
DASC: Towards A Road Damage-Aware Social-Media-Driven Car Sensing
Framework for Disaster Response Applications

Md Tahmid Rashid, Daniel (Yue) Zhang, Dong Wang

Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556

Abstract

While vehicular sensor networks (VSNs) have earned the stature of a mobile sensing paradigm

utilizing sensors built into cars, they have limited sensing scopes since car drivers only opportunis-

tically discover new events. Conversely, social sensing is emerging as a new sensing paradigm where

measurements about the physical world are collected from humans. In contrast to VSNs, social

sensing is more pervasive, but one of its key limitations lies in its inconsistent reliability stemming

from the data contributed by unreliable human sensors. In this paper, we present DASC, a road

Damage-Aware Social-media-driven Car sensing framework that exploits the collective power of

social sensing and VSNs for reliable disaster response applications. However, integrating VSNs

with social sensing introduces a new set of challenges: i) How to leverage the noisy and unreliable

social signals to route the vehicles to the accurate regions of interest? ii) How to tackle the incon-

sistent availability (e.g., churns) caused by car drivers being rational actors? iii) How to efficiently

guide the cars to the event locations with little prior knowledge of the road damage caused by the

disaster, while also handling the dynamics of the physical world and social media? The DASC

framework addresses the above challenges by establishing a novel hybrid social-car sensing system

that employs techniques from game theory, feedback control, and Markov Decision Process (MDP).

In particular, DASC distills signals emitted from the social media and discovers the road damages

to effectively drive cars to target areas for verifying the emergency events. We implement and

evaluate DASC in a reputed vehicle simulator that can emulate real-world disaster response sce-

narios. The results on a real-world application demonstrate the superiority of DASC over current

VSNs-based solutions in detection accuracy and efficiency.

Keywords: vehicle sensor networks, social sensing, bottom-up game theory, incentive control,

Markov Decision Process.
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1. Introduction

Vehicular sensor networks (VSNs) have evolved to a robust networked sensing paradigm for ob-

taining situational awareness in disaster response applications [1]. VSNs incorporate cars equipped

with arrays of on-board sensors (e.g. dashboard cameras) to opportunistically identify event oc-

currences like gas unavailability at nearby gas stations or accidents on the roads [2]. Social sensing,

on the other hand, is a permeating sensing paradigm for collecting real-time measurements about

the physical world from observations reported by social media users [3]. Examples of social sens-

ing applications include monitoring air quality in smart cities [4], studying human mobility in

urban areas [5], and monitoring road traffic congestion [6] using online social media (e.g., Twitter,

Instagram).

While VSNs render a greater reliability in the discovery of the ground truth of events using

physical sensors, one limitation is that the information collected by the vehicles is restricted to only

the regions traversed by car drivers. Such a limitation vastly limits the scope of sensing for VSNs

and their adaptability in unravelling new events. Moreover, during disaster situation, roads could

become inaccessible due to damages caused by the disaster, rendering VSNs ineffective in certain

scenarios. In contrast to VSNs, the scale of social sensing is broader and any individual possessing a

smart device with Internet connectivity can potentially report an event on social media. However,

an inherent limitation of social sensing is the inconsistent reliability of the sensing data that are

often contributed by unreliable human sensors [3]. In this paper, we exploit the complimentary

nature and collective strengths of VSNs and social sensing to develop DASC, a Damage-Aware

Social-media-driven Car sensing framework.

Consider the Hurricane Harvey that occurred in Southern Texas in August 2017 as an example.

In the aftermath of the hurricane, access to critical resources (e.g., gas stations, pharmacies, food)

became crucial for the victims affected by the disaster [7]. Figure 1 shows tweets posted during the

Hurricane Harvey. If these tweets could be utilized to direct car drivers to the desirable locations,

the disaster recovery process could be facilitated by obtaining facts regarding the reported events

using the vehicular sensors. However, a few key technical challenges need to be addressed for

developing a reliable social-media-driven car sensing system.
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Figure 1: Tweets Posted During Hurricane Harvey

The first challenge is leverag-

ing the sparse and unreliable so-

cial media data to guide the cars

to the desirable locations. A key

challenging task in social sensing

applications is the accurate iden-

tification of reliable sources and

truthful claims from the sparse

and uncertain social sensing data, otherwise known as truth discovery [3]. To discover the truth-

ful information from unvetted social media users, existing truth discovery solutions primarily rely

on the posts presented on social media [3]. These solutions may yield unreliable truth discovery

results, making it difficult to decide where to dispatch the cars [8]. In addition to that, exist-

ing truth discovery algorithms that output probabilistic distributions for the classification cannot

definitively confirm the truthfulness of an event. Therefore, it is intrinsically difficult to extract

reliable social signals to guide cars to accurate locations of interests. We deem this challenge as

the cyber challenge of the problem.

The second challenge is the inconsistent availability, otherwise known as churn, caused by the

rational car drivers who may drop sensing tasks midway during explorations. We assume that at

time, car drivers may focus on personal goals instead of the given assignment and abandon the

sensing tasks abruptly in the middle of a trip. This inconsistent availability issue of churn, has

been explored in the field of distributed systems [9, 10]. Existing literature has proposed methods

to reduce churns by increasing the total number of devices in the system [11, 12] or by reallocating

tasks to more reliable devices [13]. While those solutions may work for networked devices, they

are application specific and are hard to be applied to cars. For example, it may not be possible to

rigorously control the number of cars in the system since the cars are privately owned by individuals.

Moreover, while allocating tasks to the more reputable drivers (i.e., drivers who are less likely to

drop a task) may improve the performance of the system, it could be impractical to switch the

tasks to a car that is in the middle of an ongoing exploration on the road. Hence, it remains an

open challenge to decisively allocate sensing tasks to cars (drivers) in our DASC framework. We

deem this challenge as the human challenge of the problem.
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The third challenge is allocating the cars to the event locations with little or no prior knowledge

of the road damages caused by the disaster. After a major natural disaster, it is likely that a

certain proportion of roadways are unreachable [14], as exemplified in Figure 1 (marked by red

stars). Road damages inflicted by the disaster would greatly limit the maneuverability of the

cars. Furthermore, the extent of road damages is unpredictable and cannot be known beforehand.

A few routing strategies have been proposed to model the road damages and route cars safely

[15, 16]. However, the existing solutions assume that the system has a global knowledge of all the

road damages, making feasible routing decisions. In contrast, with damaged infrastructures after a

disaster, the information about the road conditions cannot be readily determined and disseminated.

For example, at any point in time, new road damages may appear and also existing road may get

repaired, introducing a level of dynamism into the system. Current solutions in discipline of routing

algorithms consider the issue of unexplored and incomplete information. However, in the context

of social-media-driven car sensing systems, the dynamics of the social media combined with that

of the physical world makes the problem more challenging. We deem this challenge as the physical

challenge of the problem. Figure 2 illustrates the three challenges in developing a social-media-

driven car sensing system.

Figure 2: The three challenges in social-

media-driven car sensing system

In this paper, we develop DASC, a damage-aware so-

cial media-driven car sensing system to address the above

challenges. To address the first challenge, we develop a

bottom-up game-theoretic task allocation model to judi-

ciously dispatch the cars to reported locations and verify

the event information extracted from unreliable social me-

dia data. To address the second challenge, we design a

top-down incentive control mechanism to dynamically ad-

just the incentives for exploration of the event locations

based on the aggregated reputations of the cars (i.e., the

historical behaviour of the cars in attempting to success-

fully complete the tasks). To address the third challenge, we develop a Markov Decision Process

(MDP)-based damage discovery scheme to locate the roads affected by damage and leverage the

obtained knowledge to make optimal route planning decisions. To the best of our knowledge, DASC
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is the first solution that melds the realms of social sensing and VSNs for a robust car sensing (SCS)

application with an explicit consideration of the road damages in the aftermath of a disaster. We

implemented the DASC framework and evaluated it with CARLA, a reputed car emulation sys-

tem that is capable of closely replicating road networks and vehicles in real-world scenarios. We

compared our framework against representative vehicular based sensing systems on a real-world

dataset collected from Twitter during a natural disaster: the Hurricane Harvey in August 2017.

The results show that DASC significantly outperforms the compared baselines in both detection

effectiveness and deadline hit rate during the aftermath of a disaster.

A preliminary version of this work has been published in [17]. We refer to the scheme developed

in the prior work as the SocialCar scheme. This paper is a significant extension of the previous work

in the following aspects. First, we define a new problem of guiding cars to the event locations using

social media signals while explicitly considering the damaged roads left by a disaster. In contrast

to the SocialCar scheme, the new problem is much more challenging because immediately after the

disaster, the knowledge of the road damage is not available, making it much more difficult to decide

the route for sending the cars to the event locations. Second, we allocating a portion of participating

cars for “scouting” the routes to explore the damaged roads. Third, we introduce a Markov Decision

Process (MDP)-based technique for utilizing the knowledge of the road damage obtained in the

prior step for feasible route planning. Fourth, we employ an exploration-exploitation strategy to

learn the optimal routing decision over time. Fifth, we carry out a new set of experiments to

explicitly evaluate the performance of all schemes in terms of detection effectiveness and deadline

hit rates in the new problem setting. Sixth, we include additional baselines to further exhibit

the performance gains achieved by DASC. Finally, we extend the related work by adding a new

discussion on the damage-aware routing schemes and highlight the difference between DASC and

those schemes (Section 2).

2. Related Work

2.1. Vehicular Network Based Sensing

The emergence of modern cars equipped with advanced sensors have opened new domains

in vehicular networked sensing [2]. For example, Nekovee presented a comprehensive study of

several roadside monitoring systems that integrates the data of nearby vehicular sensors [18].
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Lee et al. proposed Mobeyes, an urban surveillance system that manages a dedicated number

of sensor-equipped cars to opportunistically explore events [19]. In combination with built-in

sensors, crowdsourced vehicular sensing networks using smartphones have also gained popularity.

Commercial solutions like Waze [20] and GasBuddy [21] provide users with valuable information

about the availability of critical resources as reported by car drivers. However, the above approaches

primarily depend on the opportunistic nature of the cars drivers since cars only “sense” incidents

when they come across them. In contrast, this paper presents the DASC framework that leverages

the social media signals to guide cars to desirable locations for a greater sensing scope.

2.2. Social Sensing

Social sensing is transcending as a recent sensing paradigm that uses humans as sensors to report

about their observations in the physical world [3]. Xu et al. developed a framework for semantic and

spatial analysis of urban emergency events using social sensing [22]. Chen et al. proposed a road

traffic congestion monitoring system using social media data [6]. Imran et al. developed a machine-

learning based disaster identification system capable of classifying and analyzing information from

crisis-related tweets in real-time [23]. A key limitation of these systems is that they only rely on the

social media data which could be unreliable. More recently, there is an inception of social media

driven UAV based sensing approaches that address the data reliability issue of social sensing by

using physical drones [24, 25]. However, these solutions require dedicated drones for the sensing

purpose that are typically known to be expensive and limited in numbers. In contrast, the SocialCar

framework integrates the social media with the existing vehicular-based sensing system to provide

data reliability assurance in scalable social sensing.

2.3. Mitigation of High Churn

Recent literature has presented methods to diminish the issue of high churn in participatory

sensing and distributed systems. For example, Gao et al. [26] presented a study of different

incentive mechanisms for participatory sensing to lower the possibility of churn. Godfrey et al.

[11] proposed a technique to reduce churn by intelligently selecting only the most reliable devices

from all the participating devices in a system. Haeberlen et al. proposed a solution to reduce churn

by increasing the total number existing devices [12]. One major drawback of these approaches is

that they are all either bottom-up or top-down, and do not holistically consider the objectives of
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the individual devices and the server. In contrast, our DASC framework uses both a bottom-up

task preference and a top-down dynamic incentive control to collectively consider the objectives

on both ends (i.e. the cars and the SVS application) to better control the churn issue.

2.4. Road Damage-aware vehicle routing

Road damage-aware vehicle routing is a well-studied topic in vehicular networks. For example,

Hsueh et al. [27] presented a comprehensive study of road damage-aware dynamic vehicle routing

for relief logistics during natural disasters. Korkmaz et al. [28] proposed a road damage-aware

satellite-imagery based path planning framework for rescue vehicles during disasters. Mahmoud-

abadi et al. [29] developed a damage severity-aware route planning for transporting hazardous

substances during emergency situations. Kuntze et al. [30] explored the possibility of collision-free

path planning of unmanned ground vehicles (UGVs) in road-damage prone areas. While the above

approaches intend to solve the critical challenge of guiding vehicles through road damage, our prob-

lem of building a damage-aware social-media-driven car sensing system is even more challenging

due to both the dynamics of the social media and the physical world. In this paper, we develop

the DASC framework to address this challenge by designing an MDP-based damage discovery

technique to locate damaged roads and use the knowledge for optimal routing.

3. Problem Formulation

In this section, we present the fundamental definitions and assumptions of our model, and

define the objective of our problem. In a damage-aware social-media-driven car sensing (SCS)

application, we inspect a physical region of interest for a specific duration of sensing. The sensing

timeline is discretized into T periodic intervals, namely response cycles. In particular, t ∈ [1, T ]

indicates the tth response cycle.

DEFINITION 1. Sensing Cells: We divide the sensing region reachable by cars into H disjoint

sensing cells. Each cell represents a real-world location, connected by roads and accessible to cars 1.

1Please note that we only focus on the events in the sensing cells defined above and ignore the events that

happened in locations which are not accessible to cars given the scope of this work.
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At any given time, a sensing cell can be occupied by multiple cars, increasing the change of a task

being completed. In particular, we define SCt,h to be the hth sensing cell at the tth response cycle.

DEFINITION 2. Road Damage Dt,h for sensing cell SCt,h: We assume that cars cannot

traverse a sensing cell if it contains road damage. We identify a sensing cell’s damage state by a

binary variable Dt,h, where a value of 0 indicates no damage and a value of 1 indicates damage.

We consider that a collection of social media users reports a collection of independent events

at different sensing cells as defined below:

DEFINITION 3. Event Et,n: An event is assumed to represent a physical variable of interest

within a sensing cell in the SCS application. Examples of reported events include: gas availability

at a gas station or a person trapped under a vehicle. We let a binary variable Et,n denote the nth

event in the tth response cycle with a total of Nt events. For each reported event Et,n, it either

“exists” (i.e., Et,n = 1) or “does not exist” (i.e., Et,n = 0).

We use Êt,n to denote the truth of event Et,n estimated by our DASC system. An essential

attribute of each event is the sensing deadline as defined below:

DEFINITION 4. Sensing Deadline δt,n for event Et,n: Each event is assigned a deadline

representing the urgency by analyzing spatiotemporal sentiments of the users [31]. While sensing

deadlines may typically be less than the duration of a response cycle, for cases otherwise we split

the events based on [25].

We define the data from the social media (e.g., tweets from Twitter) as follows:

DEFINITION 5. Social Media Data S: A set of social media posts that report events in the

physical world in the aftermath of a disaster. An example of such a report is shown in Figure 1.

We consider a set of tasks that are broadcast for the car drivers to explore the reported events.

We formally define a task as:

DEFINITION 6. Task Vt,n: A task for a car at each response cycle refers to the location of an

event (i.e., a sensing cell) where the car should be dispatched to investigate the event.

Figure 3 presents an illustrative example of the concepts defined above.
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Figure 3: Snapshot of the sensing grid across response cycles. The

yellow boxes signify sensing cells, the blue boxes represent unreachable

regions, and the red boxes signify the cells with road damage, the black

icons in indicate the events, and the green car icons represent the cars.

We make two important as-

sumptions about the unique com-

pliance and churn issues in the

DASC system.

Voluntary Compliance : We

assume that a car driver may or

may not be willing to accept any

task offered.

Dynamic Churn : We also

assume that even if car drivers are willing to pick up events for investigation, they may randomly

abort the tasks (e.g., the driver decides to go to home after taking a task), causing the churn in

the system.

Using the above definitions, we therefore define the goal of our DASC framework. Given the

social media data input S, a set of cars C, the corresponding deadlines for the events δt,n, the

road damage D, as well as sensing cells SCt,h, the objective of the DASC framework is to dispatch

the cars to a set of sensing cells to maximally recover the true states of the events reported by

social media users while considering the road damage caused by the disaster. We formally solve a

constrained optimization problem as follows:

arg min
Êt,n

Mt∑
n=1

(abs(Êt,n − Et,n)|D,S, C, δt,n, SCt,h),

∀1 ≤ t ≤ T, ∀1 ≤ h ≤ H

(1)

The definitions of the notations are summarized in Table 1.

4. The DASC Framework

In this section, we present the DASC framework that integrates the social media and the

vehicular sensing system for a reliable road damage-aware SCS application. An overview of DASC

is shown in Figure 4. The DASC consists of four major components: i) a Social Signal Distillation

(SSD) module; ii) a Road Damage Discovery (RDD) module; iii) a Vehicle Dispatch (VD) module

; and iv) a Dynamic Incentive Control (DIC) module.
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Table 1: Summary of Notations

t The tth response cycle, t ∈ {1, 2, ..., T}

Et,n The nth event in response cycle t

Êt,n The estimated truth of event Et,n

δt,n The sensing deadline for event Et,n

SCt,h The hth sensing cell in response cycle t

Dt,h The road damage for sensing cell SCt,h

Vt,n The nth task in response cycle t

S The social media data

Cb The cth car, c ∈ {1, 2, ..., G}

Figure 4: Overview of the DASC Framework. The

blue car icons represent the cars sent out for locating

the road damage, the black car icons represent the

cars dispatched to event locations, and the red stars

indicate the discovered road damages along the routes.

The SSD module collects and extracts reli-

able event reports from the unreliable social me-

dia users. Concurrently, the RDD module as-

signs a portion of the participating cars as scout

cars to explore the routes to the event locations

for road damage. The VD module allows the

car drivers to pick their preferred tasks based on

their individual payoffs and leverages the knowl-

edge from road damage data to guide the cars

to the event locations. The DIC module assigns

and adjusts the incentives for the tasks to max-

imize the chance of the cars completing all the tasks (i.e. locating road damage and exploring all

the reported events). To further maximize the chance of the tasks being completed, once each task

is selected by at least one car driver, the VD module allows the tasks to be selected by multiple

car drivers. A detailed discussion of each module is presented in the following subsections.

4.1. Social Signal Distillation (SSD) Module

The SSD module is designed to collect, pre-process, and analyze noisy social media posts to

estimate the possibility of critical events in the physical world. The SSD module uses a real-time
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data crawler engine to obtain social media data (e.g. Tweets) with geo-location tags indicating

disaster related events. The collected data is filtered by running keyword searches on it (e.g.,

gas, fuel, oil, medicine, healthcare, and pharmacy), and afterwards clustered and labeled using a

microblog data clustering tool [32].A key issue with the above generated social media data lies in the

trustworthiness of the reported events since these events are often reported by unvetted grass-root

users, of whom the credibility is unknown a priori. Without carefully excluding the misinformation

and rumors provided by unreliable users, the performance of the DASC system can be significantly

degraded. Another frequent issue observed in social media data is “data sparsity”, whereby a

majority of the users contribute only a small number of event reports, providing insufficient evidence

to accomplish the truth estimation task. In light of such challenges, SSD module incorporates

a truth discovery (TD) solution to estimate the truthfulness of the reported events along with

obtaining the estimation confidence/uncertainty.

While there is an abundant number of TD solutions, we select a particular approach called the

Robust Truth Discovery (RTD) [32] algorithm for our SSD module to filter useful signals from social

sensing data. Our main motivation for selecting this algorithm lies in its design philosophy to be

robust against misinformation spread and data sparsity in social media applications. In particular,

the RTD scheme handles widespread misinformation by explicitly quantifying different degrees

of attitude that a source may express on a claim and incorporating the historical contributions

of a source using a principled approach. The fine-grained source attitude facilitates an effective

detection of misinformation, which is based on the observation that the misinformation is more

likely to attract opposite opinions and intensive debates. Moreover, the RTD scheme addresses

the data sparsity issue by computing the claim truthfulness based on a function of the source

attitude, the source’s historical contributions and the source reliability. The estimation is more

robust since it does not solely rely on the source reliability estimation, which is challenging to

estimate accurately in a sparse dataset. The RTD scheme measure the historical claims of each

source by computing a metric called the contribution score that determines a source’s contribution

to an event report based on several factors [32]. The algorithm also utilizes a metric called the

source attitude score to fully capture the reporting behavior of sources. We define the output of

the RTD algorithm as event veracity and estimation confidence which are defined below:
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DEFINITION 7. Event Veracity Λt,n for event Et,n: A score in the range (0,1] that indicates

the chance of an event being true. Intuitively, greater the value of Λt,n, the more likely event Et,n

is true (i.e., Et,n exists). To obtain Λt,n for event Et,n, the RTD algorithm iteratively sums up all

the contribution scores from the set of social media users who contribute to Et,n.

DEFINITION 8. Estimation Confidence Score ECt,n for event Et,n: A score in the range

(0,1] that signifies the estimation confidence for an event. Intuitively, greater the value of ECt,n,

the more confident the RTD algorithm is its estimation. Formally, it is defined as the absolute

difference between the event veracity score and midpoint of event veracity score’s range (i.e., the

neutral point for determining the truthfulness).

Leveraging social sensing and truth discovery, the SSD module of the DASC framework not only

provides the signals of the critical events for the vehicles to verify, but also helps to quantify the

priorities of these events based on their confidence. Both the event truthfulness and the estimation

confidence are critical inputs to the DASC framework that guide the dispatching strategies of the

vehicles in the VD module. The decision to dispatch the cars rely on the values of Λt,n and ECt,n.

For a given response cycle, if the value of ECt,n is above an adjustable threshold, DASC trusts

the RTD algorithm’s decision without dispatching the vehicles and concludes upon event Et,n’s

truthfulness based on the value of Λt,n. For cases otherwise, where the value of ECt,n is below

the threshold deeming the veracity doubtful, DASC incorporates the value of ECt,n into the VD

module (the process of which is detailed in Section 4.3) and allocate tasks for the car drivers to

explore the event. Once the cars travel to the event destination and collect the actual truth with

greater reliability using the onboard sensors, DASC finally determine event Et,n’s truthfulness.

4.2. Road Damage Discovery (RDD) Module

The RDD module is designed to incentivize and assign a fraction of cars (from the pool of

available cars that are willing to participate) to explore the available routes for road damages. In

particular, we assign Q% of all the available cars, that are willing to participate in the sensing

process, as scout cars, where Q is adjusted according to the application scenario. We model each

road intersection as the node of a graph and each road branching out of an intersection as the edge

of a graph. Each exploration is modelled as a task which can be picked up by one or multiple cars

12



and assigned a reward rt,n to incentivize the drivers to pick it up. The reward rt,n is determined

by the Dynamic Incentive Control (DIC) module discussed later in this section. The rationale is

that if we can traverse the maximum number of roads using the scout cars, we may have better

chance of locating road damages.

Once a scout car is adjacent to a cell with road damage, the damage information (i.e., Dt,h)

is recorded by the scout car and then it proceeds to explore a different route. The edges of the

graph are basically a series of contiguous sensing cells accessible by cars. While the road damage

variable Dt,h indicates whether a cell has damage or not, we acknowledge that all the road damage

information cannot be readily obtained or updated in a given sensing cycle. Therefore, it is a

reasonable assumption to determine the possibility of road damage across a sensing cell based on

the historical damage condition of the cell. In order to accomplish this, all the sensing cells that

make up the edges of the graph are assigned a score called accessibility index, which is defined

below.

DEFINITION 9. Accessibility Index Xt,h: A score in the range of [0, 1] to indicate the pos-

sibility of road damage across a sensing cell (i.e., how likely damage may occur again in a cell in

future). Intuitively, a lower accessibility index indicates that a route is less likely to be traversable

due to the possibility of containing damaged roads. Initially, all the cells are considered to have an

initial accessibility index X0,h, the value of X0,h is discussed in Section 5. Over response cycles,

only when a sensing cell is visited by a scout car, the accessibility index is calculated as:

Xt,h =


Xt−1,h − κt, Dt,h = 1

Xt−1,h + κt, otherwise

, 0 ≤ Xt,h ≤ 1 (2)

where κt is an adjustable parameter called accessibility penalty, which is determined by a sliding

window correlation [33] between the total number of detected road damages in tth sensing cycle,

Dtotal
t and the total number of reported events in tth sensing cycle, Nt. The value of κt is computed

by the following equation:

κt =

∑t
i=t−j+1{(Dtotal

t − D̂total
t )× (Nt − N̂t)}√∑t

i=t−j+1(Dtotal
t − D̂total

t )2 ×
∑t

i=t−j+1 (Nt − N̂t)2

(3)

where j is the sliding window of the number of cells to look back, D̂total
t is the average number of

road damages during the sliding window and N̂t is the average number of events during the sliding
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window. Intuitively, if there is a strong correlation between the number of events and the road

damages in the current sensing cycle, the value of κt will increase, thereby making the accessibility

index more sensitive.

In the beginning, the road damage Dt,h = 0 for all the cells, assuming that all the roads are

traversable. If a cell is not visited by a car in a sensing cycle, the accessibility index for that cell is

retained (i.e. Xt,h = Xt−1,h). If a cell is found to have damage at a sensing cycle (i.e. Dt,h = 1),

the accessibility index is decremented by κ. Conversely, if a cell is detected to have no damage

in a sensing cycle (i.e. Dt,h = 0), the accessibility index is increased by κ. Intuitively, a lower

Xt,h means that a cell has a higher chance of being damaged based on prior history and should be

disregarded from routing decisions. On the other hand, a higher Xt,h indicates that a cell has less

chance of damage based on historical damage information.

We employ an established graph traversal algorithm, the A* search algorithm [34], to direct the

scout cars in traversing the path covering the highest number of non-repeating edges between pairs

of farthest nodes. The accessibility index is used by the Vehicle Dispatch (VD) module discussed

in Section 4.3.2 to decide the route selection strategy for cars involved in event exploration.

4.3. Vehicle Dispatch (VD) Module

The VD module is designed to take the filtered social signals from the SSD module and the

road damage information in the form of accessibility index from the RDD module for appropriately

dispatching a group of interested vehicles to probable event locations. In particular, we use a

Bottom-Up Game-Theoretic (BGT) policy to prioritize and allocate tasks to the cars based on the

assigned task rewards, the distance between the cars and the event locations, the remaining time

of the tasks, and the event uncertainty. Once the allocation of the tasks to the cars is completed

by the BGT module, a Markov Decision Process (MDP)-based approach is employed to select the

best available routing strategy for the cars while incorporating the road damage information.

4.3.1. Bottom-Up Game-Theoretic Task Allocation

The bottom-up game-theoretic (BGT) task allocation approach is designed to allow the car

drivers to make choices of event locations to travel to. The key motivation behind this design

principle of the VD module is to let the car drivers express their individual task preference in the

allocation process. This allows the cars to determine the strategy that maximizes their individual

payoffs.
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In game theory, congestion games are typically used to mitigate resource conflicts (e.g., event

locations) among a set of players (e.g., cars). We adopt singleton weighted congestion games [35], a

variant of congestion games where the expected utility of each task uniformly decreases as the sum

of players (cars) that picked the task increases. Moreover, each car only picks one task at a time

according to the singleton property. The Pure Strategy Nash Equilibrium is guaranteed to exist

under the above singleton weighted congestion game protocol [17]. This property enables the cars

to make conclusive task allocation decisions. In particular, where are four core components in our

singleton weighted congestion game protocol: the reputation, the reward, the weighted congestion

rate and the utility function. We elaborate on them below.

Similar to the damage discovery module, we assume that a task can be picked up by multiple

cars and assign a reward rt,n for each task to incentivize the drivers to pick it up. We maintain a

reputation score πt,p for each car Cp based on the historical performance till the response cycle t.

We use νt,p to count the number of tasks successfully completed by car Cp, and τt,p to count the

tasks marked as unsuccessful (i.e. a car not being able to perform a task by the sensing deadline)

upto response cycle t, respectively. Intuitively, if a car picks up a task and successfully completes

it, the reputation score will increase. If the car fails to reach the destination on time or drops the

task, the score will decrease accordingly. The reputation score πt,p is based on an initial reputation

π0,p at t = 0 and is subsequently computed as:

πt,p = πt−1,p + η × (
∑

νt,p −
∑

τt,p), t > 0 (4)

where η is an adjustable parameter called reputation coefficient. If η is set high, the reputation

score will be more sensitive to the success and failure in completion of tasks.

We define a key component of our congestion game called weighted congestion rate as follows:

DEFINITION 10. Weighted Congestion Rate γmt,n for task Vt,n for car Cm: A score in the

range of (0, ∞) that indicates the level of contention on a task. It serves as a discounting factor

of the utility function to dissuade cars to pick the same task already selected by several cars. The

weighted congestion rate is computed by:
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γmt,n =

G∑
p=1
p 6=m

S × (πt,m − πt,p)k

S =


sgn(πt,m − πt,p), k is even

1, otherwise

(5)

where k is an exponential scaling factor to adjust the intensity of the congestion property. If k is

set to be high, the congestion rate will be more sensitive to the difference in the reputation scores.

The intuition here is that if several cars with reputation scores greater than car Cm’s reputation

score have already picked up a particular task, the congestion is higher. On the contrary, if few

cars have already picked the event and have a lower reputation scores, the congestion will be lower.

We anticipate that once all the cars select all the tasks, a churn situation can occur. For

example, a car may drop a task at any instant abruptly, new cars may join or existing cars may

leave the system. This may necessitate a reallocation of the tasks. We keep track of the remaining

time ρt,n for each task at any time instant and define it as:

ρt,n = δt,n − τt (6)

where τt is the elapsed time from the beginning of the response cycle t.

Given the definitions above, we can now derive the utility function based on which the cars

decide their best strategies, and define it as:

DEFINITION 11. Utility Function umt,n for task Vt,n: the utility function represents the

benefit for picking a specific task (i.e., event location) for car Cm.

In our model, we devised a customized utility function for car Cm, referred to as event priority

score as follows:

umt,n =


rt,n×(λ1×ωm

t,n+λ2×ρt,n+λ3×h(Λt,n))

γmt,n
, ρt,n > 0

0, ρt,n = 0

(7)

The above utility function prioritizes the tasks for car task allocation based on four factors: i)

the reward for the task, rt,n; ii) the distance from the car to the event location, denoted as ωmt,n; iii)

the remaining time of the task, ρt,n; and iv) the uncertainty of an event, as captured by a function

of the estimation confidence score (i.e. f(ECt,n)) from Definition 8. Given the rewards for the

tasks, each car tries to prioritize the tasks with higher rewards. In particular, the remaining time
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factor prioritizes the tasks with tighter remaining deadlines while the distance factor priorities tasks

with shorter distance from the cars in order to reach nearby tasks first. λ1, λ2, and λ3 represent

the weights of each factor. Their values are computed using proportional control, a widely used

control technique [36]. In Section 5, we discuss how the three parameters are determined. Finally,

the congestion rate, γmt,n on the denominator of the utility function is designed to avoid contention

of cars for a task. We highlight that multiple cars have the freedom to select the same task after

all the tasks are allocated to at least one car. This is to increase the value of the congestion rate,

thereby reducing the utility for each car. However, this approach also increases the chance of a

task being completed. Additionally, if the remaining time ρt,n is 0, the utility is 0.

Afterwards, each car decides on its best strategy towards maximizing its utility in the congestion

game, until a Nash Equilibrium is reached. The Nash Equilibrium (NE) exists in the proposed

game where each car is assumed to have determined its optimal decision (i.e., picking the task

has the highest utility) and no car has anything to gain by only changing its preferred tasks. We

exploit the best-response dynamics algorithm to find the NE [37].

We use an array Ut,n for each task Vt,n to record all the cars that pick the task in the tth

response cycle after the NE is reached. Once the BGT sub-component determines the destinations

for the cars, the MDP scheme incorporates the road damage information from the RDD module

to assign the best routes to destinations for the cars.

4.3.2. Markov Decision Process (MDP)-based Route Selection Strategy

As the accessibility index (indicating the possibility of road damage) is obtained from the RDD

module and the destinations for the cars are derived from the BGT sub-component, the knowledge is

utilized to perform routing decisions. We found that our problem of allocating traversable routes for

cars nicely fits into the principle of Online Markov Decision Process (MDP) [38]. For our problem,

we consider the starting location of each car at every response cycle as a source and the event

location assigned to the car as a destination. We assume that most pairs of source-destination are

connected by multiple routes. Based on this assumption, we consider the source-destination pairs

as the states for our MDP model. In our model, we map the actions to the list of available routes for

each state and the penalties (i.e., or equivalently negative reward) to the sum of the road damage

for each action (i.e., route). Afterwards we develop a custom action selection scheme to determine
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the best actions and solve our MDP problem. Our choice for developing our own approach for

solving the MDP problem is driven by the rationale that our environment is highly uncertain

due to the dynamics of the social media and the physical world, which makes the determination

of the best actions challenging. While our states and actions do not change, the values of the

penalties (i.e., road damages) for corresponding actions often exhibit a dynamic behavior across

response cycle due to the constantly changing number of event reports in the social media, their

locations in the real-world, and the road damage situation along the routes. This dynamism makes

the determination of the best actions challenging. Moreover, while the scout cars provide the

framework with limited information related to the road damages in a prior response cycle, we may

not have the complete information of all the damaged roads across all the routes with a limited

number of scout cars.

Our scheme for determining the best actions is built on a feedback control mechanism that uses

the penalties as feedback signal. At the end of every response cycle, the penalties from the current

sensing cycle are updated based on Equation 9 which is a function of the predicted and actual road

damage for the current sensing cycle. The actions to take in the next sensing cycle is determined

by Equation 8 which is a function of the the prior road damage and normalized difference between

the sums of the penalties across successive response cycles. The details of the states, actions, and

rewards, as well as the mechanism of our algorithm for selecting the best action are discussed

below.

DEFINITION 12. StatesWt: A set of tuplesWt = {W t
1,W

t
2, ...,W

t
jt} denoting source-destination

pairs at the tth response cycle. An example of a source-destination pair in response cycle t = 3 is

W 3
1 = (SC3,2, SC3,8), where SC3,2 is the source sensing cell (i.e., the position of the car) and SC3,8

is the destination sensing cell (i.e., the event location).

DEFINITION 13. Actions Atk for state W t
k: A set of ordered lists Atk = {Atk,1, Atk,2, ..., Atk,lt}

representing all the available routes for each state k at sensing cycle t. Each actions set Atk,

consisting of a set of contiguous sensing cells, maps to each state W t
k. For example, actions set A3

1

for state W 3
1 at t = 3 can have an action A3

1,4 with sensing cells [SC3,2, SC3,6, SC3,8].

All the available routes for each state is obtained by considering the task deadlines and sensing

cells constraints for the cars while reaching the assigned sensing cells. We leverage a route planning

algorithm based on a Contraction Hierarchies technique from graph theory [39] to generate all the
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available actions for each state.

The probability function for the vth action, Atk,v in an action set is given by:

P (Atk,v) = σt−1

∏
h∈atk,v

Xt−1,h (8)

where σt−1 is an parameter called penalty differential that is determined by the penalty from the

prior response cycle in Equation 10 discussed later. The term atk,v represents the set of sensing

cells that are part of the route for action Atk,v.

At the beginning of every sensing cycle t, the accessibility index indicating the possibility of

road damage from the last sensing cycle (i.e. t−1) is used in Equation 8 to generate the probability

of the all the actions that can be taken in the current sensing cycle (i.e. t). Intuitively, the greater

the accessibility indices for the associated cells, the higher the probability for that action consisting

of the particular cells to be taken.

We anticipate that it might not possible to locate all the road damage by the scout cars in the

RDD module. Moreover, the road damage could be encountered later by the other cars assigned

for event exploration.

DEFINITION 14. Penalties Rt: A set of penalty scores Rt = {Rt1, Rt2, ..., Rtjt} obtained by

summing the road damages discovered by the car drivers tasked with event exploration for each

action that is selected for each state. Each element of the set represents a particular action selected

for the corresponding state and is thereby computed by:

Rtu =
∑
h∈atu

(Dt,h ∨Dt,h) (9)

where Dt,h represents the road damage discovered by the cars exploring events at sensing cell SCth

and atu represents the set of all the sensing cells in the selected action. Initially, Dt,h = Dt−1,h for all

the cells at the beginning of every sensing cycle. Once an event exploration car discovers damage in

a sensing cycle, Dt,h = 1. In a future sensing cycle if the damage appears to be repaired, Dt,h = 0.

Intuitively, if Rl = 0, the route is assumed to be fully accessible. Otherwise if Rl > 0, the route

may contain damage and should be avoided. We adjust the penalty differential σt discussed earlier

based on the normalized difference between the sums of the penalties across successive response

cycle:

σt = σt−1 −
∑
Rt −

∑
Rt−1∑

Rt +
∑
Rt−1

(10)
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The rationale is that if the total magnitude of discovered damage increases in the current response

cycle, we lower the penalty differential to “penalize” the action taken earlier.

We formally define our MDP model below. We consider an MDP with a state set Wt mapped

to the source-destination pairs, an action set Atk mapped to the choice of routes, and a penalty set

Rt mapped to the aggregate road damages discovered by all the car drivers for the selected actions.

The goal of the MDP is to derive an optimal collection of actions that minimizes the encounter of

road damages by the cars assigned for event exploration. Formally the objective is:

argmin
At

k

T∑
t=1

Rt, 1 ≤ t ≤ T (11)

The optimal action set for a corresponding state can be obtained by incorporating the contextual

epsilon-greedy strategy [40]. The first step is to initiate a learning phase (i.e., exploration), for a

certain duration of response cycles to determine the optimal actions Atk for each state. During

the learning phase, the state is determined based on the source-destination pairs of each car and

the action sets are generated by enumerating through all the possible routes. The scout cars

are dispatched by the RDD module which continuously feeds the damage information to the VD

module. An action Atk ∈ Atk is selected for each corresponding state W t
k that has not been previously

explored. Cars are then dispatched for exploration using the selected action based on the sampling

probability and the penalty Rt is observed. If the observed penalty changes, the penalty differential

σt is adjusted. Once the learning phase is complete, the probability of the actions in the action set

Atk is updated. Subsequent response cycles use the present information to make route selections

(i.e., exploitation).

4.4. Dynamic Incentive Control (DIC) Module

The Dynamic Incentive Control (DIC) module is incorporated to compliment the VD module

and mitigate the churn issue that may prevail in the system. We utilize a top-down optimal control

to adjust the rewards for the events based on the attribute of the cars Ut,n for selecting the tasks

at every response cycle. Intuitively, if a lot of tasks are being dropped, we may want to increase

the rewards for the particular tasks to encourage more drivers to pick up those tasks.
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4.4.1. Top-Down Optimal PID Controller

The reward for each task is assigned based on an initial reward r0 and a reward adjustment

function qt,n as expressed below:

rt,n = r0 + qt,n (12)

A näıve solution to decide the value of qt,n would be to set it proportional to the number

of dropped tasks after each response cycle t. However, this approach may not be optimal as

it would infrequently set rewards and make the system unstable (i.e. the rewards may fluctu-

ate uncontrollably if too many tasks get dropped). To address this problem, we incorporate a

proportional-integral-derivative (PID) controller [41], a robust control loop feedback mechanism

used in industrial control systems as well as applications requiring continuously modulated con-

trol. The PID controller nicely maps to our problem of determining the value of qt,n. The process

variable in the PID controller is the aggregate reputation of the cars that pick a particular task

which is formally defined as:

DEFINITION 15. Aggregate Reputation et,n for task Vt,n: The sum of the reputations of

all the cars that selected task Vt,n.

et,n =
∑
p∈Ut,n

πt,p (13)

Intuitively, higher the value of et,n, greater the chance for the cars to make successful attempts to

complete the task.

We consider that the framework has a settable parameter called base reputation score e′, which

defines the worst-case aggregate reputation for all the tasks acceptable by the system at any

response cycle. If the aggregate reputation falls below this threshold for any task, the system aims

to recover the performance by increasing the rewards assigned for the specific task. On the other

hand, if the score is above the threshold, the system makes a decision to lower the reward for the

particular task, and the surplus could be allocated elsewhere with other tasks. We map the base

reputation score e′ as the set point for the PID controller and the aggregate reputation score et,n

as the measured process variable. Thus, the error for the PID controller is given by:

et,n = e′ − et,n (14)

The system constantly monitors the number of tasks that are dropped by the cars (i.e. churn).

Every time the system observes that the number of dropped tasks exceed a certain threshold ψ,
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it reruns the algorithm for computing the rewards for the tasks and the utilities for the cars.

Otherwise, the algorithm is run periodically at every response cycle for allocating the tasks and to

cater to updated event reports.

5. Evaluation

In this section, we evaluate the performance of DASC through a real-world post-disaster case

study involving road damage scenarios. The evaluation results exhibit significant performance

gains of DASC over the compared baselines in terms of both detection effectiveness and deadline

hit rate in verifying the disaster events, while considering the road damage.

5.1. Experimental Setup

We acknowledge the fact that a deployment of vehicles in an actual disaster scenario is either

impossible or immensely difficult because a real-world disaster is hard to predict and cannot be

reproduced. As such, we carry out a real-world data driven emulation to evaluate our system. The

evaluation platform consists of three key components: 1) the CARLA simulator; 2) a real-world

mapping interface; and 3) the DASC system. CARLA is a widely used car simulator that can

closely imitate physical models of cars travelling in the physical world along with congestion and

traffic signals at intersections [42]. Figure 5 shows a snapshot of our emulation environment.

The real-world mapping interface integrates the CARLA simulator with OpenStreetMaps [43]

to replicate the real-world map. This enables CARLA to simulate dispatching cars to real-world

locations (i.e. addresses reported in the social media). The DASC scheme generates the tasks

and rewards for dispatching the cars along with their corresponding routes. The DASC scheme

connects with the CARLA simulator using a Python API [42] to send commands for simulating the

actual car route in real-world. Figure 5 illustrates a snapshot of the CARLA simulator interfaced

with the DASC framework.

5.2. Parameter Tuning

In order to obtain the optimized values of the parameters λ1, λ2, λ3, Kp, Ki, Kd, ψ, and κt, we

carry out a parameter tuning process in the first 1/4th of the response cycles. We select the F1 score

as the optimization objective as it can give a better measure of the incorrectly classified cases with

imbalanced distributions [44] such as in our case with social media data. Since the input parameters
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cannot be directly modeled on the F1 score (i.e., using a mathematical equation), we incorporate

a non-linear optimization [45] approach for obtaining the values of the parameters. We first set

the initial values of all the parameters to a maximum value of 1. At each response cycle during

the training, cars are dispatched using the BGT task allocation scheme. We locate the parameter

values that yield the maximum F1 score by using the Nelder-Mead method [46]. Specifically, we

split the training phase into 3 equal segments and after a series of car observations are collected

for every segment, the values of the parameters that increases the F1 score are retained. We then

applying a non-linear optimization on the values of the parameters and assign the final values of

the parameters. We determined the values of the parameters as: λ1 = 0.82, λ2 = 0.58, λ3 = 0.49,

Kp = 0.11, Ki = 0.67, Kd = 0.38, ψ = 0.62, and κt = 0.65. For the the initial accessibility index

X0,h, our objective is to determine a value that minimizes the difference between the accessibility

index Xt,h and the actual road damage Dt,h. Therefore, instead of the complex Nelder-Mead

method, we use a linear time optimization [47] approach to determine X0,h, which is found to

operate optimally approximately at the mid-range of Xt,h (i.e. X0,h = 0.5). After obtaining all

the parameters, the system is expected to work in its optimal state by determining the best task

choices and rewards.

5.3. Evaluation Dataset

Figure 5: CARLA interfaced with DASC. The

top pane displays the third-person view of a

single vehicle while the bottom pane shows the

view of multiple vehicles.

We collected a real-world dataset using Twitter

data feeds posted immediately after the 2017 Hurri-

cane Harvey, a hurricane marked as the costliest trop-

ical cyclone, causing $125 billion in damage. The hur-

ricane originated from destructive rainfall-triggered

flood in the Houston metropolitan area and Southeast

Texas in August 2017 2. To obtain the road damage

information of the disaster, we analyzed the 2017 Hur-

ricane Harvey damage report map published by FEMA

and deduced the roads affected by damage during the

disaster [48]. We then replicated the road damage in the CARLA simulator.

We obtained the Twitter data using the Apollo data collection tool 3. For the evaluation

2https://www.ahcusa.org/harvey-8252017.html
3http://apollo.cse.nd.edu/index.html
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purpose, we only consider the data related to critical resources (i.e., gas station and pharmacy

availability). We separately gathered the ground truth labels of the reported events from historical

facts published by credible sources (i.e., disaster reports) such as [49, 50]. The statistics of the

dataset are summarized in Table 2.

Table 2: Data Statistics

Start Date August 27, 2017

Time Duration 3 days

Location Houston, Texas, USA

No. of tweets 1,691

No. of tweet users 1,446

No. of event locations 106

The social sensing component for our framework as

well as the baselines use the Robust Truth Discovery

(RTD) [32] algorithm for deciding whether an event

occurs or not. We replay the obtained data trace to

emulate the disaster event. We sort all the reported

events based on their timestamps and distribute them

across different response cycles. For our particular experiment, we selected the duration of each

response cycle to be 100 minutes based on the frequency of the events observed in our dataset.

There are a total of 36 response cycles. Within each response cycle, a set of data preprocessing steps

are performed. In particular, we extract the relevant tweets by first running keyword searches (e.g.,

gas, fuel, oil, medicine, healthcare, and pharmacy) and discard the irrelevant ones. We then cluster

similar tweets into the same groups using the state-of-the-art online tweet clustering tool [32] and

obtain claims that report events at particular locations. Also, we only keep the tweets that have

valid geo-location tags for our experiments.

5.4. Compared Baselines

We compare the performance of DASC with a few representative baselines. We first acknowledge

the fact that we have not come across any solution that guides vehicles for sensing using social media

signals and simultaneously incorporates the dynamics of the social media (i.e., evolving number

of events and social media users), the physical world (i.e., the road damage and the deadline of

the events), and the rationale behavior of the car drivers (i.e., churn). Therefore, we included

five established VSN-based event discovery schemes from current literature. Since the schemes do

not incorporate any social sensing component, we also included our previous SocialCar framework

as a baseline as well a simplified version of the DASC framework called “DASC w/o MDP” to

demonstrate the impact of the social signals.

• Random Allocation: tasks are allotted randomly to cars on the roads. Once cars come
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across an event, they record and report it. Commercial crowdsourcing platforms like Waze

[20] use this technique.

• Fixed Route: a fixed number of dedicated cars traverse along designated patrol routes. A

patrol route is designed by covering the maximum number of sensing cells using a Hamiltonian

Cycle-based approach [51].

• Shortest Distance Based: cars that are in closer proximity to event locations are prior-

itized first with the assumption that they have higher chances of reaching the destinations

faster [52].

• Reputation Based: tasks with the shortest deadlines are assigned to cars with the highest

reputation first [53].

• Incentive Based: tasks with the shortest deadline get the highest rewards in the task

allocation process [26].

• SocialCar: a simplified version of the DASC scheme that assigns tasks to cars solely based

on the social media reports and the reputation of cars, and adjusts the incentives based on

our previous work [17]. The SocialCar scheme does not consider the road damage along any

route.

• DASC w/o MDP: a simplified version of the DASC scheme without the MDP compo-

nent. Once road damage is discovered, the cars are näıvely assigned the routes with highest

accessibility indices.

5.5. Evaluation Results

We conduct four different sets of experiments to extensively assess the performance of all the

schemes using the real-world dataset. We considered three types of drivers in our evaluation: i)

drivers who accept tasks and attempt to successfully complete the tasks; ii) drivers who accept

tasks and randomly abort midway; iii) drivers who are unwilling to participate in the sensing

application. We maintain an equal proportion of cars across all the three categories in the first three

set of experiments to observe the impact of other variables. However, in the fourth experiment,

we analyze the effect of varying the ratios of the three types of drivers on the performance of all

schemes.
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5.5.1. Detection Effectiveness

In the first set of experiments, we assess the performance of all schemes across the entire

dataset. The detection effectiveness is evaluated using common metrics for binary classification:

Accuracy, Precision, Recall, and F1-Score. We utilized a set of 90 cars in our system. The results

are presented in Table 3. We discover that DASC outperforms the other schemes in identifying the

truthful events (i.e., gas station and pharmacy availability) in the aftermath of Hurricane Harvey.

In terms of classification accuracy, precision, recall and F1 Score, the performance gain achieved

by DASC compared to the best-performing baseline (i.e., the SocialCar scheme) are 4.4%, 13.4%,

1% and 9.5%, respectively. Such increased performance highlights the importance of incorporating

the top-down incentive control in the task allocation process. Since the rewards are adjusted

dynamically based on the reputation of the cars that select the events, the system maximizes the

possibility of completing the tasks. In addition, we observe that DASC outperforms other baselines

by a fairly large margin. We accredit this performance gain to the design of DASC that explicitly

considers the road damages along the cars’ routes and seamlessly integrates the social sensing and

vehicular sensing system.

Table 3: Overall Performance with Hurricane Harvey Dataset

Algorithm Accuracy Precision Recall F1-Score

Random Allocation 0.111 0.131 0.323 0.186

Fixed Route 0.239 0.267 0.517 0.352

Shortest Distance 0.375 0.483 0.581 0.528

Reputation Based 0.343 0.423 0.582 0.490

Incentive Based 0.338 0.445 0.568 0.498

SocialCar 0.613 0.527 0.818 0.641

DASC w/o MDP 0.430 0.502 0.668 0.573

DASC 0.657 0.661 0.828 0.736

We further split the dataset across two different categories: i) gas station availability and ii)

pharmacy availability in the Houston region for a more fine-grained assessment of all compared

schemes. Table 4 shows the results. We observe that DASC continues to outperform all baselines

in across the split dataset.
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Table 4: Performance with Hurricane Harvey Dataset Across Different Categories

Gas Station Availability Pharmacy Availability

Algorithm Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Random Allocation 0.126 0.148 0.334 0.205 0.093 0.110 0.303 0.162

Fixed Route 0.244 0.272 0.519 0.357 0.234 0.261 0.513 0.346

Shortest Distance 0.402 0.507 0.598 0.549 0.352 0.463 0.569 0.511

Reputation Based 0.362 0.437 0.592 0.503 0.327 0.413 0.576 0.481

Incentive Based 0.355 0.476 0.566 0.517 0.315 0.407 0.561 0.472

SocialCar 0.625 0.540 0.839 0.657 0.606 0.519 0.803 0.630

DASC w/o MDP 0.435 0.499 0.685 0.577 0.415 0.494 0.635 0.555

DASC 0.678 0.689 0.839 0.757 0.628 0.626 0.808 0.706

5.5.2. Tuning the Number of Cars

In the second set of experiments, we investigate the effect of the number of cars on the per-

formance of all the tested schemes. For this assessment, we varied the number of cars across

all the schemes within the City of Pasadena in the Houston Metropolitan area from our dataset.

Figures 6, 7, 8 and 9 show the results for accuracy, precision, recall, and F1 scores, respectively

for all the compared schemes. We start with 10 cars and scale up gradually in increments of 10

cars for each round. We observe that the benefit obtained by increasing the number of cars starts

to slowly plateau when the total number of cars reaches 100. We investigated this phenomenon

and found two possible causes for this. Firstly, our dataset encompasses the relatively small city

of Pasadena in Houston, Texas which is about 44.52 sq. mi. in size [54]. Secondly, due to the

hurricane, most road networks were rendered unusable leaving only a limited number of available

routes for the cars. Given the small region and constrained road networks, increasing the number

of cars for the sensing would not necessarily increase the performance. We observe that despite

this, DASC manages to outperform all the baselines when changing the number of cars. This is

because when churn issue occurs (i.e., cars drop tasks), the proposed reputation-based incentive

adjustment, jointly with the deadline-aware bottom-up task allocation, allows the DASC to ensure

the maximum number of events been covered in time. This eventually leads to better performance
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of DASC compared to other baseline schemes when the total number of cars are varied across the

region. In addition to this, the damage-aware route allocation in DASC avoids routes that may

have higher chances of road damage, thereby maintaining consistent performance.

Figure 6: Accuracy vs. Number of Cars

Figure 7: Precision vs. Number of Cars

Figure 8: Recall vs. Number of Cars

5.5.3. Deadline Hit Rate

In the third set of experiments, we assess the deadline hit rate of all the compared schemes

while varying the number of cars. Figure 10 shows the results. We observe that DASC achieves

the highest deadline hit rate when the number of cars changes. Compared to the best-performing

28



Figure 9: F1 Score vs. Number of Cars

baseline, the SocialCar scheme, DASC achieves a 5.87% better deadline hit rate with 90 cars. This

is accredited to the combined effort of the bottom-up game-theoretic task allocation, the top-down

incentive control and the damage-aware route selection of DASC system. At every response cycle,

tasks having tighter deadlines are prioritized.

Figure 10: Deadline Hit Rate vs. Number of Cars

5.5.4. Handling of Churn Issue

In the fourth set of experiments, we study the churn issue of the cars in the system and evaluate

the robustness of the schemes against different behavior of the drivers. In our study, we found that

it is very difficult to apply a concrete mathematical model to explicitly model the behavior of

the rational car drivers. The actions of the car drivers are often unpredictable in the real-world

applications [55]. In addition to that, during our findings we did not come across any existing

publicly available dataset that summarizes the behavior of the drivers who participate in roadside

sensing. As such, it is impossible to predetermine what action each driver would take [56]. Thus,

we design a set of simulation experiments to study the effect of driver behavior on the performance

of DASC where we separately vary the proportion of car driver: i) who attempt to successfully
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complete the given tasks, ii) who abort tasks midway during exploration, and iii) who are unwilling

to participate in the first place.

For each experiment, at any given time we vary the proportion of cars across one category

and equally distribute the rest of the cars across the other two categories. Figures 11-13 show the

deadline hit rate while varying the proportions of cars drivers that i) successfully complete tasks,

ii) randomly drop tasks and ii) are unwilling to participate, respectively. Likewise, Figures 14-

16 illustrates the corresponding accuracy, Figures 17-19 illustrates the corresponding precision,

Figures 20-22 illustrates the corresponding recall, and Figures 23-25 illustrates the corresponding

F1 scores while varying the three types of drivers. We note that DASC achieves the highest

deadline hit rate, accuracy, precision, recall, and F1 scores when the combination of cars across

different categories changes. This improvement is primarily attributed to the dynamic incentive

control (DIC) module that helps to adjust the rewards considering the aggregate reputation of the

cars. If the aggregate reputation for a task falls, the module increases the reward which encourages

the cars to select the task. This implicitly ensures the selection of the maximum number of tasks

within their given deadlines. The performance gain is also imputed to the road damage discovery

(RDD) module that sends out the scout cars for locating the road damage, which in turn helps to

make better routing decisions by the vehicle dispatch (VD) module.

Figure 11: Deadline Hit Rate vs.

Proportion of car drivers that suc-

cessfully complete tasks

Figure 12: Deadline Hit Rate vs.

Proportion of car drivers that ran-

domly drop tasks

Figure 13: Deadline Hit Rate vs.

Proportion of car drivers that are

unwilling to participate

6. Discussion

DASC is designed to only operate in post-disaster scenarios but not during the disaster itself

and in safe environments where at least some road networks are operational allowing cars to be able
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Figure 14: Accuracy vs. Propor-

tion of car drivers that successfully

complete tasks

Figure 15: Accuracy vs. Propor-

tion of car drivers that randomly

drop tasks

Figure 16: Accuracy vs. Propor-

tion of car drivers that are unwill-

ing to participate

Figure 17: Precision vs. Propor-

tion of car drivers that successfully

complete tasks

Figure 18: Precision vs. Propor-

tion of car drivers that randomly

drop tasks

Figure 19: Precision vs. Propor-

tion of car drivers that are unwill-

ing to participate

Figure 20: Recall vs. Proportion of

car drivers that successfully com-

plete tasks

Figure 21: Recall vs. Proportion

of car drivers that randomly drop

tasks

Figure 22: Recall vs. Proportion

of car drivers that are unwilling to

participate

to traverse safely along them. The first priority of DASC is to ensure the safety of the participating

car drivers and thus DASC is not intended to operate in life-threatening environments where the

lives of car drivers are at risk (e.g., during a nuclear explosion).

The DASC framework is also designed to be a general purpose sensing response framework that

can not only operate in the aftermath disaster scenarios but could be seamlessly extended to other

31



Figure 23: F1 Score vs. Propor-

tion of car drivers that successfully

complete tasks

Figure 24: F1 Score vs. Proportion

of car drivers that randomly drop

tasks

Figure 25: F1 Score vs. Proportion

of car drivers that are unwilling to

participate

sensing applications. For example, the DASC can applied to smart city application like as urban

noise mapping, detecting air pollution, free parking spot locating, traffic congestion detection.

Depending on the application scenario, the search criteria for the Tweets can be modified. For

example, in a urban noise mapping application, the SSD module can adapted to look for events

indicating “noisy streets” instead of “pharmacy availability”. Furthermore, the DIC module’s

sensitivity to the dropping of tasks can be adjusted by tuning the the PID constants. For example,

in a free parking spot locating application, the rewards adjustment can be made less sensitive.

Likewise, the Utility Function on the VD module can include additional factors for assigning the

tasks to the cars. For example, the speed of the cars can be incorporated in the Utility Function

in a traffic congestion detection application.

The flexibility of DASC allows it to be extended to incorporate information from multiple

sources beyond cars. Based on the application scenario, the cars can be complemented with other

information sources such as weather databases, official news agencies, field agents (i.e., rescuers,

fire fighters), crowdsourcing, etc. The DASC framework could be enhanced by incorporating the

additional sensing information into the Vehicle Dispatch (VD) Module. Specifically, the Utility

Function in the VD module can be modified accordingly to use the additional sensing data as a

task allocation factor to lower dependencies on the car. For example, if there is an additional input

signal from official news agencies, Equation 7 can be updated with a fourth factor indicating the

assertion of the news agency along with its weight (e.g., λ4). The the news agency can be given

greater credibility than the event veracity score from social media posts. Moreover, depending on

the scenario, the DASC framework could be able to conclude the actual truth of certain events

without dispatching cars, thereby saving resources which can be utilized elsewhere to cover other
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events.

We acknowledge that it is likely that the network connectivity could be lost during a disaster.

The basis for DASC’s successful operation is to have network connectivity between the car drivers

and the framework’s backend so that they may establish communication. Therefore, DASC is

intended to be only operated post-disaster scenarios and safe environments where some form of

network connectivity is present. It is reasonable to assume that after a disaster at least some degree

of cellular or Wi-Fi connectivity could be available depending on the type of the disaster [57].

The DASC framework can also be enhanced to handle the temporal loss of connectivity (i.e.,

intermittent) and sparse connectivity. For example, in applications where an intermittent network

loss may occur, a layered vehicular delay-tolerant network (DTN) can be implemented through

DTN gateways on proximal vehicles (i.e., nearby cars) to provide persistent storage for storing

sensing data [58]. Moreover, in applications involving spotty connectivity, a multi-hop wireless

mesh network could be established between the vehicles to strengthen areas with weaker signal

strength [59].

7. Conclusion

In this paper, we develop the DASC scheme for a road damage-aware social-media-driven car

sensing framework in reliable SCS applications. DASC addresses three intrinsic challenges in

integrating the social media with cars: i) utilizing unreliable social signals to drive cars to reported

event locations; ii) mitigating the adverse effect of the churn introduced by the rational car drivers;

and iii) handling the road-damages caused by disasters to optimally guide cars to destinations.

The results from a rigorous evaluation with a real-world disaster recovery case study reveal that

the DASC achieves remarkable performance gains over the state-of-the-art VSNs-based sensing

systems. We envision the outcomes of this paper to pave the road for a novel road damage-aware

social-media-driven car sensing system to expedite the recovery phases of unexpected calamities.
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