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Abstract

Data-consistent inversion is a recently developed measure-theoretic framework
for solving a stochastic inverse problem involving models of physical systems.
The goal is to construct a probability measure on model inputs (i.e., parameters
of interest) whose associated push-forward measure matches (i.e., is consis-
tent with) a probability measure on the observable outputs of the model (i.e.,
quantities of interest). Previous implementations required the map from param-
eters of interest to quantities of interest to be deterministic. This work gener-
alizes this framework for maps that are stochastic, i.e., contain uncertainties
and variation not explainable by variations in uncertain parameters of interest.
Generalizations of previous theorems of existence, uniqueness, and stability of
the data-consistent solution are provided while new theoretical results address
the stability of marginals on parameters of interest. A notable aspect of the
algorithmic generalization is the ability to query the solution to generate inde-
pendent identically distributed samples of the parameters of interest without
requiring knowledge of the so-called stochastic parameters. This work therefore
extends the applicability of the data-consistent inversion framework to a much
wider class of problems. This includes those based on purely experimental and
field data where only a subset of conditions are either controllable or can be
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documented between experiments while the underlying physics, measurement
errors, and any additional covariates are either uncertain or not accounted for by
the researcher. Numerical examples demonstrate application of this approach to
systems with stochastic sources of uncertainties embedded within the modeling
of a system and a numerical diagnostic is summarized that is useful for deter-
mining if a key assumption is verified among competing choices of stochastic
maps.

Keywords: uncertainty quantification, inverse problem, push-forward measure,
pullback measure, data consistent

(Some figures may appear in colour only in the online journal)

1. Introduction

As computational models are increasingly used to aid engineering design [12, 22], shape public
policy [7], and predict the future behavior of physical and biological systems [1, 20], quanti-
fying the uncertainties in model inputs (i.e., parameters of interest) that influence solution
characteristics is becoming more critical. Such quantification of uncertainties may occur by
formulating and solving an inverse problem using data associated with observable model out-
puts [i.e., quantities of interest (Qol)] to infer likely model inputs. Uncertainties in observable
data often necessitate the formulation and solution of a stochastic inverse problem where the
solution on the space of parameters takes the form of a probability measure. With a probabil-
ity measure, or its associated probability density function (PDF), we may assess the relative
likelihoods of parameters, estimate the probability of important events (such as those associated
with catastrophic system failure), or determine the robustness of system designs.

Uncertainties in observable data for some Qol may be due to a variety of epistemic and
aleatoric factors, i.e., lack of precise knowledge of the system or fundamentally random prop-
erties of causal factors. Of particular interest in this work is the quantification of aleatoric
factors due to variability in parameters of interest. Consider a manufacturing process for an
engineered system relying upon various materials and sub-components sourced from other
manufacturers. In raw materials, concentrations and locations of impurities can vary substan-
tially, which can be reduced through refinement but never eliminated. Moreover, the pro-
duction of various sub-components may only be produced to be within certain tolerances.
These are sources of aleatoric uncertainty that will impact parameters for a computational
model of the system. These subsequently impact both system performance and the Qol com-
puted from the model. Viewing the underlying uncertainty impacting system inputs as a random
process, the associated parameters of interest and Qol are random variables with uncertain
distributions that we wish to determine.

Bayesian methods [2, 8, 13, 17] are some of the most popular means of inferring probabilis-
tic descriptions of model parameters from Qol data. We first introduce some basic notation
prior to comparing the extension of the data-consistent approach—which is the focus of this
work—to Bayesian methods. First, we use ) to denote parameters of interest and £ to denote
stochastic parameters. We denote by Q()) (or simply Q) the Qol map defined only on the
space of parameters of interest and Q(\, §) (or simply Q) to denote the Qol map defined on
the joint space of parameters of interest and stochastic parameters. In other words, Q comes
from a deterministic (usually physics-based) computational model where a single choice of A
is mapped to a single Qol whereas @ maps A to a new random variable whose output depends
upon the £ parameter.
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In a typical Bayesian framework, one of the initial assumptions is that data, denoted by
d, are obtained from a map @ defined by Q + &, where ¢ is a random variable following a
given distribution, usually assumed to be Gaussian. The random variable £ is used to describe
the uncertainty associated with measurement errors that can theoretically be reduced using
improved instrumentation to collect more precise data. The Bayesian solution for the parame-
ters of interest \, known as a posterior, is given by a conditional density, w(A|d) o< w(A)m(d|N),
where m(A|d) is the posterior, w()) is a prior density on parameters of interest, and w(d|\) is the
data-likelihood function whose form is often determined by products of the noise distribution
evaluated at residuals between Q and d. The posterior is used to assess the relative likeli-
hoods that a fixed estimate for the parameters of interest could have produced all of the data d.
Subsequently, it is common to use one of two point-estimators, the maximum a posteriori
(MAP) or the conditional mean (CM) estimate to describe the Bayes estimator (i.e., the solu-
tion) of the inverse problem as a single fixed estimate of the parameters of interest [4]. This
use of a single point estimate of the parameters of interest as a solution to the inverse problem
is actually quite reasonable within this framework since as more data are collected (i.e., as
the dimension of the data vector given by d grows), the posterior will often become concen-
trated (or ‘spiked’) around a single parameter of interest, which is a phenomenon explained
by the Bernstein—von Mises theorem [31]. In other words, this typical formulation treats the
uncertainty in parameters of interest as epistemic rather than aleatoric.

When parameters in the model are instead viewed as sources of aleatoric uncertainty (i.e.,
they possess some natural, irreducible variability described by a distribution as in this work),
then hierarchical Bayesian methods provide an alternative to the regular Bayesian framework
outlined above [32]. Hierarchical Bayesian methods commonly specify prior distributions
from a parametric family of distributions, where so-called hyper-parameters are introduced
as random variables into the inference process to describe the uncertainty in the parametric
family of distributions used for the prior. These approaches and the software packages that
implement them (e.g., pyMC3 [23]) consequently require an increase in the number of sam-
ples that must be computed to obtain accurate inferences because samples must be drawn from
a ‘hierarchy’ of distributions. Other non-parametric, hierarchical Bayesian methods for mod-
eling aleatoric uncertainty exist (namely Dirichlet processes) but are typically more costly than
regular parametric Bayesian methods.

An alternative approach for constructing non-parametric estimates of densities on param-
eters of interest, referred to in this work as data-consistent inversion, was recently developed
in [5]. In this data-consistent approach, any prior knowledge of aleatoric uncertainty on the
parameters of interest is used to construct an initial density on these parameters. This initial
density serves a different purpose than the prior used in Bayesian or hierarchical Bayesian
approaches, so we do not refer to it as a prior density in this work to avoid confusion. Sub-
sequently, assuming the variation in Qol data is due to this aleatoric uncertainty, the map Q
is used to formulate a prediction of the observed data distribution using the push-forward of
the initial density. Then, the ratio between the observed and predicted densities, evaluated
on the map Q, serves to update the initial density only in directions informed by the data.
This updated density on the parameters of interest has the property that its associated push-
forward through the map Q exactly reconstructs the observed density. In other words, the
solution is a pullback of the observed density through Q that is regularized by the initial den-
sity only in directions in the parameter space to which Q is not sensitive. In this work, we
generalize the theoretical and algorithmic approaches for sampling the parameters of interest
from this data-consistent solution when the map is given by @ Moreover, the algorithm we
provide generates samples for any of the specified parameters of interest associated with the
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Table 1. Summary of notation and terminology for data-consistent inversion with a
deterministic map.

Notation Description

(A, By) Measurable space of parameters of interest.

(D, Bp) Measurable space of observable data.

LA WD Dominating measure on spaces A and D, respectively.

(0] Quantity of interest (Qol) map between (A, 3, ) and (D, Bp).

Pinit> Tinit Initial probability measure and associated density assumed on A.

Pobs» Tobs Probability measure and associated density based on observations in D.

Ppredict> Tpredict Push-forward probability measure and associated density of Pj,; propagated
through Q.

r(\) Ratio of mops(Q(N)) t0 Tpredict (Q(N)) used to update the initial density 7ip;;.

Pupdates Tupdate Updated probability measure and associated density for (A, 5, ) using

data-consistent inversion.

data-consistent solution without requiring an explicit representation of @ or knowledge of any
of the stochastic parameters &.

The rest of this paper is outlined as follows. In section 2, we first review the basic the-
ory of the data-consistent framework. In section 3, we discuss the extension of the data-
consistent framework to uncertain stochastic maps, providing a rigorous theoretical framework
for extending data-consistent inversion including theory of existence, uniqueness, and stability
of solutions. We then provide an algorithm for sampling directly from data-consistent marginal
distributions in section 4 that does not require knowledge of either the stochastic compo-
nents of the map or their distributions. Finally, in section 5, we demonstrate this extended
framework using numeric examples which illustrate the flexibility of the data-consistent
approach in handling stochastic uncertainties within model maps. Concluding remarks follow
in section 6.

2. Overview of data-consistent inversion

2.1. Notation, terminology and assumptions

In this section, we summarize the data-consistent framework for deterministic maps. For ease
of reference, the notation and terminology used in this summary is consolidated in table 1.

Let A denote the space of model inputs characterizing physical properties (e.g., a diffu-
sion coefficient or initial/boundary data), which we refer to as either the physical parameters
or parameters of interest. In this work, we assume A C R” and let B, denote the Borel o-
algebra on R restricted to A so that (A, B,) defines a measurable space of physical parameters.
Let O : A — D denote the quantity of interest (Qol) map from physical parameters to the space
of observable model output data denoted by D C RP, which we refer to as the data space.
Denote by Bp the Borel o-algebra on RP restricted to D so that (D, Bp) defines a measurable
data space. We assume that Q is a measurable piecewise-smooth map from (A, By ) to (D, Bp).
This implies that the contour o-algebra, defined by

Cr={0'A) : A€ Bp},

is a sub-o-algebra of 5. We assume that some initial guess of uncertainty on (A, By) is given
in the form of a probability measure denoted by Pipi. Let Pyreqicc denote the corresponding
push-forward measure on (D, Bp) defined by
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]P)predict(A) = IEJJiliit(Q71(14))v VA € Bp.

Since Ppregict is a solution to a forward uncertainty quantification (UQ) problem that may occur
before any data are collected on D, we refer to Pyredict as the predicted probability measure. We
assume that once observable model output data are collected and analyzed that uncertainty in
these data are represented in the form of a probability measure Py, on (D, Bp).

If the probability measures are absolutely continuous with respect to dominating measures,
then probability density functions (i.e., Radon—Nikodym derivatives, which we sometimes
refer to simply as densities or PDFs) associated with each probability measure can be substi-
tuted in the analysis. We denote such dominating measures on the parameter and data spaces
by pa and pp, respectively. In this work, we assume that pp and pp are given by the P- and
D-dimensional Lebesgue measures, respectively. We now formalize the definition of the type
of inverse problem considered in this work and what is meant by consistency of the solution
we seek.

Definition 1 (inverse problem and consistent measure). Assume we are given both

e an initial probability measure Py, on (A, B, ) that is absolutely continuous with respect to
1 and admits a density i, and

e aprobability measure Pg,s on (D, Bp) that is absolutely continuous with respect to 1p and
admits a density 7ops.

The inverse problem is to update the initial probability measure in such a way that the
updated measure, denoted by Pypgace, admits a density mypqae that is consistent in the sense that

Pupdae(Q'(A)) = /

Tupdue it = / Tons diip = Pons(A), VA € Bo. (1)
o1 A

We refer to Pypgae as the solution to the inverse problem.

2.2. Existence and uniqueness of solutions

The following assumption on the push-forward of the initial density, 7prdict, guarantees the
existence and uniqueness of such an updated measure. It is also practically necessary for imple-
menting a simple rejection sampling algorithm to draw samples from the updated measure, as
discussed below.

Assumption 1 (predictability assumption). There exists C > 0 such that mgs(q) <
CTpredici(g) forae. g € D.

We refer to this assumption as the predictability assumption since it implies that any out-
put event with non-zero observed probability has a non-zero predicted probability. While the
initial density serves a different purpose than the prior used in a Bayesian setting, we may
nonetheless draw an analogy to the convention in Bayesian methods of choosing a prior to be
as uninformative as possible.

In [5], a disintegration theorem [10] is used to prove the following theorem where i 4
denotes the disintegration of the dominating measure, ;15. Conceptually, it is convenient to
think of this theorem as a nonlinear version of Fubini’s theorem where the disintegrated mea-
sure, [i 4, 1S analogous to using lower-dimensional Lebesgue measures in the iterated portions
of the integral.

Theorem 2 (existence and uniqueness [5]). The probability measure Py,qae 0on (A, Byp)
defined by
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ﬂ-obs(Q(A))
Pupdare(4) = init(N) ————"—dppr (V)] d , VA 2
pioet /D</Ang—l<q>ﬁ N a0 44 )> Ho(@), VA € Ba @)

is a consistent solution to the inverse problem in the sense of (1) and is uniquely determined
for a given initial probability measure Py,;; on (A, By).

The probability density of the consistent solution is given by

Tobs(Q(N))
7Tpredict(Q(A)) ’

Since we assume Tiyic and mops are given, it is evident that the updated density (3) is immediately
obtained once the predicted density, mpredict, 1S constructed. We usually rewrite the updated
density in the form,

7Tupdate()\) = Tinit(N) A EA. (3)

Tobs(Q(N))
7'f'predict(Q(>\)) '

where the ratio r()) is interpreted as providing the necessary re-weighting (i.e., update) to the
initial density to produce the desired updated density. Below, we provide a few remarks to give
both insight and intuition into the structure of this updated measure and density defining the
solution to the inverse problem.

7Tupdate()\) = Tni(M)r(A),  with () = “4)

Remark 2.1. Pyygac is @ pullback measure of Py, and Py is the push-forward measure of
]P)update'

Remark 2.2. The predictability assumption implies that rejection sampling can be applied
to a set of independent identically distributed (i.i.d.) samples from 7y, to produce a set of i.i.d.
samples from 7ypgaee. Specifically, in [5], evaluation of 7(\) on an i.i.d. set of samples from iy
is used to formulate the rejection ratio for each sample in the set. While we omit the details
here, a generalization of this approach for stochastic maps is summarized in algorithm 1 in
section 4.2.

Remark 2.3. The data-consistent updated density is a fundamentally different object than
the typical Bayesian posterior. Whereas the Bayesian posterior weights the prior distribution
by the ratio of a data likelihood function to a constant, the updated density weights the initial
density by the ratio of the observed density to the predicted density (i.e., #(\)). The impact of
r(A) is to fundamentally update the structure of the initial density only in certain local direc-
tions in parameter space. Specifically, #(\) is a fixed constant when restricting A to the same
(generalized) contour—defined by a singleton in the sub-o-algebra Cy—so that Q()) is a fixed
constant. Consequently, evaluation of 7ypqae at points along the same contour are given by
evaluation of 7;,;; re-scaled by the same constant, but this constant will likely change between
contours. Even supposing that the likelihood function and the observed density are taken to be
the same function, the data consistent and Bayesian approaches produce very different solu-
tions due to the differences in re-weighting the prior/initial density, as demonstrated by example
7.2 in [5].

3. A data-consistent inversion framework for stochastic maps

In some scenarios, the Qol map from physical parameter space to data space is more appropri-
ately modeled as a stochastic process to account for processes impacting the data that are not
accounted for in (or perhaps are unexplainable by) the physics-based computational model. In

6
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Table 2. Summary of additional notation and terminology for extending the
data-consistent framework to stochastic maps.

Notation Description

(2,B=) Measurable space of stochastic parameters.

Pstochs Tstoch Probability measure and associated density for (Z, Bz).

(A x E,Bxy x Bz)  Joint measurable space of parameters of interest and stochastic parameters.

@ A stochastic Qol map from A to D viewed as a deterministic QoI map from
the joint space A x E to the data space D.

@inita Tinit Initial probability measure and associated density assumed on joint space A x Z.

@pmdicl, Tpredict Push-forward probability measure and associated density of @mit propagated
through @

(A, 6) Ratio of wobs(@(/\, &) to %predict(@(/\, £)) used to update the initial density iy

@updme, T update Updated probability measure and associated density for (A x =, By x Bz)
using data-consistent inversion.

@updme, As %updme, A Updated marginal probability measure and associated density for (A, By)

using generalization of data-consistent inversion.

these cases, we say that the Qol map is stochastic, and in this section we extend and interpret
the data-consistent inverse methodology for stochastic maps. We prove several stability results
with a particular emphasis on the (marginal) updated PDF on the physical parameter space. A
numerical algorithm is also provided for constructing and sampling from this updated PDF on
physical parameters.

3.1. Extended framework and existence/uniqueness

3.1.1. Notation. The extension of the data-consistent framework to stochastic maps introduces
several new terms that we summarize in table 2 for ease of reference.

In the rest of this work, we assume that variability in the observable data used to construct
Pobs are due to additional sources of uncertainty beyond any assumed aleatoric uncertainty in
physical parameters. It is relatively common in the UQ literature, and especially in Bayesian
frameworks, to consider additional sources of uncertainty in observable data as attributed to
measurement errors represented by additive noise models on the Qol (e.g., see [9, 18, 19, 29]).
More recently, the idea of model inadequacy (e.g., due to missing or parameterized physics
at various spatial or temporal scales) has gained more attention as a way to describe addi-
tional uncertainty that is embedded within the model (e.g., see [21] and the references therein).
We additionally assume that it is possible to model these additional sources of uncertainty using
random vectors

fw): Q—==CRS

where (€2, F, P) defines the probability space on the random outcomes, denoted by w, belong-
ing to the sample space 2. We refer to these random variables as the stochastic parameters to
clearly distinguish £(w) € = and its impact on predicted data from that of a physical parameter
A € A. In other words, for a fixed A € A, the predicted datum associated with the output of the
Qol map is defined probabilistically over sets of possible output values.

Generally, we omit direct reference to the sample space and work directly in the output
space of the stochastic parameters. Therefore, we use the simpler notation § € = to refer to
a particular realization of the stochastic parameters that impacts a predicted Qol datum. Sub-
sequently, we let Bz denote the Borel o-algebra of RS restricted to =, and Py, denotes the

7
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Figure 1. The solid (blue) curve represents a deterministic observable map, Q(\). The
red dots indicate noisy observations representing a sample from the distributions plot-
ted vertically on the dotted lines. These distributions indicate the relative likelihoods of
obtaining an observable datum given a fixed value of input parameter to the deterministic
observable map.

push-forward probability measure of P on (Z, Bg), i.e.,
Pyoch(A) :=P(§'(A)), VA € B=.

We again assume that there exists a dominating measure pz on (Z, Bz) so that the PDF of
Pgoch can be defined by its Radon—Ijikodym derivative, which we denote by 7ych. Finally, we
replace the Qol map notation with Q(\, £) to denote the measurable map from the measurable
product space (A x =, By x Bz) to the observable data space (D, Bp).

3.1.2. Conceptual example part I: the maps and spaces. We use a simple example to provide
context for some of this notation. Suppose A = [0, 9] and an initial deterministic model defines
the Qol map,

ON) =A=DA=5A=T), )

illustrated by the blue curve in figure 1, but that observable data are polluted by measurement
errors, which we represent using an additive noise model so that

ONE =0\ + & €~ NO,02). (6)

Here, we take o = 7. Then, for any fixed ), @(/\, -)is a random variable following a N(Q()), 7%)
distribution as illustrated by the two distributions plotted along the vertical lines associated with
two different physical parameters. The red dots indicate observable data for the two different
physical parameters, which come from two particular realizations of the stochastic parameters.
Note that neither of these data points are on the curve defined by Q(\), yet both are in the range
defined by Q(A). Thus, it is at least possible to use the map Q to invert such observable data.
However, doing so would clearly result in inaccurate point estimates of the physical parameters
that led to such observations.

In figure 2, we plot Q(A, §) over the product space A x = (where, for illustrative purposes,
we truncate = by £40). The blue curve illustrates the mapping Q(X, 0) = Q(\). The red dots
are the same data points as before, and while they are not on the blue curve, they do exist on the
surface defined by Q over the product space. Thus, applying Q! to either of these data points
produces a contour in A x = that contains the true physical parameter value responsible for
producing the corresponding datum. In other words, the map Q is a completely deterministic
and measurable real-valued function whose pre-images exist as sets in the product space A x =.

8
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Figure 2. The blue curve Q(A) and sampled points from figure 1 are embedded onto a
deterministic surface defined over the input space of physical parameters for the model
and stochastic parameters defining the additive noise of model observables.

3.1.3. Existence and uniqueness. We let @init and Ty denote an initial (joint) probability
measure and its PDF, respectively, on (A x =, By x Bz). For simplicity in notation, we let
Tinit anci Tsoch denote the marginals of 7y on A and =, respectively.

Let Pyredict and Tpregic denote the push-forward of the initial probability measure and its
PDF, respectively, through the map Q We assume that the form of the predictability assumption
holds with T predict T€placing mpreqici. With this notation and updated predictability assumption,
the following result for stochastic maps is a direct extension of theorem 2 where /1 x= , now
denotes a disintegration of the dominating product measure pip = = i X p=. Otherwise, the
proof is identical to the proof of theorem 2.

Theorem 3 (existence and uniqueness for stochastic maps). The probability measure @u,,dm
on (A x =, By x Bz) defined by

o o S(Q()\ f))
]P)u ale(A) :/ / mzt( )ﬂ—b— X =, ()\: ) d ( )»
e D < Aﬂ/Q\fl(q)ﬂ- 6 7T-predzcl(Q()‘ 6)) fine=a 5 fod

(N

Jorall A € Bp % B— is a consistent solution to the inverse problem in the sense that P, is
a push-forward of ]P’u,,dan (or, equivalently, that ]P’u,,dan isa pullback of Pops) and is uniquely

determined for a given initial probability measure ]P’m,, on (A x 2, By x B=).

The PDF of this consistent solution is given by

obs A, —
7Tupdaxe()‘ 6) = 7Tm1t()\ 6)% (A, f) cAxz. (8)
predic

As before, this updated PDF is immediately obtained once the predicted density, Tpredict, 1S
constructed, and we again rewrite this updated PDF in the form

7Tobs(Q()‘ 6))

%update()‘» & = A\ OFA ), with F(A, §) = m
predict

(C))
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Figure 3. The four steps of sampling from the updated PDF. Left: samples from the
joint initial PDF. Right: samples from the updated density in the joint parameter space
obtained using rejection sampling.

We emphasize that this updated PDF is updating the initially assumed joint structure on the
product space. Subsequently, the ratio of the observed density to this predicted density, denoted
by 7, serves to update both the joint density as well as the marginal densities, Tgocn and mipi,
simultaneously.

3.14. Conceptual example part lI: the measures. We now return to the simple example from
section 3.1.2 (with Q and Q defined by (5) and (6)) to both illustrate these ideas and demonstrate
one approach to (1) sample from the updated PDF and (2) verify the samples come from a
consistent solution. Suppose that

Tinie ~ Beta(2,5).

Here, by Beta(2, 5), we denote a standard Beta(c, ) distribution that is transformed from [0, 1]
to A = [0,9] by a simple scaling of inputs. To approximate pregici, We first generate 1E + 4
independent identically distributed (i.i.d.) samples from T (see the left plot of figure 3),
evaluate Q on each of these samples (see the left plot figure 4), and then use a standard Gaus-
sian kernel density estimator (GKDE) to approximate %predict (shown as the blue dashed-dotted
curve in figure 5). Suppose we observe data that follows a normal distribution with an observed
mean and standard deviation of 8 and 4, respectively, so that s ~ N(8, 4%) (shown as the red
curvein figure 5). Clearly, the predictability assumption is satisfied, so we use a straightforward
rejection sampling algorithm on the initial 1E 4 4 samples to generate a set of approximately
3E + 3 i.i.d. samples from the updated density (shown in the plot of figure 3).

To verify that this set of accepted i.1.d. samples does in fact come from a consistent solution,
we propagate these back through the map Q (shown in the right plot of figure 4). We again use
a GKDE to estimate the density, and verify that it reconstructs the observed density (compare
the black dashed and red curves in figure 5). Numerical diagnostics also verify that the sample
average and standard deviation of the push-forward of these updated samples are within 2% of
the observed values of 8 and 4, respectively.

Following construction or sampling of the joint updated density on A x Z, it is straightfor-
ward to analyze and compare the marginals of this updated density even if the joint updated
density has complex structure. For example, we can simply use the individual components of
the i.i.d. samples of 7pdae Obtained by rejection sampling as above to construct i.i.d. sets of
samples for the marginals.

In the plots of initial and updated samples in A shown in figure 3, we also summarize on the
top and right of the axes the associated marginal densities on A and =, respectively. We may use
amixture of qualitative and quantitative analyses to interpret the specific updates to the initially
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Figure 4. The four steps of sampling from the updated PDF. The surface represents the
map Q. Left: evaluation of the initial samples using Q. Right: evaluation of the updated
samples using Q.
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Figure 5. Visualizing the predicted density obtained by evaluation of @ on the initial
samples (blue dash-dotted curve), the observed density (red solid curve), and the con-
sistency of the updated density is verified by comparing its push-forward (black dashed
curve) to the observed density.

assumed uncertainties in the physical and stochastic parameters. For example, qualitatively
it appears that the initial uni-modal beta distribution on A is updated into a bi-modal non-
parametric distribution whereas the updated distribution on = is still approximately normal
but with a shift in mean and variance. This is numerically verified by comparing the sample
mean and standard deviation of the initial set of {-samples (which are approximately O and
6.9, respectively) to the sample mean and standard deviation of the updated set of £-samples
(which are approximately —2.4 and 6).

3.2. Stability results: theory and interpretations

We now consider the stability of the updated joint probability measure with respect to pertur-
bations in the initial, observed, or predicted probability measures. We use the total-variation
(TV) metric, denoted by dtv, which metrizes a space of probability measures defined on a
common measurable space. This metric is sometimes computed by the L'-distance between
the Radon—Nikodym derivatives (i.e., PDFs) associated to the individual probability measures.
Specifically, if (€2, F, ut) denotes a measure space for which a family of probability measures,
denoted by P, are defined and absolutely continuous with respect to dominating measure i,

1



Inverse Problems 36 (2020) 085015 T Butler et a/

then the TV metric between P}, P, € P is given by

drv (P, 1Py) 2:/ | — ma| dp, (10)
Q

where 7, and m, denote the Radon—Nikodym derivatives of P; and PP,, respectively.

We assume that any perturbations in either the initial or observed measures still lead to
probability measures that are absolutely continuous with respect to the dominating measure
on the corresponding measure space, and that the predictability assumption is never violated.
With this assumption, we use the TV metric in the form given by (10) to state the stability
results. First, we provide a general definition of stability used in this work.

Definition 4 (stability). Let P, be a probability measure on (2, Fy, fto) and P3 be a prob-
ability measure on ({23, F3, 113) that depends upon IP,, (e.g., through a transformation or func-
tional dependency). Let I/E-’Z denote a perturbation to P, and I/Pi; the corresponding perturbation
to [P5. We say that [Py is stable with respect to perturbations in IP,, if for all € > O there exists
0 > 0 such that

drv(P,,P,) < 6 = dry(Ps, Ppy) < €. (11)

With this definition of stability, the following corollary extends several results originally
proven in [5] for deterministic maps.

Corollary 5.  The consistent solution Ppqq is stable with respect to perturbations in (i) P,
(”) ]P)obx; and (”l) 7?1)redicz-

Proof. The stability with respect to perturbations in Poys follows from theorem 4.1 and
corollary 4.3 in [5] after making straightforward changes in notation to account for the dis-
integration over the joint space A x = (details omitted here). The stability with respect to
perturbations in Pj,; and %predict follows from theorems 4.5 and 5.1, respectively, in [5] after
making similar changes in notation. 0

A practical interpretation of the stability results (i) and (ii) in corollary 5 is that small errors
in the specification of IEDiAnn or Pgys (i.€., in setting up the inverse problem) lead to small errors
in the solution given by Pypdae. Stability result (iii) in corollary 5 is interpreted best in terms of
numerical errors in approximations. Specifically, even if the specifications of @init or Py are
exact, the PDF of the predicted measure, Tpredict, is often numerically approximated (e.g., by
propagating a finite set of samples from I@init and then applying a GKDE as in the conceptual
example above), which leads to a numerical approximation of the consistent solution. Viewing
these numerical approximations as perturbations, we interpret this last stability result as stating
that as numerical errors in the approximation of the predicted density are made small, the errors
in the numerical approximation to the updated density are also small.

4. The marginal updated measure on physical parameters

From (8), specification of 7y is required to form %update, which implicitly assumes knowledge
of mgoch- However, it is possible to generate i.i.d. samples of the random vector (), &) ~ %update
without direct knowledge of 7y, using rejection sampling on a set of i.i.d. samples generated
according to this (potentially unknown) joint initial density.

In practice, we may fail to have knowledge of either 7y, or the particular £-components
of the joint initial sample sets even if 7ych 1S known. For example, in models exhibiting chaos
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(such as Lorenz models), the impact of rounding errors on computationally predicted data
may be represented as a stochastic parameter. In such cases, the specification of 7o and
knowledge of the exact sample taken from 7gocp, may prove to be an intractable proposition.

In less extreme cases where either the exact 7y,cn Or a good approximation of it is known, we
may still fail to have knowledge of the stochastic samples that impact predicted data. Moreover,
it may be unreasonable to assume that the stochastic parameters are independent of the physical
parameters so that even if knowledge of g, is available, the joint structure of 7y, may remain
unknown. In general settings where a physical model is used in a laboratory setting to obtain
predicted data, certain subsets of physical parameters may be specified/controlled between
experiments while stochastic parameters representing various sources of error or uncertainty
in the experimental setup or data may not be known. For a specific example, consider the
use of a wave tank to simulate storm surge in a scaled physical model of a coastal commu-
nity. It is well-established (see, e.g., [3]) that storm surge is sensitive to the bathymetry and
Manning’s coefficient of roughness, which are impacted by sediment transport (e.g., due to
shipping channels or agricultural runoff). Repeated wave tank experiments can be run with vari-
ous values of bathymetry and Manning’s coefficient of roughness specified by the experimenter
to create an ensemble of predicted storm surge data. This represents a specification of the
samples of physical parameters coming from an implicitly defined 7;,;;. However, assuming
knowledge of my,ch eXists to describe measurement errors (e.g., due to splashing effects and
instrument errors), we are unlikely to know the exact measurement errors for any given exper-
iment that impact the recorded maximum wave height data. Moreover, the measurement errors
are likely to be higher for more turbulent flows suggesting some conditional dependence of
the stochastic parameters on the physical parameters. In the examples described above, we
are likely to only have information on the physical parameter components of the sample set
generated from an (unknown) Ti,;.. This motivates the material below, which

(a) Proves stability of the marginal updated probability measure on physical parameters
with respect to perturbations in the (unknown) Pyp4q and subsequently with respect to

perturbations in both ]IADinn and P,ps; and

(b) Provides a simple algorithm for sampling directly from the marginal updated distribution
on physical parameters that does not require any knowledge of the stochastic parameters.

4.1. Stability of the marginal

First, we prove a fundamental result that the TV metric between two joint distributions on
the same product space is always greater than the TV metric between any of the marginals.
This result is subsequently used to prove stability results for the marginal updated probability
measure on physical parameters.

Theorem 6. Let (2, F,,P,) denote an n-dimensional probability space, m < n, and P,
denote the marginal probability measure of P, on any m-dimensional probability subspace
denoted by (0, F, Pn). Also, let i, and fm denote the dominating (product) measures on
(82, Fp) and (2, F), respectively. Then, if P, denotes any perturbation to P, and P, denotes
the corresponding perturbation to the marginal probability measure Py,

drv (P, ) < dry(P,. P). (12)

In the proof below, we use the following notation

® T, Ty, T, and 7, denote the PDFs of IP,,, ﬁ, P,,, and ﬁ/n, respectively;

13
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e k:=n — mand (£, F;) denotes the k-dimensional measurable subspace with dominating
(k-dimensional product) measure /i such that 0, = Q,, x { and F, is generated by the
completion of the product o-algebra between F,, and Fy.

Proof. Using the notation conventions listed above along with the definition of marginal
probability measures and Fubini’s theorem, we have

(7Tn - 7:‘:;1) dﬂk d,um

O

dTV(]P)m, @n) = / |7Tm - 7T/\/m| dﬂm = /

Qp

< / |7Tn - 7?;1| dﬂk dﬂm = / |7Tn_7/7:;1| dﬂn = dTV(Pn: E)
Qmd

n

O

Recalling definition 4, an immediate consequence of theorem 6 is that every marginal
probability measure is stable with respect to perturbations in the corresponding joint proba-
bility measure. Let Pypdae,a and %updm, A denote the marginal updated probability measure and

density, respectively, on the physical parameter space (A, B) induced by @update.

Corollary 7. The marginal updated probability measure @updaw,l\ on physical parameter
space (A, By) is stable with respect to perturbations in Py, Pops, and Ppyyeqics.

Proof. This follows from combining corollary 3.1 and theorem 4.1. 0

4.2. Sampling directly from the marginal

Algorithm 1 summarizes how to generate an i.i.d. sample set from an approximate marginal
updated PDF on physical parameters without requiring knowledge of the stochastic parameter
samples involved in these computations. The algorithm is based on a fundamental fact that if
K
i=

. x0, o x

is an i.i.d. set of of K samples from an n-dimensional joint distribution, then for m < n,
X0 x )

is an i.i.d. set of K samples from the m-dimensional marginal distribution defined by the first

m-components of the probability space.

The algorithm is both straightforward and easy to implement given two arrays of sample
sets (an input array and the corresponding output array) and a PDF on the data space. The
only knowledge that is required to use this algorithm are the physical parameter components
from an initial sample set, the corresponding set of predicted output data, and specification
of an observed PDF. Knowledge of either g (or, in fact, Tiy;) or the actual values of the
&-components of this initial sample set are not required. Moreover, knowledge of how the
stochastic parameters impact the map is not required if we are given the set of output samples

~ . SN

{00060}
in the algorithm directly. In other words, we do not actually need to specify the map @ explic-
itly as long as we are able to query the desired output data of the model (or experiment).

14
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Algorithm 1. Sampling from the marginal updated PDF.

Required inputs:
e List of the A-components from an i.i.d. sample set
NN ~
{QD, 6N}, ~ Tinic:

e Corresponding predicted sample set

{00} ={go.en)”
i=1 i=1
e The observed data PDF 7.

Pre-processing computations:

~. . \N
1. Use {Q(’)} 1 {0 CONSLIUCE T predict A Tpredict (€., using GKDE).

~MOVN 71'obs(@(i)) N
oy, = { T@D

%\predict (Q(i)) i=1

3. Estimate M = max)#(\,§)) with M ~ maxlgiSN?(iJ.

2. Compute

Rejection sampling:
Set K = 0.
fori=1,...,Ndo
Generate a random number y© ~ U([0, 1]);
Compute the ratio n® = 70 /M;
if y < 7 then
Accept and set K = K + 1 and )\gfc)ept =\,
else
Reject A?;
end
end

NGRS
Output: {)\accem}k:l .

This is a particularly useful feature when the model is a computational black box for which
we set only some inputs defined as physical parameters without setting or knowing other
parameter values that may either be chosen automatically by the code or defined by unknown
round-off errors that impact the model outputs and are treated as the stochastic parameters.
Similarly, this algorithm can also be applied to experimentally obtained data where knowledge
of certain physical parameter values between experiments is available (e.g., due to knowledge
of the experimental setup) while knowledge of other aspects of the model or data acquisi-
tion, such as missing physics or measurement errors, can be treated as unknown stochastic
parameters with unspecified distributions.

4.3. Comments and variation of algorithm 1

Algorithm 1 will generate at least one accepted sample by design. Specifically, any sample
giving the computed bound M utilized in the algorithm will subsequently have a normalized
rejection ratio ' = 1 and automatically be accepted. Such samples are then interpreted as
the ‘most likely’ of all initial samples considered by the algorithm. However, if an exact M is
known or an over-estimated value of M is used in the algorithm, then it is theoretically possible
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that no samples are accepted. In either case, the final number of samples that are accepted,
denoted by K, may be undesirably small for a given number of input samples, denoted by N.
While the development and analysis of more efficient sampling schemes is outside the scope of
this work, it is the topic of ongoing research, and we provide some comments in the conclusions
about this topic.

A simple alternative to algorithm 1 is to remove rejection sampling entirely and simply

N
return the array of ratios given by {r(Q(‘))}A for all N samples. These ratios provide use-

ful insight into both the marginal updated P]l)_F1 on physical parameters and in predictive UQ
analyses. For instance, we can use a weighted GKDE on the physical parameter samples
{)\(i)}gil with weights given by the ratios to estimate the marginal PDFs on either the entire
physical parameter space or on individual physical parameters. Alternatively, if there are Qol
labeled as ‘prediction’ Qol (i.e., quantities for which there are no current observable data),
we may propagate the larger set of physical parameter samples and use the associated ratios to
compute weighted GKDE estimates of the distributions for these Qol. In the numerical exam-
ples of section 5, we use either rejection sampling or weighted GKDE:s to analyze the marginal
updated PDF on physical parameters.

An important feature of algorithm 1 (or the alternative discussed above) is that while sam-
ples are initially generated in the parameter space using Monte Carlo sampling, all subsequent
computations take place in the data space defined by the range of the Qol map. Specifi-

~

N
cally, only the corresponding push-forward samples, {Q(‘) '

, are used to estimate the pre-
dicted density and ratios that are used in the remainder of ltﬁelz algorithm. Consequently, the
algorithm scales very well as the dimension of the parameter space increases if the dimension
of the data space stays fixed and the variance does not increase. On the other hand, the use
of a simple GKDE to estimate the predicted density negatively impacts how this algorithm
scales with respect to the dimension of the data space. Such issues of scalability are explored
for the deterministic variant of this algorithm in [5], which can be viewed as a special case
of algorithm 1 that omits a stochastic parameter. In this paper, the final numerical example of
section 5 demonstrates the ability of the algorithm to solve high-dimensional stochastic inverse
problems by computing a reference distributions using this special case of algorithm 1 from a
100-dimensional space for the parameters of interest.

5. Examples

Below, we illustrate how the extension to the data-consistent framework outlined above is used
to solve inverse problems with Qol that incorporate additional stochastic sources of uncertain-
ties. We first consider a linear ‘wobbly plate’ example that is motivated by common types
of measurement devices used in a variety of earth science applications. We then consider a
variation of an example presented in [5] regarding inferences into stochastic parameters of
a Karhunen-Loeve expansion used to define a diffusion coefficient in an elliptic differential
equation.

When reading these examples, it is useful to keep in mind the following take home mes-
sages. First, it is possible to solve the stochastic inverse problem using the wrong model/Qol
map as long as the predictability assumption holds. However, the predictability assumption
can be numerically verified (as demonstrated in the wobbly plate example). Such a numeri-
cal diagnostic can prove useful in determining if a model or Qol map along with variations
in the physical parameters are unable to explain the observable data. For instance, in [6],
the predictability assumption is checked for a sequence of approximate maps converging to
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b

Figure 6. Schematic of ‘wobbly-plate’ example setup. Two sensors are placed below
the wobbly-plate to measure its height relative to the sensor.

an exact map. Moreover, in [6], it is shown that the error in the sequence of updated densities
associated with the sequence of approximate maps is bounded by the error in the approximate
maps. Second, when a model/Qol map is modified to account for other sources of uncer-
tainty/variation impacting the observational data, the inferences we draw from the updated
PDF on the physical parameters are changed. Specifically, we generally avoid ‘over-updating’
the initial PDFs on the physical parameters when we account for other sources of uncertainty
impacting the observational data. Remarks on this are provided both within the examples and
in the conclusions.

5.1. ‘Wobbly plate’

5.1.1. Motivation. Monitoring the evolution of landscapes is important in many environmental
and civil engineering applications. In erosion analysis, such monitoring is often done using
a micro-erosion meter (MEM) or simple variants of such devices [28]. For instance, MEMs
have been used to measure erosion in cave limestone [25], building stone decay [30], and most
commonly in the erosion of shore platforms [27] that can significantly impact a coastal areas
susceptibility to storm surge. A typical MEM has three legs that form a triangular base on
which either a flat plate or other fixture mimicking a flat surface is placed along with a gauge
that measures the movement of the plate as erosion occurs (e.g., see [28] and the figures and
references within). For predicting volcanic eruptions, a common type of monitoring device is
a tiltmeter that is placed on the side of the volcano [11, 26]. When the main chamber of the
volcano fills with magma, swelling on the side of the volcano occurs which is recorded by the
change in angle of the tiltmeter.

Whether it is a tiltmeter, an MEM, or other similar earth monitoring system devices, the
natural variation in the physical parameters describes a significant amount of variation in the
measurements over time. However, uncertainties in the actual deployment of the devices can
impact the inferences drawn from these measurements. For instance, any initial slope or rough-
ness to a surface impacts the measurements as well as any miss-calibration of the device that
is either initially present or may occur over time.

To describe how the approach in this paper can be used to model and quantify the impact of
such uncertainties on physical parameters, we consider the problem of determining the distri-
bution of slope parameters in a ‘wobbly plate’ using height measurements obtained by accurate
laser readings. This is depicted in figure 6. We study how measurement uncertainties either due
to instrumentation error or misplacement of the lasers impacts results.
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Figure 7. (Left) shows initial description of slopes (A, \») and the target distribution of
slopes (A1, A\2) ~ U ([0.85,1.45] x [1.6,1.85]). (Right) shows density estimates (using
GKDE on the data-sets) of the simulated height measurement data at locations x4 and
XB.

5.1.2. Model setup. Consider a square plate that is ‘wobbling’ randomly around a point in
space centered just above the origin. The height, y, of the wobbling plate at any location
(x1,x2) € R? is given by

Y =Yo+ Aixi + xy

where yy is the height of the plate above the origin and (A, A;) are the slopes of the plate at a
particular snapshot of time.

Suppose we are interested in estimating the distribution of the slope parameters A = (A1, A2)
of the wobbly-plate using two accurate measurement devices (e.g., as given by laser devices)
placed at locations x4 and xp to take repeated measurements of the height of the plate (see
figure 6 for an illustration). This implies a Qol map Q : A — R?:

q =0\ =y, + XA\

where q is a vector of the height measurements at location x4 and xg, Yy is the vector (yo, yo)
representing the height of the plate above the origin, A is a vector of the slope parameters of
interest, (A1, \2)T, and X is a 2 x 2 matrix with the coordinates of the measuring instruments
X = ["A}
XB

5.1.3. Data consistentupdate with error-free setup. A data-generating uniform distribution of
slope parameters A in the box [0.85, 1.45] x [1.6, 1.85] is used to simulate 250 i.i.d. observed
Qol data assuming the laser locations are setup exactly at x4 = (0.6,0.6) and xg = (0.8, 0.6),
with yp = 3. The data-generating distribution of X (the target) and the simulated distributions
for the Qol (computed using standard Guassian kernel density estimates) are illustrated in
figure 7. The goal is to use the Qol distributions to update a sample set of A drawn from a
different initial distribution that is consistent with these observations.

Suppose the initial distribution of A is uniform on [0,2] x [0,2], i.e., jnit ~
U ([0,2] x [0,2]) represents the initially assumed distribution over all physically plausible
slope parameters. Using algorithm 1, updated samples (i.e., accepted samples) of slope parame-
ters are computed. In the absence of any other uncertainties, the Qol map is 1-1. Subsequently,
the updated sample set of \ is in general agreement with the ‘target’ domain associated with
the data-generating distribution of parameters as illustrated in the left plot of figure 8. There
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Figure 8. The data consistent update in the absence of additional stochastic

uncertainties.
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Figure 9. (Left) shows specified locations xo and xp and the actual perturbed locations
of the measurement instruments. (Right) shows a Gaussian kernel density estimation of
the simulated height data with stochastic noise in the locations xo and xg.

is a slight over-estimation of this region that is due to the over-smoothing effect of the Qol
densities from using GKDE.

5.1.4. Competing error models and a numerical diagnostic. Now consider a situation where
the data are polluted by stochastic sources of uncertainty not explained by the original Qol
map Q but instead by some map Q. We explicitly address the predictability assumption in this
case where we assume competing models are used to account for the presence of additional
stochastic sources of uncertainty.

To illustrate these concepts, we simulate height data using the same target distribution of
A described previously but by perturbing the locations x4 and xg by stochastic noise £, £ ~
N(0, 6°T), with § = 0.075. This models the situation where the setup of the device may contain
errors (e.g., due to manufacturing imperfections or improper field deployment). Figure 9 shows
the simulated locations and resulting height data.

Knowledge of the device and how errors inherent to design setup impact observations leads
to the following map Q(A, £):

q=00\8 =yp+ X+

19



Inverse Problems 36 (2020) 085015 T Butler et a/

€A
&8

where £ is now the matrix £ = { ] . In other words, the stochastic parameters are embedded

in the map.

Alternatively, in much of the uncertainty quantification literature, it is common to assume
that measurement data are polluted by additive noise. In other words, noise in the measurements
of the heights at points x5 and xg, may instead be applied so that the map Q(), &) is defined as

4=00=0N+¢ &~ NO, o).

Competing hypothesized models of é may also be the result of differing expert opinions.
Below, we compare the data consistent updates using the additive noise model versus the
embedded location noise model above to illustrate (1) the potential of this framework for dis-
tinguishing the capabilities of competing models for constructing data-consistent updates, and
(2) the impact on inferences drawn on physical parameters.

First, we discuss a useful numerical diagnostic. If the predictability assumption is satisfied,
then constructing 7(\, &) results in the formal construction of the density 7ypdae. Subsequently,
we have that

EOQi»:/

Ax

TR = [ Tl = 1.

AxE

The above is true for any @ and 7y, that satisfy the predictability assumption. This integral is
estimated in practice using a Monte-Carlo technique by re-using the initial predicted samples
generated in the accept-reject algorithm to construct estimated samples of #(\, &). In other
words, we may estimate this integral using only knowledge of the initially predicted output
quantities. When the sample average of 7(\, &) deviate significantly from 1 (i.e., more so than
expected from finite-sampling error), this indicates a violation of the predictability assumption
(see [5] for more details on this diagnostic for deterministic maps). Thus, sample averages of
7(\, &) prove to be useful numerical diagnostics in evaluating the capability of a map Q to solve
the inverse problem.

For the additive noise model, we propose an initial distribution for the noise & ~
N(0,0.0825°T). For the location noise model, we propose an initial distribution for the noise
terms &5, Eg ~ N(0,0.08257T).

Figure 10 shows a comparison of the data consistent updated (i.e., accepted) samples from
applying algorithm 1 with the additive noise model (left) or location noise model (right) using
the same initial samples. Both updated sample sets include a wider range of physical parameters
that are consistent with the data than in the previous example where the data (and map) had
no additional stochastic uncertainties. This is expected since the new maps can predict likely
Qol data using wider ranges of physical parameter values than the map Q. In other words,
the introduction of stochastic sources of uncertainty in a map will in general lead to a reduction
in the degree of updating of physical parameters. This is analogous to avoiding over-fitting a
model.

Despite the qualitative similarity either map produces in the range of updated physical
parameter samples consistent with the new data, substantial quantitative and qualitative dif-
ferences exist that are explainable by the diagnostic. In the case where the stochastic noise
is modeled correctly (location uncertainty), E(#(A, £)) ~ 0.981, whereas when modeled incor-
rectly (additive noise), E(7(\, &)) ~ 0.846. Thus, for this situation, the additive noise model
appears to violate the predictability assumption and is overall insufficient for describing data
with variations partially due to location uncertainties in the device setup. The impact of this on
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Figure 10. Shows data consistent updates using the additive noise model (left)
and the location noise model (right) for simulated data where (A}, \y) ~
U ([0.75,1.45] x [1.6,1.85]) and observations are polluted with noise in location
measurements.

the updated sample is also qualitatively apparent where the physical parameters in the ‘target’
region responsible for the data is significantly under-sampled by the additive noise model map.

5.2. An elliptic PDE with uncertain diffusion

5.2.1. Motivation. In reservoir engineering and other subsurface applications, a partial dif-
ferential equation (PDE) is often used to model the flow of oil, water, and other gases or
contaminants in the subsurface (e.g., see [24]). The spatially heterogeneous structure of poros-
ity, geological layering of rock types, and other subsurface characteristics impact many of
the coefficients (i.e., the physical parameters) appearing in such PDEs. To model the spatial
heterogeneity of these physical parameters, random fields with a specified spatial covariance
are often used to allow for computationally tractable and accurate representations as trun-
cated Karhunen—Loeve (KL) expansions [14, 16]. In the context of this work, the physical
parameters refer to the coefficients of a truncated KL expansion. We demonstrate that by
including a stochastic parameter embedded in the diffusion coefficient defined by a low-order
truncated KL expansion, it is possible to obtain inferences about physical parameters that are
more aligned with using higher-order truncated KL expansions without incurring the additional
cost of constructing such expansions. Moreover, as mentioned in section 4.3, the computations
involving the higher-order truncated KL expansions use algorithm 1, which demonstrates the
ability of the algorithm to be applied to high-dimensional input spaces.

5.2.2. Model and inverse problem. Consider the following incompressible flow model, which

describes the pressure field p in terms of a permeability field K(A; x) and simple boundary
conditions:

—V-(K\;x)Vp) =0, xeQ=(0,1)>

= 1, :0
P B (13)
p:(), X1 =1
KVp-n=0, xo =0andx, =1

We represent the permeability field K(\; x) by using a transformation of the KL expansion of
a Gaussian process. In particular, let K(\; x) = exp(Y + Y), where Y is the mean of the Gaussian
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Figure 11. The first four eigenfunctions computed on a 10 x 10 mesh.

process. Then define Y using the KL expansion as
o0
YOu0) =D N /i - filx) (14)

i=1

where the ); are independent identically distributed N(0, 1) random variables and (7;,f;)
are the eigenvalue—eigenfunction pairs associated with the exponential covariance function
C(x,y) = exp(|x1 —y1|/3 + |x2 — ¥2|/2). We use a stochastic finite element approach [14, 16]
to numerically estimate the eigen-pairs by forming a generalized eigenvalue problem. Specif-
ically, since the correlation lengths in C(x,y) are large relative to the size of €2, we perform
all computations for the KL expansion and representations of the variability of the diffusion
coefficient on a triangulation of a 10 x 10 mesh using piecewise-linear continuous functions,
which is sufficient for maintaining the accuracy of the lower-order eigenfunctions considered
in this example (see figure 11).

We refer to the 10 x 10 mesh as the parameter mesh to emphasize that it is chosen specif-
ically to represent the variability in the diffusion coefficient. For simplicity, we abuse nota-
tion slightly and refer to the numerical approximations to 7; and f; as the eigenvalues and
eigenfunctions associated to C(x, y) where

DOF

FO) =" fipi(0),

Jj=1

and ;(x) defines the jth ‘tent’ function (i.e., basis function) at the jth degree of freedom (DOF)
for the finite element space defined on this parameter mesh.
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Figure 12. Shows three sample permeability fields (rows) for three KL expansion
approximations: a baseline generated by truncating after four terms (left), a reference
generated by truncating after 100 terms (middle), and an expansion with four terms plus
the additional stochastic parameters &; (right).

Numerically computing the first 100 pairs of eigenvalues and eigenfunctions reveals that
approximately 90% of the variance in the random fields is maintained by truncating at the
fourth term*. In other words, the parameter mesh is used to represent how variations in the
so-called physical parameters Ay, ..., Ay map to variations in K(A; x).

We then use a triangulation of a 20 x 20 mesh to solve (13) using standard piecewise-
linear finite elements. This is referred to as the computational mesh. The computational mesh
is chosen finer than the parameter mesh to ensure that the length-scales for which the dif-
fusion parameters vary are sufficiently resolved and any deterministic numerical errors are
subsequently neglected in the solution of the PDE. For example, see the left column of plots
in figure 12 for samples of the permeability field that exhibit variability on the order of a
magnitude over a fraction of the length scale of the physical domain.

The goal of the inverse problem is to use an observed distribution of the pressure field p
at the point (0.25, 0.5) to obtain an updated distribution of the physical parameters Ay, ..., \4
where the initial distribution is given by N(0, ) where 0 € R* and [ is the 4 x 4 identity matrix.
As this is a toy problem, the observed distribution in this case is simply specified to be N(y, 0%)
with p = 0.68 and 0> = 10E — 4. In more realistic settings, an observed distribution may be
specified as part of an engineering goal assuming some control on the physical parameters
is possible, e.g., using direct intervention in the design of an engineered or physical system.

4 This was also numerically verified by recomputing the first 100 pairs of eigenvalues and eigenfunctions on a 50 x 50
mesh where the maximum difference in the Z?-norm between any eigenfunctions was 0.5.
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The solution to the inverse problem is thus interpreted as describing the variabilities in physical
parameters that lead to this particular observed distribution.

5.2.3. Representing the stochastic parameter. While the truncated KL expansion maintains
a significant amount of the variation initially modeled by the diffusion parameters K(\; x),
approximately 10% of the variability in this true physical parameter has been removed by
the truncation. Thus, we do not expect that all of the variability in observed data is due to
only the variations in the truncated KL expansion. However, if we solve the stochastic inverse
problem using only the truncated KL expansion, then, by construction, the updated distribution
on Ay, ..., \s must necessarily propagate forward to the specified observed distribution. We
therefore seek a stochastic parameter to account for variability in model outputs that are not
entirely due to the physical parameters retained by the truncated KL expansion. Here, we seek
a random function §(&; x) defined on the parameter mesh such that

SE:00m~ > A/l fil),

i=N+1

In other words, we define a random function §(; x) parameterized by a stochastic parame-
ter £ which approximates the variability in the diffusion coefficient not accounted for by the
truncation of the KL expansion.

A simple approach for constructing such a stochastic parameter is to ignore any correlation
structure of the remaining terms of the KL expansion and construct a residual spatial variance
model. Specifically, we define stochastic parameter £ = (;) € RPF where &; ~ N(0,07) is
defined at each of the DOF of the parameter mesh (i.e., DOF = 100) with magnitude of the
variance at the jth degree of freedom, 012-, approximated by

4
L= mifix)
i=1

which requires minimal additional computation since the eigenvalues, 7;, and eigenfunctions,
fi» have already been computed for 1 < i < 4. This produces a computationally tractable log-
permeability field ¥(\) as a function of both physical and stochastic parameters:

DOF

4
Y& =D N V) + D &jpj(x). (15)
i=1

J=1
In other words, §(&; x) is given by the right-most term above.

5.2.4. Defining a reference. The approximations and constructions described above are
dependent on an appropriate choice of truncation term and parameter mesh used for the KL
expansion. In general, such choices are functions of the correlation lengths of the covariance
function C(x,y). For the purposes of this example, we simply show that the choice of approx-
imations and incorporation of a stochastic term embedded in the model provides some clear
qualitative benefit to the representation of the permeability field and the inferences drawn by
solving the stochastic inverse problem. However, this requires defining some point of refer-
ence. Here, the point of reference is the solution obtained when the KL expansion is truncated
at the 100th term.
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Figure 13. Shows the data consistent update for each parameter \; of the KL expansion
using either the deterministic, reference, or stochastic Qol.

In figure 12, we show the variability of three different permeability fields obtained when
truncating the KL expansion at the fourth term (left column), 100th term (middle column,
defining the reference fields), and when the stochastic parameter is sampled and added to the
lower-order truncation (right column). Plots are generated on the computational mesh, i.e.,
permeability fields are generated on the parameter mesh and then projected onto the compu-
tational mesh since this is the form of the fields that appears in the numerical solution of the
PDE. Each row has a fixed vector for the A, ..., A4 values. We observe finer-scale features in
the permeability fields in the middle and right columns than in the left column. Qualitatively,
the addition of the stochastic term appears to capture some of the finer-scale features present
in the reference fields.

5.2.5. The updated PDFs. In what follows, we refer to the Qol map obtained by solving (13)
using the four term KL expansion as the deterministic Qol, using the 100 term KL expansion as
the reference Qol, and using the four term KL expansion with the additional stochastic param-
eter impacting the diffusion coefficient the stochastic Qol. We summarize all of the updated
PDFs obtained on the physical parameters, Ay, . . ., A4, using the various Qol maps in figure 13.
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Figure 14. Shows initial predictions (left) and updated predictions (right) of the Qol
compared to the observed density for each of the KL approximations (deterministic,
reference, and stochastic).

In figure 14, we show the push-forward of these updated densities through each of the maps to
verify that each Qol map separately solved the stochastic inverse problem correctly (i.e., the
predictability assumption holds for all the maps).

For Aj, Ay, and A4, the updated marginal PDFs are qualitatively similar across all maps.
Moreover, they are not significantly different from the initial PDFs for each of these parameters
suggesting that the various Qol maps are not sensitive to these particular parameters. However,
for the third physical parameter, A3, the updated marginal PDFs are all significantly different
from the initial PDF for all Qol maps. This suggests two things. First, all the Qol maps are
sensitive to this parameter. Second, a significant amount of the variation in the observed PDF is
explained by the distribution of this parameter. This is explained by a quick review of the model,
the type of measurement defined by the Qol, and the eigenfunctions associated with each of
the physical parameters. First, the boundary conditions in (13) imply that the pressure drops
from 1 to 0 as we move from the left-boundary to the right-boundary. Second, the measurement
location of p is biased towards the left-half of the domain (x; = 0.25) and is in the center of
the vertical portion of the domain (x, = 0.5). Combined, we would expect this measurement
to be more sensitive to perturbations of permeability field values that primarily impact the
variation of permeability as we move in the x;-direction. It is evident from the eigenfunctions
in figure 11 that such perturbations occur by varying As3.

Further examination of the updated marginal PDFs for A3 also reveal that the determinis-
tic Qol leads to an ‘over-updating’ of the initial PDF compared to the update obtained from
the reference or stochastic Qol. This is due to the fact that each Qol map creates an updated
PDF that must be consistent with the observations in the sense that their associated push-
forwards will match the observed PDF (as seen in figure 14). For the deterministic map, this
requires that all variations in the observations must be explained by variations in the physical
parameters Aj, . .., A\s. For the reference and stochastic maps, variations in other parameters
(additional physical parameters for the reference map and the stochastic parameters for the
stochastic map) can explain some of the variability in the observations. While the focus of this
work is not on constructing stochastic maps but rather extending the data-consistent framework
to apply to stochastic maps, this still highlights an important point about the utility of consid-
ering stochastic maps within this framework. Specifically, by accounting for variations in the
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output data associated with a (potentially deterministic) model that are not due to variations
in a (potentially limited) set of physical parameters, we can obtain inferences on the physical
parameters that are more aligned with higher-fidelity references. Moreover, it may be possi-
ble to achieve such ‘enhanced’ inferences at a fraction of the computational cost required in
constructing such references. However, we leave the general problem of identifying potential
sources of uncertainty in models and accounting for those with proper stochastic parameter
choices to future works as such modeling is heavily application/domain specific.

6. Conclusions and future work

Extending the data-consistent framework to stochastic maps greatly widens the class of prob-
lems that may be solved with this approach. In practice, it is rarely the case that a Qol map
from parameters of interest to the data space is known exactly. Nonetheless, by incorporat-
ing and modeling the uncertainty in the Qol map, it is still possible to obtain an informa-
tive update of the uncertainties in parameters of interest. The theoretical analysis described
in sections 3 and 4 ensure that such a data-consistent update exists in the form of a joint
distribution whose marginal can be sampled from directly. In addition, the update is stable
as long as the assumption of predictability is satisfied.

In section 5, we demonstrate some of the flexibility provided by this methodology. With
the data consistent approach, the researcher has a great deal of choice in how to model the
additional variation or noise that is observed in the data. Such variation may be modeled as
additive noise in the resulting observations, but may also enter into the model in a variety
of other more complex embeddings, such as specific errors in an experimental setup (e.g.,
example 5.1) or general approximations of random processes (e.g., example 5.2). This is
reminiscent of the kind of flexibility provided by mixed effect models, where statisticians use
information about the structure of experiments to improve the quality of their inferences except
that the data-consistent framework is not restricted to linear models. Future research may reveal
applications for the data-consistent approach in modeling aleatoric-type uncertainty in similar
contexts.

One notable feature of this data-consistent framework is that the additional variation need
not be modeled explicitly as long as parameters of interest can be paired with correspond-
ing predicted data values. This is particularly useful in several scenarios including, but not
limited to, experimental settings where only certain covariates can be controlled/measured
between trials and also large-scale computational models where complex stochastic processes
are employed unbeknownst to the user to compute model predictions.

We show in section 5.2 that the algorithm is easily applied to a parameter space of 100-
dimensions for computing the reference results. As mentioned in section 4.3, the algorithm
scales well with increasing parameter dimension for a fixed data space and variance of the
predicted density since the computations required to determine the ratios in algorithm 1 occur
in the data space. However, as the dimension of the data space increases, we may require
significantly more samples to compute accurate estimates of the predicted density with a
GKDE. When obtaining a Qol sample is expensive (either experimentally or computationally),
it may only be possible to generate a relatively low number of predicted samples. There are
several on-going and future research efforts we are pursuing to address this issue. As algo-
rithms are developed and analyzed, we will incorporate these into the open-source Python
library vert BETvert [15]. A future vert BETvert project is to develop and encode criteria for
automatically choosing an algorithm based on the dimensions of spaces and the number of Qol
samples available either experimentally or due to a computational budget.
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