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Existence of Transonic Solutions in the Stellar Wind Problem with Viscosity and
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Abstract. The one-fluid stellar wind problem for steady, radial outflow is considered, including e↵ects of heat

conduction and viscosity. The associated nondimensionalized equations of conservation of mass,

momentum, and energy are singularly perturbed in the large Reynolds number limit, and stellar wind

profiles are constructed rigorously in this regime using geometric singular perturbation techniques.

Transonic solutions, which accelerate from subsonic to supersonic speeds, are identified as folded

saddle canard trajectories lying in the intersection of a subsonic saddle slow manifold and a supersonic

repelling slow manifold, returning to subsonic speeds through a viscous layer shock, the location of

which is determined by the associated far-field boundary conditions.
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1. Introduction. A wide body of literature exists on the study of spherically symmetric,
steady flow in relation to the stellar wind and accretion problems in astrophysical gas dynam-
ics. These problems concern the outflow and inflow of matter from a massive body, such as
a star, under the influence of the body’s gravity. This work concerns transonic outflows of
matter being ejected from the surface of a star (referred to herein as stellar wind), in which
gas accelerates from subsonic to supersonic speeds at some critical radius, before returning
to subsonic speeds in the far field. Since Parker’s formulation [27], there have been numerous
studies of one-fluid models of stellar wind [1, 2, 11, 12, 21, 26, 33, 34] in which numerical
and/or asymptotic methods have been employed in analyzing a variety of physically relevant
solutions, including those which remain at subsonic speeds for the entire domain, as well as
transonic solutions. When the e↵ects of heat conduction and viscosity are neglected, the tran-
sonic solutions pass through a singularity, called the sonic point, at which the transition from
subsonic to supersonic flow is possible [11]. However, the inclusion of heat conduction and
viscosity introduces a regularizing e↵ect which removes the singularity and allows for smooth
transonic solutions near the sonic point.

In the small viscosity (large Reynolds number) limit, the challenge comes from the fact that
the problem is singularly perturbed, and our aim is to analyze the existence of such transonic
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TRANSONIC SOLUTIONS IN THE STELLAR WIND PROBLEM 263

stellar wind solutions rigorously in the context of geometric singular perturbation theory;
these methods allow for the construction of smooth solutions by considering the underlying
geometry of the equations on di↵erent spatial scales and piecing together this information
to build solutions of the full problem. In this context, transonic solutions arise as canard

trajectories [37], which manifest as intersections of repelling and attracting slow manifolds.
Canards are frequently important in understanding the dynamics in singularly perturbed
dynamical systems and arise naturally in applications in mathematical biology, physiology, and
physics. In the context of transonic flows, canards have been shown to organize the dynamics
of the hydrodynamic escape problem [13] and the dynamics of flow through a nozzle [14, 16,
17, 24]; in particular, sub-to-supersonic canard trajectories analogous to those considered here
have been analyzed in [16] in relation to flow through contracting-expanding nozzles.

In the context of stellar winds, prior work [4] demonstrated the existence of transonic
solutions in a related setting; these solutions arise as canard trajectories lying in the inter-
section of attracting and repelling branches of a two-dimensional slow manifold, accompanied
by a viscous shock to return to subsonic speeds in the far field. However, in [4], viscosity was
assumed constant, and the e↵ects of heat conduction were neglected in favor of a simplified
assumption of isentropic (constant entropy) flow. It should be noted that this assumption
is, at best, a rough approximation in this context, given that shocks are associated with a
change in entropy. Additionally, one expects that the e↵ect of thermal di↵usivity is of greater
magnitude than that of viscosity in the context of stellar wind, and therefore a treatment of
the stellar wind phenomenon should include both e↵ects. In this spirit, the goal of the current
work is to analyze stellar winds, relaxing the assumption of isentropic flow, retaining heat
conduction, and allowing the viscosity to depend on temperature. Ultimately, the e↵ect on
the analysis is that the resulting equations for stationary solutions are of higher order; this
introduces some technical challenges in the construction of canard orbits which satisfy the
far-field boundary conditions.

We consider a star of mass M at rest in an infinite gas cloud with an ambient density
⇢1, thermodynamic pressure p1, and temperature T1 at infinity. In the entire domain, we
assume that the pressure, p, is related to the density ⇢ and temperature T of the system by
the ideal gas law, i.e.,

p = p(⇢, T ) = ⇢RT,(1.1)

where R > 0 is the specific gas constant. We consider spherically symmetric flow under the
force of gravity only, with force in the radial component

F = �⇢
GM

r2
r̂,(1.2)

where G > 0 is the gravitational constant and r � 0 is the radial distance. The dynamics
for the one-fluid model of the stellar wind are then governed by the compressible, viscous
Navier–Stokes equations describing conservation of mass, momentum, and energyD
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(1.3)

where ⌧ denotes time, u 2 R is the radial velocity, e = p
⇢(��1) is the internal energy, and

1 < � < 5
3 is the ratio of specific heats [1]. Here u > 0 corresponds to outflow (stellar wind,

i.e., away from the star) and u < 0 corresponds to inflow (accretion, i.e., toward the star).
While we focus on the outflow problem in this paper, the techniques could be adjusted in
a straightforward fashion to apply to the corresponding inflow problem as well. The flow is
considered to be subsonic if |u| < c and supersonic if |u| > c, where

c :=

✓
�⇢

p

◆ 1
2

=
p
�RT > 0(1.4)

is the adiabatic speed of sound. We include the e↵ects of both temperature-dependent viscosity
and heat conduction, though under the assumption that viscosity and thermal di↵usivity are
small; that is, we consider the regime of large Reynolds number and large Péclet number.
We further assume that thermal di↵usivity dominates viscosity so that the corresponding
Prandtl number, equivalent to the ratio of the Péclet number and Reynolds number, is small.
We further assume that the viscosity, ⌘ = ⌘(T ), and the thermal conductivity, ⇣ = ⇣(T ),
are both increasing functions of temperature. The specific dependence of ⌘(T ) and ⇣(T )
will be discussed later in this paper, though our analysis is valid in particular for functions
⌘(T ), ⇣(T ) / T!,! > 1.

In this setting, the model (1.3) admits families of solutions which are subsonic on the entire
domain, as well as transonic solutions which accelerate to supersonic speeds through the so-
called sonic point and decelerate to subsonic speeds in the far-field via a viscous shock, the
location of which is determined by the far-field boundary conditions. Analogously to [4], these
transonic solutions appear as canards, though due to the addition of the full energy equation
in (1.3), the associated equations are of higher order, and thus the state space dimension is
larger. The canard trajectories lie on the intersection of a saddle-type slow manifold and a
normally repelling slow manifold in a four-dimensional singularly perturbed dynamical system
(this is in contrast to those seen in, e.g., [9], in which the canard orbits lie on the intersection
of attracting and saddle-type slow manifolds), and the transition to subsonic speeds in the far-
field occurs through a fast heteroclinic orbit in the two-dimensional layer problem. The exact
choice of heteroclinic orbit traversed is determined by boundary manifolds at infinity which
select the correct far-field boundary conditions; these are obtained through a compactification
procedure.D
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The remainder of this paper is outlined as follows. In section 2, we describe the setup
and statement of our main existence results, and we nondimensionalize the equations which,
in the large Reynolds number limit, results in a singular perturbed dynamical system in the
radial coordinate. The singular slow and fast limits of this system are analyzed in section 3 in
the context of geometric singular perturbation theory, and we construct families of singular
solution orbits. In section 4, we show that these singular orbits perturb smoothly to steady
stellar wind solutions of (1.3) satisfying appropriate boundary conditions, and we conclude
with a brief discussion in section 5.

2. Setup. We search for steady stellar wind profiles, for which (1.3) reduces to the fol-
lowing system of ordinary di↵erential equations in the radial coordinate r:

1

r2
d

dr

�
⇢r2u

�
= 0,(2.1)

1
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⇢u3 + ⇢ue+ pu

◆◆
=

1

r2
d

dr

✓
r2
✓
⇣
dT

dr
+

4

3
⌘(T )u

✓
du

dr
�

u

r

◆◆◆
� ⇢u
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.

(2.3)

In this section, we prepare these equations for the forthcoming analysis. In section 2.1, we
reduce (2.1)–(2.3) to a first order system, and we state our main results concerning transonic
stellar wind solutions in section 2.2. In section 2.3, we nondimensionalize the system, obtaining
a singularly perturbed dynamical system which will be analyzed using geometric singular
perturbation techniques in section 3.

2.1. Preparation of equations. The equation describing conservation of mass (2.1) can
be integrated immediately, so that ⇢r2u = K with constant mass flux K > 0 for the outflow
problem u > 0. We can therefore express the density ⇢ in terms of the radial distance r, and
velocity u as

⇢(r, u) =
K

r2u
> 0.(2.4)

Using the ideal gas law (1.1), the pressure, p(⇢, T ), can be represented as a function of r, u,
and the temperature T, given by

p(⇢(r, u), T ) = ⇢(r, u)RT =
KRT

r2u
> 0.(2.5)

We now consider the equation of momentum conservation (2.2), which after rearranging be-
comes
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from which we obtain
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We therefore define an auxiliary variable with physical dimensions of pressure

m := ⇢u2 + p�
4

3
⌘(T )

du

dr
�

8

3
⌘(T )

u

r
,(2.6)

which leads to the system
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4
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2u

r
⌘(T ).

(2.7)

Finally we consider the equation of energy conservation (2.3), which can be integrated once
using (2.4) and rearranged to yield
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where E is the specific energy (energy per unit mass) of the fluid, assumed to be positive.
Substituting (2.7) for ⌘(T )dudr and simplifying, we obtain
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= um+
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Combining the results from (2.7) and (2.9), and using the expressions (2.4) and (2.5) for the
density and pressure, respectively, we obtain the nonautonomous system of ODEs in r for
(m,u, T )
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(2.10)

which we consider on the interval r 2 (r0,1) where r0 denotes a nonzero reference radial
distance (for instance, the stellar surface).

2.2. Statement of main result: Stellar wind solutions. In this section, we state our main
existence result concerning transonic stellar winds. We define c to be the speed of sound

c =
p
�RT.(2.11)

A solution to (2.10) is then subsonic whenever |u(r)| < c and supersonic whenever |u(r)| > c.
A transonic solution (m,u, T ) = (m(r), u(r), T (r)) on the interval r 2 (r0,1) to (2.10)
satisfies the following:

(i) The velocity profile u(r) is subsonic at the inner boundary r = r0 and asymptotically
subsonic as r ! 1.

(ii) u(r) is supersonic for some interval I, where I ⇢ (r0,1) is a bounded interval.D
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Given fixed mass flux K > 0, specific energy E > 0, and stellar radius r0, the system (2.10)
supports steady transonic stellar wind solutions under certain constraints on the asymptotic
physical boundary conditions; otherwise only subsonic solutions are supported. We have the
following.

Theorem 2.1. Consider (2.10) for any fixed � 2 (1, 5/3) and su�ciently small Prandtl

number ✓ > 0. There exists k1 such that for any fixed asymptotic temperature T1 2 (0,1)
and asymptotic pressure p1 2 (0,1), the following holds:

(i) If p21 > k1T1 or r0 >
GM(5�3�)
4E(��1) , then for any su�ciently large Reynolds number Re

� 1, there exists a pressure, p(r0) = p0, and temperature, T (r0) = T0, at the stellar

surface r = r0 that supports a steady subsonic solution for r 2 (r0,1) satisfying

(m(r), T (r)) ! (p1, T1) as r ! 1.

(ii) If p21 < k1T1 and r0 <
GM(5�3�)
4E(��1) , then for any su�ciently large Reynolds number Re

� 1, there exists a pressure, p(r0) = p0, and temperature, T (r0) = T0, at the stellar

surface r = r0 that supports a steady transonic stellar wind solution for r 2 (r0,1)
satisfying (m(r), T (r)) ! (p1, T1) as r ! 1.

Remark 2.2. We briefly comment on the two conditions in Theorem 2.1 which determine
whether transonic stellar wind solutions are supported for the given physical boundary con-
ditions. The first condition relates the asymptotic pressure and temperature which, through
the ideal gas law, can also be related to the corresponding asymptotic density. We find that
if the asymptotic pressure is too large relative to the temperature, only subsonic solutions are
supported, while lower relative values of the pressure can support transonic winds. We will
show in section 4 that the constant k1 can be determined explicitly as

k1 =
K2R

�

✓
2(� � 1)E

GM

◆4

(10� 6�)
5�3�
��1 .

The second condition concerns the stellar radius r0. We will show that winds which are
subsonic at the stellar surface can only accelerate to supersonic speeds by crossing the corre-
sponding sonic point, which occurs at the critical radius r = GM(5�3�)

4E(��1) . Hence if the stellar
radius extends further than this critical radius, no transonic winds are supported.

Remark 2.3. It can be determined immediately from the critical radius r = GM(5�3�)
4E(��1) of

the sonic point that transonic solutions exist only in the physical regime � 2 (1, 5/3), as the
sonic point occurs at r = 0 (resp., r = 1) in the limit � ! 5/3 (resp., � ! 1). Furthermore,
we will show in section 4.4 that for values of � 2 (3/2, 5/3), while transonic solutions can
exist, the physical velocity decelerates when crossing the sonic point, due to the fact that
c decreases rapidly through the sonic point. We therefore determine that only for values of
� 2 (1, 3/2) does the system admit transonic solutions which accelerate through the sonic
point [6, 13, 38].

2.3. Dimensional analysis. We first transform the system (2.10) to dimensionless vari-
ables by introducing reference scales for the variables (r,m, u, T ). As a reference velocity, we
choose the speed of sound c, as defined in (2.11), and we setD
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u = cv,(2.12)

where v is the local Mach number. Note that this rescaling depends on the spatial coordinate r
through the temperature T . We then introduce constant reference scalings (to be determined)
for the remaining variables as

r = krs, m = kmn, T = kT t,(2.13)

where kr, km, kT > 0. Additionally, the viscosity and thermal conductivity are assumed to
scale as ⌘(T ), ⇣(T ) / T! with ! = 5/2 [1, 5, 7, 11], and we therefore set

⌘(T ) = ⌘0⌘̄(t), ⇣(T ) = ⇣0⇣̄(t),(2.14)

where

⌘̄(t) = ⇣̄(t) = t5/2.(2.15)

Here the quantities ⌘0 and ⇣0 contain all the dimensional information about the viscosity
and the thermal conductivity, respectively, while ⌘̄(t) and ⇣̄(t) capture how the viscosity and
thermal conductivity scale in t. While we fix the exponent ! = 5/2 for clarity of presentation,
we remark that the following analysis could be modified to hold for any ! > 1.

Substituting these scalings into (2.10), and using the relations

d⌘(T )

dr
=
⌘0
kr
⌘̄0(t)

dt

ds
,

d(cv)

dr
=

p
�RkT
kr

✓
v

2
p
t

dt

ds
+
p
t
dv

ds

◆
,

(2.16)

we arrive at the nondimensionalized system
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v
p
tn�

�KR

2⇣0kr

v2t

s2
�

GMK

⇣0k2rkT

1

s3
+

4�⌘0R
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KR
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s2
�

EK
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1

s2

!
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(2.17)

We now introduce the following dimensionless quantities:

1

"R
:=

K

⌘0kr
,

1

"P
:=

K�R

⇣0kr(� � 1)
,(2.18)

where "R is the inverse Reynolds number and "P is the inverse Péclet number [1]. We consider
the regime in which the Reynolds number and the Péclet number are both large, and thusD
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we have that 0 < "R, "P ⌧ 1 [11]. We also introduce the Prandtl number as the ratio of the
Péclet and Reynolds numbers

✓ :=
⌘0�R

⇣0(� � 1)
=
"R
"P

.(2.19)

In the context of stellar winds, it is reasonable to expect that thermal di↵usivity dominates
e↵ects of viscosity, and hence the Prandtl number is assumed small, with estimates on the
order of 10�2 [21, 36, 40]. Therefore, in our analysis we consider the regime 0 < "R ⌧ ✓ ⌧ 1,
and we will use the Prandtl number to eliminate the Péclet number from the analysis; we
therefore remove the subscript from "R and denote " := "R.

We further choose the reference scalings

kr :=
GM

E↵
, km :=

KE2↵2

G2M2

s
E

� � 1
, kT :=

E(� � 1)

�R
,(2.20)

for some ↵ > 0 to be determined. With these scalings, after some rearranging, we arrive at
the nonautonomous system

dn

ds
= �2(� � 1)

v
p
t

s3
�

↵

v
p
ts4

� 4(� � 1)
v
p
t

s
⌘̄0(t)'(s, n, v, t, ✏),

"
dv

ds
=

3

4⌘̄(t)

✓
v

s2
+

1

�

1

vs2
�

1

� � 1

n
p
t

◆
� 2"

v

s
�

1

2

v

t
'(s, n, v, t, ✏),

"
dt

ds
=

✓

⇣̄(t)

✓
vn

p
t�

� � 1

2

v2t

s2
�
↵

s3
+

1

�

t

s2
�

1

s2
+ 4"(� � 1)⌘̄(t)

v2t

s

◆
,

(2.21)

where the quantity '(s, n, v, t, ✏), which appears in the first two equations, is shorthand for
the right-hand side of the third equation for temperature

'(s, n, v, t, ✏) :=
✓

⇣̄(t)

✓
vn

p
t�

� � 1

2

v2t

s2
�
↵

s3
+

1

�

t

s2
�

1

s2
+ 4"(� � 1)⌘̄(t)

v2t

s

◆
.(2.22)

3. Slow/fast analysis. We now view the nondimensionalized equations (2.21) as a singu-
larly perturbed dynamical system with small parameter "⌧ 1. The parameter ✓ will also be
taken small in the analysis, but since we assume " ⌧ ✓ ⌧ 1, the e↵ect of ✓ in (2.21) is that
of a regular perturbation. We next introduce a dummy variable y = s to make the system
autonomous, resulting in the four-dimensional autonomous system

ds

dy
= g1(s, n, v, t, ") := 1,

dn

dy
= g2(s, n, v, t, ") := �2(� � 1)

v
p
t

s3
�

↵

v
p
ts4

� 4(� � 1)
v
p
t

s
⌘̄0(t)'(s, n, v, t),

"
dv

dy
= f1(s, n, v, t, ") :=

3

4⌘̄(t)

✓
v

s2
+

1

�

1

vs2
�

1

� � 1

n
p
t

◆
� 2"

v

s
�

1

2

v

t
'(s, n, v, t, ✏),

"
dt

dy
= f2(s, n, v, t, ") :=

✓

⇣̄(t)

✓
vn

p
t�

� � 1

2

v2t

s2
�
↵

s3
+

1

�

t

s2
�

1

s2
+ 4"(� � 1)⌘̄(t)

v2t

s

◆
.

(3.1)
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The system (3.1) can now be viewed as a “slow-fast” dynamical system with two “slow”
variables (s, n) and two “fast” variables (v, t), and timescale separation parameter 0 < "⌧ 1.
We refer to (3.1), which evolves on the slow timescale y as the slow system. By rescaling the
dummy variable y = "z, we obtain the equivalent system

ds

dz
= "g1(s, n, v, t, "),

dn

dz
= "g2(s, n, v, t, "),

dv

dz
= f1(s, n, v, t, "),

dt

dz
= f2(s, n, v, t, ")

(3.2)

on the fast timescale z, which we refer to as the fast system.

3.1. Singular limits. The systems (3.1) and (3.2) are equivalent for any " > 0. The idea
of geometric singular perturbation theory is to infer information about the solutions of the
full system for " > 0 by separately analyzing the singular limiting systems obtained by taking
the limit "! 0 in each of (3.1) and (3.2).

Setting " = 0 in (3.2) in this way results in the layer problem,

ds

dz
= 0,

dn

dz
= 0,

dv

dz
= f1(s, n, v, t, 0),

dt

dz
= f2(s, n, v, t, 0),

(3.3)

in which the variables (s, n) are no longer dynamic and instead act as parameters in the
resulting planar system

dv

dz
= f1(s, n, v, t, 0),

dt

dz
= f2(s, n, v, t, 0)

(3.4)

for the “fast” variables (v, t), called the fast subsystem. This system has a set of equilibria,
called the critical manifold, given by

S0 :=
�
(s, n, v, t) 2 R4 : F (s, n, v, t, 0) = 0

 
, F (s, n, v, t, ") :=

0

@f1(s, n, v, t, ")

f2(s, n, v, t, ")

1

A .(3.5)
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If we now set " = 0 in (3.1), this results in the reduced problem:

ds

dy
= g1(s, n, v, t, 0),

dn

dy
= g2(s, n, v, t, 0),

0 = f1(s, n, v, t, 0),

0 = f2(s, n, v, t, 0),

(3.6)

in which the flow is restricted to the critical manifold S0, and the dynamics on S0 are governed
by the first two equations for the “slow” variables (s, n).

3.2. The layer problem. The flow for the layer problem (3.3) is restricted to planes of
constant (s, n), in which any fixed point solutions must lie on the critical manifold. This
manifold is a folded surface, formed by two branches of hyperbolic fixed points, one of which
consists of saddle equilibria and the other of repelling equilibria separated by a fold curve of
nonhyperbolic fixed points; see Figure 1. This is the content of the following.

Proposition 3.1. The critical manifold S0 = S
sub
0 [ F [ S

super
0 is folded with a subsonic

branch of hyperbolic saddle equilibria, S
sub
0 , a sonic fold curve, F , and a supersonic branch of

hyperbolic repelling equilibria, S
super
0 .

Proof. We compute the linearization of (3.3) evaluated along the critical manifold. The
critical manifold is found by simultaneously solving f1(s, n, v, t, 0) = f2(s, n, v, t, 0) = 0, and
we note that by definition of ' in (2.22), we have that '(s, n, v, t, 0) = f2(s, n, v, t, 0), so
that f2(s, n, v, t, 0) = 0 precisely when ' vanishes. We therefore solve the first term of
f1(s, n, v, t, 0) = 0 for n = n(s, v, t) by setting

n = n(s, v, t(v, s)) :=
(� � 1)

p
t(v, s)

s2

✓
v +

1

�v

◆
,(3.7)

Figure 1. Shown is the folded critical manifold S0, composed of a subsonic saddle branch Ssub
0 in the region

v < 1 and a supersonic repelling branch Ssuper
0 in the region v > 1, separated by the sonic fold curve F .
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where we obtain

t = t(v, s) :=
2(↵+ s)

s (v2(� � 1) + 2)
,(3.8)

by substituting (3.7) into f2(s, n, v, t, 0) = 0 and solving for t = t(v, s). Using these expres-
sions, and denoting by J |S0 the Jacobian of the fast subsystem (3.4) evaluated along the
critical manifold S0, we find that

J |S0 =

0

BBB@

3
4⌘̄(t)s2

⇣
1� 1

�v2

⌘
�

✓(��1)
2�s2⇣̄(t)

v2(��1)+2
2s(↵+s)

⇣
3

8⌘̄(t)

⇣
v + 1

�v

⌘
�

✓v(�+1)
4�⇣̄(t)

⌘

✓
⇣̄(t)

2(��1)(↵+s)
�vs3(v2(��1)+2)

✓
⇣̄(t)

�+1
2�s2

1

CCCA
,(3.9)

from which we compute

detJ |S0 =
3✓

4⇣̄(t)⌘̄(t)�s4v2
(v2 � 1),(3.10)

TrJ |S0 =
1

�s2

✓
3

4⌘̄(t)

✓
� �

1

v2

◆
+

✓

⇣̄(t)

◆
.(3.11)

Noting that ✓ > 0 and � > 1, in the region s, t, v > 0 we can therefore determine the stability
type of the fixed points on the critical manifold as summarized in Table 1.

We now examine the dependence of fixed points of (3.3) on the values of (s, n). Since
any such point must lie on the critical manifold, on which F (s, n, v, t, 0) = 0, we can solve
f1(s, n, v, t, 0) = 0 for t = t(s, n, v) to obtain

t = t(s, n, v) :=
n2s4v2�2

(� � 1)2(�v2 + 1)2
.(3.12)

Substituting this expression into f2(s, n, v, t, 0) = 0, we recover a quadratic in �v2,

(� � 1)

✓
(↵+ s)(� � 1)�

n2s5

2

◆�
�v2

�2
+
�
2 (↵+ s) (� � 1)2 � n2s5�

�
�v2 + (↵+ s) (� � 1)2 = 0,

(3.13)

which can be solved explicitly for v as

v = v±(s, n) :=

 
n2s5� � 2 (↵+ s) (� � 1)2 ± ns2

p
s (n2s5�2 � 2(↵+ s)(� + 1)(� � 1)2)

�(� � 1) (2(↵+ s)(� � 1)� n2s5)

!1/2

.

(3.14)

Table 1
Structure of the critical manifold S0.

v < 1 (subsonic) detJ |S0 < 0 saddle-type

v = 1 detJ |S0 = 0 nonhyperbolic

v > 1 (supersonic) TrJ |S0 > 0, detJ |S0 > 0 repellingD
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Substituting (3.14) into (3.12), and setting t±(s, n) := t(s, n, v±(s, n)), yields the location of
each root as a function of (s, n), as desired.

In the following analysis, in order to construct a transonic solution which returns to
subsonic speeds in the far field, we will require that there exist two distinct, real valued
solutions to (3.13), with one subsonic solution and one supersonic (see section 3.4). This
requirement requires a restriction on the possible values of (s, n) in the layer problem (3.3),
as shown in the following lemma.

Lemma 3.2. In order for there to exist two fixed points to the layer problem (3.3) in the

region v > 0 at a value of s > 0, the variable n must satisfy

�2 � 1

�2
<

n2s5

2(↵+ s)(� � 1)
< 1.(3.15)

Furthermore, under these conditions, we have that v� < 1 and v+ > 1, so that one of the fixed

points lies on the subsonic branch S
sub
0 and the other on the supersonic branch S

super
0 .

Proof. In order for both of the roots of (3.13) to be real valued, the discriminant of the
quadratic equation (3.13) must be positive, from which we obtain

n2s5

2(↵+ s)(� � 1)
>
�2 � 1

�2
.(3.16)

This inequality then implies

n2s5

2(↵+ s)(� � 1)
>
� � 1

�
,(3.17)

so in order to obtain two real, positive roots v±, the denominator in the expression (3.14)
must be positive, so that

n2s5

2(↵+ s)(� � 1)
< 1,(3.18)

from which we obtain (3.15). The inequality (3.15) can be rearranged as

nmin(s)
2 := 2

✓
↵+ s

s5

◆
(� + 1)(� � 1)2

�2
< n2 <

2(� � 1)(↵+ s)

s5
=: nmax(s)

2.

From the expression (3.14), we find that the value of v+(s, n) is increasing in n and is therefore
minimized when n2 = nmin(s)2. Thus,

v+(s, n)

>

 
n2s5� � 2 (↵+ s) (� � 1)2 ± ns2

p
s (n2s5�2 � 2(↵+ s)(� + 1)(� � 1)2)

�(� � 1) (2(↵+ s)(� � 1)� n2s5)

!1/2
������
n2=n2

min

= 1.D
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Likewise, after some rearrangement of the expression (3.14) for v�(s, n), we find that

v�(s, n) =

0

@ 2 (↵+ s) (� � 1)2

�
⇣
n2s5� � 2 (↵+ s) (� � 1)2 + ns2

p
s (n2s5�2 � 2(↵+ s)(� + 1)(� � 1)2)

⌘

1

A
1/2

(3.19)

from which we see that v�(s, n) is decreasing in n and is therefore maximized when n2 =
nmin(s)2, from which we obtain

v�(s, n) < 1

by a similar computation.

3.3. The reduced problem. We recall from the proof of Proposition 3.1 that along the
critical manifold S0, we can express

n = n (s, v, t(v, s)) :=
(� � 1)

p
t(v, s)

s2

✓
v +

1

�v

◆
,(3.20)

where

t(v, s) :=
2(↵+ s)

s (v2(� � 1) + 2)
.(3.21)

Substituting these expressions into (3.6) yields equations for the reduced dynamics on the
critical manifold in terms of (s, v) as

ds

dy
= 1,

dv

dy
=

1

s(1� v2)

✓
↵

4

5� 3�

� � 1
� s

◆✓
v(v2(� � 1) + 2)

↵+ s

◆
.

(3.22)

The corresponding dynamics for the value � = 1.4 are shown in Figure 2.
Note that the system is singular at s = 0 and v = ±1. To remedy this, we desingularize

the reduced dynamics by rescaling dy = s(1� v2)dȳ, resulting in the system

ds

dȳ
= s(1� v2),

dv

dȳ
=

✓
↵

4

5� 3�

� � 1
� s

◆✓
v(v2(� � 1) + 2)

↵+ s

◆
.

(3.23)

The phase portraits of the systems (3.22) and (3.23) are identical in the region s > 0, up to
a change of orientation in the supersonic region v2 > 1. Computing dv

ds from (3.23) (or equiv-
alently (3.22)) results in a separable equation which can be integrated to reveal that (3.23) is
conservative with level sets

E(s, v) :=
ln(v)

2
�

(� + 1) ln(v2(� � 1) + 2)

4(� � 1)
�

ln(s)

↵
+

(↵+ 1) ln(↵+ s)

↵
.(3.24)
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Figure 2. Shown is the reduced flow on the critical manifold S0 for � = 1.4, s0 = 0.55, s1 = 1.9. The
true and faux canards �f ,�c correspond to the energy level set E(s, v) = E0 and intersect at the sonic point
(s, v) = (1, 1). Also shown are the level sets corresponding to E(s, v) = E0�0.05 (black) and E(s, v) = E0+0.01
(red). Note that the latter level set is crossed transversely by the projected canard  (�c

) in the region s > 1.
The singular transonic solution �0 = �

c [ ⇡b
i [�b

0 is formed by (a portion of) the canard orbit �c, followed by
the fast jump ⇡b

i , and then the slow trajectory �b
0 on the subsonic branch Ssub

0 satisfying v = vb1 at s = s1.

Additionally, the desingularized system (3.23) admits a fixed point, called a folded singular-
ity [37], which is located at

(s⇤, v⇤) =

✓
↵(5� 3�)

4(� � 1)
, 1

◆
.(3.25)

We will see in the following analysis that this folded singularity allows for the smooth transition
from subsonic to supersonic speeds for small " > 0, and we therefore refer to this as the sonic

point. We now choose the (previously undetermined) scaling

↵ :=
4(� � 1)

5� 3�
> 0

for convenience, so that the location of the sonic point is fixed at

(s⇤, v⇤) = (1, 1)(3.26)

for all values of � 2 (1, 5/3). We have the following.

Proposition 3.3. The folded singularity is of saddle type for all values of � 2 (1, 5/3).

Proof. We calculate the linearization of the desingularized system (3.23) at the folded
singularity (3.26) asD
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Jfs =

0

@ 1� v2 �2sv

�
v(v2(��1)+2)(↵+1)

(↵+s)2
(1�s)(3v2(��1)+2)

↵+s

1

A

������
(s,v)=(s⇤,v⇤)

=

0

@ 0 �2

�(5� 3�) 0

1

A .(3.27)

We have that

detJfs = �2(5� 3�) < 0 for � 2 (1, 5/3)(3.28)

so that the folded singularity (3.26) is a folded saddle [37].

Associated with this folded saddle singularity are a pair of canard orbits, one which tra-
verses the sonic point from the subsonic branch to the supersonic branch as s increases, and
one which crosses the sonic point moving from supersonic to subsonic [37]. The former, which
we denote by �c, is referred to as the “true” canard, while the latter, which we denote by
�f , is sometimes called a “faux” canard. The distinguished true canard orbit �c provides a
means of accelerating from subsonic to supersonic speeds along the critical manifold via the
sonic point.

3.4. Construction of singular orbits. By combining orbits from the layer and reduced
problems, discussed in sections 3.2–3.3, we are able to construct singular orbits, which will
serve as candidates for transonic stellar wind solutions of the full problem (3.1) for 0 < "⌧ 1.
We recall from section 2.2 that a transonic stellar wind solution must be subsonic at the
stellar surface, which we denote by s = s0 in the rescaled radial coordinate, accelerating to
supersonic speeds in a bounded region in space, before returning to subsonic speeds in the far
field. Stated in the rescaled variables (s, v), this means that a transonic stellar wind solution
(v(s), n(s), t(s)), on the interval s 2 (s0,1), must satisfy the following:
(i) The velocity v(s) is subsonic (v < 1) at the inner boundary s = s0 and asymptotically

subsonic as s ! 1.
(ii) v(s) is supersonic (v > 1) for s 2 Ĩ, where Ĩ ⇢ (s0,1) is a bounded interval.

To build such a solution, we note that in the limiting singular systems, for a solution which
is subsonic at the surface s = s0, the only means of accelerating to supersonic speeds is via
the canard orbit �c which crosses the sonic point on the critical manifold S0. If s0 > 1, then
no such orbit exists; hence we assume s0 < 1. In order for a supersonic solution to return to
subsonic speeds as s ! 1, we recall from Proposition 3.1 that the upper supersonic branch
S
super
0 is normally repelling, while the lower subsonic branch is of saddle type. Therefore it will

be possible to transition from S
super
0 to S

sub
0 provided there exists a heteroclinic orbit of the

layer problem (3.3) which connects the repelling supersonic fixed point to the corresponding
saddle-type subsonic fixed point within the same (s, n)-slice. This fast heteroclinic orbit will
manifest as a viscous shock in the perturbed solution. Once the solution returns to S

sub
0 in

the region s > 1, it will be possible to follow one of the singular reduced orbits which satisfies
0 < v < 1 as s ! 1.

We therefore construct candidate singular orbits in three pieces �0 = �c
0 [ ⇡

b
i [ �

b
0 (see

Figures 2 and 3), where �b
0 is an orbit of the reduced system (3.6) on S

sub
0 with appropriateD
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Figure 3. Shown is a schematic for the construction of a singular transonic solution �0 on a bounded
interval s 2 (s0, s1). The solution consists of three trajectories �0 = �

c [ ⇡b
i [ �b

0, where �c is the canard
on the critical manifold S0 which accelerates from sub- to supersonic speeds via the sonic point, ⇡b

i is the
fast heteroclinic orbit from Proposition 3.4 which defines the projection  : Ssuper

0 ! Ssub
0 , and �b

0 is a slow
trajectory on the subsonic branch Ssub

0 with the appropriate boundary condition v = vb1 at s = s1.

far-field boundary conditions as s ! 1, and ⇡bi is a fast heteroclinic orbit which connects �c
0

to �b
0, provided such an orbit exists. We will then perturb from �0 for 0 < "⌧ 1 to obtain a

solution of the full problem (3.1).
To construct the orbit ⇡bi , we return to the desingularized system (3.23), which we recall

is conservative with conserved quantity E(s, v) defined in (3.24). The canard solutions �c and
�f lie on the level set

E(1, 1) =
(� + 1)

4(� � 1)
ln

✓
1

5� 3�

◆
=: E0.(3.29)

This level set divides the phase portrait of (3.23) into four regions: in the regions to the left
and right of the two canard curves �c and �f , we have E > E0, while the regions above and
below both �c and �f satisfy E < E0.

In order to find an orbit which jumps from the canard �c on S
super
0 for s > 1 to the

subsonic branch S
sub
0 , there must exist a heteroclinic orbit of the layer problem (3.3) between

the unstable fixed point on S
super
0 and the corresponding saddle point on S

sub
0 . We recall

from section 3.2 that these fixed points of (3.3) are denoted by (v±(s, n), t±(s, n)) where
v = v± satisfy (3.14), with corresponding temperatures given by (3.12) as

t±(s, n) =
n2s4v2±�

2

(� � 1)2(�v2± + 1)2
.(3.30)

We also recall from Lemma 3.2 that v+ > 1 and v� < 1, so that (v+, t+) corresponds to the
repelling (supersonic) fixed point and (v�, t�) corresponds to the (subsonic) saddle point.

We have the following proposition, which is proved in Appendix A.D
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Proposition 3.4. For any � 2 (1, 5/3), and any s > 1 and n > 0 satisfying the bounds in

Lemma 3.2, there exists a heteroclinic orbit in the layer problem (3.3) connecting (v+, t+) 2
S
super
0 to (v�, t�) 2 S

sub
0 .

The idea of the proof is to establish a trapping region of (3.3) using its nullclines. We
show that the flow of (3.3) in forward time is directed out of the region, thus creating a
trapping region under the reverse flow (see Figure 4); the result then follows from the Poincaré–
Bendixson theorem.

We can now define a projection  : Ssuper
0 ! S

sub
0 to be the map that projects a point

on the supersonic repelling branch to the subsonic saddle branch via a heteroclinic orbit, the
existence of which is guaranteed by Proposition 3.4. Thus, we can define the projection  via

 (s, n, v+(s, n), t+(s, n)) = (s, n, v�(s, n), t�(s, n)).(3.31)

Lemma 3.5. The projection  (�c) for s > 1 lies above the faux canard �f
on S

sub
0 , so that

 (�c) is confined to the region E > E0. Furthermore, the trajectory  (�c) crosses level sets

E(s, n) = constant transversely.

Proof. Any solution to the reduced problem satisfies E(s, v) = constant. Using Vieta’s
formulas and (3.13), the quantity v� can be represented in term of v+ as

v2� =
2 + (� � 1)v2+
2�v2+ � (� � 1)

.(3.32)

We can replace v ! v� as defined in (3.32) to compute the value of E along the projection
 (�c) as a function of (s, v+). We compute that

f1 = 0

f2 = 0

v

t

(v�, t�)

(v+, t+)

Figure 4. Shown are the nullclines of the layer problem for � = 1.4, n = 1.15, s = 1.1, and ✓ = 0.04.
Note that the saddle equilibrium is located where v < 1, and the unstable fixed point is in the v > 1 regime.D
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dE(s, v�)

dy
=

2�(s� 1)(v2+ � 1)

s(↵+ s)
�
2�v2+ � (� � 1)

� > 0

in the region s > 1 since v2+ > 1. Thus the value of E along the projection  (�c) is strictly
increasing for s > 1, so that  (�c) cross level sets transversely on S

sub
0 . This also immediately

implies E| (�c) > E0, so that  (�c) lies above the faux canard trajectory �f
0 .

We now complete the construction of solutions to (3.1) on bounded intervals for 0 < "⌧ 1.
We recall that the sonic point is located at (s, v) = (1, 1). We fix the bounded domain
s 2 [s0, s1] with s0 < 1 < s1. We define vc0 to be the v coordinate of the canard solution

�c at s = s0. Note that vc0 < 1. Likewise, we define vc1 and vf1 to be the v coordinates of
the projected canard solution  (�c) and the faux canard solution �f , respectively, at s = s1.

Note that both vc1 < 1 and vf1 < 1.

For every vb1 2 (vf1 , v
c
1) there exists a solution to the layer problem �b

0 which meets s = s1
at v = vb1. By Lemma 3.5 this solution intersects  (�c) transversely at some v = vbi > 1 and
s = sbi satisfying 1 < sbi < s1; the transversality of the intersection follows from the fact that
solutions in the region bounded above by �c and below by �f lie on level sets of E > E0, and
E is increasing along the projected canard  (�c). Let nb

i and tbi be the n and t coordinates,
respectively, of the intersection of �b and  (�c). Using the projection formula (3.32), and
the fact that the v coordinate along  (�c) decreases in s, we have that vbi >

��1
2� .

A short computation then shows that nb
i satisfies the bounds in Lemma 3.2, and thus

by Proposition 3.4 there exists a fast heteroclinic orbit, which we denote by ⇡bi , which con-
nects the repelling branch S

super
0 to the saddle branch at (sbi , n

b
i , v

b
i , t

b
i) via the projection  .

Furthermore, by construction, we have that  �1(sbi , n
b
i , v

b
i , t

b
i) 2 S

super
0 lies on the canard

orbit �c. Therefore, tracing backward along �c yields a singular transonic canard solution
�0 = �c

[ ⇡bi [ �
b
0—see Figure 2.

Additionally, we have that for each vb1 2 (0, vf1 ), there exists a trajectory �b of the reduced
flow that remains subsonic for all s 2 [s0, s1]; the trajectory at s = s0 approaches v = vb0,
where vb0 2 (0, vc0), and approaches v = vb1 at s = s1. We have the following proposition
regarding the existence of stellar wind solutions on bounded domains.

Proposition 3.6. Fix s0 < 1 < s1 and � 2 (1, 5/3), with vc0, v
f
0 , v

c
1, and vf1 as defined above,

and consider the system (3.2).

(i) Let vb1 2 (0, vf1 ) and let �0 = �b
0 be the singular subsonic trajectory which approaches

v = vb1 at s = s1. For each su�ciently small " > 0, �0 perturbs to a solution �" of

(3.2) which is O(")-close to �0.

(ii) Let vb1 2 (vf1 , v
c
1) and let �0 = �c

[ ⇡bi [ �
b
0 be the singular trajectory that follows �c

from s = s0 to s = sbi , traverses the fast layer orbit ⇡bi at s = sbi , and then follows the

trajectory �b
from s = sbi to s = s1. Then for su�ciently small " > 0, �0 perturbs to

a solution �" of (3.2) which is O("1/2)-close to �0.

4. Existence of transonic canard solutions for 0 < " ⌧ 1. In order to prove Proposition
3.6, we must first analyze the dynamics near the sonic point to determine how the canard
trajectory �c perturbs for small " > 0. Using a center manifold reduction procedure as in [39],D
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we show that near the sonic point, the system (3.2) admits a three-dimensional center manifold
on which the results of [37] concerning the persistence of canard trajectories apply.

4.1. Center manifold reduction near the sonic point. For " = 0, the sonic point, cor-
responding to the folded saddle singularity of the reduced flow (3.23), is located at (s, v) =
(s⇤, v⇤) = (1, 1) on the critical manifold. We determine the corresponding (n, t)-coordinates
via (3.20)–(3.21) as

t⇤ = t(1, 1) =
2

5� 3�
,

n⇤ = n(1, 1, t⇤) =
�2 � 1

�

r
2

5� 3�
.

(4.1)

The linearization of (3.2) at (s, n, v, t) = (1, n⇤, 1, t⇤) for " = 0 admits a triple zero eigen-
value with a corresponding three-dimensional eigenspace spanned by the two slow directions
(1, 0, 0, 0)T , (0, 1, 0, 0)T , and the eigenvector

v1 :=

0

BBBBBB@

0

0

�
(�+1)(5�3�)

4(��1)

1

1

CCCCCCA
(4.2)

as well as a positive eigenvalue

�+ :=
1

�

✓
3 (� � 1)

4⌘̄(t⇤)
+

✓

⇣̄(t⇤)

◆
(4.3)

with corresponding eigenvector

v2 :=

0

BBBBBB@

0

0

�
(5�3�)(2✓�3)

8✓

1

1

CCCCCCA
.(4.4)

Hence by the center manifold theorem, near the sonic point there exists a locally invariant
normally repelling three-dimensional center manifold W

c
sp tangent to the subspace spanned

by the vectors (1, 0, 0, 0)T , (0, 1, 0, 0)T , and v1. This manifold persists as a locally invariant
repelling center manifold for 0 < "⌧ 1 in a neighborhood of the sonic point, foliated by strong
unstable fibers which are tangent to v2 at the sonic point. Within this center manifold, we
have the following. The proof and additional details are given in Appendix B.

Proposition 4.1 ([37, Theorem 4.1]). On the center manifold W
c
sp, for all su�ciently small

" > 0, the repelling and saddle branches, S
super
" and S

sub
" , break transversely and intersect along

the maximal canard solution �c
", which is O("1/2)-close to the corresponding singular canard

solution �c
.D
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4.2. Existence of canard solutions on bounded intervals. In this section, we complete
the construction of transonic canards on bounded intervals.

Proof of Proposition 3.6. For (i), let �b1 denote the intersection point of �0 with the sub-
space s = s1. We choose any one-dimensional boundary manifold ⌃1 which for " = 0 trans-
versely intersects the unstable manifold W

u(Ssub
0 ) of Ssub

0 at �b1 within the subspace s = s1.
Since �0 = �b

0 is subsonic for s 2 (s0, s1), the entire orbit �0 lies on S
sub
0 and is bounded

away from the fold curve. Further, Ssub
0 is normally hyperbolic away from the fold curve, and

therefore Fenichel theory implies that Ssub
0 perturbs for su�ciently small " > 0 to a normally

hyperbolic slow manifold S
sub
" , and the flow on S

sub
" is an O(") perturbation of the reduced

flow (3.6) on S
sub
0 ; in particular the orbit �b

0 perturbs to an orbit �b
" on S

sub
" . However, this

orbit may not satisfy the desired boundary conditions, so we instead find a perturbed solution
which meets the boundary manifold ⌃1 at s = s1.

To this end, the three-dimensional unstable and stable manifolds Wu(Ssub
0 ) and W

s(Ssub
0 )

of S
sub
0 perturb to three-dimensional locally invariant manifolds W

u(Ssub
" ) and W

s(Ssub
" ),

respectively, foliated by the perturbed strong unstable/stable fibers of orbits on the slow
manifold S

sub
" . Thus the transversality of the intersection of ⌃1 and the unstable manifold

W
u(Ssub

" ) in the subspace s = s1 persists, with the intersection occurring in the strong unstable
fiber of a solution O(")-close to �b

0. Tracing the intersection of ⌃1 and W
u(Ssub

" ) backward
under the flow of (3.2) thus yields a one-dimensional trajectory �", which is O(")-close to �0

and lies in the one-dimensional boundary manifold ⌃1 at s = s1.
For (ii), we first note that Lemma 3.5 guarantees that the curves  (�c) and �b

0 intersect
transversely on S

sub
0 for " = 0. It immediately follows that the three-dimensional unstable

fiber Wu(�c) of the singular canard trajectory �c
0 transversely intersects the two-dimensional

stable fiber Ws(�b
0) of �

b
0 along the fast jump ⇡bi for " = 0. To construct a solution for " > 0

with the desired boundary conditions, we define two boundary manifolds, ⌃0 at s = s0 and
⌃1 at s = s1, and evolve these forward and backward, respectively, under the flow of (3.2) for
" > 0 and show that the evolved manifolds are close to W

u(�c) and W
s(�b

0), respectively, near
the fast jump ⇡b0 and hence also intersect transversely along the desired solution for " > 0.

We define the one-dimensional boundary manifold ⌃1 at s = s1 the same as above in the
proof of (i). Since ⌃1 intersects Wu(Ssub

0 ) transversely for " = 0, this intersection persists for
" > 0 by Fenichel theory. Following ⌃1 backward under the flow of (3.2) traces out a two-
dimensional manifold ⌃̄1, which, upon entering a neighborhood of s = sbi , aligns exponentially
close to the unstable fiber of a slow trajectory on S

sub
" , which is O(")-close to �b

0. Therefore,
⌃̄1 is O(")-close to W

u(�b
0) near s = sbi .

Within the subspace s = s0, we take any two-dimensional boundary manifold ⌃0 which
transversely intersectsWs(Ssub

" ) at the point �c", where �
c
" denotes the location of the perturbed

canard orbit �c
" at s = s0. Away from the fold, the repelling and saddle branches of the critical

manifold, Ssuper
0 and S

sub
0 , respectively, are normally hyperbolic and therefore for su�ciently

small " > 0 perturb to locally invariant manifolds S
super
" and S

sub
" , as do their stable and

unstable foliations. Evolving ⌃0 forward under the flow of (3.2) along �c
" therefore traces out

a three-dimensional manifold ⌃̄0, which by the exchange lemma [22] aligns exponentially close
to W

u(Ssub
" ) upon entering the neighborhood of the sonic point.

To determine how ⌃̄0 traverses the sonic point, we note that by Proposition 4.1, in a neigh-
borhood of the sonic point, for su�ciently small " > 0, Ssuper

" and S
sub
" intersect transversely
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along the perturbed maximal canard �c
", which is O("1/2)-close to the singular canard �c

0,
and thus passes O("1/2)-close to the sonic point. Thus, in this neighborhood, ⌃̄0 aligns with
the strong unstable foliation W

uu(Ssub
" ) of Ssub

" , where trajectories on S
sub
" shadow orbits on

the center manifold W
c
sp, and the foliation W

uu(Ssub
" ) is with respect to the strong unstable

v2-direction. Since S
sub
" and S

super
" intersect transversely along the maximal canard �c

", and
⌃̄0 is exponentially close to S

sub
" , we have that ⌃̄0 intersects Ssuper

" transversely in the neigh-
borhood of the sonic point. After passing through the sonic point, by the exchange lemma
⌃̄0 aligns exponentially close to the unstable fibers of the maximal canard �c

" upon entry into
the neighborhood of the subspace s = sbi ; hence ⌃̄0 is O(")-close to W

u(�c
") near s = sbi .

Since the intersection of Wu(�c
0) and W

s(�b
0) along ⇡b0 is transverse for " = 0, for su�-

ciently small " > 0, the transversality of the intersection persists. Thus, ⌃̄0 and ⌃̄1 intersect
along an orbit �" which is O("1/2)-close to �0, as desired.

4.3. Boundary manifolds at infinity. While Proposition 3.6 concerns the construction of
stellar wind solutions on bounded domains, the proof of Proposition 3.6 is valid for any suitable
choice of one-dimensional boundary manifold ⌃1 in the subspace s = s1, which transversely
intersects W

u(Ssub
0 ). This guarantees the existence of a stellar wind solution which satisfies

prescribed boundary conditions at some finite radius from the star. We now show that it is
possible to choose this boundary manifold in such a way that the stellar wind asymptotically
approaches the prescribed far field boundary conditions as s ! 1. To achieve this, we
construct invariant far-field boundary manifolds at s = 1, and we show that when these
manifolds are transported back to s = s1 for some s1 � 1, we obtain boundary manifolds in
the subspace s = s1 which satisfy the conditions required by ⌃1 in the proof of Proposition 3.6.

We first consider the system (3.2) near s = 1. To do this, we define � = 1/s, from which
we obtain

d�

dy
= ��2,

dn

dy
= �2(� � 1)v

p
t�3 �

↵�4

v
p
t
� 4(� � 1)v

p
t�⌘̄0(t)'̃(�, n, v, t, ✏),

"
dv

dy
=

3

4⌘̄(t)

✓
v�2 +

�2

�v
�

1

� � 1

n
p
t

◆
� 2"v� �

v

2t
'̃(�, n, v, t, "),

"
dt

dy
=

✓

⇣̄(t)

✓
vn

p
t�

� � 1

2
v2t�2 � ↵�3 +

1

�
t�2 � �2 + 4"(� � 1)⌘̄(t)v2t�

◆
,

(4.5)

where the asymptotic behavior as s ! 1 is now determined by the limit � ! 0, and the
quantity '̃(�, n, v, t, ") := '(��1, n, v, t, ") denotes the right-hand side of the t-equation

'̃(�, n, v, t, ") =
✓

⇣̄(t)

✓
vn

p
t�

� � 1

2
v2t�2 � ↵�3 +

1

�
t�2 � �2 + 4"(� � 1)⌘̄(t)v2t�

◆
.(4.6)

We switch to the fast timescale and obtain

d�

dz
= �"�2,(4.7)

dn

dz
= "

✓
�2(� � 1)v

p
t�3 �

↵�4

v
p
t
� 4(� � 1)v

p
t�⌘̄0(t)'̃(�, n, v, t, ✏)

◆
,D
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dv

dz
=

3

4⌘̄(t)

✓
v�2 +

�2

�v
�

1

� � 1

n
p
t

◆
� 2"v� �

v

2t
'̃(�, n, v, t, "),

dt

dz
=

✓

⇣̄(t)

✓
vn

p
t�

� � 1

2
v2t�2 � ↵�3 +

1

�
t�2 � �2 + 4"(� � 1)⌘̄(t)v2t�

◆
.

We now perform the blow-up rescaling v = �2v̄ and dz = �2dz̄ to obtain the system

d�

dz̄
= �"�4,

dn

dz̄
= "�2

✓
�2(� � 1)v̄

p
t�5 �

↵�2

v̄
p
t
� 4(� � 1)v̄

p
t�3⌘̄0(t)'̃(�, n, v, t, ")

◆
,

dv̄

dz̄
=

3

4⌘̄(t)

✓
v̄�4 +

1

�v̄
�

1

� � 1

n
p
t

◆
� 2"v̄�3 �

�2v̄

2t
'̃(�, n, v, t, "),

dt

dz̄
=
✓�2

⇣̄(t)

✓
v̄�2n

p
t�

� � 1

2
v̄2t�6 � ↵�3 +

1

�
t�2 � �2 + 4"(� � 1)⌘̄(t)v̄2t�5

◆
,

(4.8)

which is equivalent to (4.7) for � > 0 (though we note that the transformation itself extends
smoothly to the region � < 0). We now analyze (4.8) for 0  � < �0 for some small �0 > 0.
We first observe that this system has a surface of fixed points in the subspace � = 0, defined
via the relation

1

�v̄
=

1

� � 1

n
p
t
.(4.9)

In other words, for each fixed t, n, there exists a fixed point when � = 0 where v̄ is defined
by (4.9). Linearization around any such fixed point reveals a triple zero eigenvalue, and a single

negative eigenvalue � �
(��1)2

n2

t , with corresponding eigenvector aligned in the v̄-direction. This

surface of fixed points therefore forms part of a three-dimensional center manifold W
c
1 at

infinity (� = 0) with one-dimensional stable fibers, which extends into the region � < �0 for
�0 ⌧ 1; see Figure 5. We now examine the flow on this center manifold.

The center manifold W
c
1 can be expressed as a graph over the center subspace, that is,

v̄ = ��1
�

p
t

n +O(�), and the flow on the center manifold is therefore given by

d�

dz̄
= �"�4,

dn

dz̄
= �"�4

✓
↵�n

(� � 1)
p
t
+O(�)

◆
,

dt

dz̄
=
✓�4

⇣̄(t)
(t� 1 +O(�)) .

(4.10)

Performing another rescaling dz̃ = �2dz results in the system

d�

dz̃
= �",

dn

dz̃
= �"

✓
↵�n

(� � 1)
p
t
+O(�)

◆
,

dt

dz̃
=

✓

⇣̄(t)
(t� 1 +O(�)) ,

(4.11)

D
ow

nl
oa

de
d 

07
/1

0/
21

 to
 1

69
.2

34
.1

99
.7

5.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

284 ADAM BAUER AND PAUL CARTER

Figure 5. Shown are the dynamics of (4.8) near � = 0. The three-dimensional center manifold Wc
1 is

foliated by one-dimensional stable fibers (one of the center directions has been suppressed). Also shown are the
special trajectory �c

1 as well as its stable fiber Ws
(�c

1).

which is a slow-fast system with singular perturbation parameter " and again equivalent
to (4.7) for � > 0, extending smoothly to � < 0. This system has a two-dimensional normally
repelling critical manifold C0 given by the set of equilibria of (4.11) when " = 0. Therefore C0

can be expressed as a graph t = 1 +O(�), and the flow on C0 is given by the reduced flow

d�

dỹ
= �1,

dn

dỹ
= �

✓
↵�n

(� � 1)
+O(�)

◆
,

(4.12)

on the slow timescale ỹ = "z̃. The flow o↵ of C0 is governed by expansion along one-dimensional
fast unstable fibers. We have the following.

Lemma 4.2. For each n1, t1 > 0 and su�ciently small �0, there exists "0 > 0 such

that for " 2 (0, "0), there exists z̃1, n0, t0 > 0 and a solution (�, n, t)(z̃) to (4.11) satisfying

(�, n, t)(0) = (�0, n0, t0) and (�, n, t)(z̃1) = (0, n1, t1) with

n0 = n1 +O(�0, "), t0 = 1 +O(�0, ").(4.13)

Proof. This result follows from standard methods of geometric singular perturbation the-
ory. The critical manifold C0 perturbs for small " > 0 to a normally hyperbolic slow manifold
C" which is O(")-close to C0, and the flow on this manifold is an O(")-perturbation of the
reduced flow (4.12). Furthermore, the unstable fibers of C0, given by curves aligned in the
t-direction, perturb to form the unstable foliation of the slow manifold C". The perturbed
flow is then given by the slow flow on C" along with exponential expansion along the fibers;
see Figure 6.D
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Figure 6. Shown is the flow given by (4.11) on the three-dimensional center manifold Wc
1 near � = 0. The

trajectory �c
1 from Lemma 4.2 which satisfies the appropriate boundary conditions lies on one of the unstable

fibers of the slow manifold C".

We choose the fiber of C" which intersects the set {� = 0, n = n1} at t = t1. This
solution is then evolved under the reverse flow of (4.11), until reaching � = �0, which occurs
after time �0/" =: z̃1. In backward time, the t coordinate is contracted exponentially close
to the slow manifold C", so that t = 1 + O(�0, ") := t0, while the n-coordinate changes by
at most an O(�0, ") amount, so that n = n1 + O(�0, ") =: n0. The coordinates (�0, n0, t0)
therefore define an initial condition which reaches (�, n, t) = (0, n1, t1) after time z̃1, which
completes the proof.

Lemma 4.2 guarantees the existence of a solution, which we call �c1, on the far field center
manifold W

c
1 which is asymptotic to (n, t) = (n1, t1) as � ! 0, or equivalently as s ! 1;

see Figure 6. In the full space, we now select the stable fiber of the solution �c1, which defines
a two-dimensional manifold W

s(�c1), as shown in Figure 5. We claim that this manifold serves
as a boundary manifold which transversely intersects Wu(Ssub

0 ) in the subspace s = s1 as in
the proof of Proposition 3.6. This is the content of the following proposition.

Proposition 4.3. For each n1, t1 > 0, and each su�ciently small �0 > 0, there exists

"0 > 0 such that for all " 2 (0, "0), the manifold W
s(�c1) transversely intersects W

u(Ssub
0 ) in

the subspace s = 1/�0.

Proof. We consider the intersection of Ws(�c1) with the set s = 1/�0 =: s1, or equivalently
� = �0. By Lemma 4.2 that the basepoint of this fiber on the center manifold W

c
1 satisfies

(n, t) = (n0, t0) = (n1, t1) + O(�0, "), and the fiber itself is aligned along the strong stable
subspace normal to W

c
1.

We now determine how the manifold W
u(Ssub

0 ) behaves near the subspace s = s1. We
recall that the fast system (3.2) can be equivalently reformulated in terms of the variable
� = 1/s as the system (4.8), and the saddle slow manifold S

sub
0 could instead be constructedD
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286 ADAM BAUER AND PAUL CARTER

as an invariant manifold using these equations—and we note that any two constructions of
the perturbation of a normally hyperbolic critical manifold may di↵er only by exponentially
small quantities. We observe that when � = �0, " = 0 (and noting that v satisfies v < 1 on
the saddle branch and is in particular bounded uniformly for large s) we obtain the singular
fast system

dv̄

dz̄
=

3

4⌘̄(t)

✓
v̄�40 +

1

�v̄
�

1

� � 1

n
p
t

◆
�
�20 v̄

2t
'̃(�0, n, v, t, 0),

dt

dz̄
=
✓�20
⇣̄(t)

✓
v̄�20n

p
t�

� � 1

2
v̄2t�60 � ↵�30 +

1

�
t�20 � �20

◆
,

(4.14)

from which we obtain the subsonic saddle branch S
sub
0 of the critical manifold as the set of

fixed points of this system, expressed as the graph

v =
� � 1

�n
+O(�0),

t = 1 +O(�0).
(4.15)

The linearization of (4.14) about any such fixed point admits one positive and one negative
eigenvalue

��0 := �
3�n2

4(� � 1)2
+O(�0), �+0 := ✓�40 +O(�50),(4.16)

with corresponding eigenvectors

 �
0 =

0

@1

0

1

A+O(�0),  +
0 =

0

@ 1

2�n
��1

1

A+O(�0),(4.17)

so that the stable manifold of a fixed point on the subsonic saddle branch S
sub
0 of the critical

manifold is aligned with the v̄-direction in these rescaled coordinates. We recall that the far-
field center manifold W

c
1 has one-dimensional stable fibers which for � = 0 are aligned along

the v̄-direction. For small �0 > 0, the stable fibers of the center manifold W
c
1 are therefore

aligned within O(�0) of  �
0 in the subspace � = �0 and hence are aligned with the stable

fibers of Ssub
0 to leading order in �0. Since the stable fibers of Ssub

0 transversely intersect its
unstable manifold W

u(Ssub
0 ), with fibers aligned in the  +

0 -direction, we have that W
s(�c1)

transversely intersects Wu(Ssub
0 ) in the subspace � = �0, which completes the proof.

4.4. Accelerating versus decelerating stellar winds. While the construction of transonic
stellar wind solutions in sections 4.2–4.3 is valid for any value of 1 < � < 5/3, and such
solutions transition from subsonic to supersonic speeds along a canard solution through the
sonic point, the physical speed u = cv of such a solution may actually decrease when crossing
the sonic point. In the following lemma, we show that for � 2 (1, 3/2), the transonic stellar
wind accelerates through the sonic point and decelerates for � 2 (3/2, 5/3).D
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Lemma 4.4. For a transonic solution constructed as in Proposition 3.6, for � 2 (1, 3/2)
the speed u is increasing through the sonic point while for � 2 (3/2, 5/3), u decreases through

the sonic point.

Proof. Using (2.12), along the critical manifold S0 we compute

du

ds
=

d

ds
(cv) =

d

ds

⇣p
�RkT tv

⌘

=
8v

p
�RkT

s2 (v2(� � 1) + 2)

✓
1� s

1� v2
�

(� � 1)v

5� 3�

◆
,(4.18)

where we used (3.21) and (3.22). By inspecting the eigenvectors of the linearization (3.27) at
the folded saddle, we see the canard �c

0 approaches the sonic point (3.26) along the line

v � 1 =

r
5� 3�

2
(s� 1).(4.19)

Hence we can evaluate (4.18) along the canard �c
0 at the sonic point as

du

ds

����
(s,v)=(1,1)

=
4
p
2�RkT

(� + 1)(5� 3�)

⇣p
5� 3� �

p
2(� � 1)

⌘
.(4.20)

We see that this expression is positive (so that the transonic canard accelerates through the
sonic point) whenever 1 < � < �⇤, where �⇤ is the unique positive solution of the equation

p
5� 3� �

p
2(� � 1) = 0,(4.21)

which can be solved directly to find �⇤ = 3/2.

4.5. Proof of Theorem 2.1. In this section, we briefly conclude the proof of the main
result, Theorem 2.1.

Proof of Theorem 2.1. Consider (2.10). Fix � 2 (1, 5/3) and let the Prandtl number ✓ > 0
be su�ciently small. Fix an asymptotic pressure, p1 2 (0,1), and asymptotic temperature,
T1 2 (0,1) as r ! 1. Also let r0, the radius of the star, satisfy

r0 < rsp :=
4E(� � 1)

GM(5� 3�)
.

The value rsp corresponds to the radius of the sonic point; hence case r0 > rsp corresponds
to the radius of the star being greater than the radius of the sonic point, which obstructs
the existence of a transonic canard trajectory originating at the stellar surface, and only fully
subsonic solutions are possible.

In Proposition 3.6, it was shown that the right-hand boundary condition at s = s1 de-
termines whether a subsonic or a transonic solution is selected in (3.2): given the critical

faux canard value v = vf1 and the chosen boundary condition v = vb1, if 0 < vb1 < vf1 , then

a subsonic trajectory is selected, and in the case where vf1 < vb1 < vc1, a transonic trajectory
(with accompanying fast shock) is selected. In order to determine the asymptotic behavior ofD
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288 ADAM BAUER AND PAUL CARTER

these solutions as r ! 1, we see that this depends on the behavior of the faux canard orbit
�f
0 when s gets large, and in particular the asymptotics of the critical value vf1 .

The faux canard �f
0 lies on the level set E(s, v) = E0, where E,E0 are given by (3.24)

and (3.29), respectively. Keeping this in mind and taking the limit where s ! 1 of (3.24), it
is straightforward to see that v = O(s�2) as s ! 1. Therefore, any solution v(s) satisfies

v ⇠
v̄

s2
(4.22)

for some v̄ > 0, and in particular for the faux canard �f
0 , we have that

vf1 ⇠
v̄f1
s21

(4.23)

for some v̄f1 , as the boundary s = s1 is taken asymptotically large. Using (3.24) and (4.23),
we compute

ln
⇣
v̄f1

⌘
=

� + 1

2(� � 1)
ln

✓
2

5� 3�

◆

in the limit s ! 1, and thus we can explicitly solve for vf1 as

v̄f1 =

✓
2

5� 3�

◆ �+1
2(��1)

.(4.24)

Therefore, for a given solution v = v(s) can find an expression for the pressure at infinity, p1,
by taking the limit of (2.5) as s ! 1, which yields

p1 = ⇢1RT1 =
K
p
RT1

k2r
p
�v̄

,(4.25)

where we’ve used (2.4), as well as the scalings (2.20), and (4.22). By the discussion above, the

solution is subsonic or transonic depending on the relation of v(s1) and vf1 , or equivalently,

depending on the relation of the asymptotic scalings v̄ and v̄f1 . Thus, using (4.24) and (4.25)
we can find the critical asymptotic pressure (in terms of the asymptotic density ⇢1 and
temperature T1) which determines whether a solution will be subsonic or transonic as

p21 =
K2RT1

�k4r

⇣
v̄f1

⌘2 =
K2RT1
�k4r

✓
5� 3�

2

◆ �+1
��1

= k1T1,(4.26)

where

k1 :=
K2R

�k4r

✓
5� 3�

2

◆ �+1
��1

.(4.27)
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Therefore, for any given choice of p1 2 (0,1) and T1 2 (0,1) satisfying p21 > k1T1,
we can construct boundary manifolds at infinity, as in section 4.3, which when transported
back to a finite radius s = s1 > will correspond to a choice of v̄b1 < v̄f1 by (4.26). This

directly implies that vb1 < vf1 and therefore the corresponding solution, constructed as in
Proposition 3.6(i) for su�ciently large Reynolds number Re � 1, will be subsonic on the
entire domain s 2 (s0,1). Converting to the original physical variables, we obtain a pressure
p(r0) = p0 and temperature T (r0) = T0 at the stellar surface r = r0 that support this solution,
and the solution satisfies (m(r), T (r)) ! (p1, T1) as r ! 1. Furthermore the solution is
subsonic on the entire domain r 2 (r0,1). This completes the proof of (i).

For (ii), fixing a choice of p1 2 (0,1) and T1 2 (0,1) satisfying p21 < k1T1, and

arguing as above, we similarly conclude that v̄b1 > v̄f1 . Additionally, by examining the projec-

tion map (3.32), as v+ ! 1, it is clear that v !

q
��1
2� =: v̄c1. Therefore, we have that the

boundary condition v = vb1 satisfies vf1 < vb1 < vc1 for large s = s1. Thus, we can conclude
that in this case, we can construct a transonic solution and accompanying fast layer shock for
this set of conditions by Proposition 3.6(ii), given that the Reynolds number is su�ciently
large Re � 1. Converting to the original physical variables, we obtain a pressure p(r0) = p0
and temperature T (r0) = T0 at the stellar surface r = r0 that support a transonic stellar
wind solution satisfying (m(r), T (r)) ! (p1, T1) as r ! 1. The solution is supersonic in
the bounded region between the sonic point and the viscous layer shock and is otherwise
subsonic.

5. Discussion. In this paper, we constructed steady, spherically symmetric transonic stel-
lar wind solutions in a one-fluid stellar wind model under the e↵ects of heat conduction and
viscosity, in the regime of small Reynolds number and small Prandtl number. The solutions
were constructed rigorously using geometric singular perturbation techniques; solutions arise
as perturbations from singular orbits comprising a saddle canard trajectory, which allows for
the transition from subsonic speeds at the stellar surface to supersonic speeds, followed by a
fast layer shock to return to subsonic speeds in the far field. These dynamics are characterized
by the flow on a two-dimensional critical manifold, with a repelling supersonic branch and
saddle-type subsonic branch separated by a fold curve, with a folded singularity, called the
sonic point, which organizes the canard dynamics and allows for the transition to supersonic
speeds. The location of the shock is then determined by the far-field boundary conditions.

In fact, in the (physically relevant) situation in which the far-field asymptotic pressure
and density are small, while the mass flux is large, we obtain leading order estimates on the
location of the termination shock. The far-field velocity is determined from the mass flux and
asymptotic density via

lim
r!1

r2u =
K

⇢1
.(5.1)

Converting to dimensionless variables, we define

v̄1 := lim
s!1

s2v =
K

k2rc⇢1

=
K
p
RT1

k2r
p
�p1
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For small p1 (relative to the other physical parameters), the quantity v̄1 satisfies v̄1 � 1;
this quantity is related to the location of the shock through the reduced flow on the subsonic
branch S

sub
0 , and in particular it defines the asymptotic value E1 of the conserved quantity

E(s, v) as s ! 1 as

E1 ⇡
ln(v̄1)

2
�

� + 1

4(� � 1)
ln 2.(5.2)

Since the flow on the subsonic branch is to leading order confined to level sets of E, to
determine the location of the shock, we must determine the value of s along the canard
trajectory �c at which the projected canard  (�c) satisfies E(s, v) = E1. Along the canard
trajectory, v ! 1 as s ! 1, so that under the projection  , the corresponding projected
v-coordinate satisfies v2 ⇡

��1
2� =: v2crit, using (3.32). Therefore to find the location of the

shock, we solve the relation E(s, vcrit) = E1 for s, obtaining

s4crit ⇡
2�

� � 1

✓
(� + 1)2

4�

◆ �+1
��1

v̄21.(5.3)

Converting back to the physical coordinates, we have that the location of the termination
shock satisfies

r4crit ⇡
2�

� � 1

✓
(� + 1)2

4�

◆ �+1
��1 K2RT1

�p21
.(5.4)

In particular, for the solar wind, we take the values K ⇠ 0.9 � 1.8 ⇥ 109 kg · s�1, T1 ⇠

0.4�1.8⇥105 K, p1 ⇠ 212�322 fPa, R ⇠ 4124.2 J · kg�1
·K�1, and � = 1.4 as representative

of possible physical conditions in the heliosheath [8, 19, 29, 30, 31, 32, 35]. This results in a
predicted range for the termination shock at rcrit ⇠ 66�137 AU, which is in line with Parker’s
predictions [10, 23, 28]. We remark that Voyager 1 crossed the termination shock at 94 AU,
while Voyager 2 crossed at 84 AU.

We note that the solutions as constructed in Theorem 2.1 are locally unique, in the sense
that for given boundary conditions (corresponding to boundary manifolds in the proof of
Proposition 3.6), there is precisely one choice of canard trajectory and layer shock which
will produce a steady solution to the full system. However, we have not aimed to address
the temporal stability of this distinguished solution in the full PDE. Numerical simulations
in similar models [4] indicate that such transonic canard trajectories are likely to be stable
under perturbations sharing the same spherical symmetry. However, we are not aware of
rigorous results in this direction. It remains an interesting direction for further research to
perform such a stability analysis. A natural first step would be to linearize the PDE under
the assumption of spherical symmetry and search for purely radial eigenfunctions using Evans
function methods; much is known regarding the stability of viscous shock waves in one (or
more) spatial dimensions [18, 41], though not in the present context with spherical symmetry.
In the context of transonic flows, in a one-dimensional model of flow through a nozzle, linear
stability of an inviscid sub-to-supersonic solution passing through a canard point has been
established in [15]. In the particular case of transonic stellar winds, point eigenvalues areD
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likely to arise associated with both the saddle canard and the layer shock. The full problem,
however, allowing perturbations in the angular variables is likely to be a challenging problem.
Some analysis in this direction for similar models of stellar wind has been carried out in, for
instance, [3, 20, 25].

Last, we remark that the model itself is of course simplified. However, this simple model
is able to provide geometric insight into the stellar wind phenomenon while remaining an-
alytically tractable. Natural extensions would incorporate the e↵ects of multiple fluids and
relativistic fluid dynamics. Additionally, we have not yet incorporated the plasma physics of
stellar wind into the model, which would allow for a variable magnetic field within the gas;
this approach, however, would likely prove challenging, as it would extend the state space to
a dimension higher than that which is presented here. These considerations will be the focus
of future work.

Appendix A. Construction of fast heteroclinic orbits. In order to prove Proposition 3.4,
we create a trapping region bounded by the t- and v-nullclines; in the region of interest, the
nullclines can be represented as graphs t = t(s, n, v) and properties of the flow across the
nullclines can be determined in order to construct the trapping region. This is accomplished
through four technical lemmas. The first lemma shows that dv

dz < 0 along the branch of the

t-nullcline which lies between the two fixed points, while the second shows that dt
dz > 0 along

the branch of the v-nullcline between the two fixed points. The final two lemmas are concerned
with showing that the v-nullcline lies above the t-nullcline and that the t-nullcline does not
have any turning points for v 2 (v�, v+). This creates a trapping region under the reverse
flow of (3.3); see Figure 4.

Lemma A.1. For all � 2 (1, 5/3), and s, n > 0 satisfying the bounds as in Lemma 3.2,
the branch of the nullcline f2(s, n, v, t, 0) = 0 containing the two fixed points (v±, t±) can

be represented as a graph t = t2(s, n, v), and we have that f1(s, n, v, t, 0) < 0 whenever t =
t2(s, n, v), v 2 (v�, v+).

Proof. From (3.1), we notice that f2(s, n, v, t, 0) is quadratic in
p
t. Thus we can solve

f2(s, n, v, t, 0) = 0 for
p
t and then square the result to obtain

t±2 (s, n, v) =

 
��vns3 ±

p
�2v2n2s6 + 2s�(↵+ s) (2� � (� � 1) v2)

s(2� �(� � 1)v2)

!2

,(A.1)

where we note that for t�2 (s, n, v), this expression is only physically meaningful when s(2 �

�(� � 1)v2) < 0. Furthermore, as we only consider positive, real values of t, the discriminant
in (A.1) must be positive. We proceed to determine which branch t±2 contains the fixed points
(v±, t±). We note that any fixed point of (3.3) must also satisfy f1(s, n, v, t, 0) = 0. In the
case of t = t�2 , we compute

f1
�
s, n, v, t�2 , 0

�
=

3

4⌘̄(t)

 
v

s2
+

1

�s2v
�

n

� � 1

s(�(� � 1)v2 � 2)

�vns3 +
p
�2v2n2s6 + 2s�(↵+ s) (2� � (� � 1) v2)

!

�
3

4⌘̄(t)

✓
v

s2
+

1

�s2v
�

n

� � 1

s(�(� � 1)v2 � 2)

�vns3

◆
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=
3(� + 1)

4⌘̄(t)s2v�(� � 1)

> 0.

Thus, on the t = t�2 branch of the t-nullcline, f1(s, n, v, t, 0) has fixed sign and therefore this
branch cannot contain any fixed points.

Hence we restrict attention to the branch t = t+2 , which contains both fixed points. The
expression (A.1) appears to be undefined as v2 ! 2

�(��1) . However, using l’Hôpital’s rule,

lim
v2!

q
2

�(��1)

t+2 (s, n, v) = lim
v!

q
2

�(��1)

 
��vns3 +

p
�2v2n2s6 + 2s�(↵+ s) (2� � (� � 1) v2)

s(2� �(� � 1)v2)

!2

=
�
�
n2s5 + 2(↵+ s)(� � 1)

�2

8(� � 1)n2s6

so that the graph t+2 (s, n, v) is in fact continuous in v.
We now are able to determine the sign of f1(s, n, v, t, 0) on the branch t+2 (s, n, v) of the

t-nullcline between the two fixed points v = v±. Since t+2 (s, n, v) and f1(s, n, v, t, 0) are
continuous in v, it su�ces to evaluate f1(s, n, v, t, 0) at one point in the interval (v�, v+) to
determine its sign for all v 2 (v�, v+). Choose for simplicity v = 1. Then we have

f1(s, n, 1, t
+
2 (s, n, 1), 0) =

3(� + 1)

4�⌘̄(t)

 
1

s2
�

(2� �)

� � 1

�sn

��ns3 +
p
�2n2s6 + 2s�(↵+ s)(2� �)(� + 1)

!(A.2)

< 0,

where we used the bounds on s, n as in Lemma 3.2.

We now prove a similar lemma for the v-nullcline.

Lemma A.2. For all � 2 (1, 5/3), and s, n > 0 satisfying the bounds as in Lemma 3.2,
the branch of the nullcline f1(s, n, v, t, 0) = 0 containing the two fixed points (v±, t±) can

be represented as a graph t = t�1 (s, n, v), and we have that f2(s, n, v, t, 0) > 0 whenever

t = t�1 (s, n, v), v 2 (v�, v+).

Proof. Setting f1(s, n, v, t, 0) = 0 in (3.3), along the v-nullcline, we have that

3

2⌘̄(t)v

✓
t

s2

✓
v +

1

�v

◆
�

n
p
t

� � 1

◆
=

✓

⇣̄(t)

✓
vn

p
t�

� � 1

2

v2t

s2
�
↵

s3
+

1

�

t

s2
�

1

s2

◆
,(A.3)

which is a quadratic expression in
p
t, noting that ⌘̄(t) = ⇣̄(t) from (2.15). This expression

can be solved for two roots t = t±1 (s, n, v) given by

t±1 (s, n, v) =

 
B(s, n, v)±

�
B(s, n, v)2 � 4A(s, n, v)C(s, n, v)

�1/2

2A(s, n, v)

!2

,(A.4)
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where

A(s, n, v) =
3

vs2

✓
v +

1

�v

◆
+

✓

s2

✓
(� � 1)v2 �

2

�

◆
,

B(s, n, v) =
3n

2v(� � 1)
+ ✓vn,

C(s, n, v) = ✓
(↵+ s)

s3
,

and for small 0 < ✓ ⌧ 1 these roots can be expressed as

t+1 (s, n, v) =
�2n2v2s4

(� � 1)2(�v2 + 1)2
+O(✓),

t�1 (s, n, v) =
4✓2(↵+ s)2v2(� � 1)2

9n2s6
+O(✓3).

(A.5)

We first consider the branch t = t�1 and using (A.3), we compute

f2(s, n, v, t
�
1 , 0) =

3

2⌘̄(t�1 )v

0

@ t�1
s2

✓
v +

1

�v

◆
�

n
q
t�1

� � 1

1

A

= �
✓(↵+ s)

⌘̄(t�1 )s
3
+O(✓2)

< 0

(A.6)

for all su�ciently small ✓ > 0. Since the sign of f2 is fixed, the branch t = t�1 contains no
fixed points.

We now consider the branch t = t+1 , on which

f2(s, n, v, t
+
1 , 0) =

3t+1
2⌘̄(t+1 )v

0

@ 1

s2

✓
v +

1

�v

◆
�

n

(� � 1)
q
t+1

1

A .(A.7)

As in the proof Lemma A.1, we can determine the sign of this expression on the interval
(v�, v+) by examining its sign when v = 1. By a similar computation as in the proof of
Lemma A.1, again using the lower bound on n2 from Lemma 3.2, we obtain

f2(s, n, 1, t
+
1 (s, n, 1), 0) < 0.(A.8)

The next lemma describes the relative positioning of the v- and t-nullclines in the phase
portrait of (3.3).

Lemma A.3. For all s > 0, � 2 (1, 5/3), v 2 (v�, v+), and n as bounded in Lemma 3.2,
the v-nullcline lies above the t-nullcline.D
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Proof. By the proofs of Lemmas A.1 and A.2, the fixed points (v±, t±) are contained on the
curves t = t+2 (s, n, v) and t = t+1 (s, n, v), which represent branches of the t- and v-nullclines,
respectively. We consider the quantity

�null(s, n, v) :=
1

n2

�
t+1 (s, n, v)� t+2 (s, n, v)

�
.(A.9)

Since t = t+2 (s, n, v) and t = t+1 (s, n, v) are continuous in v 2 (v�, v+), and �null = 0 only at
the two fixed points v = v±, it is su�cient to determine the sign of �null by evaluating at v =
1 2 (v�, v+). Furthermore, we note from (A.1) and (A.4) that the quantity n�2t+2 (s, n, v) is
decreasing in n2, while n�2t+1 (s, n, v) is increasing in n2, so that for a given (s, v), �null(s, n, v)
in minimized by using the lower bound on n2 from Lemma 3.2, whence we obtain

�null(s, n, 1) >
1

n2
min

�
t+1 (s, nmin, 1)� t+2 (s, nmin, 1)

�

= 0,

so that the v -nullcline lies above the t-nullcline, as claimed.

Last, we show that the curve t = t+2 (s, n, v) does not have any turning points on the
interval v 2 (v�, v+), which ensures that flow of (3.3) points out of the region bounded by the
nullclines for v 2 (v�, v+).

Lemma A.4. For all s > 1, � 2 (1, 5/3), v 2 (v�, v+), and n as in Lemma 3.2, we have

@vt
+
2 (s, n, v) 6= 0.

Proof. Since (t+2 (s, n, v))
1/2 > 0 for v 2 (v�, v+), zeros of @vt

+
2 correspond to zeros of

@

@v

✓q
t+2

◆
=

1

2
q

t+2

@t+2
@v

.(A.10)

Hence we search for zeros of the latter and show that none occur in the interval v 2 (v�, v+).
After a lengthy computation, we find that zeros can only occur when

v2 = v2⇤ :=
2n2s5

�(� � 1) (2(↵+ s)(� � 1)� n2s5)
.(A.11)

We now claim that v⇤ /2 (v�, v+), and in particular, v2⇤ > v2+. Using (3.14) we have that

v2+ = v2⇤
�

2

 
1�

2(↵+ s)(� � 1)2

�n2s5
+

s
1

s
�

2(↵+ s)(� � 1)2(� + 1)

�2n2s6

!
,(A.12)

Since the factor on the right-hand side of (A.12) is increasing in n, using the upper bound
n < nmax from the proof of Lemma 3.2, we have that

v2+ <
v2⇤
2

✓
1 +

1
p
s

◆

< v2⇤

when s > 1. Therefore we conclude that there are no critical points of the t-nullcline in the
interval (v�, v+) for all s > 1, � 2 (1, 5/3), and n as bounded in Lemma 3.2.D
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Using Lemmas A.1–A.4, we can now complete the proof of Proposition 3.4.

Proof of Proposition 3.4. Fix s > 1, and n bounded as in Lemma 3.2. Consider the layer
problem (3.3). By Proposition 3.1 and Lemma 3.2, there exists a repelling fixed point (v+, t+)
of (3.3) on the supersonic branch of the critical manifold, Ssuper

0 , and a saddle fixed point
(v�, t�) on the subsonic branch S

sub
0 .

Both of these fixed points must lie on both the v - and t-nullclines. The results of
Lemmas A.1–A.4 guarantee that these two nullclines can be given as graphs t = t(v) for
v 2 (v�, v+) which bound a trapping region (under the reverse flow of (3.3)), such that the
flow of (3.3) points out of this region in forward time. Following the stable manifold of
the saddle fixed point (v�, t�) under the reverse flow of (3.3), we have that this trajectory
is confined to the trapping region. Any periodic orbit must intersect the nullclines, hence
there are no periodic orbits contained entirely in the trapping region. Therefore, by the
Poincaré–Bendixson theorem, this trajectory must approach a fixed point, and hence there
exists a heteroclinic orbit from (v+, t+) to (v�, t�) for each s > 1 and n as bounded in
Lemma 3.2.

Appendix B. Center manifold analysis near the sonic point. We shift the sonic point
to the origin and perform a linear change of coordinates

s̃ = s� 1,

ñ = n� n⇤,

v1 =
�8(� � 1)✓

(5� 3�)(4✓ + 3� � 3)
(v � 1) +

(� � 1)(2✓ � 3)

4✓ + 3� � 3
(t� t⇤),

v2 =
8(� � 1)✓

(5� 3�)(4✓ + 3� � 3)
(v � 1) +

2(1 + �)✓

4✓ + 3� � 3
(t� t⇤)

(B.1)

to diagonalize the fast subsystem at the linear level at the sonic point for " = 0, resulting in
the system

ds̃

dz
= "g̃1(s̃, ñ, v1, v2, "),

dñ

dz
= "g̃2(s̃, ñ, v1, v2, "),

dv1
dz

= h1(s̃, ñ, v1, v2, "),

dv2
dz

= h2(s̃, ñ, v1, v2, "),

(B.2)

where

g̃1(s̃, ñ, v1, v2, ") := g1
�
1 + s̃, n⇤ + ñ, 1 + V †(v1, v2), t

⇤ + T †(v1, v2), "
�
,

g̃2(s̃, ñ, v1, v2, ") := g2
�
1 + s̃, n⇤ + ñ, 1 + V †(v1, v2), t

⇤ + T †(v1, v2), "
�
,

h1(s̃, ñ, v1, v2, ") :=
�8(� � 1)✓

⌘̄(t)(5� 3�)(4✓ + 3� � 3)
f1
�
1 + s̃, n⇤ + ñ, 1 + V †(v1, v2), t

⇤ + T †(v1, v2), "
�

+
(� � 1)(2✓ � 3)

⇣̄(t)(4✓ + 3� � 3)
f2
�
1 + s̃, n⇤ + ñ, 1 + V †(v1, v2), t

⇤ + T †(v1, v2), "
�
,D
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h2(s̃, ñ, v1, v2, ") :=
8(� � 1)✓

⌘̄(t)(5� 3�)(4✓ + 3� � 3)
f1
�
1 + s̃, n⇤ + ñ, 1 + V †(v1, v2), t

⇤ + T †(v1, v2), "
�

+
2(1 + �)✓

⇣̄(t)(4✓ + 3� � 3)
f2
�
1 + s̃, n⇤ + ñ, 1 + V †(v1, v2), t

⇤ + T †(v1, v2), "
�
,

and

V †(v1, v2) :=
�(� + 1)(5� 3�)

4(� � 1)
v1 �

(5� 3�)(2✓ � 3)

8✓
v2,

T †(v1, v2) := v1 + v2.

The functions h1, h2 satisfy

h1(s̃, ñ, v1, v2, ") = O(s̃, ñ, v21, v
2
2, "),

h2(s̃, ñ, v1, v2, ") = �+ṽ2 +O(s̃, ñ, v21, v
2
2, "),

where �+ > 0 is given by (4.3), so at the linear level, the dynamics on the center manifold
are parameterized by (s̃, ñ, v1), and the fast unstable dynamics o↵ of the center manifold are
governed by the flow in the v2-direction. By standard results of center manifold theory, there
exists a three-dimensional center manifold W

c
sp which can be represented as a graph v2 =

V c
sp(s̃, ñ, v1, ") over the center subspace. Changing coordinates via ṽ2 = v2 � V c

sp(s̃, ñ, v1, "),
and applying one further coordinate transformation to straighten the strong unstable fibers,
so that the flow in the (s̃, ñ, v1)-coordinates is decoupled from v2, we obtain the system

ds̃

dz
= "g̃c1(s̃, ñ, v1, "),

dñ

dz
= "g̃c2(s̃, ñ, v1, "),

dv1
dz

= h̃c1(s̃, ñ, v1, "),

dṽ2
dz

= h̃c2(s̃, ñ, v1, ṽ2, "),

(B.3)

where

h̃c2(s̃, ñ, ṽ1, ṽ2, ") = (�+ +O(s̃, ñ, ṽ1, ṽ2, ")) ṽ2.(B.4)

We now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. The dynamics on the center manifold W
c
sp are governed by the

first three equations of (B.3) in the variables (s̃, ñ, v1). This system is a 2-slow-1-fast singularly
perturbed dynamical system with slow variables (s̃, ñ) and fast variable v1, with perturbation
parameter ", which is in the normal form for a folded saddle canard point in the sense of [37].
In particular, one can verify that the conditions (6)–(7) from [37] hold via applying the
linear coordinate transformations (B.1), Taylor expanding in (s̃, ñ, v1, v2), and computing the
relevant quantitiesD
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h̃c1(0, 0, 0, 0) = 0,

@h̃c1
@v1

(0, 0, 0, 0) = 0,

@h̃c1
@ñ

(0, 0, 0, 0) =
3✓�(5� 3�)2

4(4✓ + 3� � 3)
6= 0,

@2h̃c1
@v21

(0, 0, 0, 0) = �
3✓(1 + �)(5� 3�)7/2

8
p
2(� � 1)(4✓ + 3� � 3)

6= 0,

where the last two quantities were calculated using Mathematica. Thus within the center
manifold W

c
sp, the results of [37] hold, and the assertions of the proposition follow from [37,

Theorem 4.1].
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