2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

CaSA: End-to-end Quantitative Security Analysis of
Randomly Mapped Caches

Thomas Bourgeat*, Jules Drean*, Yuheng Yang®, Lillian Tsai, Joel Emer?, Mengjia Yan
MIT CSAIL, TMIT/University of Chinese Academy of Sciences, *NVIDIA/MIT
{bthom,drean,yuhengy,tslilyai,jsemer,mengjiay } @mit.edu
*Authors contributed equally to this work.

Abstract—It is well known that there are micro-architectural
vulnerabilities that enable an attacker to use caches to exfiltrate
secrets from a victim. These vulnerabilities exploit the fact that
the attacker can detect cache lines that were accessed by the
victim. Therefore, architects have looked at different forms of
randomization to thwart the attacker’s ability to communicate
using the cache. The security analysis of those randomly mapped
caches is based upon the increased difficulty for the attacker to
determine the addresses that touch the same cache line that the
victim has accessed.

In this paper, we show that the analyses used to evaluate those
schemes were incomplete in various ways. For example, they were
incomplete because they only focused on one of the steps used in
the exfiltration of secrets. Specifically, the step that the attacker
uses to determine the set of addresses that can monitor the
cache lines used by the transmitter address. Instead, we broaden
the analysis of micro-architecture side channels by providing an
overall view of the communication process. This allows us to
identify the existence of other communication steps that can also
affect the security of randomly mapped caches, but have been
ignored by prior work.

We design an analysis framework, CaSA, to comprehensively
and quantitatively analyze the security of these randomly mapped
caches. We comprehensively consider the end-to-end commu-
nication steps and study the statistical relationship between
different steps. In addition, to perform quantitative analysis, we
leverage the concepts from the field of telecommunications to
formulate the security analysis into a statistical problem. We
use CaSA to evaluate a wide range of attack strategies and
cache configurations. Our result shows that the randomization
mechanisms used in the state-of-the-art randomly mapped caches
are insecure.

Index Terms—Micro-architecture side channel, randomly
mapped cache, security analysis.

I. INTRODUCTION

The class of attacks that exploit micro-architectural vul-
nerabilities to breach processor security, generally referred
to as side-channel attacks, have become a serious security
threat. Using these attacks, an attacker can steal secrets from a
victim application running on the same machine by monitoring
the side effects of the victim’s actions on various micro-
architectural states. Such attacks are effective and have been
used to leak encryption keys [1], [2]. Many of these attacks
employ speculative execution to modify cache states [3]-[5] to
completely bypass memory isolation and leak arbitrary data.

As described in [6], there is a series of elements common
to most attacks that exploit micro-architectural vulnerabilities.
These include either pre-existing or attacker-generated code run

in the victim’s security domain that 1) accesses secret informa-
tion and 2) transmits that information over a communication
channel that 3) is received by an attacker. The signal received
by the receiver leaks a secret that was supposed to stay within
the victim’s security domain.

Focusing just on the communication phase of an attack,
the transmitter is in the victim’s code, and the receiver is
in the attacker’s code. The medium of the communication
channel is the micro-architectural state that can be modified, i.e.,
modulated, by the activity of the transmitter. A communication
channel may actually be composed of multiple subchannels,
just as a radio transmission may use multiple frequencies.

For numerous contemporary attacks, the communication
medium is the last-level cache, and each cache line can be
considered a communication subchannel. In the simple case of
a directly mapped cache, modulating a subchannel involves the
transmitter accessing a specific address, since that will change
the state of exactly one well-defined cache line. A receiver
can monitor the state of the same cache line (subchannel) for
changes (modulation) by accessing an address to occupy that
cache line (subchannel) and, at a later time, measure the latency
of a re-access to the same address to determine whether it is a
hit or miss.

For a more complex cache, such as a set-associative cache,
the receiver needs to use multiple addresses to monitor the
cache set that will be used by the transmitter, i.e, multiple
subchannels. In other cases, the transmitter might also use
multiple addresses, i.e., modulating multiple subchannels. These
sets of addresses accessed by the transmitter and receiver
are referred to as the transmitter set and the receiver set
respectively. The attacker generates a receiver set by using a
so-called eviction set construction algorithm [7], [8]. Later we
generalize this operation as the process of receiver calibration.
Randomly Mapped Caches. Among various architectural
solutions that address security vulnerabilities by disrupting
communication via cache-based channels, randomly mapped
caches [9]-[12] are considered highly effective with plausible
security properties and low performance overhead. Randomly
mapped caches aim to significantly increase an attacker’s efforts
to find a receiver set that monitors all the possible subchannels
that might be modulated by the transmitter. They leverage one
of the two ideas: make cache behavior non-deterministic by
introducing some randomness into the functions used to map
memory addresses to cache lines (subchannels) [10], [11], and

978-1-7281-7383-2/20/$31.00 ©2020 IEEE 1110
DOI 10.1109/MICR0O50266.2020.00092

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

dynamically change these functions [9], [10], [12].

In such complex caches, the subchannels that the transmitter
will modulate are not publicly known to attackers. Moreover,
with non-deterministic caches, the attacker can only guess the
probability of an address to be mapped to a given cache line,
and modulation can only be observed probabilistically. This
uncertainty requires the attacker to use complex methods to
generate receiver addresses that have a high probability to
monitor the cache lines modulated by the transmitter.

Unfortunately, the security claims of randomly mapped
caches are quite fragile. For example, a recent secure cache
design, CEASER [9], which claimed to be able to tolerate
years of attack, has been broken by more advanced eviction set
construction algorithms [7], [10]. Similarly, ScatterCache [11],
another recently proposed randomly mapped cache design, can
be broken by a new eviction set construction algorithm [13]
within a few seconds.

The reason behind the failures of those designs lies in their

limited security analyses. In fact, those defense mechanisms
were designed to block very specific eviction set construction
techniques. For instance, some weak security analyses [9]-
[11], [13] only consider the case where the attacker tries to
obtain a receiver set that monitor the subchannels used by
the transmitter with high probability. Such an analysis ignores
the existence of alternative strategies where the attacker could
spend a modest amount of resources on constructing a receiver
set that has a lower probability to monitor these subchannels.
With such a weak receiver set, she would rely on repeatedly
monitoring the modulations from the transmitter to ultimately
leak the secret.
Communication Paradigm. In this paper, we introduce a
generalized communication paradigm for micro-architecture
side channels. The paradigm serves two purposes. First, it
provides the overall view of the communication process
and identifies the end-to-end communication steps that a
comprehensive security analysis has to consider. Second, it
enables us to think of micro-architecture side-channel attacks
using concepts from telecommunications, so we can formulate
the security analysis into a statistical problem and perform
quantitative analyses.

receiver detected

addresses signals
Calibration Decode

Fig. 1: Communication paradigm.

The communication paradigm, shown in Fig. 1, consists of
three steps: calibration, signaling and decode.

First, the receiver often needs to perform a calibration step.
Calibration is like a tuning process in a radio-based system,
and aims to determine which subchannels will be modulated
by the transmitter, and where to tune the receiver to monitor
those subchannels. For a cache-based channel, the calibration
step involves running an eviction set construction algorithm [7].
Prior analyses [9]-[11], [13] have only focused on this step.

The second step is a signal transfer step (signaling for short)
where the receiver obtains the signal from the transmitter.

1111

To obtain the signal, the receiver needs to detect the state
changes of the channel caused by the transmitter. In cache-
based side channels, the receiver can obtain the signal using
various approaches, such as Prime+Probe [2]. The signal—
made of cache hit and miss events—can then be formalized
mathematically and studied with statistics and probabilities.

Finally, the receiver needs to perform a decode step to

interpret the detected signals. The decode step can be straight-
forward if the detected signal directly corresponds to the
secret value. In cache-based channels, this decode step can
be complicated if it needs to cope with noise, and non-
deterministic behaviors of the cache.
This Paper. We propose Cache Security Analyzer (CaSA) to
quantitatively analyze the security of randomly mapped caches.
We aim to use CaSA to comprehensively evaluate a wide range
of communication strategies and cache configurations.

The design of CaSA is built from three insights. First, instead
of solely focusing on the calibration step, CaSA performs an
end-to-end analysis on the three communication steps in Fig. 1.
Second, it leverages telecommunication concepts to formulate
the security analysis into a statistical problem and quantify
the security by measuring the end-to-end communication cost.
Third, CaSA identifies the existence of a trade-off in distributing
resources between the calibration step and the signaling step.
It explores that trade-off to find the communication strategy
that minimizes the overall communication cost.

We use CaSA to evaluate randomly mapped caches of
different configurations and discover the quantitative impacts of
different parameters on the communication cost (Findings 1-4
in Section VII). Furthermore, we have made new observations
to better understand the limitations and benefits of randomly
mapped caches that refute several common beliefs. We highlight
two takeaways here:

1) When communicating on randomly mapped caches, spend-
ing the maximum amount of resources on calibration is
neither the only nor always the best strategy. This refutes the
common belief [11], [13] that an effective receiver set must
be able to achieve a high eviction rate, i.e., that monitors
most subchannels that the transmitter could modulate.

In the case where dynamic changes in mapping functions
are used, information can be leaked and accumulated across
mapping function changes. This refutes the common belief
that attacks must be completed during the life of a single
mapping function [9], [10].

2)

With those insights and quantitative results, we show that
the randomization mechanisms used in the state-of-the-art
randomly mapped caches [9]-[11] (except for NewCache [12])
are insecure.

The contributions of this paper are:

o A three-step, end-to-end communication paradigm expanding
the security analysis of cache-based side channels beyond
just the calibration of the receiver.

o Formulating the security analysis into a statistical problem
to enable quantitative analysis.

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

o CaSA, a comprehensive and quantitative security analysis
framework of side-channel communication via randomly
mapped caches.

o A thorough security evaluation and new observations to
understand the limitations and benefits of randomly mapped
caches.

II. BACKGROUND
A. Cache-based Side Channel Attacks

In a cache-based side channel attack, the transmitter and the
receiver use the cache as the communication channel, and each
cache line as a subchannel. Various such attacks exist [1], [8],
[14]-[25], and follow the procedure described in Fig. 1.

In each attack, the receiver first performs a calibration step

by finding a group of addresses called receiver addresses.

The receiver uses the receiver addresses to monitor a set of
subchannels, usually a cache set. Next, the receiver performs the
signaling step, which consists of two substeps: precondition and
detection. The receiver preconditions a group of subchannels
into a known state in order to optimize its chances of monitoring
state changes in these subchannels. The precondition generally
involves accessing the receiver addresses to fill a cache set. It
waits for the transmitter to modulate some of the monitored
subchannels by accessing some cache lines. It then detects the
modulation of those subchannels by either measuring the time
of re-accessing the receiver addresses (Prime+Probe [1], [8]),
or measuring the time of accessing the transmitter addresses
(Evict+Reload [15]), or measuring the execution time of the
transmitter (Evict+Time). Finally, it performs the decode step
based on the measurement result.

time
—>
seo[@ @] || [@]EHevet| |[@] 8 con
setl %
t1: Prime t2: Wait t3: Probe

Fig. 2: An example of Prime+Probe attacks. Line a and b are
receiver addresses; line x is the transmitter address.

Fig. 2 visualizes an example of using Prime+Probe as the
signaling strategy on a two-way cache, which contains three
steps: Prime, Wait, and Probe. The receiver preconditions two
subchannels in setO by accessing lines a and b (Prime). It then
waits for the transmitter to modulate a subchannel in setQ by
accessing line x, which evicts line b from that subchannel
(Wait). At a later time, the receiver checks the state of the
subchannels in setQ by re-accessing lines a and b, and measuring
the access latency (Probe). Based on the long access latency,
the receiver knows that line b missed in the cache and the state
of a subchannel in setO has been modified (modulated) by the
transmitter.

B. Randomly Mapped Cache Designs

The mapping function in a cache decides how memory
addresses are mapped to cache sets. Randomly mapped caches
introduce randomness into the mapping functions to make

1112

it harder for a receiver to know which subchannels will
be modulated by a transmitter, and which subchannels are
preconditioned or monitored by the receiver. It aims to mitigate
cache attacks by significantly increasing the difficulty of the
receiver’s calibration step.

There are various flavors of randomly mapped cache de-
signs [9]-[12], each with different performance and security
characteristics. To better understand their differences, we
distinguish these designs based on three characteristics of the
mapping function, namely whether:

1) It uses public or secret hash functions;

2) It is static or can be dynamically changed over time;

3) It uses a single or multiple hash functions at a point in
time.

Table I categorizes each design by mapping strategy.

\ [Static [Dynamic
Single Set-associative cache® | CEASER [9]
Hash Group Intel sliced LLC [26] NewCache [12]
Multiple
Hash Groups ScatterCache [11] Skewed-CEASER [10]

TABLE I: Classification of cache mapping strategies. * Uses
public hash functions.

1) Public vs. Secret hash functions. Traditional set-associative
caches use a public hash function, which simply extracts
bits from the physical address and uses them as the set
index. The other caches in Table I use secret hash functions.
For example, the last-level caches in Intel processors are
organized into multiple slices. The mapping function includes
an undocumented slice hash function to decide which slice an
address should map to. NewCache [12] uses a table-based hash
function. CEASER [9] and ScatterCache [11] use encryption-
based hash functions.

Even though using a secret mapping function could be

thought to make calibration more difficult, it alone cannot
thwart cache attacks. It has been demonstrated that there
exist efficient algorithms for attackers to reverse engineer the
hash function [27], [28] or even to directly construct effective
receiver sets [7], [10] without needing to know anything about
the mapping function.
2) Static v.s. Dynamic hash functions. To further secure the
cache, researchers proposed to periodically change the hash
function instead of using a static hash function. A cache with
a dynamic mapping function uses one hash function in each
epoch, and switches to a different hash function at the end of
an epoch.

The length of an epoch has a significant impact on the
performance and security of the design. To be secure, the epoch
should be short enough so that the receiver cannot both calibrate
and detect signals within one epoch. However, upon epoch
switching, every line in the cache has to be remapped, and
using small epochs thus incurs serious performance overhead.

NewCache [12] uses extremely small epochs—changing the
hash function every time a cache conflict occurs. CEASER [9]
and Skewed-CEASER [10] change the hash function when the
number of cache accesses reaches a threshold. The threshold is

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

configured to be smaller than the number of accesses required
by the state-of-the-art eviction set construction algorithm [7].
Skewed-CEASER [10] claims years of security when setting
the threshold as 100 x L, where L is the total number of lines
in the cache.

3) Single vs. Multiple hash functions. Researchers have pro-
posed more advanced secure cache designs, namely multi-hash
caches such as ScatterCache [11] and Skewed-CEASER [10],
which use multiple hash functions at any point in time. These
designs contrast with single-hash caches, which only ever use
a single hash function.

addr |

hash
group 0

hash
group g-1

hash
group 1

Fig. 3: A cache with multiple hash groups.

As shown in Fig. 3, a multi-hash cache is organized as
multiple hash groups. Each hash group is organized as a normal
set-associative cache, and uses a distinct hash function. To do
a lookup in the cache, all the hash-groups are looked up, with
at most one of them being a cache hit. On a cache miss, the
cache first picks one of the hash groups using a uniformly
random policy and then uses the corresponding hash function
to generate the set index for that hash-group.

As a result, the mapping function becomes non-deterministic.
An address can end up in different hash groups, i.e., modulating
different subchannels, even within one epoch. It significantly
increases the attacker’s difficulty in obtaining a receiver set to
monitor all the subchannels that will be used by the transmitter.

ScatterCache [11] uses a single-way per hash group design.
Skewed-CEASER [10] makes the number of ways per hash
group a configurable parameter.

III. THREAT MODEL AND SCOPE

We follow the standard threat model of cross-core cache-
based side channel attacks. We assume the attacker and the
victim are co-located on the same processor chip, but reside
on different cores. A transmitter embedded in the victim and a
receiver controlled by the attacker communicate via channels
in a shared last-level cache. Even though we focus on the
last-level cache, our analysis and our tool, CaSA, can be easily
extended to other levels of the cache hierarchy.

The attacker can reside in a user-level process or in a
malicious operating system in a secure enclave context, such as
SGX [29]. Like previous work [20], we assume the receiver can
use a single thread or multiple threads to control multiple cores
on the chip. The transmitter may be latent in the code of the
victim and execute as part of the victim’s normal processing, or
the attacker can leverage speculative execution [3] to provoke
the execution of the transmitter.

1113

Scope. Our analysis focuses on investigating the fundamental
problems in the randomization schemes used by randomly
mapped caches. Prior work [30] has shown that the mapping
function used in CEASER [9] and Skewed-CEASER [10] only
consists of linear functions and has a key invariant vulnerability,
that is, changing the key used in the mapping function cannot
change the collisions between addresses. This vulnerability
can be fixed using non-linear hash functions. Note that, our
analysis is independent of which hash function is used and
studies new vulnerabilities that have not been explored in prior
work [30]. Indeed, we focus on analyzing the fundamental
problem that is intrinsic to randomly mapped caches.

Besides, we consider the analysis of the following two types
of attacks orthogonal to the analysis of randomly mapped
caches: flush-based attacks [14], [18] and occupancy-based
attacks [31]. The reason is that randomly mapped caches are
not designed to and thus are unable to mitigate these attacks.
Hence, we do not analyze such attacks in this paper.

IV. MOTIVATION

Correctly reasoning about the security of randomly mapped
caches is challenging. Prior security analyses have made
incorrect security claims by narrowly considering two communi-
cation strategies by the attacker. We claim that a comprehensive
security analysis should provide an end-to-end quantitative
analysis of a broad range of communication strategies.

A. Limitations of Prior Work

Prior security analyses [10], [11], [13] only targeted specific
calibration strategies that require a huge amount of resources
and are unlikely to be completed within one epoch. We use the
following simple example in Fig. 4 to illustrate the limitations
of their analyses. Fig. 4 compares the results of three different
calibration strategies on a cache with 2 hash groups and 1
way in each group. Each figure shows hash group 0 on top,
hash group 1 at the bottom, and how the transmitter and
receiver addresses are mapped to corresponding subchannels.
The subchannels that can be used by the transmitter address
are marked in grey.

O transmitter address O receiver address

hash
group 0

hash
roup 0

set 07
7
/
set 1
7
/
set 2
/

fl set3

v

hash

group 1 group 1

A
\\ group 1 IV

b
0O
I
A

]

(@ () (©)
Fig. 4: An illustrative example of different calibration strategies:
(a) hard-conflict receiver addresses; (b) many soft-conflict
receiver addresses; (c) one soft-conflict receiver address.

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

The security analysis in Skewed-CEASER [10] only con-
sidered using “hard-conflict” receiver addresses for signaling.
A “hard-conflict” receiver address maps to the same cache
set as the transmitter address in every hash group, shown in
Fig. 4(a). Their analysis only consider such addresses because
once the attacker has enough hard-conflict addresses (2 in this
example), she can perform the rest of the communication (e.g.,
Prime+Probe) in the same way as on a conventional cache.
Randomly mapped caches are designed to make it extremely
difficult to obtain hard-conflict addresses. In fact, for a given
transmitter address, when there are 8 or 16 hash groups, there
may not exist enough hard-conflict addresses given the limited
size of the address space in the state-of-the-art systems [11].
Even though a receiver set with hard-conflict addresses is
guaranteed to be functional, i.e., guarantee to monitor all the
subchannels that will be used by the transmitter, it is not the
only way to communicate on randomly mapped caches.

The security analysis in ScatterCache [11] considered using
a large number of “soft-conflict” receiver addresses. A “soft-
conflict” receiver address maps to the same set as the transmitter
address in at least one hash group, as shown in Fig. 4(b). Soft-
conflict addresses are much easier to find than hard-conflict
addresses but can only be used to monitor the transmitter with
some probability. The assumption behind their analysis is that
the attacker needs to get a large receiver set (e.g., 256 addresses
on an 8MB LLC) in order to monitor the transmitter with 99%
probability. Crafting such a large receiver set is expensive
and unlikely to be completed within one epoch. Consequently,
strong security claims were made under such assumptions.

There exists a key problem with these analyses: they
overlooked a broad range of communication strategies that
are available to the attacker. In addition to the prior analysis
where the receiver spends a huge amount of resources on
calibration to achieve a high monitoring probability, other
effective communication strategies are also possible, such as,
using a small amount of resources on calibration to obtain
a receiver set with low monitoring probability, and relying
on repeating the signaling step to decode secrets with a high
success rate. A comprehensive analysis should explore the
trade-off in distributing resources between calibration and
signaling.

Fig. 4(c) shows an example of using 1 receiver address
that soft-conflicts with the transmitter on a single subchannel.
Such a receiver set is fairly cheap to construct. In this
example, the receiver has a probability of 0.5 to monitor that
subchannel and the transmitter also has a probability of 0.5 to
modulate that subchannel. As a result, when the transmitter
address is accessed, the probability of the receiver observing
a modulation is 0.5x0.5=0.25. When the transmitter is not
accessed, this probability is 0. Even though the probability
to observe a modulation is low, the receiver can repeat the
signal transfer step to accumulate samples. Those samples are
then used to infer if the transmitter was accessed (observing
some modulation) or not (observing no modulation). This
last phase is the decoding step and increasing the number of
samples will increase the decode success rate. In our example,

1114

by accumulating 16 samples, the receiver can know if the
transmitter was accessed or not with 99% confidence, based on
whether it detects modulations in at least one of the signaling
samples or it detects no modulations across all samples.
Alternatively, the receiver could spend more resources on
calibration to obtain two receiver addresses instead of one. In
this situation, she would only need to accumulate 7 samples
to decode the secret with the same level of confidence. The
examples above clearly demonstrate the existence of a trade-off
in distributing resources between calibration and signaling.

B. The Need for Comprehensive and Quantitative Analysis

In addition to the trade-off between calibration and signal
transfer, we find it is necessary to perform a comprehensive
and quantitative analysis of randomly mapped caches, since
there exist multiple other factors that can affect the security of
these designs. We provide the intuitions of how these factors
can affect communication on randomly mapped caches below.

First, we need to consider the effects of having multiple
transmitter addresses. Intuitively, having more transmitter
addresses can make communication easier, because the num-
ber of subchannels associated with the transmitter increases
and the communication can work as long as the receiver
can successfully monitor at least one modulation from the
transmitter. Note that, in practice, multi-address transmitters
do occur in many security-sensitive applications. For example,
the square-and-multiply exponentiation algorithm used in RSA
encryption [32] acts as a multi-address transmitter: both the
square and multiply functions are composed of instructions
residing in multiple cache lines.

Second, we need to consider the effects of noise. Intuitively,
the presence of noise can make communication more difficult,
because the receiver often cannot distinguish the modulations
generated by the transmitter or by the noise. CaSA quantita-
tively measures the impacts of noise and we discovered a new
finding that noise can have a positive impact on communication.

Finally, for caches that periodically change the mapping
functions, we investigate the feasibility of performing the
communication across epochs. Prior work assumed that commu-
nication must complete within one epoch and no information
can be carried across epochs. In this paper, we challenge this
assumption. It is true that, a receiver set constructed in an
epoch can only be used for the signaling steps in the same
epoch. However, we observe that different receiver sets from
different epochs generate signals—made of cache hit and miss
events—that are similar to each other, since the signals are
mainly determined by the numbers of addresses in the receiver
sets. Intuitively, if the same secret bit is transmitted, the samples
obtained from different epochs can be combined to increase
decoding accuracy.

CaSA is designed to quantitatively analyze the impacts of
the above factors on the security of randomly mapped caches.
Specifically, CaSA can answer the following questions.

« Given a cache configuration, such as the one in Fig. 4, and
the number of transmitter addresses, how should a receiver

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

distribute resources between calibration and signal transfer
to exfiltrate the maximum amount of information?

« Considering background noise, how much more difficult is
it for an attacker to mount a successful attack?

o Among different cache configurations (e.g., 1-way per hash
group and 2-way per hash group), which one is more
difficult to attack, measured by the number of attacker’s
cache accesses to leak one secret bit?

V. CASA OVERVIEW

The goal of CaSA is to measure the security of differ-
ent configurations of randomly mapped caches. We strive
to comprehensively evaluate how various communication
parameters quantitatively affect the amount of information
leakage on a given cache configuration. To enable quantitative
analysis, we innovatively leverage concepts from the field
of telecommunications (Section I) and formulate the signals
in cache-based side channels into a statistical representation.
In this section, we first describe the full security analysis
space, and then describe the statistical representation of signals,
followed by the security metric used in CaSA.

A. The Security Analysis Space

The paper strives to comprehensively evaluate the choices

available with respect to the three components used in cache-
based side channel communication, i.e., transmitter, receiver
and channel (i.e., cache), as well as parameters related to noise.
Transmitter. An important parameter related to the transmitter
is the number of transmitter addresses. We expect program
developers to set that sole transmitter parameter based on
their knowledge of the applications or using program analysis
tools [33]-[35].
Receiver. The receiver can choose from a wide range of
calibration, signaling and decoding strategies, and it can
accumulate information across epochs on caches periodically
changing their hash functions. We investigate various possible
combinations of calibration, signaling and decoding strategies,
especially considering the case that the receiver spends medium
to low resources on calibration.

#rounds of #rounds of
calibration signal transfer

L LTEEEE e LT
O oY

OO
epoch 0

epochn Time

|:| one round of calibration |:| one round of signal transfer
O beginning/end of an epoch

Fig. 5: Attack procedure on a multi-hash cache that periodically
changes hash functions.

Fig. 5 visualizes the communication process on a multi-hash
cache that periodically changes hash functions and indicates
receiver parameters. The cache changes the hash functions
at the end of each epoch (marked as circles). Within each
epoch, the receiver generates a receiver set via multiple rounds
of calibration (white boxes), and then uses the receiver set

to perform signal transfer and collect signal samples once
or multiple times before the epoch ends (highlighted boxes).
The receiver strategy decides how to distribute efforts between
calibration and signal transfer

If enough samples have been acquired within one epoch to
allow decoding of the secret value with sufficient certainty,
the communication of the secret is complete. If the number
of samples acquired is insufficient to decode the secret, the
attacker will start a new epoch with a new calibration step,
acquiring more samples.

Our analysis assumes that the epoch size is constant and

epoch changes are public to the receiver. It is useful to study
the security of randomly mapped caches independently of
complicated epoch parameters, especially as the security of
those caches is not believed to rely on hiding epoch parameters.
We discuss how CaSA can be extended to analyze detecting
epoch changes and handling variable-size epoch in Section VIII.
Channel (Cache). We consider randomly mapped caches with
varied configurations, in terms of the number of hash groups,
the number of ways in each hash group, the number of cache
sets, and the epoch length. To make our analysis tractable, in
this paper, we do not consider other cache parameters such
as the ones related to number of cache levels, directories,
or MSHRs. However, note that CaSA can be extended to
incorporate those parameters.
Noise. In a cache attack, noise can add spurious modulations
and confuse the receiver. We identify and consider two types
of noise. The first type is the background noise, which consists
of random addresses and modulates random subchannels.

The second type is the carrier noise, which modulates
a fixed set of subchannels independently from the
secret. Taking the following victim code for example,
if (secret) {access A; access B;} else {access A;}.
Address A is a carrier address. If the receiver is calibrated
on the subchannels mapped to A, it will waste resources
monitoring subchannels that will not provide any useful
information about the secret. As a result, carrier noise makes
communication more difficult.

A summary of the parameters of all the communication
components considered in this paper is shown in Table II.

[Component | Parameters

transmitter number of transmitter addresses

number of rounds of calibration in one epoch

receiver . . .
number of rounds of signal transfer in one epoch

number of hash groups
number of ways per group
number of sets

epoch length

size of upper-level caches

channel
(cache)

background noise

noise . .
carrier noise

TABLE II: The communication parameters considered in CaSA.

B. The Statistical Representation of Signals

We model the signal observed by a receiver as a random
variable X, counting the number of modulations detected by the
receiver during a signal transfer step. X follows a probability

1115

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

() subchannel

signaling

(3) mathematical
model

(@) probability density
functions (PDFs)

decode

(5) statistical
analysis

communication
cost

receiver parameters

signal transfer
parameters

mapping graphs
transmitter calibration
arameters .
P (1) cache
cache emulator
parameters
[
i| calibration
' | parameters
Fig

distribution that can be characterized by a probability density
function (PDF for short) f(n) = P(X =n). We also note F(n) =
P(X >n) the cumulative density function (CDF for short), is
sometimes more convenient to use.

To give a concrete example, let’s consider a transmitter that
communicates a secret bit to a receiver by modulating one
subchannel to send bit “1” and doing nothing to send bit “0”.
We use fo(n) and fi(n) to represent the density functions for
X when the bit sent is “0” or “1” respectively. To decode the
signal, the receiver samples X to determine whether X follows
fo or fi. Note that, one of the key tasks of CaSA is to compute
the PDFs or CDFs for a given communication configuration.

When communicating on a multi-hash cache, if the receiver
uses soft-conflict addresses, such as in Fig. 4(b) and (c), she
will be only able to monitor the subchannels used by the
transmitter with a certain probability. The corresponding PDFs
are as below, with p>0.

L ifneo D, if n=0
, W n= .
fo(n) = s fimy=q1—p, ifn=1 (1)
0, otherwise .
0, otherwise

In a noiseless environment, both fy(n) and fi(n) have non-
zero values at n=0. Visually, the two functions partially
overlap with each other. In the examples in Fig. 4, when
using one soft-conflict receiver address, p= 0.25, and when
using a large number of soft-conflict receiver addresses, the
value of p can decrease to 0.01 (i.e., fi(1)=1—p=0.99).
The smaller the value of p is, the easier the two distributions
can be distinguished. In a noisy environment, even when the
transmitter does nothing, the receiver can observe modulations
which are generated by noise. Therefore, the corresponding
PDF of the received signal, fp(n), will have non-zero values
at n> 1. Moreover, if the transmitter and the receiver are
composed of multiple addresses, the PDFs can have non-zero
values at n>2.

With the two PDFs partially overlapped, the decoding
step becomes complicated, but still feasible. As discussed
in Section IV, if the receiver can collect enough samples of
the signal, she can decode the secret bit with a high success
rate, e.g., 99%.

C. The Security Metric

To evaluate randomly mapped caches and compare different
cache configurations, we propose to use end-to-end commu-
nication costs as the quantitative security metric. Recall that,

. 6: CaSA: end-to-end quantitative security analysis framework.

prior works [9]-[11], [13] analyze randomly mapped caches
by quantifying the difficulty to perform the calibration step
and have led to misleading security claims. Our end-to-end
communication cost consists of the receiver’s cost on the
calibration step and the signaling step. Specifically, in CaSA,
we use the number of cache accesses required by the receiver
to decode the secret with a 99% confidence, where the cache
accesses include the accesses performed by the receiver during
the calibration step and the signal transfer step. Note that, other
resources can also be used to express a cost, such as time or
the number of times the victim is triggered.

VI. CASA IMPLEMENTATION DETAILS

CaSA is an end-to-end quantitative security analysis frame-
work for communication via randomly mapped caches. Note
that, even though we designed the framework for randomly
mapped caches, it can be easily used to analyze other simpler
cache designs.

A. CaSA Work Flow

1116

CaSA is composed of three modules analysing the three
identified steps in the communication process: calibration,
signaling and decode, shown in Fig. 6. It can be used to
explore a large security analysis space listed in Table II and
compute the communication cost for various communication
parameters.

The first module is the calibration module (D)), which uses
a cache emulator to simulate the cache’s behavior during
calibration. It takes the transmitter parameters and the cache
parameters as input, and generates the calibration result. Due
to the random behavior of the cache, the module runs the
calibration algorithm multiple times and each run generates
a receiver set. We encode the calibration result (a group of
receiver sets) as subchannel mapping graphs (2)). The graph
representation is to precisely capture the mapping relationship
between addresses and subchannels (cache lines).

Fig. 7 shows an example of a subchannel mapping graph on
a cache with 4 sets and 2 hash groups. The graph is a directed
bipartite graph with two disjoint sets of vertices for addresses
(pentagon and circle) and subchannels (square). An edge always
connects an address vertex to a subchannel vertex, indicating
the address can map to the subchannel. An address vertex can
either be a transmitter address (pentagon) or a receiver address
(circle). The graph does not include the subchannels which no
address maps to, such as set 2 in hash group 1. There may
exist multiple connected components in the graph, depending

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

on the conflict relationships between addresses, such as the
two shaded areas in Fig. 7.

The second module is the signaling module (3)), which
takes a subchannel mapping graph as input and uses a
mathematical model to compute the signal transfer result. For
each value the secret can take, the signaling module outputs a
signal probability density function (@), which describes the
distribution of the number of modulations observed by the
receiver.

O transmitter address
. subchannel
O receiver address

< canmapto

Fig. 7: An example of subchannel mapping graph.

The last module is the decode module ((3)), which takes the
probability density functions (PDFs) as input and computes the
end-to-end communication cost of the receiver (Section V-C).
It uses a statistical analysis method to compute the number
of accesses needed by the receiver to decode the secret with
a given confidence value, e.g., >99%. Note that, it can also
measure the cost for communicating across epochs.

To evaluate the security of a cache configuration, we use
the above framework to compute the communication cost for
different combinations of receiver parameters and find the one
with the lowest cost.

We now provide details for each module.

B. The Calibration Module

The calibration module uses a cache emulator to model the
state-of-the-art calibration algorithms. These algorithms are
eviction set construction algorithms proposed by Qureshi et
al. [10] and Purnal et al. [13]. We generalize the algorithms

into three steps, shown in Fig. 8.
@
R Bl 4
step 2 step 3

...... X0 .. Xm1
J L J L
Fig. 8: The calibration algorithm for multi-address transmitters.

L Al
step 1
ap to a,_; are candidate addresses, and xy to x,_; are
transmitter addresses.

The calibration starts with a candidate set which is composed
of many randomly chosen addresses. The candidate set should
contain enough addresses so that some of them map to the
subchannels used by the transmitter addresses.

1) The receiver accesses the addresses in the candidate set,
making them all reside in the cache. This step requires
multiple accesses to each candidate address to ensure every
access hits in the cache. It also requires dropping some
addresses if the candidate set cannot fit in the cache.

2) The transmitter addresses are accessed, which potentially
evict some of the candidate addresses from the cache.

1117

3) The receiver re-accesses the candidate set and measures the
access latency of every address. Based on the latency, the
algorithm decides whether a candidate address should be
included in the receiver set or not.

In step 3, the algorithm can either add all the addresses that
missed in the cache to the receiver set, or add only the first
address that missed to the receiver set. We call the former
one as a greedy calibration strategy and the latter one as a
non-greedy strategy. We evaluate the cost of both calibration
strategies in Section VII-A.

C. The Signaling Module

The signaling module takes the subchannel mapping graph
as an input, models the cache behaviors during the signal
transfer step, and computes the distributions of the signals
for different secret values. Recall that, the distributions of
the signals are characterized by probability density functions
(PDFs) or cumulative density functions (CDFs) of the number
of modulations observed by the receiver (Section V-B).

The signaling step consists of three operations: 1) the receiver
performs precondition and monitors a group of subchannels;
2) the transmitter modules another group of subchannels; 3)
the receiver performs detection and observes modulations on
the subchannels that are both monitored by the receiver in step
1 and are modulated by the transmitter in step 2.

Correspondingly, given a set of subchannels, our mathemati-
cal model follows three steps to compute the probability of the
receiver detecting modulations on these subchannels. Given a
single subchannel s, we define the event Dy when a modulation
is detected on the subchannel s. Similarly, the event (_; Dy, is
the receiver detecting modulations on subchannels {si,...,s,}.
The three steps are as follows.

1) Compute the probability that the given subchannels are
monitored by the receiver, noted as P,(sy,...,8,), using a
Markov chain approach.
Compute the probability that these subchannels are mod-
ulated by the transmitter, noted as P (sy,...,s,), using a
simple probability calculation.
Compute the probability that the receiver detects the
modulations on these subchannels by calculating the joint
probability from the above two steps. Since a subchannel be-
ing monitored and being modulated are independent events,
their joint probability is the product of their individual
probabilities: P(_; Ds;) = Pr(s1,...,8n) X Bi(s1,...,89).
Once we obtain the detection probability for a given set
of subchannels, we can compute the cumulative density
functions (CDFs) of the signals. Basically, to compute F(n), we
enumerate all the sets of subchannels of size n and accumulate
their detection probabilities.

Note that, for simplicity, the following discussion and
formulas assume each hash group has a single way. The
approach is applicable to caches with multi-way hash groups.

2)

3)

1) Compute Monitoring Probability: The precondition op-
eration generally involves accessing the receiver addresses
multiple times to ensure all the addresses are cached. Due to

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

the random behavior of the cache, the precondition step is
essentially a stochastic process.

Given a subchannel mapping graph, several methods can be
used to compute the monitoring probability (P,). For instance,
we could use a cache emulator to simulate the precondition
process and empirically obtain the monitoring probability. An
alternative approach is to model this process as a Markov
chain [36] as below.

To construct the state transition graph for the Markov chain,
we enumerate all the cache states that can be reached during
preconditioning and make each Markov state correspond to one
of the cache states. The probability of transitioning between
any two Markov states is determined by the address being
accessed and the probability that the address ends up in a
given subchannel, which can be known from the subchannel
mapping graph. The precondition step finishes when all the
receiver addresses are in the cache, which corresponds to
absorbing states in the Markov chain. We can use standard
approaches to compute the probability of reaching each of
absorbing states. To compute the monitoring probability P, for
a given set of subchannels, we enumerate the absorbing states
where these subchannels are monitored and accumulate the
probabilities of reaching these states.

The Markov chain approach provides useful insights on
the interactions between receiver addresses and computes the
precise monitoring probability. However, it suffers from high
computation complexity. The number of states in the Markov
chain increases exponentially as the number of subchannels.
When the subchannel mapping graph is big, using a cache
emulator can be more efficient in computing the monitoring
probability.

2) Compute Modulation Probability: The modulation op-
eration involves accessing the transmitter addresses for a
fixed number of times. Considering the number of transmitter
addresses and assuming they do not conflict, we can compute
the modulation probability (#) with a simple model. For each
subchannel s that can be used by the transmitter as P;(s) = 1/g,
where g is the number of hash groups. In the case when we
have a high number of transmitter addresses and these addresses
share subchannels, other approaches like the Markov chain
approach in Section VI-C1 or simulation can be used.
Handling Noise. We model the impact of two types of noise
(Section V-A): background noise and carrier noise. Both
contribute to the modulation probability (F).

The background noise consists of accessing randomly chosen
addresses which modulate random subchannels. We model a
noise access as modulating each subchannel with a probability
of 1/L, where L is the number of cache lines. The carrier noise
is a part of the transmitter. Therefore, we model the carrier
noise as transmitter addresses.

3) Compute Density Functions: Now that we have the
probability for each given set of subchannel to be monitored
by the receiver and modulated by the transmitter, we can
compute the joint probability of these two events happening
simultaneously i.e. the probability of detecting modulation on

these subchannels.

Next, we compute the cumulative density functions F(n) by
enumerating all the sets of subchannels of size n and summing
their detection probabilities. Consider F(1) = P(X > 1), which
gives the probability of the event “at least one modulation
being detected”. This event can be formulated as a union of
the same event on each subchannel. More explicitly, for each
subchannel s, the event “a modulation being detected on s”,
denoted as Ds. We note S of size N the set of all subchannels.

We have :
U Ds
seS

Event “X >1" =

We then apply the principle of inclusion-exclusion [37] to
compute F(1) as below.

N k
F(=P(UD)=Y (1) P(N\Dy)
sES k=1 i=1

We find it extremely expensive to compute the detection
probability for every possible subset of S. Indeed, it is
incomputable for large subchannel mapping graphs. To greatly
reduce the computation complexity, we use Bonferroni’s
inequalities [38] to solely compute bounds for the density
functions. Specifically, to compute F(1), we cut the sum at
k=1 and k=2 to get the upper bound and the lower bound
respectively. With the same principle, we can derive bounds
of F(n) for any n.

Using the bounds makes the density functions imprecise,
and can affect our estimation of the communication cost. When
the bound is too loose, we rely on simulation of the signaling
step to empirically derive the CDFs.

D. The Decode Module

The decode module takes the density functions of the signal
for each possible secret value as an input and computes the end-
to-end communication cost of the receiver, which consists of
the calibration cost and the signaling cost. The calibration cost
can be directly derived from the calibration module by counting
the number of accesses performed by the cache emulator. The
signaling cost is computed by the decode module using a
statistical method. Specifically, we compute the number of
rounds of signal transfer that are needed by the receiver to
decode the secret with 99% success rate and then convert
it into number of cache accesses. We now describe how to
compute the signaling cost, followed by the discussion on how
to quantify the cost if communication spans across epochs.

The decode step consists in solving a statistical problem.
Consider the transmitter communicates a secret bit b€ {0, 1} to
the receiver by sending a signal X. The signal X is an infeger
random variable that follows its CDF Fj(n), which is either
equal to Fy(n) or Fi(n). The receiver decodes the secret by
sampling X and deciding which one of the two distributions
X follows. Intuitively, the more samples the receiver gets, the
more accurately it can decode the secret. The problem that we
need to solve is how many samples are needed to distinguish the
two distributions with a certain confidence. This is a standard

1118

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

statistical problem with various solutions. We use an intuitive
approach as follows.

To make the mathematical analysis simple, we convert the
integer random variable X to a simpler signal, a Boolean
variable Y. We define Y, equal to 1 if X >1 (that is observing
at least 1 modulation) and equal to O otherwise (observing no
modulation). Hence the problem becomes: how many samples
are needed to distinguish between two Boolean distributions
of mean Fy(1) and Fi(1).

As a result, the decode strategy is straightforward. The
attacker will simply perform the signal transfer several times,
observe if the empirical average of Y is closer to Fy(1) or
Fi(1), and guess the value of b accordingly.

Note that we could look at Y’ equal to 1 if X >2 (that
is observing at least 2 modulation) and equal to O otherwise
(observing 0 or 1 modulation). In some cases, Y’ can be a
better distinguisher than Y. In practice, we look for the value
of n that maximizes the distance |Fy(n)—F;(n)|, denoted as
nmax and define Y as equal to 1 if X >npax, O otherwise.

Intuitively, the more samples we get, the closer our empirical
mean will get to Fj(nmax), and the more confidence we will
have for the decode result. The Chernoff-Hoeffding bound [39]
provides the relationship between the number of samples and
the upper bound of the decode error rate (i.e., the lower bound
of the certainty) as below.

I 282N
P Li—Folnma)| > 8) <e @)
i=0
where N is the number of samples, y; is a sample of the Boolean
variable Y. The above formula shows that the empirical mean
of Y gets closer to Fj(nmax) exponentially fast with the number
of samples N.

To compute the signaling cost, we compute the number of

samples (N) needed to achieve 1% error rate, which can be
obtained by setting 8 = |F (tmax) —Fo (max)| /2 and 28N =
1% in Eq. (2).
Communication spanning across epochs. If the receiver
cannot collect enough samples to achieve the required error
rate within one epoch, the receiver has to decode based on
samples gathered from multiple epochs. As shown in Fig. 5,
since the mapping function used by the cache is changed upon
switching epochs, the receiver needs to redo the calibration in
each epoch to generate a different receiver set, which leads to
a different distribution of the signal. This is one of the reasons
that prior work [9], [10] considers it infeasible to communicate
across epochs.

We claim that it is viable to communicate across epochs,
because the signals from different epochs follow a global
distribution that can be leveraged for the decode step. Let’s use
gi to denote the subchannel mapping graph for the ith epoch
and X; for the corresponding signal. For specific calibration
and cache parameters, we define the space of all subchannel
mapping graphs as G and the space of the corresponding signals
as X. Intuitively, when the receiver performs the calibration, no
matter in which epoch, it obtains a sample from the subchannel
mapping graph space G. Similarly, when the receiver collects

1119

a sample from any of the epochs, it is sampling the signal
space X. We call the distribution that X follows the global
distribution. CaSA computes the global distribution of signals
and use Hoeffding bound [39] to compute the signaling cost.

We now describe how to compute the global distribution.
Until now, we have computed the distribution of the signal X;
conditioned on the subchannel mapping graph g;, denoted as
P(X;>n|g;). Theoretically, given the probability of generating
each subchannel mapping graph P(g), we can compute the
global distribution of signal X' as below.

P(X>n)=Y P(g)x P(X>n|g)
geG

3)

With the global distribution, we can transform the signal X’
into a Boolean random variable as before. We then apply the
Hoeffding bound [39] to compute the signaling cost, i.e., the
number of samples required to decode the secret with 1% error
rate.

In practice, we do not directly compute Eq. (3), because
we are unable to obtain the probability of generating each
subchannel mapping graph P(g) due to the extremely large
space of G. Instead, we use an empirical approach. We have
already obtained samples of subchannel mapping graphs in the
calibration module and computed the conditional distributions
in the signaling module. We found that if using the same
calibration strategy, the conditional distributions P(X >n|g) are
fairly similar across epochs. Therefore, we can obtain a useful
approximation of the global distribution using a small number
of samples, e.g., using 30 subchannel mapping graph samples
for 15 transmitter addresses. We show communication across
epochs is feasible in Section VII-C.

VII. EVALUATION

We use CaSA to evaluate IMB caches with 1024 sets and 16
ways. We evaluate 3 cache configurations: a) 16 hash groups
with 1 way per group, b) 8 hash groups with 2 ways per group,
and c) 4 hash groups with 4 ways per group. Within each hash
group, if there exists multiple ways, Last Recent Used (LRU)
replacement policy is used. For caches that dynamically change
the hash functions, we define the length of an epoch using
the number of epoch units. In each epoch unit, the cache is
accessed for L times where L is the total number of LLC lines.
We evaluate the state-of-the-art calibration strategies [10], [13]
and the classical signaling strategy, i.e., Prime+Probe.

CaSA measures and compares the communication cost of
different attack strategies on randomly mapped caches. In
this section, we first compare different calibration strategies.
Second, we show how calibration parameters, cache parameters
and noise parameters quantitatively affect the signaling cost.
Finally, we show evaluation results of communication spanning
across epochs.

A. Comparing Calibration Strategies

We compare calibration efficiency of using different calibra-
tion strategies in Fig. 9. The calibration efficiency is measured
by the number of receiver addresses generated per epoch unit.

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

EEl 1 transmitter address EEl 5 transmitter addresses
RR ineffective addresses using greedy algorithm

10

EE 10 transmitter addresses

P additional effective addresses using greedy algorithm

EEl 15 transmitter addresses [20 transmitter addresses

effective addresses using non-greedy algorithm
0

8
6

2

S | _||| -II i | -II
4096 8192 10240 12288 14336 16384

Size of Candidate Set
(c) 4 Way per Hash Group

---- 40 calibration rounds ~—— 80 calibration rounds

X

@
Q
g
5 1
IE 8 8
52
=
.% S 6 6
S 4 4
T I I
5 o
52 alll i il >l i
2 0 -I - - - -I -I 0 _II -I -I - - -I
§ 4096 8192 10240 12288 14336 16384 4096 8192 10240 12288 14336 16384
z Size of Candidate Set Size of Candidate Set
(a) 1 Way per Hash Group (b) 2 Way per Hash Group
Fig. 9: Comparing calibration efficiency of different calibration strategies.
1 transmitter address ~ —— 10 transmitter addresses ~ —=— 20 transmitter addresses 20 calibration rounds
10° 10°
g
O 104 104
o
£
2103 10°
p=y
n
102 102

200 400 600
Background Noise
(a) 1 Way per Hash Group

800 1000 200

400

Background Noise
(b) 2 Way per Hash Group

600 800 200 400 600

Background Noise
(c) 4 Way per Hash Group

800 1000

Fig. 10: Impacts of communication parameters on signaling cost.

We assume the attacker chooses the size of the candidate set
that is smaller than the private caches under its control. For
example, if the receiver attacker can launch two threads and
use two 256KB private caches, it could use 8192 candidate
addresses.

For each candidate set size, we show from left to right,
the calibration efficiency when the transmitter is composed
of 1, 5, 10, 15 and 20 addresses. Each bar is broken into
three categories from bottom to top: the number of receiver
addresses obtained using the non-greedy calibration algorithm,
the additional number of effective addresses obtained using
the greedy algorithm, and the number of ineffective addresses
obtained by the greedy algorithm. Ineffective addresses do not
map to any of the subchannels associated with the transmitters.

On the 3 cache configurations, the greedy algorithm con-
sistently obtains more receiver addresses than the non-greedy
algorithm when there is more than 1 transmitter address. How-
ever, the greedy algorithm introduces 5% to 20% ineffective
addresses into the receiver sets. The calibration efficiency of
the greedy algorithm increases almost linearly with the number
of transmitter addresses. In the following evaluation, we use
the greedy calibration algorithm.

Finding 1: Calibration efficiency increases almost linearly as
the number of transmitter addresses increases.

B. Measuring Signaling Cost

We evaluate the impacts of communication parameters on
signaling cost, including transmitter parameters, calibration
parameters, cache configurations and background noise. Fig. 10
compares the signaling cost for achieving 1% error rate on 3
different cache configurations. The signaling cost is the number
of samples computed using the Chernoff bound (Eq. (2)) on
the empirical density functions which we obtain via sampling.
In each plot, we show how the signaling cost changes with
the background noise, which is modeled as accessing a certain

1120

number of random addresses. We compare the signaling cost for
different numbers of transmitters and calibration parameters.

Across the three cache configurations, more transmitter
addresses and more calibration efforts both lead to lower
signaling cost. On a cache with 1 way per hash group in
Fig. 10(a), the signaling cost increases almost exponentially
as the noise increases when the transmitter is composed of 1
address. When there are more transmitter addresses and noise
is low, the signaling cost increases sub-exponentially. However,
an interesting finding from our evaluation results is that noise
does not always have negative impacts on communication.
On caches with multiple ways per hash group in Fig. 10(b)
and (c), increasing noise sometimes helps decrease signaling
cost. This phenomenon can be explained intuitively using the
following example. Consider a cache with 2 ways per hash
group and both the transmitter and the receiver use one address
to communicate. Without noise, the receiver cannot detect
any modulation no matter whether the transmitter address is
accessed or not. With a single noise access, the receiver has
a chance to observe a modulation when both the transmitter
address and the noise address modulate the subchannel that it
monitors, and still no chance to observe a modulation when
the transmitter is not accessed. Hence, adding noise in this
example has a positive impact on communication.

Comparing the three cache configurations, we do not see a
particular cache configuration has a clear advantage of security
over others. When there is light background noise, the signaling
cost is higher when the cache has more ways per hash group.
However, communication on such caches can tolerate more
noise. For example, when using 20 transmitter addresses, 80
rounds of calibration and 1000 accesses as background noise,
the signaling cost on the cache with 2 ways per hash group
(321 samples) is lower than the cost on the cache with 1 way
per hash group (521 samples).

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

o —— spend 20% epoch units on calibration

k: 10-1 10-1] RmweL >~ | T spend 40% epoch un!ts on cal!brat!on

5 ——- spend 60% epoch units on calibration

ﬁJ‘: spend 80% epoch units on calibration

2102 10-2] =001 : 5 9 9 o

3 - 20% 40% 60% 80%

9] \ 1Way 42 29 41 91

e } v | [2Way| 3192 630| 249| 241
1073 = 1073

5 10 15 20 25
Number of Detection Epochs

(a) 1 Way per Hash Group

20

40
Number of Detection Epochs
(b) 2 Way per Hash Group

60 80 100 (c) Theoretical Upper Bound of Detection

Epochs for 1% Error Rate

Fig. 11: Empirical decode error rate (a, b) and theoretical bound of communication cost (c) when communicating across epochs.

Finding 2: Signaling cost on caches with 1 way per hash
group increases exponentially, except at low noise for multiple
transmitter addresses.

Finding 3: Signaling costs on different cache configurations
are mostly at the same order of magnitude.

Takeaway: Noise does not always have negative impacts
on communication on randomly mapped caches.
Takeaway: There does not exist a cache configuration
that has a clear advantage of security over others.

C. Communication Across Epochs when Attacking RSA

We show the feasibility of communicating across epochs
using transmitter parameters from a real victim application, the
square-and-multiply exponentiation function [32] in the RSA
encryption algorithm. The receiver tries to distinguish whether
the transmitter executes the square or multiply function. We
use Pin [35] to identify 16 transmitter addresses (at cache line
granularity) exclusively used by the square function and 10
carrier addresses shared by the two functions.

The end-to-end communication cost is the number of LLC
accessed by the receiver during calibration and signaling.
The calibration cost is directly derived from the decode
module (results in Fig. 9). The signaling cost is computed by
multiplying the number of signaling samples and the number
of LLC accesses needed to obtain each sample. The number of
LLC accesses per sample can be very different depending on
whether the receiver can use the c1flush instruction. To repeat
the signaling step within one epoch, which we call contiguous
signaling, the receiver needs to evict the receiver addresses
from the cache before the next signaling round begins. This
self-eviction operation can be completed using the clflush
instruction with negligible cost and according to our evaluation,
the communication can always complete within one epoch
with 1% error rate. However, in the case that clflush is
unavailable, the self-eviction operation requires accessing many
random addresses. Specifically, for n receiver addresses, we
additionally count (In(n) + 1) x 16k LLC accesses in each
signaling round. Note that, this self-eviction operation on
traditional set-associative caches only requires the number
of accesses equal to the associativity.

In Fig. 11, we show evaluation results of using different re-
ceiver parameters to communicate on two cache configurations
whose epoch sizes equal to 100 epoch units [10]. Fig. 11(a) and
(b) shows the empirical number of epochs needed to achieve 1%
decode error rate, and Fig. 11(c) shows the theoretical bounds.

1121

The error rate decreases as the number of epochs increases,
confirming the effectiveness of the multi-epoch strategy.

We observe that spending more resources on calibration
does not always help communication. For example, on a cache
with 1 way per hash group, spending 40% of the epoch on
calibration achieves the highest communication efficiency, and
on a cache with 2 ways per hash group, the best efficiency is
achieved when spending 60% of the epoch on calibration.
Finding 4: Contiguous signaling requires evicting receiver
addresses, which increases the signaling cost by multiple
thousand times on randomly mapped caches compared to
traditional set-associative caches.

Takeaway: Information can be leaked and accumulated
across epochs even when mapping functions are changed.
Takeaway: Spending the maximum amount of resources
on calibration is neither the only nor always the best
strategy.

D. Varying Epoch Sizes

We analyze how varying epoch sizes can affect the commu-
nication cost. We repeat the experiment on attacking RSA in a
cache with 1 way per hash group and vary the epoch size from
5 units to 100 units and an infinite size. The communication
cost is the number of LLC accesses performed by the receiver
to decode a single secret bit. For each epoch size, Fig. 12
shows the lowest communication cost and the corresponding
communication strategy, which is represented using the number
of calibration rounds per epoch. The signaling cost is the
number of samples computed using Eq. (2) on the empirical
density functions which we obtain via sampling.

490
518 / - 200
+ —e— communication cost EEm calibration rounds c
g 25
o 150 € 8
s =g
=} © &
S t1002 &
c Sun
2 gt
£ 50 €3
5} S5
O . =
-0
0 20 40 60 80 100 infinite
Epoch Size

Fig. 12: The impacts of epoch sizes on communication cost.

Overall, the communication cost decreases as the epoch
size increases from 5 units to 100 units. When the epoch
size is equal to or below 1 unit, such as the configuration

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

in NewCache [12], our communication strategy becomes
infeasible. However, as demonstrated in prior work [9], [10],
using such a small epoch size can introduce high performance
overhead. The number of calibration rounds increases as the
epoch size increases from 5 to 60 units. When the epoch size
is larger than 60 units, spending more resources on calibration
does not help decrease the overall communication cost.

VIII. DI1sCcUSSION

We briefly discuss how CaSA can be extended for the
following cases.

1) Handling Complex Encoding Schemes.: We have evalu-
ated a simple encoding scheme of one Boolean secret bit so
far. When multiple transmitters are used to encode multiple
secret bits using a more complex encoding scheme, we identify
two potential decode strategies and the corresponding analysis
that can be supported by CaSA.

First, multiple receiver sets are used for signaling. If n
transmitters are used to encode n secret bits, the receiver can
decode these bits using n different receiver sets. Specifically, it
calibrates one receiver set for each transmitter. When perform
a signaling step, the receiver uses the n receiver sets in
parallel. CaSA could be easily extended to handle this decode
strategy. For each receiver set, the modulations from the other
transmitters and receivers are modeled as a new type of noise,
as this receiver set is not calibrated for those addresses. CaSA
could be easily extended to handle this type of noise.

Second, a single receiver set is used for signaling. In the
case that each transmitter is composed of a different number of
addresses, the receiver can calibrate to obtain a receiver set for
a union of these transmitters. Accessing different combinations
of the transmitters may result in 2" different distributions of the
signal. The mathematical problem that needs to be solved in the
decode module is how many samples are needed to distinguish
a group of distributions, instead of two. To compute bounds
for this problem, CaSA will need to be extended to use more
advanced mathematical methods.

2) Computing Upper Bounds of Communication Bandwidth:
CaSA does not compute lower bounds of communication cost
(i.e., upper bounds of side-channel bandwidth). However, from
the information leakage perspective, the upper bound of the
communication bandwidth can be more useful, as it makes
it possible to reason about the maximum number of bits that
can be leaked per epoch. We think it is possible to derive a
probabilistic upper bound using an approach similar to the
one proposed by Purnal et al. [40], where they computed a
probabilistic upper bound for the calibration step only.

IX. RELATED WORK

We have discussed the limitations of prior attempts to analyze
randomly mapped caches [10], [11], [13] in Section IV. We now
cover related work on analyzing and measuring side channel
vulnerabilities.

The closest related work is the concurrently submitted paper
by Purnal et al. [40]. They also aim to quantitatively analyze
the security of randomly mapped caches. Similar to us, they

1122

consider communication using smaller receiver sets and multi-
address transmitters. There are two key differences. First, one
of the key contributions of CaSA is to identify the existence of
a trade-off between signaling and calibration and to quantify
the end-to-end communication cost. However, they solely focus
on the calibration step. Their contributions lie in optimizations
for the attacker to reduce calibration cost. Second, one of the
key findings of CaSA is that communication can happen across
epochs. However, their analysis still assumes communication
needs to complete within one epoch and for a given epoch size,
they compute the upper bound of the success rate to obtain a
receiver set with 95% eviction rate.

He et al. [41] proposed an approach to quantitatively evaluate
a cache’s resilience against multiple classes of attacks on
traditional set-associative caches. They build a probabilistic
information flow graph for steps in an attack, compute the
probability of success for each step, and then compute the
probability of success for the whole attack. The key difference
from CaSA is that their approach only focuses on the signaling
step, and assumes the calibration result is known. Without the
capability to explore the calibration step, their approach cannot
be used to analyze randomly mapped caches.

SVF [42] and CSV [43] are metrics used to quantitatively
measure side-channel leakage in processors by computing sta-
tistical correlation between transmitter and receiver’s execution
traces. CaSA is different from these works. First, they use
empirical approaches to obtain traces, while CaSA builds
a mathematical model to obtain the communication signal.
Second, they compute the metric for given attack traces, while
CaSA performs space exploration to find the attack parameters
that minimize communication cost.

Several tools, such as CacheAudit [44], cacheD [34] and
CaSym [33], have been proposed to detect side channel
vulnerabilities in software. These tools are effective in locating
secret-dependent memory accesses and control flows. They
generally focus on analyzing software and use simple cache
models. We find these tools complementary to CaSA, and
it could be promising to extend these tools to generate the
transmitter parameters for CaSA.

Statistic-based analysis has been widely adopted in analyzing
power side channel attacks [45]-[47]. To the best of our
knowledge, we are the first to formulate the signals in cache-
based side-channel attacks into a statistical representation.

X. CONCLUSION

In this paper, we comprehensively analyze the security
of randomly mapped caches. Our result shows that the
randomization mechanisms used in the state-of-the-art randomly
mapped caches are insecure.

We have made key contributions in identifying the end-
to-end communication procedure of microarchitecture side
channels. Additionally, we leverage concepts from the field of
telecommunication to formulate a security analysis of randomly
mapped caches into a statistical problem. It is promising to
apply our approach to analyze side channels on other types of
micro-architecture structures.

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

[1]

2

—

3

—

[4

=

[5

—

[6]

[7

—

[8]

[9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

REFERENCES

D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Coun-
termeasures: The Case of AES,” in Cryptographers’ Track at the RSA
conference. Springer, 2006.

C. Percival, “Cache Missing for Fun and Profit,” http://www.daemonology.
net/papers/htt.pdf, 2005.

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” in Proceedings of the 28th
USENIX Conference on Security Symposium, 2019.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
Attacks: Exploiting Speculative Execution,” in IEEE Symposium on
Security and Privacy (SP), 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in USENIX
Security Symposium, 2018.

V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A Defense Against Cache Timing Attacks in Speculative Exe-
cution Processors,” in 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2018.

P. Vila, B. Kopf, and J. F. Morales, “Theory and Practice of Finding
Eviction Sets,” in IEEE Symposium on Security and Privacy, 2019.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy (SP), 2015.

M. K. Qureshi, “CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping,” in 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

M. K. Qureshi, “New Attacks and Defense for Encrypted-address Cache,”
in Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), 2019.

M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization,” in 28th USENIX Security Symposium, 2019.

Z. Wang and R. B. Lee, “New Cache Designs for Thwarting Software
Cache-Based Side Channel Attacks,” SIGARCH Comput. Archit. News,
2007.

A. Purnal and I. Verbauwhede, “Advanced Profiling for Probabilistic
Prime+Probe Attacks and Covert channels in ScatterCache,” arXiv
preprint arXiv:1908.03383, 2019.

Y. Yarom and K. Falkner, “Flush+Reload: A High Resolution, Low Noise,
L3 Cache Side-channel Attack,” in USENIX Security Symposium, 2014.
M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “AR-
Mageddon: Cache Attacks on Mobile Devices,” in 25th USENIX Security
Symposium, 2016.

C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, ‘“Prime+Abort:
A Timer-Free High-Precision L3 Cache Attack Using Intel TSX,” in
26th USENIX Security Symposium, 2017.

J. Bonneau and I. Mironov, “Cache-collision Timing Attacks against AES,”
in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2006.

D. Gruss, C. Maurice, and K. Wagner, “Flush+Flush: A Stealthier Last-
Level Cache Attack,” in Proceedings of the International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
2016.

D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games—Bringing
Access-based Cache Attacks on AES to Practice,” in IEEE Symposium
on Security and Privacy (SP). 1EEE, 2011.

M. Yan, R. Sprabery, B. Gopireddy, C. W. Fletcher, R. Campbell, and
J. Torrellas, “Attack Directories, Not Caches: Side Channel Attacks in
a Non-Inclusive World,” in IEEE Symposium on Security and Privacy
(SP), 2019.

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch Side-
channel Attacks: Bypassing SMAP and Kernel ASLR,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2016.

T. Hornby, “Side-Channel Attacks on Everyday Applications: Distin-
guishing Inputs with FLUSH+RELOAD,” in BackHat, 2016.

Clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get Off
of My Cloud: Exploring Information Leakage in Third-Party Compute

1123

[24]

[25]

[26

[27]

[28

[29]

[30]

[31]

[32]

[33]

[34

[35]

[36

[37]

[38
[39]

[40

[41

[42]

[43

[44]

[45]

[46

[47

Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,
“An Exploration of L2 Cache Covert Channels in Virtualized Environ-
ments,” in Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, 2011.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks:
Automating Attacks on Inclusive Last-level Caches,” in 24th USENIX
Security Symposium, 2015.

Intel, “6th Gen Intel Core X-Series Processor Family Datasheet - 7800X,
7820X, 7900X,” 2017.

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse Engineering Intel Last-level Cache Complex Addressing Using
Performance Counters,” in Research in Attacks, Intrusions, and Defenses.
Springer, 2015.

G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic Reverse Engineering
of Cache Slice Selection in Intel Processors,” in Proceedings of the 2015
Euromicro Conference on Digital System Design (DSD), 2015.

Intel, “Intel Software Guard Extensions Programming Reference,” https:
/Isoftware.intel.com/en-us/sgx/sdk, 2013.

R. Bodduna, V. Ganesan, P. Slpsk, C. Rebeiro, and V. Kamakoti, “BRU-
TUS: Refuting the Security Claims of the Cache Timing Randomization
Countermeasure proposed in CEASER,” IEEE Computer Architecture
Letters (CAL), 2020.

A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust Website Fingerprinting Through the Cache Occupancy
Channel,” in 28th USENIX Security Symposium, 2019.

D. M. Gordon, “A Survey of Fast Exponentiation Methods,” Journal of
Algorithms, 1998.

R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache
Aware Symbolic Execution for Side Channel Detection and Mitigation,”
in IEEE Symposium on Security and Privacy (SP). IEEE, 2019.

S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying
Cache-based Timing Channels in Production Software,” in 26th USENIX
Security Symposium, 2017.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2005.

Wikipedia, “Markov Chain,” https://en.wikipedia.org/wiki/Markov_chain,
2020.

Wikipedia, “Inclusion-exclusion Principle,” https://en.wikipedia.org/wiki/
Inclusion-exclusion_principle, 2020.

J. Galambos, “Bonferroni Inequalities,” The Annals of Probability, 1977.
W. Hoeffding, “Probability Inequalities for Sums of Bounded Random
Variables,” Journal of the American Statistical Association, 1963.
[Online]. Available: http://www.jstor.org/stable/2282952?

A. Purnal, L. Giner, D. GruB, and I. Verbauwhede, “Systematic analysis
of randomization-based protected cache architectures,” in 42th IEEE
Symposium on Security and Privacy, 5 2021.

Z. He and R. B. Lee, “How Secure is Your Cache Against Side-channel
Attacks?” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2017.

J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-channel
Vulnerability Factor: A Metric for Measuring Information Leakage,” in
39th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2012.

T. Zhang, F. Liu, S. Chen, and R. B. Lee, “Side Channel Vulnerability
Metrics: the Promise and the Pitfalls,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013.

G. Doychev, B. Kopf, L. Mauborgne, and J. Reineke, “CacheAudit: A
Tool for the Static Analysis of Cache Side Channels,” ACM Transactions
on Information and System Security (TISSEC), 2015.

Y. Fei, A. A. Ding, J. Lao, and L. Zhang, “A Statistics-based Fundamental
Model for Side-channel Attack Analysis,” IACR Cryptology ePrint
Archive, 2014.

S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer Science & Business Media, 2008.
E-X. Standaert, T. G. Malkin, and M. Yung, “A Unified Framework for
the Analysis of Side-channel Key Recovery Attacks,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2009.

Authorized licensed use limited to: MIT Libraries. Downloaded on July 10,2021 at 18:13:43 UTC from IEEE Xplore. Restrictions apply.

