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Abstract

Data-consistent inversion is a recently developedmeasure-theoretic framework

for solving a stochastic inverse problem involving models of physical systems.

The goal is to construct a probability measure on model inputs (i.e., parameters

of interest) whose associated push-forward measure matches (i.e., is consis-

tent with) a probability measure on the observable outputs of the model (i.e.,

quantities of interest). Previous implementations required the map from param-

eters of interest to quantities of interest to be deterministic. This work gener-

alizes this framework for maps that are stochastic, i.e., contain uncertainties

and variation not explainable by variations in uncertain parameters of interest.

Generalizations of previous theorems of existence, uniqueness, and stability of

the data-consistent solution are provided while new theoretical results address

the stability of marginals on parameters of interest. A notable aspect of the

algorithmic generalization is the ability to query the solution to generate inde-

pendent identically distributed samples of the parameters of interest without

requiring knowledge of the so-called stochastic parameters. This work therefore

extends the applicability of the data-consistent inversion framework to a much

wider class of problems. This includes those based on purely experimental and

�eld data where only a subset of conditions are either controllable or can be
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documented between experiments while the underlying physics, measurement

errors, and any additional covariates are either uncertain or not accounted for by

the researcher. Numerical examples demonstrate application of this approach to

systems with stochastic sources of uncertainties embeddedwithin the modeling

of a system and a numerical diagnostic is summarized that is useful for deter-

mining if a key assumption is veri�ed among competing choices of stochastic

maps.

Keywords: uncertainty quanti�cation, inverse problem, push-forward measure,

pullback measure, data consistent

(Some �gures may appear in colour only in the online journal)

1. Introduction

As computationalmodels are increasingly used to aid engineering design [12, 22], shape public

policy [7], and predict the future behavior of physical and biological systems [1, 20], quanti-

fying the uncertainties in model inputs (i.e., parameters of interest) that in�uence solution

characteristics is becoming more critical. Such quanti�cation of uncertainties may occur by

formulating and solving an inverse problem using data associated with observable model out-

puts [i.e., quantities of interest (QoI)] to infer likely model inputs. Uncertainties in observable

data often necessitate the formulation and solution of a stochastic inverse problem where the

solution on the space of parameters takes the form of a probability measure. With a probabil-

ity measure, or its associated probability density function (PDF), we may assess the relative

likelihoods of parameters, estimate the probability of important events (such as those associated

with catastrophic system failure), or determine the robustness of system designs.

Uncertainties in observable data for some QoI may be due to a variety of epistemic and

aleatoric factors, i.e., lack of precise knowledge of the system or fundamentally random prop-

erties of causal factors. Of particular interest in this work is the quanti�cation of aleatoric

factors due to variability in parameters of interest. Consider a manufacturing process for an

engineered system relying upon various materials and sub-components sourced from other

manufacturers. In raw materials, concentrations and locations of impurities can vary substan-

tially, which can be reduced through re�nement but never eliminated. Moreover, the pro-

duction of various sub-components may only be produced to be within certain tolerances.

These are sources of aleatoric uncertainty that will impact parameters for a computational

model of the system. These subsequently impact both system performance and the QoI com-

puted from themodel. Viewing the underlyinguncertainty impacting system inputs as a random

process, the associated parameters of interest and QoI are random variables with uncertain

distributions that we wish to determine.

Bayesian methods [2, 8, 13, 17] are some of the most popular means of inferring probabilis-

tic descriptions of model parameters from QoI data. We �rst introduce some basic notation

prior to comparing the extension of the data-consistent approach—which is the focus of this

work—to Bayesian methods. First, we use λ to denote parameters of interest and ξ to denote

stochastic parameters. We denote by Q(λ) (or simply Q) the QoI map de�ned only on the

space of parameters of interest and Q̂(λ, ξ) (or simply Q̂) to denote the QoI map de�ned on

the joint space of parameters of interest and stochastic parameters. In other words, Q comes

from a deterministic (usually physics-based) computational model where a single choice of λ
is mapped to a single QoI whereas Q̂ maps λ to a new random variable whose output depends

upon the ξ parameter.
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In a typical Bayesian framework, one of the initial assumptions is that data, denoted by

d, are obtained from a map Q̂ de�ned by Q+ ξ, where ξ is a random variable following a

given distribution, usually assumed to be Gaussian. The random variable ξ is used to describe
the uncertainty associated with measurement errors that can theoretically be reduced using

improved instrumentation to collect more precise data. The Bayesian solution for the parame-

ters of interest λ, known as a posterior, is given by a conditional density, π(λ|d) ∝ π(λ)π(d|λ),
where π(λ|d) is the posterior, π(λ) is a prior density on parameters of interest, and π(d|λ) is the
data-likelihood function whose form is often determined by products of the noise distribution

evaluated at residuals between Q and d . The posterior is used to assess the relative likeli-

hoods that a �xed estimate for the parameters of interest could have produced all of the data d .

Subsequently, it is common to use one of two point-estimators, the maximum a posteriori

(MAP) or the conditional mean (CM) estimate to describe the Bayes estimator (i.e., the solu-

tion) of the inverse problem as a single �xed estimate of the parameters of interest [4]. This

use of a single point estimate of the parameters of interest as a solution to the inverse problem

is actually quite reasonable within this framework since as more data are collected (i.e., as

the dimension of the data vector given by d grows), the posterior will often become concen-

trated (or ‘spiked’) around a single parameter of interest, which is a phenomenon explained

by the Bernstein–von Mises theorem [31]. In other words, this typical formulation treats the

uncertainty in parameters of interest as epistemic rather than aleatoric.

When parameters in the model are instead viewed as sources of aleatoric uncertainty (i.e.,

they possess some natural, irreducible variability described by a distribution as in this work),

then hierarchical Bayesian methods provide an alternative to the regular Bayesian framework

outlined above [32]. Hierarchical Bayesian methods commonly specify prior distributions

from a parametric family of distributions, where so-called hyper-parameters are introduced

as random variables into the inference process to describe the uncertainty in the parametric

family of distributions used for the prior. These approaches and the software packages that

implement them (e.g., pyMC3 [23]) consequently require an increase in the number of sam-

ples that must be computed to obtain accurate inferences because samples must be drawn from

a ‘hierarchy’ of distributions. Other non-parametric, hierarchical Bayesian methods for mod-

eling aleatoric uncertainty exist (namelyDirichlet processes) but are typically more costly than

regular parametric Bayesian methods.

An alternative approach for constructing non-parametric estimates of densities on param-

eters of interest, referred to in this work as data-consistent inversion, was recently developed

in [5]. In this data-consistent approach, any prior knowledge of aleatoric uncertainty on the

parameters of interest is used to construct an initial density on these parameters. This initial

density serves a different purpose than the prior used in Bayesian or hierarchical Bayesian

approaches, so we do not refer to it as a prior density in this work to avoid confusion. Sub-

sequently, assuming the variation in QoI data is due to this aleatoric uncertainty, the map Q

is used to formulate a prediction of the observed data distribution using the push-forward of

the initial density. Then, the ratio between the observed and predicted densities, evaluated

on the map Q, serves to update the initial density only in directions informed by the data.

This updated density on the parameters of interest has the property that its associated push-

forward through the map Q exactly reconstructs the observed density. In other words, the

solution is a pullback of the observed density through Q that is regularized by the initial den-

sity only in directions in the parameter space to which Q is not sensitive. In this work, we

generalize the theoretical and algorithmic approaches for sampling the parameters of interest

from this data-consistent solution when the map is given by Q̂. Moreover, the algorithm we

provide generates samples for any of the speci�ed parameters of interest associated with the
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Table 1. Summary of notation and terminology for data-consistent inversion with a
deterministic map.

Notation Description

(Λ,BΛ) Measurable space of parameters of interest.

(D,BD) Measurable space of observable data.

µΛ,µD Dominating measure on spaces Λ and D, respectively.

Q Quantity of interest (QoI) map between (Λ,BΛ) and (D,BD).
Pinit,πinit Initial probability measure and associated density assumed on Λ.

Pobs, πobs Probability measure and associated density based on observations in D.

Ppredict,πpredict Push-forward probability measure and associated density of Pinit propagated

through Q.

r(λ) Ratio of πobs(Q(λ)) to πpredict(Q(λ)) used to update the initial density πinit.

Pupdate,πupdate Updated probability measure and associated density for (Λ,BΛ) using

data-consistent inversion.

data-consistent solution without requiring an explicit representation of Q̂ or knowledge of any

of the stochastic parameters ξ.
The rest of this paper is outlined as follows. In section 2, we �rst review the basic the-

ory of the data-consistent framework. In section 3, we discuss the extension of the data-

consistent framework to uncertain stochastic maps, providing a rigorous theoretical framework

for extending data-consistent inversion including theory of existence, uniqueness, and stability

of solutions. We then provide an algorithm for sampling directly from data-consistent marginal

distributions in section 4 that does not require knowledge of either the stochastic compo-

nents of the map or their distributions. Finally, in section 5, we demonstrate this extended

framework using numeric examples which illustrate the �exibility of the data-consistent

approach in handling stochastic uncertainties within model maps. Concluding remarks follow

in section 6.

2. Overview of data-consistent inversion

2.1. Notation, terminology and assumptions

In this section, we summarize the data-consistent framework for deterministic maps. For ease

of reference, the notation and terminology used in this summary is consolidated in table 1.

Let Λ denote the space of model inputs characterizing physical properties (e.g., a diffu-

sion coef�cient or initial/boundary data), which we refer to as either the physical parameters

or parameters of interest. In this work, we assume Λ ⊂ RP and let BΛ denote the Borel σ-
algebra onRP restricted toΛ so that (Λ,BΛ) de�nes a measurable space of physical parameters.

LetQ : Λ→D denote the quantity of interest (QoI) map from physical parameters to the space

of observable model output data denoted by D ⊂ RD, which we refer to as the data space.

Denote by BD the Borel σ-algebra on RD restricted to D so that (D,BD) de�nes a measurable

data space. We assume thatQ is a measurable piecewise-smooth map from (Λ,BΛ) to (D,BD).
This implies that the contour σ-algebra, de�ned by

CΛ :=
{
Q−1(A) : A ∈ BD

}
,

is a sub-σ-algebra of BΛ. We assume that some initial guess of uncertainty on (Λ,BΛ) is given

in the form of a probability measure denoted by Pinit. Let Ppredict denote the corresponding

push-forward measure on (D,BD) de�ned by
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Ppredict(A) :=Pinit(Q
−1(A)), ∀A ∈ BD.

Since Ppredict is a solution to a forward uncertainty quanti�cation (UQ) problem that may occur

before any data are collected onD, we refer to Ppredict as the predicted probability measure. We

assume that once observable model output data are collected and analyzed that uncertainty in

these data are represented in the form of a probability measure Pobs on (D,BD).
If the probability measures are absolutely continuous with respect to dominating measures,

then probability density functions (i.e., Radon–Nikodym derivatives, which we sometimes

refer to simply as densities or PDFs) associated with each probability measure can be substi-

tuted in the analysis. We denote such dominating measures on the parameter and data spaces

by µΛ and µD, respectively. In this work, we assume that µΛ and µD are given by the P- and

D-dimensional Lebesgue measures, respectively. We now formalize the de�nition of the type

of inverse problem considered in this work and what is meant by consistency of the solution

we seek.

Definition 1 (inverse problem and consistent measure). Assume we are given both

• an initial probability measure Pinit on (Λ,BΛ) that is absolutely continuous with respect to

µΛ and admits a density πinit, and

• a probability measure Pobs on (D,BD) that is absolutely continuouswith respect to µD and

admits a density πobs.

The inverse problem is to update the initial probability measure in such a way that the

updated measure, denoted by Pupdate, admits a density πupdate that is consistent in the sense that

Pupdate(Q
−1(A)) =

∫

Q−1(A)

πupdate dµΛ =

∫

A

πobs dµD = Pobs(A), ∀A ∈ BD. (1)

We refer to Pupdate as the solution to the inverse problem.

2.2. Existence and uniqueness of solutions

The following assumption on the push-forward of the initial density, πpredict, guarantees the

existence and uniqueness of such an updatedmeasure. It is also practically necessary for imple-

menting a simple rejection sampling algorithm to draw samples from the updated measure, as

discussed below.

Assumption 1 (predictability assumption). There exists C > 0 such that πobs(q) 6

Cπpredict(q) for a.e. q ∈ D.

We refer to this assumption as the predictability assumption since it implies that any out-

put event with non-zero observed probability has a non-zero predicted probability. While the

initial density serves a different purpose than the prior used in a Bayesian setting, we may

nonetheless draw an analogy to the convention in Bayesian methods of choosing a prior to be

as uninformative as possible.

In [5], a disintegration theorem [10] is used to prove the following theorem where µΛ,q

denotes the disintegration of the dominating measure, µΛ. Conceptually, it is convenient to

think of this theorem as a nonlinear version of Fubini’s theorem where the disintegrated mea-

sure, µΛ,q, is analogous to using lower-dimensional Lebesguemeasures in the iterated portions

of the integral.

Theorem 2 (existence and uniqueness [5]). The probability measure Pupdate on (Λ,BΛ)

de�ned by
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Pupdate(A) =

∫

D

(∫

A∩Q−1(q)

πinit(λ)
πobs(Q(λ))

πpredict(Q(λ))
dµΛ,q(λ)

)
dµD(q), ∀A ∈ BΛ (2)

is a consistent solution to the inverse problem in the sense of (1) and is uniquely determined

for a given initial probability measure Pinit on (Λ,BΛ).

The probability density of the consistent solution is given by

πupdate(λ) = πinit(λ)
πobs(Q(λ))

πpredict(Q(λ))
, λ ∈ Λ. (3)

Sincewe assumeπinit and πobs are given, it is evident that the updated density (3) is immediately

obtained once the predicted density, πpredict, is constructed. We usually rewrite the updated

density in the form,

πupdate(λ) = πinit(λ)r(λ), with r(λ) =
πobs(Q(λ))

πpredict(Q(λ))
, (4)

where the ratio r(λ) is interpreted as providing the necessary re-weighting (i.e., update) to the
initial density to produce the desired updated density. Below, we provide a few remarks to give

both insight and intuition into the structure of this updated measure and density de�ning the

solution to the inverse problem.

Remark 2.1. Pupdate is a pullback measure of Pobs and Pobs is the push-forward measure of

Pupdate.

Remark 2.2. The predictability assumption implies that rejection sampling can be applied

to a set of independent identically distributed (i.i.d.) samples from πinit to produce a set of i.i.d.

samples from πupdate. Speci�cally, in [5], evaluation of r(λ) on an i.i.d. set of samples from πinit

is used to formulate the rejection ratio for each sample in the set. While we omit the details

here, a generalization of this approach for stochastic maps is summarized in algorithm 1 in

section 4.2.

Remark 2.3. The data-consistent updated density is a fundamentally different object than

the typical Bayesian posterior. Whereas the Bayesian posterior weights the prior distribution

by the ratio of a data likelihood function to a constant, the updated density weights the initial

density by the ratio of the observed density to the predicted density (i.e., r(λ)). The impact of

r(λ) is to fundamentally update the structure of the initial density only in certain local direc-

tions in parameter space. Speci�cally, r(λ) is a �xed constant when restricting λ to the same

(generalized) contour—de�ned by a singleton in the sub-σ-algebra CΛ—so thatQ(λ) is a �xed
constant. Consequently, evaluation of πupdate at points along the same contour are given by

evaluation of πinit re-scaled by the same constant, but this constant will likely change between

contours. Even supposing that the likelihood function and the observed density are taken to be

the same function, the data consistent and Bayesian approaches produce very different solu-

tions due to the differences in re-weighting the prior/initial density, as demonstratedby example

7.2 in [5].

3. A data-consistent inversion framework for stochastic maps

In some scenarios, the QoI map from physical parameter space to data space is more appropri-

ately modeled as a stochastic process to account for processes impacting the data that are not

accounted for in (or perhaps are unexplainable by) the physics-based computational model. In

6
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Table 2. Summary of additional notation and terminology for extending the
data-consistent framework to stochastic maps.

Notation Description

(Ξ,BΞ) Measurable space of stochastic parameters.

Pstoch,πstoch Probability measure and associated density for (Ξ,BΞ).

(Λ× Ξ,BΛ × BΞ) Joint measurable space of parameters of interest and stochastic parameters.

Q̂ A stochastic QoI map from Λ to D viewed as a deterministic QoI map from

the joint space Λ× Ξ to the data space D.

P̂init, π̂init Initial probability measure and associated density assumed on joint space Λ× Ξ.

P̂predict, π̂predict Push-forward probability measure and associated density of P̂init propagated

through Q̂.

r̂(λ, ξ) Ratio of πobs(Q̂(λ, ξ)) to π̂predict(Q̂(λ, ξ)) used to update the initial density π̂init.

P̂update, π̂update Updated probability measure and associated density for (Λ× Ξ,BΛ × BΞ)

using data-consistent inversion.

P̂update,Λ, π̂update,Λ Updated marginal probability measure and associated density for (Λ,BΛ)

using generalization of data-consistent inversion.

these cases, we say that the QoI map is stochastic, and in this section we extend and interpret

the data-consistent inverse methodology for stochastic maps. We prove several stability results

with a particular emphasis on the (marginal) updated PDF on the physical parameter space. A

numerical algorithm is also provided for constructing and sampling from this updated PDF on

physical parameters.

3.1. Extended framework and existence/uniqueness

3.1.1. Notation. The extension of the data-consistent framework to stochastic maps introduces

several new terms that we summarize in table 2 for ease of reference.

In the rest of this work, we assume that variability in the observable data used to construct

Pobs are due to additional sources of uncertainty beyond any assumed aleatoric uncertainty in

physical parameters. It is relatively common in the UQ literature, and especially in Bayesian

frameworks, to consider additional sources of uncertainty in observable data as attributed to

measurement errors represented by additive noise models on the QoI (e.g., see [9, 18, 19, 29]).

More recently, the idea of model inadequacy (e.g., due to missing or parameterized physics

at various spatial or temporal scales) has gained more attention as a way to describe addi-

tional uncertainty that is embedded within the model (e.g., see [21] and the references therein).

We additionally assume that it is possible to model these additional sources of uncertainty using

random vectors

ξ(ω) :Ω→ Ξ ⊂ RS

where (Ω,F ,P) de�nes the probability space on the random outcomes, denoted by ω, belong-
ing to the sample space Ω. We refer to these random variables as the stochastic parameters to

clearly distinguish ξ(ω) ∈ Ξ and its impact on predicted data from that of a physical parameter

λ ∈ Λ. In other words, for a �xed λ ∈ Λ, the predicted datum associated with the output of the

QoI map is de�ned probabilistically over sets of possible output values.

Generally, we omit direct reference to the sample space and work directly in the output

space of the stochastic parameters. Therefore, we use the simpler notation ξ ∈ Ξ to refer to

a particular realization of the stochastic parameters that impacts a predicted QoI datum. Sub-

sequently, we let BΞ denote the Borel σ-algebra of RS restricted to Ξ, and Pstoch denotes the

7
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Figure 1. The solid (blue) curve represents a deterministic observable map, Q(λ). The
red dots indicate noisy observations representing a sample from the distributions plot-
ted vertically on the dotted lines. These distributions indicate the relative likelihoods of
obtaining an observable datum given a �xed value of input parameter to the deterministic
observable map.

push-forward probability measure of P on (Ξ,BΞ), i.e.,

Pstoch(A) :=P(ξ−1(A)), ∀A ∈ BΞ.

We again assume that there exists a dominating measure µΞ on (Ξ,BΞ) so that the PDF of

Pstoch can be de�ned by its Radon–Nikodym derivative, which we denote by πstoch. Finally, we

replace the QoI map notation with Q̂(λ, ξ) to denote the measurable map from the measurable

product space (Λ× Ξ,BΛ × BΞ) to the observable data space (D,BD).

3.1.2. Conceptual example part I: the maps and spaces. We use a simple example to provide

context for some of this notation. SupposeΛ = [0, 9] and an initial deterministic model de�nes

the QoI map,

Q(λ) = (λ− 1)(λ− 5)(λ− 7), (5)

illustrated by the blue curve in �gure 1, but that observable data are polluted by measurement

errors, which we represent using an additive noise model so that

Q̂(λ, ξ) = Q(λ)+ ξ, ξ ∼ N(0, σ2). (6)

Here, we take σ = 7. Then, for any �xedλ, Q̂(λ, ·) is a randomvariable following aN(Q(λ), 72)
distribution as illustrated by the two distributions plotted along the vertical lines associatedwith

two different physical parameters. The red dots indicate observable data for the two different

physical parameters, which come from two particular realizations of the stochastic parameters.

Note that neither of these data points are on the curve de�ned byQ(λ), yet both are in the range
de�ned by Q(Λ). Thus, it is at least possible to use the map Q to invert such observable data.

However, doing so would clearly result in inaccurate point estimates of the physical parameters

that led to such observations.

In �gure 2, we plot Q̂(λ, ξ) over the product space Λ× Ξ (where, for illustrative purposes,

we truncate Ξ by ±4σ). The blue curve illustrates the mapping Q̂(λ, 0) = Q(λ). The red dots

are the same data points as before, and while they are not on the blue curve, they do exist on the

surface de�ned by Q̂ over the product space. Thus, applying Q̂−1 to either of these data points

produces a contour in Λ× Ξ that contains the true physical parameter value responsible for

producing the corresponding datum. In other words, the map Q̂ is a completely deterministic

andmeasurable real-valued functionwhose pre-images exist as sets in the product spaceΛ× Ξ.

8
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Figure 2. The blue curve Q(λ) and sampled points from �gure 1 are embedded onto a
deterministic surface de�ned over the input space of physical parameters for the model
and stochastic parameters de�ning the additive noise of model observables.

3.1.3. Existence and uniqueness. We let P̂init and π̂init denote an initial (joint) probability

measure and its PDF, respectively, on (Λ× Ξ,BΛ × BΞ). For simplicity in notation, we let

πinit and πstoch denote the marginals of π̂init on Λ and Ξ, respectively.

Let P̂predict and π̂predict denote the push-forward of the initial probability measure and its

PDF, respectively, through themap Q̂. We assume that the formof the predictability assumption

holds with π̂predict replacing πpredict. With this notation and updated predictability assumption,

the following result for stochastic maps is a direct extension of theorem 2 where µΛ×Ξ,q now

denotes a disintegration of the dominating product measure µΛ×Ξ :=µΛ × µΞ. Otherwise, the

proof is identical to the proof of theorem 2.

Theorem 3 (existence and uniqueness for stochastic maps). The probability measure P̂update
on (Λ× Ξ,BΛ × BΞ) de�ned by

P̂update(A) =

∫

D

(∫

A∩Q̂−1(q)

π̂init(λ, ξ)
πobs(Q̂(λ, ξ))

π̂predict(Q̂(λ, ξ))
dµΛ×Ξ,q(λ, ξ)

)
dµD(q),

(7)

for all A ∈ BΛ × BΞ is a consistent solution to the inverse problem in the sense that Pobs is

a push-forward of P̂update (or, equivalently, that P̂update is a pullback of Pobs) and is uniquely

determined for a given initial probability measure P̂init on (Λ× Ξ,BΛ × BΞ).

The PDF of this consistent solution is given by

π̂update(λ, ξ) = π̂init(λ, ξ)
πobs(Q̂(λ, ξ))

π̂predict(Q̂(λ, ξ))
, (λ, ξ) ∈ Λ × Ξ. (8)

As before, this updated PDF is immediately obtained once the predicted density, π̂predict, is

constructed, and we again rewrite this updated PDF in the form

π̂update(λ, ξ) = π̂init(λ, ξ)r̂(λ, ξ), with r̂(λ, ξ) :=
πobs(Q̂(λ, ξ))

π̂predict(Q̂(λ, ξ))
. (9)

9
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Figure 3. The four steps of sampling from the updated PDF. Left: samples from the
joint initial PDF. Right: samples from the updated density in the joint parameter space
obtained using rejection sampling.

We emphasize that this updated PDF is updating the initially assumed joint structure on the

product space. Subsequently, the ratio of the observed density to this predicted density, denoted

by r̂, serves to update both the joint density as well as the marginal densities, πstoch and πinit,

simultaneously.

3.1.4. Conceptual example part II: the measures. We now return to the simple example from

section 3.1.2 (withQ and Q̂ de�ned by (5) and (6)) to both illustrate these ideas and demonstrate

one approach to (1) sample from the updated PDF and (2) verify the samples come from a

consistent solution. Suppose that

πinit ∼ Beta(2, 5).

Here, by Beta(2, 5), we denote a standard Beta(α, β) distribution that is transformed from [0, 1]

to Λ = [0, 9] by a simple scaling of inputs. To approximate π̂predict, we �rst generate 1E+ 4

independent identically distributed (i.i.d.) samples from π̂init (see the left plot of �gure 3),

evaluate Q̂ on each of these samples (see the left plot �gure 4), and then use a standard Gaus-

sian kernel density estimator (GKDE) to approximate π̂predict (shown as the blue dashed-dotted

curve in �gure 5). Supposewe observe data that follows a normal distributionwith an observed

mean and standard deviation of 8 and 4, respectively, so that πobs ∼ N(8, 42) (shown as the red

curve in �gure 5). Clearly, the predictability assumption is satis�ed, so we use a straightforward

rejection sampling algorithm on the initial 1E+ 4 samples to generate a set of approximately

3E+ 3 i.i.d. samples from the updated density (shown in the plot of �gure 3).

To verify that this set of accepted i.i.d. samples does in fact come from a consistent solution,

we propagate these back through the map Q̂ (shown in the right plot of �gure 4). We again use

a GKDE to estimate the density, and verify that it reconstructs the observed density (compare

the black dashed and red curves in �gure 5). Numerical diagnostics also verify that the sample

average and standard deviation of the push-forward of these updated samples are within 2% of

the observed values of 8 and 4, respectively.

Following construction or sampling of the joint updated density on Λ× Ξ, it is straightfor-

ward to analyze and compare the marginals of this updated density even if the joint updated

density has complex structure. For example, we can simply use the individual components of

the i.i.d. samples of π̂update obtained by rejection sampling as above to construct i.i.d. sets of

samples for the marginals.

In the plots of initial and updated samples in Λ shown in �gure 3, we also summarize on the

top and right of the axes the associatedmarginal densities onΛ andΞ, respectively.Wemay use

amixture of qualitative and quantitative analyses to interpret the speci�c updates to the initially

10
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Figure 4. The four steps of sampling from the updated PDF. The surface represents the

map Q̂. Left: evaluation of the initial samples using Q̂. Right: evaluation of the updated

samples using Q̂.

Figure 5. Visualizing the predicted density obtained by evaluation of Q̂ on the initial
samples (blue dash-dotted curve), the observed density (red solid curve), and the con-
sistency of the updated density is veri�ed by comparing its push-forward (black dashed
curve) to the observed density.

assumed uncertainties in the physical and stochastic parameters. For example, qualitatively

it appears that the initial uni-modal beta distribution on Λ is updated into a bi-modal non-

parametric distribution whereas the updated distribution on Ξ is still approximately normal

but with a shift in mean and variance. This is numerically veri�ed by comparing the sample

mean and standard deviation of the initial set of ξ-samples (which are approximately 0 and

6.9, respectively) to the sample mean and standard deviation of the updated set of ξ-samples

(which are approximately−2.4 and 6).

3.2. Stability results: theory and interpretations

We now consider the stability of the updated joint probability measure with respect to pertur-

bations in the initial, observed, or predicted probability measures. We use the total-variation

(TV) metric, denoted by dTV, which metrizes a space of probability measures de�ned on a

common measurable space. This metric is sometimes computed by the L1-distance between

the Radon–Nikodym derivatives (i.e., PDFs) associated to the individual probabilitymeasures.

Speci�cally, if (Ω,F ,µ) denotes a measure space for which a family of probability measures,

denoted by P , are de�ned and absolutely continuous with respect to dominating measure µ,
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then the TV metric between P1,P2 ∈ P is given by

dTV(P1,P2) :=

∫

Ω

|π1 − π2| dµ, (10)

where π1 and π2 denote the Radon–Nikodym derivatives of P1 and P2, respectively.

We assume that any perturbations in either the initial or observed measures still lead to

probability measures that are absolutely continuous with respect to the dominating measure

on the corresponding measure space, and that the predictability assumption is never violated.

With this assumption, we use the TV metric in the form given by (10) to state the stability

results. First, we provide a general de�nition of stability used in this work.

Definition 4 (stability). Let Pα be a probability measure on (Ωα,Fα,µα) and Pβ be a prob-

ability measure on (Ωβ ,Fβ ,µβ) that depends upon Pα (e.g., through a transformation or func-

tional dependency). Let P̃α denote a perturbation to Pα and P̃β the corresponding perturbation

to Pβ . We say that Pβ is stable with respect to perturbations in Pα if for all ǫ > 0 there exists

δ > 0 such that

dTV(Pα, P̃α) < δ ⇒ dTV(Pβ , P̃β) < ǫ. (11)

With this de�nition of stability, the following corollary extends several results originally

proven in [5] for deterministic maps.

Corollary 5. The consistent solution P̂update is stable with respect to perturbations in (i) P̂init,

(ii) Pobs, and (iii) π̂predict.

Proof. The stability with respect to perturbations in Pobs follows from theorem 4.1 and

corollary 4.3 in [5] after making straightforward changes in notation to account for the dis-

integration over the joint space Λ× Ξ (details omitted here). The stability with respect to

perturbations in P̂init and π̂predict follows from theorems 4.5 and 5.1, respectively, in [5] after

making similar changes in notation. �

A practical interpretation of the stability results (i) and (ii) in corollary 5 is that small errors

in the speci�cation of P̂init or Pobs (i.e., in setting up the inverse problem) lead to small errors

in the solution given by P̂update. Stability result (iii) in corollary 5 is interpreted best in terms of

numerical errors in approximations. Speci�cally, even if the speci�cations of P̂init or Pobs are

exact, the PDF of the predicted measure, π̂predict, is often numerically approximated (e.g., by

propagating a �nite set of samples from P̂init and then applying a GKDE as in the conceptual

example above), which leads to a numerical approximation of the consistent solution. Viewing

these numerical approximations as perturbations, we interpret this last stability result as stating

that as numerical errors in the approximation of the predicted density are made small, the errors

in the numerical approximation to the updated density are also small.

4. The marginal updated measure on physical parameters

From (8), speci�cation of π̂init is required to form π̂update, which implicitly assumes knowledge

of πstoch. However, it is possible to generate i.i.d. samples of the random vector (λ, ξ) ∼ π̂update

without direct knowledge of π̂init using rejection sampling on a set of i.i.d. samples generated

according to this (potentially unknown) joint initial density.

In practice, we may fail to have knowledge of either πstoch or the particular ξ-components

of the joint initial sample sets even if πstoch is known. For example, in models exhibiting chaos
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(such as Lorenz models), the impact of rounding errors on computationally predicted data

may be represented as a stochastic parameter. In such cases, the speci�cation of πstoch and

knowledge of the exact sample taken from πstoch may prove to be an intractable proposition.

In less extreme cases where either the exactπstoch or a good approximation of it is known,we

may still fail to have knowledge of the stochastic samples that impact predicted data.Moreover,

it may be unreasonable to assume that the stochastic parameters are independent of the physical

parameters so that even if knowledge of πstoch is available, the joint structure of π̂init may remain

unknown. In general settings where a physical model is used in a laboratory setting to obtain

predicted data, certain subsets of physical parameters may be speci�ed/controlled between

experiments while stochastic parameters representing various sources of error or uncertainty

in the experimental setup or data may not be known. For a speci�c example, consider the

use of a wave tank to simulate storm surge in a scaled physical model of a coastal commu-

nity. It is well-established (see, e.g., [3]) that storm surge is sensitive to the bathymetry and

Manning’s coef�cient of roughness, which are impacted by sediment transport (e.g., due to

shipping channels or agricultural runoff).Repeatedwave tank experiments can be runwith vari-

ous values of bathymetry andManning’s coef�cient of roughness speci�ed by the experimenter

to create an ensemble of predicted storm surge data. This represents a speci�cation of the

samples of physical parameters coming from an implicitly de�ned πinit. However, assuming

knowledge of πstoch exists to describe measurement errors (e.g., due to splashing effects and

instrument errors), we are unlikely to know the exact measurement errors for any given exper-

iment that impact the recordedmaximumwave height data. Moreover, the measurement errors

are likely to be higher for more turbulent �ows suggesting some conditional dependence of

the stochastic parameters on the physical parameters. In the examples described above, we

are likely to only have information on the physical parameter components of the sample set

generated from an (unknown) π̂init. This motivates the material below, which

(a) Proves stability of the marginal updated probability measure on physical parameters

with respect to perturbations in the (unknown) P̂update and subsequently with respect to

perturbations in both P̂init and Pobs; and

(b) Provides a simple algorithm for sampling directly from the marginal updated distribution

on physical parameters that does not require any knowledge of the stochastic parameters.

4.1. Stability of the marginal

First, we prove a fundamental result that the TV metric between two joint distributions on

the same product space is always greater than the TV metric between any of the marginals.

This result is subsequently used to prove stability results for the marginal updated probability

measure on physical parameters.

Theorem 6. Let (Ωn,Fn,Pn) denote an n-dimensional probability space, m < n, and Pm
denote the marginal probability measure of Pn on any m-dimensional probability subspace

denoted by (Ωm,Fm,Pm). Also, let µn and µm denote the dominating (product) measures on

(Ωn,Fn) and (Ωm,Fm), respectively. Then, if P̃n denotes any perturbation to Pn and P̃m denotes

the corresponding perturbation to the marginal probability measure Pm,

dTV(Pm, P̃m) 6 dTV(Pn, P̃n). (12)

In the proof below, we use the following notation

• πn, π̃n, πm, and π̃m denote the PDFs of Pn, P̃n,Pm, and P̃m, respectively;

13
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• k := n− m and (Ωk,Fk) denotes the k-dimensional measurable subspace with dominating

(k-dimensional product) measure µk such that Ωn = Ωm × Ωk and Fn is generated by the

completion of the product σ-algebra between Fm and Fk.

Proof. Using the notation conventions listed above along with the de�nition of marginal

probability measures and Fubini’s theorem, we have

dTV(Pm, P̃m) =

∫

Ωm

|πm − π̃m| dµm =

∫

Ωm

∣∣∣∣
∫

Ωk

(πn − π̃n) dµk

∣∣∣∣ dµm

6

∫

Ωm

∫

Ωk

|πn − π̃n| dµk dµm =

∫

Ωn

|πn−π̃n| dµn = dTV(Pn, P̃n).

�

Recalling de�nition 4, an immediate consequence of theorem 6 is that every marginal

probability measure is stable with respect to perturbations in the corresponding joint proba-

bility measure. Let P̂update,Λ and π̂update,Λ denote themarginal updated probability measure and

density, respectively, on the physical parameter space (Λ,BΛ) induced by P̂update.

Corollary 7. The marginal updated probability measure P̂update,Λ on physical parameter

space (Λ,BΛ) is stable with respect to perturbations in P̂init, Pobs, and P̂predict.

Proof. This follows from combining corollary 3.1 and theorem 4.1. �

4.2. Sampling directly from the marginal

Algorithm 1 summarizes how to generate an i.i.d. sample set from an approximate marginal

updated PDF on physical parameters without requiring knowledge of the stochastic parameter

samples involved in these computations. The algorithm is based on a fundamental fact that if

{
(X(i)

1 ,X(i)
2 , . . . , X(i)

n )
}K
i=1

is an i.i.d. set of of K samples from an n-dimensional joint distribution, then for m < n,

{
(X

(i)
1 ,X

(i)
2 , . . . , X(i)

m )
}K
i=1

is an i.i.d. set of K samples from the m-dimensional marginal distribution de�ned by the �rst

m-components of the probability space.

The algorithm is both straightforward and easy to implement given two arrays of sample

sets (an input array and the corresponding output array) and a PDF on the data space. The

only knowledge that is required to use this algorithm are the physical parameter components

from an initial sample set, the corresponding set of predicted output data, and speci�cation

of an observed PDF. Knowledge of either πstoch (or, in fact, π̂init) or the actual values of the

ξ-components of this initial sample set are not required. Moreover, knowledge of how the

stochastic parameters impact the map is not required if we are given the set of output samples

{
Q̂(λ(i), ξ(i))

}N
i=1

in the algorithm directly. In other words, we do not actually need to specify the map Q̂ explic-

itly as long as we are able to query the desired output data of the model (or experiment).
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Algorithm 1. Sampling from the marginal updated PDF.

Required inputs:

• List of the λ-components from an i.i.d. sample set

{
(λ(i), ξ(i))

}N
i=1

∼ π̂init.

• Corresponding predicted sample set

{
Q̂(i)

}N

i=1
:=

{
Q̂(λ(i), ξ(i))

}N

i=1
.

• The observed data PDF πobs.

Pre-processing computations:

1. Use
{
Q̂(i)

}N

i=1
to construct ˜̂πpredict ≈ π̂predict (e.g., using GKDE).

2. Compute

{
r̂(i)

}N
i=1

:=

{
πobs(Q̂

(i))

˜̂πpredict(Q̂(i))

}N

i=1

.

3. Estimate M = maxλr̂(λ, ξ) ) withM ≈ max16i6N r̂
(i).

Rejection sampling:

Set K = 0.

for i = 1, . . . ,N do

Generate a random number y(i) ∼ U([0, 1]);

Compute the ratio η(i) = r̂(i)/M;

if y(i) < η(i) then

Accept and set K = K+ 1 and λ(K)
accept :=λ(i);

else

Reject λ(i);

end

end

Output:
{
λ(k)
accept

}K

k=1
.

This is a particularly useful feature when the model is a computational black box for which

we set only some inputs de�ned as physical parameters without setting or knowing other

parameter values that may either be chosen automatically by the code or de�ned by unknown

round-off errors that impact the model outputs and are treated as the stochastic parameters.

Similarly, this algorithm can also be applied to experimentally obtained data where knowledge

of certain physical parameter values between experiments is available (e.g., due to knowledge

of the experimental setup) while knowledge of other aspects of the model or data acquisi-

tion, such as missing physics or measurement errors, can be treated as unknown stochastic

parameters with unspeci�ed distributions.

4.3. Comments and variation of algorithm 1

Algorithm 1 will generate at least one accepted sample by design. Speci�cally, any sample

giving the computed bound M utilized in the algorithm will subsequently have a normalized

rejection ratio η(i) = 1 and automatically be accepted. Such samples are then interpreted as

the ‘most likely’ of all initial samples considered by the algorithm. However, if an exactM is

known or an over-estimated value ofM is used in the algorithm, then it is theoretically possible
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that no samples are accepted. In either case, the �nal number of samples that are accepted,

denoted by K, may be undesirably small for a given number of input samples, denoted by N.

While the development and analysis of more ef�cient sampling schemes is outside the scope of

this work, it is the topic of ongoing research, andwe provide some comments in the conclusions

about this topic.

A simple alternative to algorithm 1 is to remove rejection sampling entirely and simply

return the array of ratios given by
{
r(Q̂(i))

}N
i=1

for all N samples. These ratios provide use-

ful insight into both the marginal updated PDF on physical parameters and in predictive UQ

analyses. For instance, we can use a weighted GKDE on the physical parameter samples{
λ(i)
}N
i=1

with weights given by the ratios to estimate the marginal PDFs on either the entire

physical parameter space or on individual physical parameters. Alternatively, if there are QoI

labeled as ‘prediction’ QoI (i.e., quantities for which there are no current observable data),

we may propagate the larger set of physical parameter samples and use the associated ratios to

compute weighted GKDE estimates of the distributions for these QoI. In the numerical exam-

ples of section 5, we use either rejection sampling or weighted GKDEs to analyze the marginal

updated PDF on physical parameters.

An important feature of algorithm 1 (or the alternative discussed above) is that while sam-

ples are initially generated in the parameter space using Monte Carlo sampling, all subsequent

computations take place in the data space de�ned by the range of the QoI map. Speci�-

cally, only the corresponding push-forward samples,
{
Q̂(i)
}N
i=1

, are used to estimate the pre-

dicted density and ratios that are used in the remainder of the algorithm. Consequently, the

algorithm scales very well as the dimension of the parameter space increases if the dimension

of the data space stays �xed and the variance does not increase. On the other hand, the use

of a simple GKDE to estimate the predicted density negatively impacts how this algorithm

scales with respect to the dimension of the data space. Such issues of scalability are explored

for the deterministic variant of this algorithm in [5], which can be viewed as a special case

of algorithm 1 that omits a stochastic parameter. In this paper, the �nal numerical example of

section 5 demonstrates the ability of the algorithm to solve high-dimensional stochastic inverse

problems by computing a reference distributions using this special case of algorithm 1 from a

100-dimensional space for the parameters of interest.

5. Examples

Below, we illustrate how the extension to the data-consistent framework outlined above is used

to solve inverse problems with QoI that incorporate additional stochastic sources of uncertain-

ties. We �rst consider a linear ‘wobbly plate’ example that is motivated by common types

of measurement devices used in a variety of earth science applications. We then consider a

variation of an example presented in [5] regarding inferences into stochastic parameters of

a Karhunen–Loève expansion used to de�ne a diffusion coef�cient in an elliptic differential

equation.

When reading these examples, it is useful to keep in mind the following take home mes-

sages. First, it is possible to solve the stochastic inverse problem using the wrong model/QoI

map as long as the predictability assumption holds. However, the predictability assumption

can be numerically veri�ed (as demonstrated in the wobbly plate example). Such a numeri-

cal diagnostic can prove useful in determining if a model or QoI map along with variations

in the physical parameters are unable to explain the observable data. For instance, in [6],

the predictability assumption is checked for a sequence of approximate maps converging to
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Figure 6. Schematic of ‘wobbly-plate’ example setup. Two sensors are placed below
the wobbly-plate to measure its height relative to the sensor.

an exact map. Moreover, in [6], it is shown that the error in the sequence of updated densities

associated with the sequence of approximate maps is bounded by the error in the approximate

maps. Second, when a model/QoI map is modi�ed to account for other sources of uncer-

tainty/variation impacting the observational data, the inferences we draw from the updated

PDF on the physical parameters are changed. Speci�cally, we generally avoid ‘over-updating’

the initial PDFs on the physical parameters when we account for other sources of uncertainty

impacting the observational data. Remarks on this are provided both within the examples and

in the conclusions.

5.1. ‘Wobbly plate’

5.1.1. Motivation. Monitoring the evolution of landscapes is important in many environmental

and civil engineering applications. In erosion analysis, such monitoring is often done using

a micro-erosion meter (MEM) or simple variants of such devices [28]. For instance, MEMs

have been used to measure erosion in cave limestone [25], building stone decay [30], and most

commonly in the erosion of shore platforms [27] that can signi�cantly impact a coastal areas

susceptibility to storm surge. A typical MEM has three legs that form a triangular base on

which either a �at plate or other �xture mimicking a �at surface is placed along with a gauge

that measures the movement of the plate as erosion occurs (e.g., see [28] and the �gures and

references within). For predicting volcanic eruptions, a common type of monitoring device is

a tiltmeter that is placed on the side of the volcano [11, 26]. When the main chamber of the

volcano �lls with magma, swelling on the side of the volcano occurs which is recorded by the

change in angle of the tiltmeter.

Whether it is a tiltmeter, an MEM, or other similar earth monitoring system devices, the

natural variation in the physical parameters describes a signi�cant amount of variation in the

measurements over time. However, uncertainties in the actual deployment of the devices can

impact the inferences drawn from these measurements. For instance, any initial slope or rough-

ness to a surface impacts the measurements as well as any miss-calibration of the device that

is either initially present or may occur over time.

To describe how the approach in this paper can be used to model and quantify the impact of

such uncertainties on physical parameters, we consider the problem of determining the distri-

bution of slope parameters in a ‘wobbly plate’ using height measurements obtained by accurate

laser readings. This is depicted in �gure 6.We study howmeasurement uncertainties either due

to instrumentation error or misplacement of the lasers impacts results.
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Figure 7. (Left) shows initial description of slopes (λ1,λ2) and the target distribution of
slopes (λ1,λ2) ∼ U ([0.85, 1.45]× [1.6, 1.85]). (Right) shows density estimates (using
GKDE on the data-sets) of the simulated height measurement data at locations xA and
xB.

5.1.2. Model setup. Consider a square plate that is ‘wobbling’ randomly around a point in

space centered just above the origin. The height, y, of the wobbling plate at any location

(x1, x2) ∈ R2 is given by

y = y0 + λ1x1 + λ2x2

where y0 is the height of the plate above the origin and (λ1,λ2) are the slopes of the plate at a

particular snapshot of time.

Supposewe are interested in estimating the distribution of the slope parametersλ = (λ1,λ2)

of the wobbly-plate using two accurate measurement devices (e.g., as given by laser devices)

placed at locations xA and xB to take repeated measurements of the height of the plate (see

�gure 6 for an illustration). This implies a QoI map Q : Λ→ R2:

q = Q(λ) = y0 + Xλ

where q is a vector of the height measurements at location xA and xB, y0 is the vector (y0, y0)

representing the height of the plate above the origin, λ is a vector of the slope parameters of

interest, (λ1,λ2)
T, and X is a 2 × 2 matrix with the coordinates of the measuring instruments

X =

[
xA
xB

]
.

5.1.3. Data consistent updatewith error-freesetup. A data-generatinguniformdistribution of

slope parameters λ in the box [0.85, 1.45]× [1.6, 1.85] is used to simulate 250 i.i.d. observed

QoI data assuming the laser locations are setup exactly at xA = (0.6, 0.6) and xB = (0.8, 0.6),
with y0 = 3. The data-generating distribution of λ (the target) and the simulated distributions

for the QoI (computed using standard Guassian kernel density estimates) are illustrated in

�gure 7. The goal is to use the QoI distributions to update a sample set of λ drawn from a

different initial distribution that is consistent with these observations.

Suppose the initial distribution of λ is uniform on [0, 2]× [0, 2], i.e., πinit ∼
U ([0, 2]× [0, 2]) represents the initially assumed distribution over all physically plausible

slope parameters.Using algorithm1, updated samples (i.e., accepted samples) of slope parame-

ters are computed. In the absence of any other uncertainties, the QoI map is 1–1. Subsequently,

the updated sample set of λ is in general agreement with the ‘target’ domain associated with

the data-generating distribution of parameters as illustrated in the left plot of �gure 8. There
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Figure 8. The data consistent update in the absence of additional stochastic
uncertainties.

Figure 9. (Left) shows speci�ed locations xA and xB and the actual perturbed locations
of the measurement instruments. (Right) shows a Gaussian kernel density estimation of
the simulated height data with stochastic noise in the locations xA and xB.

is a slight over-estimation of this region that is due to the over-smoothing effect of the QoI

densities from using GKDE.

5.1.4. Competing error models and a numerical diagnostic. Now consider a situation where

the data are polluted by stochastic sources of uncertainty not explained by the original QoI

map Q but instead by some map Q̂. We explicitly address the predictability assumption in this

case where we assume competing models are used to account for the presence of additional

stochastic sources of uncertainty.

To illustrate these concepts, we simulate height data using the same target distribution of

λ described previously but by perturbing the locations xA and xB by stochastic noise ξA, ξB ∼
N(0, δ2I), with δ = 0.075. This models the situation where the setup of the device may contain

errors (e.g., due to manufacturing imperfections or improper �eld deployment). Figure 9 shows

the simulated locations and resulting height data.

Knowledge of the device and how errors inherent to design setup impact observations leads

to the following map Q̂(λ, ξ):

q = Q̂(λ, ξ) = y0 + (X+ ξ)λ
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where ξ is now the matrix ξ =

[
ξA
ξB

]
. In other words, the stochastic parameters are embedded

in the map.

Alternatively, in much of the uncertainty quanti�cation literature, it is common to assume

thatmeasurementdata are polluted by additive noise. In otherwords, noise in themeasurements

of the heights at points xA and xB, may instead be applied so that the map Q̂(λ, ξ) is de�ned as

q = Q̂(λ, ξ) = Q(λ)+ ξ, ξ ∼ N(0, σ2I).

Competing hypothesized models of Q̂ may also be the result of differing expert opinions.

Below, we compare the data consistent updates using the additive noise model versus the

embedded location noise model above to illustrate (1) the potential of this framework for dis-

tinguishing the capabilities of competing models for constructing data-consistent updates, and

(2) the impact on inferences drawn on physical parameters.

First, we discuss a useful numerical diagnostic. If the predictability assumption is satis�ed,

then constructing r̂(λ, ξ) results in the formal construction of the density π̂update. Subsequently,

we have that

E(r̂(λ, ξ)) =

∫

Λ×Ξ

r̂(λ, ξ)π̂init(λ, ξ) =

∫

Λ×Ξ

π̂update(λ, ξ) = 1.

The above is true for any Q̂ and π̂init that satisfy the predictability assumption. This integral is

estimated in practice using a Monte-Carlo technique by re-using the initial predicted samples

generated in the accept-reject algorithm to construct estimated samples of r̂(λ, ξ). In other

words, we may estimate this integral using only knowledge of the initially predicted output

quantities. When the sample average of r̂(λ, ξ) deviate signi�cantly from 1 (i.e., more so than

expected from �nite-sampling error), this indicates a violation of the predictability assumption

(see [5] for more details on this diagnostic for deterministic maps). Thus, sample averages of

r̂(λ, ξ) prove to be useful numerical diagnostics in evaluating the capability of a map Q̂ to solve

the inverse problem.

For the additive noise model, we propose an initial distribution for the noise ξ ∼
N(0, 0.08252I). For the location noise model, we propose an initial distribution for the noise

terms ξA, ξB ∼ N(0, 0.08252I).
Figure 10 shows a comparison of the data consistent updated (i.e., accepted) samples from

applying algorithm 1 with the additive noise model (left) or location noise model (right) using

the same initial samples. Both updated sample sets include awider range of physical parameters

that are consistent with the data than in the previous example where the data (and map) had

no additional stochastic uncertainties. This is expected since the new maps can predict likely

QoI data using wider ranges of physical parameter values than the map Q. In other words,

the introduction of stochastic sources of uncertainty in a map will in general lead to a reduction

in the degree of updating of physical parameters. This is analogous to avoiding over-�tting a

model.

Despite the qualitative similarity either map produces in the range of updated physical

parameter samples consistent with the new data, substantial quantitative and qualitative dif-

ferences exist that are explainable by the diagnostic. In the case where the stochastic noise

is modeled correctly (location uncertainty), E(r̂(λ, ξ)) ≈ 0.981, whereas when modeled incor-

rectly (additive noise), E(r̂(λ, ξ)) ≈ 0.846. Thus, for this situation, the additive noise model

appears to violate the predictability assumption and is overall insuf�cient for describing data

with variations partially due to location uncertainties in the device setup. The impact of this on
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Figure 10. Shows data consistent updates using the additive noise model (left)
and the location noise model (right) for simulated data where (λ1,λ2) ∼
U ([0.75, 1.45]× [1.6, 1.85]) and observations are polluted with noise in location
measurements.

the updated sample is also qualitatively apparent where the physical parameters in the ‘target’

region responsible for the data is signi�cantly under-sampled by the additive noise model map.

5.2. An elliptic PDE with uncertain diffusion

5.2.1. Motivation. In reservoir engineering and other subsurface applications, a partial dif-

ferential equation (PDE) is often used to model the �ow of oil, water, and other gases or

contaminants in the subsurface (e.g., see [24]). The spatially heterogeneous structure of poros-

ity, geological layering of rock types, and other subsurface characteristics impact many of

the coef�cients (i.e., the physical parameters) appearing in such PDEs. To model the spatial

heterogeneity of these physical parameters, random �elds with a speci�ed spatial covariance

are often used to allow for computationally tractable and accurate representations as trun-

cated Karhunen–Loève (KL) expansions [14, 16]. In the context of this work, the physical

parameters refer to the coef�cients of a truncated KL expansion. We demonstrate that by

including a stochastic parameter embedded in the diffusion coef�cient de�ned by a low-order

truncated KL expansion, it is possible to obtain inferences about physical parameters that are

more alignedwith using higher-order truncatedKL expansionswithout incurring the additional

cost of constructing such expansions.Moreover, as mentioned in section 4.3, the computations

involving the higher-order truncated KL expansions use algorithm 1, which demonstrates the

ability of the algorithm to be applied to high-dimensional input spaces.

5.2.2. Model and inverse problem. Consider the following incompressible �owmodel, which

describes the pressure �eld p in terms of a permeability �eld K(λ; x) and simple boundary

conditions:





−∇ · (K(λ; x)∇p) = 0, x ∈ Ω = (0, 1)2

p= 1, x1 = 0

p= 0, x1 = 1

K∇p · n = 0, x2 = 0 and x2 = 1

(13)

We represent the permeability �eldK(λ; x) by using a transformationof theKL expansion of

aGaussian process. In particular, letK(λ; x) = exp(Y+ Ȳ), where Ȳ is themean of theGaussian
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Figure 11. The �rst four eigenfunctions computed on a 10 × 10 mesh.

process. Then de�ne Y using the KL expansion as

Y(λ; x) =

∞∑

i=1

λi ·
√
ηi · fi(x) (14)

where the λi are independent identically distributed N(0, 1) random variables and (ηi, fi)
are the eigenvalue–eigenfunction pairs associated with the exponential covariance function

C(x, y) = exp(|x1 − y1|/3+ |x2 − y2|/2).We use a stochastic �nite element approach [14, 16]

to numerically estimate the eigen-pairs by forming a generalized eigenvalue problem. Specif-

ically, since the correlation lengths in C(x, y) are large relative to the size of Ω, we perform

all computations for the KL expansion and representations of the variability of the diffusion

coef�cient on a triangulation of a 10× 10 mesh using piecewise-linear continuous functions,

which is suf�cient for maintaining the accuracy of the lower-order eigenfunctions considered

in this example (see �gure 11).

We refer to the 10× 10 mesh as the parameter mesh to emphasize that it is chosen specif-

ically to represent the variability in the diffusion coef�cient. For simplicity, we abuse nota-

tion slightly and refer to the numerical approximations to ηi and fi as the eigenvalues and

eigenfunctions associated to C(x, y) where

fi(x) :=

DOF∑

j=1

fi, jϕ j(x),

and ϕj(x) de�nes the jth ‘tent’ function (i.e., basis function) at the jth degree of freedom (DOF)

for the �nite element space de�ned on this parameter mesh.
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Figure 12. Shows three sample permeability �elds (rows) for three KL expansion
approximations: a baseline generated by truncating after four terms (left), a reference
generated by truncating after 100 terms (middle), and an expansion with four terms plus
the additional stochastic parameters ξj (right).

Numerically computing the �rst 100 pairs of eigenvalues and eigenfunctions reveals that

approximately 90% of the variance in the random �elds is maintained by truncating at the

fourth term4. In other words, the parameter mesh is used to represent how variations in the

so-called physical parameters λ1, . . . ,λ4 map to variations in K(λ; x).
We then use a triangulation of a 20× 20 mesh to solve (13) using standard piecewise-

linear �nite elements. This is referred to as the computational mesh. The computational mesh

is chosen �ner than the parameter mesh to ensure that the length-scales for which the dif-

fusion parameters vary are suf�ciently resolved and any deterministic numerical errors are

subsequently neglected in the solution of the PDE. For example, see the left column of plots

in �gure 12 for samples of the permeability �eld that exhibit variability on the order of a

magnitude over a fraction of the length scale of the physical domain.

The goal of the inverse problem is to use an observed distribution of the pressure �eld p

at the point (0.25, 0.5) to obtain an updated distribution of the physical parameters λ1, . . . ,λ4

where the initial distribution is given byN(0, I) where 0 ∈ R4 and I is the 4× 4 identity matrix.

As this is a toy problem, the observed distribution in this case is simply speci�ed to beN(µ, σ2)

with µ = 0.68 and σ2 = 10E− 4. In more realistic settings, an observed distribution may be

speci�ed as part of an engineering goal assuming some control on the physical parameters

is possible, e.g., using direct intervention in the design of an engineered or physical system.

4This was also numerically veri�ed by recomputing the �rst 100 pairs of eigenvalues and eigenfunctions on a 50× 50

mesh where the maximum difference in the L2-norm between any eigenfunctions was 0.5.
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The solution to the inverse problem is thus interpreted as describing the variabilities in physical

parameters that lead to this particular observed distribution.

5.2.3. Representing the stochastic parameter. While the truncated KL expansion maintains

a signi�cant amount of the variation initially modeled by the diffusion parameters K(λ; x),
approximately 10% of the variability in this true physical parameter has been removed by

the truncation. Thus, we do not expect that all of the variability in observed data is due to

only the variations in the truncated KL expansion. However, if we solve the stochastic inverse

problem using only the truncated KL expansion, then, by construction, the updated distribution

on λ1, . . . ,λ4 must necessarily propagate forward to the speci�ed observed distribution. We

therefore seek a stochastic parameter to account for variability in model outputs that are not

entirely due to the physical parameters retained by the truncated KL expansion. Here, we seek

a random function δ(ξ; x) de�ned on the parameter mesh such that

δ(ξ ; x) ≈
∞∑

i=N+1

λi ·
√
ηi · fi(x).

In other words, we de�ne a random function δ(ξ; x) parameterized by a stochastic parame-

ter ξ which approximates the variability in the diffusion coef�cient not accounted for by the

truncation of the KL expansion.

A simple approach for constructing such a stochastic parameter is to ignore any correlation

structure of the remaining terms of the KL expansion and construct a residual spatial variance

model. Speci�cally, we de�ne stochastic parameter ξ = (ξ j) ∈ RDOF where ξ j ∼ N(0, σ2
j ) is

de�ned at each of the DOF of the parameter mesh (i.e., DOF = 100) with magnitude of the

variance at the jth degree of freedom, σ2
j , approximated by

σ2
j =

√√√√1−
4∑

i=1

ηi fi(x j)

which requires minimal additional computation since the eigenvalues, ηi, and eigenfunctions,
fi, have already been computed for 1 6 i 6 4. This produces a computationally tractable log-

permeability �eld Ŷ(λ) as a function of both physical and stochastic parameters:

Ŷ(λ, ξ ; x) =
4∑

i=1

λi ·
√
ηi fi(x)+

DOF∑

j=1

ξ jϕ j(x). (15)

In other words, δ(ξ; x) is given by the right-most term above.

5.2.4. Defining a reference. The approximations and constructions described above are

dependent on an appropriate choice of truncation term and parameter mesh used for the KL

expansion. In general, such choices are functions of the correlation lengths of the covariance

function C(x, y). For the purposes of this example, we simply show that the choice of approx-

imations and incorporation of a stochastic term embedded in the model provides some clear

qualitative bene�t to the representation of the permeability �eld and the inferences drawn by

solving the stochastic inverse problem. However, this requires de�ning some point of refer-

ence. Here, the point of reference is the solution obtained when the KL expansion is truncated

at the 100th term.
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Figure 13. Shows the data consistent update for each parameter λi of the KL expansion
using either the deterministic, reference, or stochastic QoI.

In �gure 12, we show the variability of three different permeability �elds obtained when

truncating the KL expansion at the fourth term (left column), 100th term (middle column,

de�ning the reference �elds), and when the stochastic parameter is sampled and added to the

lower-order truncation (right column). Plots are generated on the computational mesh, i.e.,

permeability �elds are generated on the parameter mesh and then projected onto the compu-

tational mesh since this is the form of the �elds that appears in the numerical solution of the

PDE. Each row has a �xed vector for the λ1, . . . ,λ4 values. We observe �ner-scale features in

the permeability �elds in the middle and right columns than in the left column. Qualitatively,

the addition of the stochastic term appears to capture some of the �ner-scale features present

in the reference �elds.

5.2.5. The updated PDFs. In what follows, we refer to the QoI map obtained by solving (13)

using the four termKL expansion as the deterministicQoI, using the 100 termKL expansion as

the reference QoI, and using the four term KL expansion with the additional stochastic param-

eter impacting the diffusion coef�cient the stochastic QoI. We summarize all of the updated

PDFs obtained on the physical parameters, λ1, . . . ,λ4, using the variousQoI maps in �gure 13.
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Figure 14. Shows initial predictions (left) and updated predictions (right) of the QoI
compared to the observed density for each of the KL approximations (deterministic,
reference, and stochastic).

In �gure 14, we show the push-forward of these updated densities through each of the maps to

verify that each QoI map separately solved the stochastic inverse problem correctly (i.e., the

predictability assumption holds for all the maps).

For λ1,λ2, and λ4, the updated marginal PDFs are qualitatively similar across all maps.

Moreover, they are not signi�cantly different from the initial PDFs for each of these parameters

suggesting that the various QoI maps are not sensitive to these particular parameters. However,

for the third physical parameter, λ3, the updated marginal PDFs are all signi�cantly different

from the initial PDF for all QoI maps. This suggests two things. First, all the QoI maps are

sensitive to this parameter. Second, a signi�cant amount of the variation in the observed PDF is

explained by the distribution of this parameter. This is explained by a quick reviewof themodel,

the type of measurement de�ned by the QoI, and the eigenfunctions associated with each of

the physical parameters. First, the boundary conditions in (13) imply that the pressure drops

from 1 to 0 as we move from the left-boundary to the right-boundary.Second, the measurement

location of p is biased towards the left-half of the domain (x1 = 0.25) and is in the center of

the vertical portion of the domain (x2 = 0.5). Combined, we would expect this measurement

to be more sensitive to perturbations of permeability �eld values that primarily impact the

variation of permeability as we move in the x1-direction. It is evident from the eigenfunctions

in �gure 11 that such perturbations occur by varying λ3.

Further examination of the updated marginal PDFs for λ3 also reveal that the determinis-

tic QoI leads to an ‘over-updating’ of the initial PDF compared to the update obtained from

the reference or stochastic QoI. This is due to the fact that each QoI map creates an updated

PDF that must be consistent with the observations in the sense that their associated push-

forwards will match the observed PDF (as seen in �gure 14). For the deterministic map, this

requires that all variations in the observations must be explained by variations in the physical

parameters λ1, . . . ,λ4. For the reference and stochastic maps, variations in other parameters

(additional physical parameters for the reference map and the stochastic parameters for the

stochastic map) can explain some of the variability in the observations. While the focus of this

work is not on constructing stochastic maps but rather extending the data-consistent framework

to apply to stochastic maps, this still highlights an important point about the utility of consid-

ering stochastic maps within this framework. Speci�cally, by accounting for variations in the
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output data associated with a (potentially deterministic) model that are not due to variations

in a (potentially limited) set of physical parameters, we can obtain inferences on the physical

parameters that are more aligned with higher-�delity references. Moreover, it may be possi-

ble to achieve such ‘enhanced’ inferences at a fraction of the computational cost required in

constructing such references. However, we leave the general problem of identifying potential

sources of uncertainty in models and accounting for those with proper stochastic parameter

choices to future works as such modeling is heavily application/domain speci�c.

6. Conclusions and future work

Extending the data-consistent framework to stochastic maps greatly widens the class of prob-

lems that may be solved with this approach. In practice, it is rarely the case that a QoI map

from parameters of interest to the data space is known exactly. Nonetheless, by incorporat-

ing and modeling the uncertainty in the QoI map, it is still possible to obtain an informa-

tive update of the uncertainties in parameters of interest. The theoretical analysis described

in sections 3 and 4 ensure that such a data-consistent update exists in the form of a joint

distribution whose marginal can be sampled from directly. In addition, the update is stable

as long as the assumption of predictability is satis�ed.

In section 5, we demonstrate some of the �exibility provided by this methodology. With

the data consistent approach, the researcher has a great deal of choice in how to model the

additional variation or noise that is observed in the data. Such variation may be modeled as

additive noise in the resulting observations, but may also enter into the model in a variety

of other more complex embeddings, such as speci�c errors in an experimental setup (e.g.,

example 5.1) or general approximations of random processes (e.g., example 5.2). This is

reminiscent of the kind of �exibility provided by mixed effect models, where statisticians use

information about the structure of experiments to improve the quality of their inferences except

that the data-consistent framework is not restricted to linearmodels. Future researchmay reveal

applications for the data-consistent approach in modeling aleatoric-type uncertainty in similar

contexts.

One notable feature of this data-consistent framework is that the additional variation need

not be modeled explicitly as long as parameters of interest can be paired with correspond-

ing predicted data values. This is particularly useful in several scenarios including, but not

limited to, experimental settings where only certain covariates can be controlled/measured

between trials and also large-scale computational models where complex stochastic processes

are employed unbeknownst to the user to compute model predictions.

We show in section 5.2 that the algorithm is easily applied to a parameter space of 100-

dimensions for computing the reference results. As mentioned in section 4.3, the algorithm

scales well with increasing parameter dimension for a �xed data space and variance of the

predicted density since the computations required to determine the ratios in algorithm 1 occur

in the data space. However, as the dimension of the data space increases, we may require

signi�cantly more samples to compute accurate estimates of the predicted density with a

GKDE.When obtaining a QoI sample is expensive (either experimentally or computationally),

it may only be possible to generate a relatively low number of predicted samples. There are

several on-going and future research efforts we are pursuing to address this issue. As algo-

rithms are developed and analyzed, we will incorporate these into the open-source Python

library vert BETvert [15]. A future vert BETvert project is to develop and encode criteria for

automatically choosing an algorithm based on the dimensions of spaces and the number of QoI

samples available either experimentally or due to a computational budget.
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