable generating

function f(x, y) with a Maclaurin expansion as

f (x, y) =

∞∑

p=0

p
∑

q=0

ap,p−q · xpyq, (48)

where we set ap′,0 = 1 and ap′,q′ = 0 for any nonnegative p′ and odd q′. By (44), we have

∞∑

p=1

∞∑

q=1

[
ap,p−q − ap−1,p−q − (ap−5,p−q−4 + ap−7,p−q−6 + · · · )

]
xpyq = 0

leading to

(f (x, y) − a0,0) − xyf (x, y) − (x5y + x7y + · · · )f (x, y) = 0

and thus we obtain the explicit expression of the generating function:

f (x, y) =
1

1 −
(

xy + x5y 1
1−x2

) . (49)

Now we return to the estimation for the complexity (43), which can be further bounded by

Crd(2n) �

n−1∑

k=0

a2n,2k · (22n−2k + k + 1)

�

n∑

k=0

a2n,2n−2k · 22k + n ·
n∑

k=0

a2n,2n−2k.

(50)

By (48), we see that

f (x, 2) =

∞∑

p=0

⎛

⎝

p
∑

q=0

ap,p−q · 2q

⎞

⎠ xp =

∞∑

p=0

⎛

⎝

⌊p/2⌋
∑

k=0

ap,p−2k · 22k

⎞

⎠ xp,

which shows that in the Maclaurin expansion of f(x, 2), the coefficient of x2n equals the first summation in

the second line of (50). According to (49), the function f(x, 2) is a rational function, so that its Maclaurin

expansion can be found via the Heaviside cover-up method [40]:

f (x, 2) =
x2 − 1

2x5 − 2x3 + x2 + 2x − 1
=

5∑

i=1

ci

x − xi

=

5∑

i=1

(

−
ci

xi

) ∞∑

j=0

(
1

xi

)j

xj,

where x1 ≈ 0.470 417, x2,3 ≈ −0.970 009 ± 0.4461i and x4,5 ≈ 0.7348 ± 0.626 49i are the poles of f(x, 2)

and ci are some constants. Therefore, asymptotically we have

n∑

k=0

a2n,2n−2k · 22k = −
5∑

i=1

ci

x2n+1
i

∼ O

(

max
i=1,...,5

(∣
∣
∣
∣

1

xi

∣
∣
∣
∣

2n
))

= O

(∣
∣
∣
∣

1

x1

∣
∣
∣
∣

2n
)

≈ O(2.125 772n).

Similarly, the second summation in the last line of (50) is the coefficient of x2n in the Maclaurin expansion

of f(x, 1) and we can deduce that
∑n

k=0 a2n,2n−2k ∼ O(1.443 272n). Hence,

Crd(2n) � 2.125 772n + n · 1.443 272n ∼ O(αn) with α ≈ 4.518 91.
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Afterwards, we insert the above upper bound back into (41) to obtain the overall complexity Copt(m) of

algorithm 2:

Copt(m) �

⎛

⎝

m/2−1
∑

n=2

(m − 2n) · (αn + n)

⎞

⎠+ αm/2

=

(
m
2

)3
(α− 1)2 − m

2
(6α3 + α2 − 14α+ 7) + 6(αm/2+1 + α3 − α2 − 2α+ 1)

3(α− 1)2
+ αm/2.

The fraction in the last line above is asymptotically O(αm/2−1) and thus the second term dominates the

upper bound. Such estimation indicates that the major computational cost of the algorithm is spent on the

rectangular boxes in the final step (line 11) when calculating the longest rounded box. To summarize the

analysis, we state the conclusion in the theorem below:

Theorem 3. Given the increasing time sequence (s1, . . . , sm) with m being an even number, the complexity of

algorithm 2 computing the entire rounded box Lc
b(s1, . . . , sm) can be bounded by

Copt(m) � αm/2 with α ≈ 4.518 91. (51)

Compared to the direct method whose computational cost grows as fast as double factorial in m, the

inclusion–exclusion principle based algorithm with exponential growth rate is obviously more efficient

when m is large.

4. Numerical experiments

In this section, we will first numerically verify the statements on the complexities of algorithms, and then

simulate both bare dQMC and inchworm Monte Carlo method to see how we can benefit from the

inclusion–exclusion principle in applications.

We consider the spin-boson model [19, 23, 41] where the Hamiltonian and perturbation operators

associated to the system are

Hs = ǫ
̂
σz +Δ

̂
σx, Ws =

̂
σz,

where σ̂x and σ̂z are the usual Pauli matrices

σ̂x =

(
0 1

1 0

)

, σ̂z =

(
1 0

0 −1

)

.

The observable of interest is set to be O = σ̂z ⊗ Idb, which meets the condition that O only acts on the

system space. The initial density matrix ρ = ρs ⊗ ρb is given by

ρs =

(
1 0

0 0

)

and ρb = Z−1 exp(−βHb),

where Z is a normalizing factor chosen such that tr(ρb) = 1.

Assume a Ohmic spectral density, the two-point correlation function is formulated as

B(τ1, τ2) =

L∑

l=1

c2
l

2ωl

[

coth

(
βωl

2

)

cos (ωlΔτ) − i sin(ωlΔτ)

]

,

where Δτ is the time difference on the Keldysh contour defined as

Δτ =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

τ2 − τ1, if τ1 � τ2 < t,

τ1 − τ2, if t � τ1 � τ2,

2t − τ1 − τ2, if τ1 < t � τ2.

and the coupling intensity cl and frequency of each harmonic oscillator ωl are given by

cl = ωl

√

ξωc

L
[1 − exp(−ωmax /ωc)], ωl = −ωc ln

(

1 −
l

L
[1 − exp(−ωmax /ωc)]

)

, l = 1, . . . , L.

In our experiments, we will study two examples with the parameter settings listed below in table 1. As

one can observe from figure 2, B(τ 1, τ 2) under the two parameter settings both decay to zero for large time
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Table 1. Parameter settings for spin-boson model.

Parameters Case 1 Case 2

Kondo parameter, ξ 0.4 0.1

Inverse temperature, β 5 0.2

Primary frequency, ωc 2.5 1

Maximum frequency, ωmax 4 4

Energy difference, ǫ 1 1

Frequency of spin flipping, ∆ 1 1

Number of modes, L 400 400

Figure 2. Two-point correlation functions under different parameter settings.

difference, which guarantees the convergence of the Dyson series as well as the infinite series in the

inchworm integro-differential equation (18). In case 2, the decay of |B(τ 1, τ 2)| is slower than case 1, leading

to a slower convergence of the Dyson series and the inchworm series. It can then be expected that larger m

needs to be included in the simulation of case 2.

4.1. Numerical experiments for computational complexity

In this section, we compare the wall clock time on evaluating given Lb(s1, . . . , sm) and Lc
b(s1, . . . , sm) using

direct summation and algorithms 1 and 2 based on the inclusion–exclusion principle. The experiments are

carried out using MATLAB on Intel Xeon CPU X5650 and the results for the time consumed may vary for

different hardware, programming languages and implementation details. Since the operation counts do not

depend on the value of B(τ 1, τ 2), we will only use the parameters for case 1 in our test throughout this

section.

The computational time for a various choice of m is plotted in figure 3. In the left panel, we compare

direct method with algorithm 1 for computing a given bath influence functional. As predicted, the

efficiencies of the two algorithms are comparable for small order m. Starting from m = 12, however, due to

the double factorial growth in complexity, the time cost for the direct method becomes obviously larger

than the inclusion–exclusion principle whose growth rate is only exponential as O(2m) according to our

discussion at the end of section 2. The right panel of figure 3 compares algorithm 2 with the direct

summation over the linked diagrams to compute a rounded box. Algorithm 2 outperforms the direct

method when m � 16. The dotted line represents our estimation of the growth rate O(αm/2). We can

observe that the curve of the inclusion–exclusion principle gradually becomes parallel to the dotted line, as

indicates that our estimation of the computational complexity is sharp.

We would also like to discuss the memory cost of the algorithms. The direct method is out of memory

for our machine once entering the red region (i.e., m > 20) and thus the results are not presented. In our

simulation, to implement the direct method efficiently, we first generate all the linked diagrams and store
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Figure 3. Wall clock time (seconds) on evaluating a given Lb(s1, . . . , sm) (left) and Lc
b(s1, . . . , sm) (right) using direct method

and inclusion–exclusion principle in logarithm scale

their configurations in the memory, so that the computational time presented in figure 3 can be minimized.

To store the diagrams, we use a matrix of size Am × m to record the indices of the time sequence in all

linked diagrams. Here Am represents the number of diagrams, and m denotes the length of the rounded

box. For example, all the diagrams included in Lc
b(s1, s2, s3, s4, s5, s6) (see (21)) are stored in the following

4 × 6 matrix ⎛

⎜
⎜
⎝

1 3 2 5 4 6

1 4 2 5 3 6

1 4 2 6 3 5

1 5 2 4 3 6

⎞

⎟
⎟
⎠

,

where each row of the matrix describes the pairing of time points (arcs) in one diagram on the right-hand

side of (21). However, the size of this matrix grows quickly as m increases due to the double factorial growth

of the number of diagrams. For example, when the length of a rounded box reaches m = 22, the size of

matrix turns out to be 434 226 3000 × 22. Even if we use the uint8 data type in MATLAB (the smallest

unsigned integer type that takes only one byte) to store the matrix, the total memory cost is around 89G,

which is beyond the capacity of most machines. A workaround is to further compress the matrix using

more compact storage patterns, or generate the diagrams during the summation. Both approaches will

cause additional operations so that the computation may be further slowed down.

As a comparison, the major memory cost for inclusion–exclusion principle concentrates in the

temporary storage of complex-valued Qk1k2...ks and Rk1k2...ks appearing in theorem 1, which grows only as an

exponential and the memory requirement is at most 16 × 2m+1

10003 G (only 0.1344 G for m = 22). Here 16

refers to the number of bytes for a double-precision complex number, and 2m+1 refers to the total number

of entries in Qk1k2...ks and Rk1k2...ks . As a result, a longer diagram can be computed using the algorithm based

on the inclusion–exclusion principle. Such a memory issue for the direct method also exists when

computing Lb(s1, . . . , sm) since the number of diagrams given by a bath influence functional is even larger

than that in a rounded box of the same size.

4.2. Numerical simulations for open quantum systems

We now implement several numerical simulations on the observable 〈σ̂z(t)〉 using bare dQMC and

inchworm Monte Carlo method respectively, in which inclusion–exclusion principle will be used to evaluate

large rectangular and rounded boxes. We would like to check if and how frequently we will encounter the

scenarios when the order m has to be chosen very large during the simulations to show the necessity of

exploiting the inclusion–exclusion principle.

4.2.1. Numerical methods

We first introduce the numerical methods for our simulations. In particular, we will discuss the details of

the implementation of bare dQMC. For the more complicated inchworm equation, we only provide our

Monte Carlo sampling method, which is novel in this work. One may refer to [10, 11] for the general

framework of the full implementation.

In the Dyson series (3), m should be chosen as even due to the Wick’s theorem for the bath influence

functional. Moreover, the m = 0 term in the Dyson series does not contain any time points and thus no
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Monte Carlo sampling is needed when applying bare dQMC. Therefore, we may take out this term and

rewrite (3) as

〈O(t)〉 = tr
(
ρse

itHs Ose
−itHs

)
+

+∞∑

m=2
m is even

im

∫ 2t

0

dsm

∫ sm

0

dsm−1 . . .

∫ s2

0

ds1

× (−1)#{s<t}trs(ρsU
(0)(0, s1, . . . , sm, 2t)) · Lb(s1, . . . , sm).

To approximate the infinite series in the above formula using Monte Carlo integration, we need sample

• A positive even number m;

• A sequence of times: 0 � s1 � s2 � . . . � sm � 2t.

Once m is chosen, the time sequence (s1, s2, . . . , sm) can be generated by drawing a sample from the

uniform distribution U([0, 2t]m) and then sorting the sequence. In our previous works [10, 11], instead of

sampling the even number m, we simply truncated the series (3) at m = M̄ and use the same number of

samples for each m. In the current paper, we would propose a heuristic approach to take samples of m.

Ideally, the probability of m should be proportional to the absolute value of the integral in (3). Since such a

function is not available, we make the following approximations:

• Ignore the term trs(. . .) representing the system part;

• Use the uniform distribution of s1, . . . , sm to represent the value of Lb(s1, . . . , sm) in all cases.

Thus the distribution of m becomes

Pt(m = 2M) =
1

λ0

∫ 2t

0

ds2M

∫ s2M

0

ds2M−1 . . .

∫ s2

0

ds1 |Lb (τ , 2τ , . . . , (2M − 1)τ , 2Mτ)|

=
(2t)2M

λ0(2M)!
· |Lb (τ , 2τ , . . . , (2M − 1)τ , 2Mτ)| for M = 1, 2, . . . , Mmax,

(52)

where τ = 2t
2M+1

and λ0 is given such that the normalization
∑Mmax

M=1Pt(m = 2M) = 1 holds. Here we set

Mmax to be the maximum value of M in order to prevent m from being too large, which may cause

unnecessary huge computational cost in the evaluation of the bath influence functional. Thereafter, the bare

dQMC approximates the observable 〈σ̂z(t)〉 as

〈σ̂z(t)〉 ≈ tr
(
ρse

itHs σ̂ze−itHs
)
+

1

Ns

Ns∑

j=1

(2t)m(j)

(m(j))!
×

(
Pt(m = m(j))

)−1
× (−1)#{s(j)<t}

× trs

(

ρsU
(0)(0, s

(j)
1 , . . . , s

(j)

m(j) , 2t)
)

· Lb

(

s
(j)
1 , . . . , s

(j)

m(j)

)

for m(j) ∼ i.i.dPt ,

(53)

where Ns is the number of samples, and the quantities with superscript (j) denote the jth sample.

In order to study the evolution of the observable 〈σ̂z(t)〉 in the time interval [0, T], we will need to

compute all 〈σ̂z(nh)〉 for n = 1, 2, . . . , T/h given the time step h (the initial value is 〈σ̂z(0)〉 = tr(σ̂zρs) = 1

according to the definition (2)). Therefore, we need to first generate Pt for all t = h, 2h, . . . , T, which

requires the calculation of long Lb including up to 2Mmax time points. This can be time-consuming when

the time step h is small, and it is also unnecessary for short time simulations where a large m(j) is unlikely to

be sampled. To improve the efficiency of simulations, we consider a more accessible distribution to

approximate Pt . In (52), we insert the definition of the bath influence functional and reach to

Pt(m = 2M) =
(2t)2M

λ0(2M)!
·

∑

q∈Q(s)

∏

(sj ,sk)∈q

B(sj, sk) =
(2Bt2)M

λ0M!
,

where the constant B is some average of the two-point correlation. Inspired by this formulation, we set B to

be a constant and choose the probability mass function to be P̃t(m = 2M) = λ−1
1 (2Bt2)M/M!, where λ1 is

chosen such that the normalization
∑Mmax

M=1 P̃t(m = 2M) = 1 holds. Thus each sample m(j) can be drawn

based on the Poisson distribution. More precisely, we sample m according to

m(j)

2
− 1 ∼ Pois(2Bt2) and

⎧

⎨

⎩

accept m(j), if m(j) � 2Mmax ,

reject m(j), if m(j) > 2Mmax .
(54)

Note that the ‘−1’ is needed on the left-hand side above since a standard Poisson distribution samples

nonnegative integers from 0 while M begins with 1.

It remains only to set a suitable value for B ∈ (0, max |B|). Here we simply select B such that the

probability mass function of m is close to (52) for t = T. For example in figure 4, one can compare the three
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Figure 4. Comparison between the distribution (52) and Poisson distributions with changing B for parameter setting case 1
with Mmax = 13 and T = 2.5.

probability mass functions of Poisson distributions with different B for the numerical example case 1 to see

that the yellow dashed-dotted line gives a satisfactory approximation to Pt . Poisson distributions with some

other B are plotted as references, which are comparatively far away from the target blue line. Therefore, we

set B = 0.2 for the Poisson distribution in case 1.

To end this section, we provide a brief discussion on the key procedures of the sampling method in the

implementation of the inchworm Monte Carlo method. In (18), the partial derivative ∂/∂sf on the

left-hand side is discretized by a certain time integrator such as Heun’s method. As for the right-hand side,

similar to the bare dQMC, we need to approximate the infinite series by sampling an even number m and

the time sequence (s1, . . . , sm−1) at every time step. The time sequence is again sampled according to the

uniform distribution U([si, sf]
m), and the probability mass function of m is analogous to (52):

Pt(m = 2M) =
(2t)2M−1

λ′
0(2M − 1)!

· |Lc
b (τ , 2τ , . . . , (2M − 1)τ , 2Mτ)| for M = 1, 2, . . . , Mmax, (55)

where τ = t
M

. To avoid the expensive computations of the long rounded boxes Lc
b, we also sample each m(j)

applying the Poisson distribution (54) in practice, where the choice of B is subject to a satisfactory

approximation to the distribution (55), which is set to be B = 0.2 and B = 0.3 for case 1 and case 2,

respectively. We refer the readers to figure 5 for a comparison between the Poisson distribution and the

distribution (55) for t = T.

4.2.2. Numerical results

With the numerical methods introduced, we are now ready to present the results of our simulations on the

time evolution of the observable 〈σ̂z(t)〉. We are particularly interested in the convergence of 〈σ̂z(t)〉
computed by both bare dQMC and inchworm method w.r.t. the order m. Specifically, we first perform the

simulation with the series in (17) or (18) truncated at m = M̄, and plot the real part of 〈σ̂z(t)〉 up to

T = 2.5. Note that due to the numerical error, the computed 〈σ̂z(t)〉 may contain a nonzero imaginary part.

We hope to observe the convergence of these results to the numerical solution using our approach

introduced in section 4.2.1, which justifies our numerical method. In our simulation, the Poisson

distribution is truncated at Mmax = 13, so that the maximum value of m is 26.

Figure 6 plots the numerical results for parameter setting case 1 using bare dQMC. We set the time step

to be h = 0.1 and compute 〈σ̂z(nh)〉 for each n = 1, . . . , 25. For the result with m sampled by Poisson

distribution, each 〈σ̂z(nh)〉 is calculated based on Ns = 108 Monte Carlo samples. As for the results with

fixed truncation M̄, we evaluate each m-dimensional integral in (3) using Ns = 2 × 107 Monte Carlo

samples. One can observe that the curve of observable tends to converge as M̄ grows. However, significant

difference can still be observed between the results for M̄ = 6 and M̄ = 8, indicating that larger m needs to

be taken into account to get reliable results, and thus considering m also as a random variable turns out to
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Figure 5. Comparison between the distribution (55) and Poisson distributions with changing B for parameter setting case 1
(left) and case 2 (right) with Mmax = 13 and T = 2.5.

Figure 6. Evolution of Re〈σ̂z(t)〉 for parameter setting case 1 by bare dQMC.

Table 2. Large m sampled by Poisson distribution in the

simulation for case 1 by bare dQMC.

m 20 22 24 26

#{m(j)
= m} 195 123 44 427 9197 1820

be an efficient way to find suitable number of samples. With this approach, larger m will be encountered in

the simulation, and we have listed in table 2 the number of large m (within the red region of figure 3)

sampled by the Poisson distribution, which also represents the number of m-point bath influence

functionals evaluated in the entire simulation. For example, we need to compute 1820 independent

Lb

(

s
(j)
1 , . . . , s

(j)
26

)

for Monte Carlo integration using inclusion–exclusion principle. The evaluation of such

high-order bath influence functionals is hardly feasible using the direct method.

As for the simulations by inchworm Monte Carlo method, we refer to figure 7 for the numerical results

with both parameter settings case 1 and case 2. The time step is again set as h = 0.1, while the number of

samples is chosen as a relatively smaller Ns = 105 (Ns denotes the total number of samples used in the

simulation by Poisson distribution, and the number of samples used for each (m − 1)-dimensional integral

in the simulations with fixed truncation) since the numerical error of inchworm method is generally smaller

than that of classic Dyson series [10]. For case 1, the curve with fixed M̄ becomes almost identical to M̄ = 6
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Figure 7. Evolution of Re〈σ̂z(t)〉 for parameter setting case 1 (left) and case 2 (right) by inchworm Monte Carlo method.

Table 3. Large m sampled by Poisson distribution in the simulation for case 2

by inchworm Monte Carlo method.

m 20 22 24 26

#{m(j)
= m} 17 710 5336 1492 395

thanks to the rapid convergence of inchworm method. The result by bare dQMC using Poisson distribution

(same as the solid line in figure 6) is given as a reference. This indicates that inchworm Monte Carlo

method can provide a satisfactory approximation to the exact solution with a small truncation M̄ and hence

outperform bare dQMC for this set of parameters. As no larger m is needed, there is no need to apply the

inclusion–exclusion principle in this case. However in case 2, the inchworm Monte Carlo method also

suffers from slow convergence due to the slow decay of the two-point correlation function (see figure 2).

The right panel of figure 7 shows that the discrepancy between M̄ = 6 and M̄ = 8 is still noticeable. With

the adaptive choice of m, we are able to obtain results in good agreement with the reference results provide

by bare dQMC with 108 samples for each 〈σ̂z(nh)〉. Again, we list in table 3 the number of samples

involving large m in this experiment to show that inclusion–exclusion principle is indispensable to the

calculation of long rounded boxes that direct method cannot deal with.

5. Conclusion

We have proposed fast algorithms based on inclusion–exclusion principle to sum diagrams appearing in the

bare dQMC and inchworm Monte Carlo method. For bare dQMC, we have developed a formula to

efficiently evaluate the bosonic bath influence functional at the cost of O(2m). Note that in the fermionic

case, the bath influence functional becomes a determinant [27, 42], while in the bosonic case, the

computational cost is higher, but it turns out that the computational complexity is lower than the Ryser’s

algorithm for matrix permanents. For the inchworm method, our algorithm calculating the sum over linked

diagrams can be considered as an extension to the work [8] which deals with the fermionic quantum

impurity models. By a detailed complexity analysis, we have proved that the new algorithm reduces the

computational cost from the original double factorial to exponential. More precisely, we estimate the

computational complexity as O(αm/2) where α ≈ 4.518 91, which has been also verified by our numerical

experiments. Moreover, numerical simulations for the spin-boson model have been implemented to show

the advantages of our approaches.
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Appendix A. Formulas of functionals

A.1. Definition of U (0)

The system related functional U (0) in the Dyson series (3) is defined by

U (0)(0, s1, . . . , sm, 2t) = G(0)
s (sm, 2t)WsG

(0)
s (sm−1, sm)Ws . . .WsG

(0)
s (s1, s2)WsG

(0)
s (0, s1),

where

G(0)
s (si, sf) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

e−i(sf−si)Hs , if si � sf < t,

e−i(si−sf)Hs , if t � si � sf,

e−i(t−sf)Hs Ose
−i(t−si)Hs , if si < t � sf.

A.2. Definition of U

The functional U in the integro-differential equation (18) is given by

U(si, s1, . . . , sm−1, sf) = G(sm−1, sf)WsG(sm−2, sm−1)Ws . . .WsG(s1, s2)WsG(si, s1),

where the full propagator G(si, sf ) is defined by

G(si, sf) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

trb(ρbG(0)
b (sf, 2t)e−i(sf−si)HG(0)

b (0, si)), if si � sf < t,

trb(ρbG(0)
b (sf, 2t)e−i(si−sf)HG(0)

b (0, si)), if t � si � sf,

trb(ρbG(0)
b (sf, 2t)ei(sf−t)HOe−i(t−si)HG(0)

b (0, si)), if si < t � sf

with the propagator associated with the bath

G(0)
b (si, sf) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

e−i(sf−si)Hb , if si � sf < t,

e−i(si−sf)Hb , if t � si � sf,

e−i(2t−si−sf)Hb , if si < t � sf.

The full propagator G(si, sf ) satisfies

• Jump condition:

lim
sf→t+

G(si, sf) = Os lim
sf→t−

G(si, sf);

lim
si→t−

G(si, sf) = lim
si→t+

G(si, sf)Os.

• Boundary condition: G(sf , sf ) = Id.

Appendix B. MATLAB code for computing the hafnian

Below we provide our MATLAB code to compute the hafnian of a symmetric matrix B. The input matrix

needs to be a symmetric square matrix with all diagonal entries being zero.

function v = hafnian(B)

m = size(B,1);

R = zeros(1,2 m̂-1);

Q = zeros(1,2 m̂); Q(1) = sum(B, ’all’) / 2;

sgn = zeros(2 m̂,1); sgn(1) = 1;

for i=1:m

idx = 2 (̂i-1);

R(idx) = sum(B(i,:));

for kn=1:i-1

j = idx + 2 (̂kn-1);

R(j:2∗j-idx-1) = R(idx:j-1) - B(i, kn);

end

Q(idx+1:2∗idx) = Q(1:idx) - R(idx:2∗idx-1);
sgn(idx+1:2∗idx) = -sgn(1:idx);

end

v = Q. (̂m/2) ∗ sgn / factorial(m/2);
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