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Abstract. The one-fluid stellar wind problem for steady, radial outflow is considered, including effects of heat
conduction and viscosity. The associated nondimensionalized equations of conservation of mass,
momentum, and energy are singularly perturbed in the large Reynolds number limit, and stellar wind
profiles are constructed rigorously in this regime using geometric singular perturbation techniques.
Transonic solutions, which accelerate from subsonic to supersonic speeds, are identified as folded
saddle canard trajectories lying in the intersection of a subsonic saddle slow manifold and a supersonic
repelling slow manifold, returning to subsonic speeds through a viscous layer shock, the location of
which is determined by the associated far-field boundary conditions.
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1. Introduction. A wide body of literature exists on the study of spherically symmetric,
steady flow in relation to the stellar wind and accretion problems in astrophysical gas dynam-
ics. These problems concern the outflow and inflow of matter from a massive body, such as
a star, under the influence of the body’s gravity. This work concerns transonic outflows of
matter being ejected from the surface of a star (referred to herein as stellar wind), in which
gas accelerates from subsonic to supersonic speeds at some critical radius, before returning
to subsonic speeds in the far field. Since Parker’s formulation [27], there have been numerous
studies of one-fluid models of stellar wind [1, 2, 11, 12, 21, 26, 33, 34] in which numerical
and/or asymptotic methods have been employed in analyzing a variety of physically relevant
solutions, including those which remain at subsonic speeds for the entire domain, as well as
transonic solutions. When the effects of heat conduction and viscosity are neglected, the tran-
sonic solutions pass through a singularity, called the sonic point, at which the transition from
subsonic to supersonic flow is possible [11]. However, the inclusion of heat conduction and
viscosity introduces a regularizing effect which removes the singularity and allows for smooth
transonic solutions near the sonic point.

In the small viscosity (large Reynolds number) limit, the challenge comes from the fact that
the problem is singularly perturbed, and our aim is to analyze the existence of such transonic
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stellar wind solutions rigorously in the context of geometric singular perturbation theory;
these methods allow for the construction of smooth solutions by considering the underlying
geometry of the equations on different spatial scales and piecing together this information
to build solutions of the full problem. In this context, transonic solutions arise as canard
trajectories [37], which manifest as intersections of repelling and attracting slow manifolds.
Canards are frequently important in understanding the dynamics in singularly perturbed
dynamical systems and arise naturally in applications in mathematical biology, physiology, and
physics. In the context of transonic flows, canards have been shown to organize the dynamics
of the hydrodynamic escape problem [13] and the dynamics of flow through a nozzle [14, 16,
17, 24]; in particular, sub-to-supersonic canard trajectories analogous to those considered here
have been analyzed in [16] in relation to flow through contracting-expanding nozzles.

In the context of stellar winds, prior work [4] demonstrated the existence of transonic
solutions in a related setting; these solutions arise as canard trajectories lying in the inter-
section of attracting and repelling branches of a two-dimensional slow manifold, accompanied
by a viscous shock to return to subsonic speeds in the far field. However, in [4], viscosity was
assumed constant, and the effects of heat conduction were neglected in favor of a simplified
assumption of isentropic (constant entropy) flow. It should be noted that this assumption
is, at best, a rough approximation in this context, given that shocks are associated with a
change in entropy. Additionally, one expects that the effect of thermal diffusivity is of greater
magnitude than that of viscosity in the context of stellar wind, and therefore a treatment of
the stellar wind phenomenon should include both effects. In this spirit, the goal of the current
work is to analyze stellar winds, relaxing the assumption of isentropic flow, retaining heat
conduction, and allowing the viscosity to depend on temperature. Ultimately, the effect on
the analysis is that the resulting equations for stationary solutions are of higher order; this
introduces some technical challenges in the construction of canard orbits which satisfy the
far-field boundary conditions.

We consider a star of mass M at rest in an infinite gas cloud with an ambient density
Poo, thermodynamic pressure po,, and temperature T, at infinity. In the entire domain, we
assume that the pressure, p, is related to the density p and temperature T' of the system by
the ideal gas law, i.e.,

(1.1) p=p(p,T) = pRT,

where R > 0 is the specific gas constant. We consider spherically symmetric flow under the
force of gravity only, with force in the radial component

GM
1.2 F=—p——p
(1.2) Pz

where G > 0 is the gravitational constant and r» > 0 is the radial distance. The dynamics
for the one-fluid model of the stellar wind are then governed by the compressible, viscous
Navier—Stokes equations describing conservation of mass, momentum, and energy

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/21 to 169.234.199.75. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

264 ADAM BAUER AND PAUL CARTER

dp 10
or Tz ) =0
0 19 dp GMp

or 72

(priu
T r
4 0 (10,4 on (Ou wu
(13 =50 o 0) <5 (5 -5)))
+i2 r? 1u?’—i- ue + pu
r2 Or 2 p P
0

CL0 (L (e )Y aw
2 9r or T3\ G T 1 P 5

where 7 denotes time, u € R is the radial velocity, e = ﬁ is the internal energy, and

1<y < % is the ratio of specific heats [1]. Here u > 0 corresponds to outflow (stellar wind,
i.e., away from the star) and u < 0 corresponds to inflow (accretion, i.e., toward the star).
While we focus on the outflow problem in this paper, the techniques could be adjusted in
a straightforward fashion to apply to the corresponding inflow problem as well. The flow is
considered to be subsonic if |u| < ¢ and supersonic if |u| > ¢, where

(1.4) ci= <?)ézm>0

is the adiabatic speed of sound. We include the effects of both temperature-dependent viscosity
and heat conduction, though under the assumption that viscosity and thermal diffusivity are
small; that is, we consider the regime of large Reynolds number and large Péclet number.
We further assume that thermal diffusivity dominates viscosity so that the corresponding
Prandtl number, equivalent to the ratio of the Péclet number and Reynolds number, is small.
We further assume that the viscosity, n = n(7), and the thermal conductivity, ( = {(T),
are both increasing functions of temperature. The specific dependence of 7(T") and ((T")
will be discussed later in this paper, though our analysis is valid in particular for functions
n(T),((T) < T%,w > 1.

In this setting, the model (1.3) admits families of solutions which are subsonic on the entire
domain, as well as transonic solutions which accelerate to supersonic speeds through the so-
called sonic point and decelerate to subsonic speeds in the far-field via a viscous shock, the
location of which is determined by the far-field boundary conditions. Analogously to [4], these
transonic solutions appear as canards, though due to the addition of the full energy equation
in (1.3), the associated equations are of higher order, and thus the state space dimension is
larger. The canard trajectories lie on the intersection of a saddle-type slow manifold and a
normally repelling slow manifold in a four-dimensional singularly perturbed dynamical system
(this is in contrast to those seen in, e.g., [9], in which the canard orbits lie on the intersection
of attracting and saddle-type slow manifolds), and the transition to subsonic speeds in the far-
field occurs through a fast heteroclinic orbit in the two-dimensional layer problem. The exact
choice of heteroclinic orbit traversed is determined by boundary manifolds at infinity which
select the correct far-field boundary conditions; these are obtained through a compactification
procedure.
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The remainder of this paper is outlined as follows. In section 2, we describe the setup
and statement of our main existence results, and we nondimensionalize the equations which,
in the large Reynolds number limit, results in a singular perturbed dynamical system in the
radial coordinate. The singular slow and fast limits of this system are analyzed in section 3 in
the context of geometric singular perturbation theory, and we construct families of singular
solution orbits. In section 4, we show that these singular orbits perturb smoothly to steady
stellar wind solutions of (1.3) satisfying appropriate boundary conditions, and we conclude
with a brief discussion in section 5.

2. Setup. We search for steady stellar wind profiles, for which (1.3) reduces to the fol-
lowing system of ordinary differential equations in the radial coordinate r:

(2.1) %2% (priu) =0,
22) g o)+ + 5 =5 (00 (G (o 0)) <567 (8 -7))

(2.3)

T (Ui ) ) 2 L (AT A (e )Y G
r2dr 2P P p Cor2dr ar 3" dr r e

In this section, we prepare these equations for the forthcoming analysis. In section 2.1, we
reduce (2.1)—(2.3) to a first order system, and we state our main results concerning transonic
stellar wind solutions in section 2.2. In section 2.3, we nondimensionalize the system, obtaining
a singularly perturbed dynamical system which will be analyzed using geometric singular
perturbation techniques in section 3.

2.1. Preparation of equations. The equation describing conservation of mass (2.1) can
be integrated immediately, so that pr?u = K with constant mass flur K > 0 for the outflow
problem u > 0. We can therefore express the density p in terms of the radial distance r, and
velocity u as

K
2.4 =——>0.
24) plru) = S5 >

Using the ideal gas law (1.1), the pressure, p(p,T), can be represented as a function of r, u,
and the temperature T, given by

KRT
(2.5) p(p(r,u),T) = p(r,u)RT = > 0.

r2u

We now consider the equation of momentum conservation (2.2), which after rearranging be-
comes

U U w2
tien- o (3(te) A () - o

from which we obtain

d 9 4 du 8 U 20u?  GMp 4udn(T)
< _oymEE _ Sy ) = 2 _ .
dr (pu tp 377( )dr 377( )r> r r2 r dr
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We therefore define an auxiliary variable with physical dimensions of pressure

(2.6) m = pu® +p— -n(T)— — -n(T)
which leads to the system
dm 2pu? _ GMp  4udp(T)

(2.7) dr r r2 r dr ’
' du 3, 5 2u
U(T)E = Z(PU +p—m)— TW(T)~

Finally we consider the equation of energy conservation (2.3), which can be integrated once
using (2.4) and rearranged to yield

1 Ypu EK dT 4 du GMpu
2. —pu® + = — +¢T)——+ n(T +
(2:8) 2Pt v—1 r2 A7) dr 377( Ju < )

)

dr r T

where F is the specific energy (energy per unit mass) of the fluid, assumed to be positive.
Substituting (2.7) for n(T)g—:f and simplifying, we obtain
dT 4n(T)u? pu GMpu EK 1 4

2. g P 1o
(2:9) o )dr um r +'y—1 r r2 Pl

Combining the results from (2.7) and (2.9), and using the expressions (2.4) and (2.5) for the
density and pressure, respectively, we obtain the nonautonomous system of ODEs in r for
(m,u,T)

dm  2Ku GMK  4udy(T)

dr 3 riu r dr ’
du 3 (Ku KRT 2u
T)—="(—54+——m) - —n(T
(2.10) U )dr 4 < 2 ur? m> r n(T),
dT 4n(T)u? 1 KRT GMKu EK 1Ku?
T)— = _ _ _
C( )dr um + , +’y—1 7”2 T'3 7'2 2 7'2 )

which we consider on the interval r € (rg,00) where 7y denotes a nonzero reference radial
distance (for instance, the stellar surface).

2.2. Statement of main result: Stellar wind solutions. In this section, we state our main
existence result concerning transonic stellar winds. We define ¢ to be the speed of sound

(2.11) c=+/vRT.

A solution to (2.10) is then subsonic whenever |u(r)| < ¢ and supersonic whenever |u(r)| > c.
A transonic solution (m,u,T) = (m(r),u(r),T(r)) on the interval r € (rp,o0) to (2.10)
satisfies the following:
(i) The velocity profile u(r) is subsonic at the inner boundary r = ¢ and asymptotically
subsonic as r — oo.
(ii) w(r) is supersonic for some interval I, where I C (rg,00) is a bounded interval.
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Given fixed mass flux K > 0, specific energy E > 0, and stellar radius rg, the system (2.10)
supports steady transonic stellar wind solutions under certain constraints on the asymptotic
physical boundary conditions; otherwise only subsonic solutions are supported. We have the
following.

Theorem 2.1. Consider (2.10) for any fized v € (1,5/3) and sufficiently small Prandtl
number 0 > 0. There exists koo such that for any fixred asymptotic temperature To, € (0, 00)
and asymptotic pressure po € (0,00), the following holds:

(i) If p2, > kooTno or 10 > %, then for any sufficiently large Reynolds number Re
> 1, there ezists a pressure, p(ro) = po, and temperature, T(ro) = Ty, at the stellar
surface v = ro that supports a steady subsonic solution for r € (rg,00) satisfying
(m(r), T(r)) = (Poo, To) as r — oo.

(i) If p2, < kooTno andrg < %

> 1, there exists a pressure, p(ro) = po, and temperature, T(ro) = Ty, at the stellar
surface v = ro that supports a steady transonic stellar wind solution for r € (rg,o0)

satisfying (m(r), T(r)) = (Poo, Tno) as T — 00.

, then for any sufficiently large Reynolds number Re

Remark 2.2. We briefly comment on the two conditions in Theorem 2.1 which determine
whether transonic stellar wind solutions are supported for the given physical boundary con-
ditions. The first condition relates the asymptotic pressure and temperature which, through
the ideal gas law, can also be related to the corresponding asymptotic density. We find that
if the asymptotic pressure is too large relative to the temperature, only subsonic solutions are
supported, while lower relative values of the pressure can support transonic winds. We will
show in section 4 that the constant k., can be determined explicitly as

K2R (2(y—-1)E 4 5-3v
0o — 1 — —1 .
K ~ ( GM > (10 = 67)"

The second condition concerns the stellar radius rg. We will show that winds which are
subsonic at the stellar surface can only accelerate to supersonic speeds by crossing the corre-
sponding sonic point, which occurs at the critical radius r = %T:?;). Hence if the stellar
radius extends further than this critical radius, no transonic winds are supported.

GM(5—37) £
4E(y-1)

the sonic point that transonic solutions exist only in the physical regime v € (1,5/3), as the
sonic point occurs at 7 = 0 (resp., 7 = c0) in the limit v — 5/3 (resp., v — 1). Furthermore,
we will show in section 4.4 that for values of v € (3/2,5/3), while transonic solutions can
exist, the physical velocity decelerates when crossing the sonic point, due to the fact that
¢ decreases rapidly through the sonic point. We therefore determine that only for values of
v € (1,3/2) does the system admit transonic solutions which accelerate through the sonic

point [6, 13, 38].

Remark 2.3. Tt can be determined immediately from the critical radius r =

2.3. Dimensional analysis. We first transform the system (2.10) to dimensionless vari-
ables by introducing reference scales for the variables (r,m,u,T). As a reference velocity, we
choose the speed of sound ¢, as defined in (2.11), and we set
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(2.12) u = cv,

where v is the local Mach number. Note that this rescaling depends on the spatial coordinate r
through the temperature 7. We then introduce constant reference scalings (to be determined)
for the remaining variables as

(2.13) r = ks, m = knn, T = krt,

where k., kp,, kr > 0. Additionally, the viscosity and thermal conductivity are assumed to
scale as (T, ((T) o< T% with w =5/2 [1, 5, 7, 11], and we therefore set

(2.14) n(T) =non(t),  ¢(T) = Go¢(?),
where
(2.15) a(t) = () = 19/2,

Here the quantities 19 and (y contain all the dimensional information about the viscosity
and the thermal conductivity, respectively, while 7(¢) and ¢(t) capture how the viscosity and
thermal conductivity scale in t. While we fix the exponent w = 5/2 for clarity of presentation,
we remark that the following analysis could be modified to hold for any w > 1.

Substituting these scalings into (2.10), and using the relations

dn(T) _no ., dt
i aUACkW
d(cv)  VAREr ( v dt _’_\/Zdv>7

& ke \2vids ds

(2.16)

we arrive at the nondimensionalized system

dn 2K /v Rk v/t GMK 1 dnor/yRET vVt ,,, dt

ds  kmk2 8 KARkrovist | & s T

dv 3 K v K 1 knmkr n 20 lwodt

ds — 4n(t) <770k77"<92 - noky vs2 UO\/WTT\E) s 2tds’
(2.17) at 1 [ARkkn VKRV GMK 1 4ynoRvt

ds:&®< o VT T G s

KR t EK 1)
+ .

(v — D)okr 82 Cobrkr s
We now introduce the following dimensionless quantities:
1 K 1 K~R
(2.18) = =T
ER  Tokr ep Gokr(y—1)

where e, is the inverse Reynolds number and ep is the inverse Péclet number [1]. We consider
the regime in which the Reynolds number and the Péclet number are both large, and thus
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we have that 0 < eg,ep < 1 [11]. We also introduce the Prandtl number as the ratio of the
Péclet and Reynolds numbers

(2.19) g.— M __<cr

Coly=1) ep
In the context of stellar winds, it is reasonable to expect that thermal diffusivity dominates
effects of viscosity, and hence the Prandtl number is assumed small, with estimates on the
order of 1072 [21, 36, 40]. Therefore, in our analysis we consider the regime 0 < ep < 0 < 1,
and we will use the Prandtl number to eliminate the Péclet number from the analysis; we
therefore remove the subscript from € and denote € := ep.
We further choose the reference scalings

GM KFE** | E E(y—1)
2.2 = —, m = , = ——
(2.20) & Ea b G2M?2 \ ~v—-1 bt YR

for some « > 0 to be determined. With these scalings, after some rearranging, we arrive at

the nonautonomous system

dn ot « vVt I
S

E = _2(7 - 1)873 - ’U\/ZS4 - 4(7 - 1) n (t)(p(s,n,v,t,e),

d'U 3 (% ]. 1 1 n v 1U
2.21 O S (I S S ;
( ) EdS 4T7(t) <S2 +"}/’U32 ,},_1\/%) 88 2t@(87n7f07 76)7

dt 0 y—1vt o 1t 1 vt
— = R A = 4 de(y — DA(t) —
T ) (vn + 2 Tty =1)alt)— ),

where the quantity ¢(s,n,v,t,€), which appears in the first two equations, is shorthand for
the right-hand side of the third equation for temperature

0 1 vt
(2.22)  @(s,n,v,t€) = = VI — ———5 — 5 + 2 + 4e(y — 1)n(t)? .

¢(t)

3. Slow/fast analysis. We now view the nondimensionalized equations (2.21) as a singu-

larly perturbed dynamical system with small parameter ¢ < 1. The parameter 6 will also be

taken small in the analysis, but since we assume ¢ < 6 < 1, the effect of # in (2.21) is that

of a regular perturbation. We next introduce a dummy variable y = s to make the system
autonomous, resulting in the four-dimensional autonomous system

(3.1)
3; =gi(s,n,v,t,e) =1,
jZ = ga(s,n,v,t,e) := —2(y — 1)% - #.284 —4(v - UUTtﬁ/(t)(p(S’n’v’t)’
63; = fi(s,n,v,t,e) == 4773(” <:2 + }yv; - 71_1\%> N 262 B %%’O(S’n’ut’ )
5;1; = fa(s,n,v,t,e) = E(i) (vn t— 7;11;2; — ;13 + flystz — 8—12 +4e(y — 1)77(15)1}?) )
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The system (3.1) can now be viewed as a “slow-fast” dynamical system with two “slow”
variables (s,n) and two “fast” variables (v,t), and timescale separation parameter 0 < & < 1.
We refer to (3.1), which evolves on the slow timescale y as the slow system. By rescaling the
dummy variable y = £z, we obtain the equivalent system

%_6 (s,n,v,t,e)
dz_ gils,n,v,t, )
dn
— =¢ega(s,n,v,t,¢),
dz
(3.2)
@:f(snvte)
dz 1 o, 1Ly Uy by )
dt
o= fa(s,n,v,t €)

on the fast timescale z, which we refer to as the fast system.

3.1. Singular limits. The systems (3.1) and (3.2) are equivalent for any ¢ > 0. The idea
of geometric singular perturbation theory is to infer information about the solutions of the
full system for € > 0 by separately analyzing the singular limiting systems obtained by taking
the limit € — 0 in each of (3.1) and (3.2).

Setting € = 0 in (3.2) in this way results in the layer problem,

ds
R
dz ’
d
=

(3.3) z
@:f(snvtO)
dz 1o, 76, Uy by )
dt
&ZfQ(Sanﬂ)ataO):

in which the variables (s,n) are no longer dynamic and instead act as parameters in the
resulting planar system

d
i:f1(87n7v7t70>7
dz

(3.4)
ﬁ—f(snvtO)
dZﬁ 2\9, 16, Uy b,

for the “fast” variables (v,t), called the fast subsystem. This system has a set of equilibria,
called the critical manifold, given by

fi(s,n,v,t,€)

(3.5) Sp:= {(s,n,v,t) eRY: F(s,n,v,t,0) = 0}, F(s,n,v,t,e) =
fQ(S,TL,'U,t,E)
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If we now set ¢ = 0 in (3.1), this results in the reduced problem:

d
diz :gl(s7n7v7t70)7

dn
. — = ga(s,n,v,t,0),
(3.6) dy ( )

0= fi(s,n,v,t,0),
0= fa(s,n,v,t,0),

in which the flow is restricted to the critical manifold Sy, and the dynamics on Sy are governed
by the first two equations for the “slow” variables (s,n).

3.2. The layer problem. The flow for the layer problem (3.3) is restricted to planes of
constant (s,n), in which any fixed point solutions must lie on the critical manifold. This
manifold is a folded surface, formed by two branches of hyperbolic fixed points, one of which
consists of saddle equilibria and the other of repelling equilibria separated by a fold curve of
nonhyperbolic fixed points; see Figure 1. This is the content of the following.

Proposition 3.1. The critical manifold So = SS“b UF U S, is folded with a subsonic

branch of hyperbolic saddle equilibria, SS“b, a sonic fold curve, F, and a supersonic branch of

super

hyperbolic repelling equilibria, S

Proof. We compute the linearization of (3.3) evaluated along the critical manifold. The
critical manifold is found by simultaneously solving fi(s,n,v,t,0) = fa(s,n,v,t,0) = 0, and
we note that by definition of ¢ in (2.22), we have that ¢(s,n,v,t,0) = fa(s,n,v,t,0), so
that fa(s,n,v,t,0) = 0 precisely when ¢ vanishes. We therefore solve the first term of
fi(s,n,v,t,0) =0 for n = n(s,v,t) by setting

(v = DVt s) 1
(3.7) n=n(s,v,t(v,s)) := 2 v+ o)
AV
<
So P vl >1
v=1— vl

Sgvb ol <1

i /

So = S§PUF U SHP

Yo

(n,1)

Figure 1. Shown is the folded critical manifold Sy, composed of a subsonic saddle branch S5*° in the region

v < 1 and a supersonic repelling branch S§"P°" in the region v > 1, separated by the sonic fold curve F.
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where we obtain

2(a+s)
S —1)12)
by substituting (3.7) into fa(s,n,v,t,0) = 0 and solving for ¢ = ¢(v, s). Using these expres-
sions, and denoting by J|s, the Jacobian of the fast subsystem (3.4) evaluated along the
critical manifold Sy, we find that

_3 (11 _ 00D v2(y=1)+2 (3 1\ v+
4n(t)s* (1 W2> 2vs%C(1) 2s(acts) (Sﬁ(t) (U + vv) 1C(2) )
(39)  Jls, = |

0 2(y=1)(a+s) 0 o+l

C(t) yus3(v2(v—1)+2) C(t) 2vs?

from which we compute

(3.8) t=t(v,s) =

30
3.10 detJ|s, = ———=(v? — 1),
310 s = S Y
1 3 1 0

311 Tedls :<<7_>+_>.

(311 @ = \mo ") T
Noting that # > 0 and v > 1, in the region s,,v > 0 we can therefore determine the stability
type of the fixed points on the critical manifold as summarized in Table 1. |

We now examine the dependence of fixed points of (3.3) on the values of (s,n). Since
any such point must lie on the critical manifold, on which F(s,n,v,t,0) = 0, we can solve
fi(s,n,v,t,0) =0 for t = t(s,n,v) to obtain

n254v2’y2

(y = 1)2(yv* +1)*
Substituting this expression into fa(s,n,v,t,0) = 0, we recover a quadratic in yv?,

(3.13)
(- 1) (<a+s>w— -

(3.12) t=1t(s,n,v):=

285

2

n

) (10?)" + (2 (@ +5) (v = 1)* =n?s"y) 70° + (@ +5) (v = 1) = 0,
which can be solved explicitly for v as

(3.14)
1/2

v = v (s,n) = <n2557 —2(a+s)(y—1)*+ ns?y/s (25992 — 2(a +s)(y + 1)(y — 1)2))

10— 1) @+ - 1) - )

Table 1
Structure of the critical manifold So.

’ v < 1 (subsonic) ‘ detJ|s, <0 ‘ saddle-type ‘
’ v=1 ‘ detJ|s, =0 ‘ nonhyperbolic ‘
’ v > 1 (supersonic) ‘ TrJ|s, > 0,detJ|s, >0 ‘ repelling ‘
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Substituting (3.14) into (3.12), and setting t4(s,n) := t(s,n,vL(s,n)), yields the location of
each root as a function of (s,n), as desired.

In the following analysis, in order to construct a transonic solution which returns to
subsonic speeds in the far field, we will require that there exist two distinct, real valued
solutions to (3.13), with one subsonic solution and one supersonic (see section 3.4). This
requirement requires a restriction on the possible values of (s,n) in the layer problem (3.3),
as shown in the following lemma.

Lemma 3.2. In order for there to exist two fized points to the layer problem (3.3) in the
region v > 0 at a value of s > 0, the variable n must satisfy

72 -1 n255

7 Saten-1 "

Furthermore, under these conditions, we have that v— < 1 and vy > 1, so that one of the fixed

points lies on the subsonic branch SS“b and the other on the supersonic branch Sy"™*".

Proof. In order for both of the roots of (3.13) to be real valued, the discriminant of the
quadratic equation (3.13) must be positive, from which we obtain

(3.15)

2
1
(3.16) T

This inequality then implies

3.17 >

(317 Aot -1 7

so in order to obtain two real, positive roots v4, the denominator in the expression (3.14)
must be positive, so that

n?sd

(3.18) 2(a+s)(y—1)

<1,

from which we obtain (3.15). The inequality (3.15) can be rearranged as

nmin(3)2 .— 9 <a + 8) (’V + 1?7(;/ — 1)2 < n? < 2(7 B %9)5(04 + 3) — nmax<3>2-

From the expression (3.14), we find that the value of v (s, n) is increasing in n and is therefore
minimized when n? = nyi(s)?. Thus,

U+(5a n)

n2sy —2(a+s) (y—1)> + ns? /5 (025977 — 2(a + 5)(7 + (7 - 1>2>>” i

10— 1) @a+5)(y— 1) — n25) 2

2__
=T min
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Likewise, after some rearrangement of the expression (3.14) for v_(s,n), we find that

(3.19)
) 1/2

2 -1

o (om) (a+s)(v—1)
v <n235’y —2(a+5) (v —1)* +ns2/s (25592 — 2(a+ s)(y + 1) (7 — 1)2))
from which we see that v_(s,n) is decreasing in n and is therefore maximized when n? =
’I’Lmin(5)2, from which we obtain
v_(s,n) <1

by a similar computation. |

3.3. The reduced problem. We recall from the proof of Proposition 3.1 that along the
critical manifold Sy, we can express

(3.20) n=n(s,v,t(v,s)) = =1 5 v, s) <v + 1) ,

s YU
where

2(a +s)

(3.21) t(v,s) = SR =D+

Substituting these expressions into (3.6) yields equations for the reduced dynamics on the
critical manifold in terms of (s,v) as

Y
(8:22) dv 1 ab—3y . vy —1) +2)
dy s(1—v2)\4 -1 a+s '

The corresponding dynamics for the value v = 1.4 are shown in Figure 2.
Note that the system is singular at s = 0 and v = +1. To remedy this, we desingularize
the reduced dynamics by rescaling dy = s(1 — v?)dy, resulting in the system

— = 5(1 —?),

dv ab— 3y v(v3(y —1)+2)

— == —S .

dy 4 v—1 a+s

The phase portraits of the systems (3.22) and (3.23) are identical in the region s > 0, up to
a change of orientation in the supersonic region v > 1. Computing % from (3.23) (or equiv-
alently (3.22)) results in a separable equation which can be integrated to reveal that (3.23) is
conservative with level sets

In(w) (y+1)In@*(y-1)+2) In(s) (a+1)n(a+s)

(3.24) E(s,v) := 5 i —1) -, + - .

(3.23)
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1.5

1.4
1.3
1.2
1.1
v 1
0.9
0.8
0.7

0.6

0.5

Figure 2. Shown is the reduced flow on the critical manifold So for v = 1.4, so = 0.55,s1 = 1.9. The
true and fauz canards ®F, ®° correspond to the energy level set E(s,v) = Eo and intersect at the sonic point
(s,v) = (1,1). Also shown are the level sets corresponding to E(s,v) = Eg—0.05 (black) and E(s,v) = Ey+0.01
(red). Note that the latter level set is crossed transversely by the projected canard VU (®€) in the region s > 1.
The singular transonic solution ®o = ®°Ux? U DY is formed by (a portion of ) the canard orbit ¢, followed by
the fast jump 7%, and then the slow trajectory ®Y on the subsonic branch S§™° satisfying v = 0% at s = s1.

Additionally, the desingularized system (3.23) admits a fixed point, called a folded singular-
ity [37], which is located at

(3.25) (s*,v") = (OM, 1) .

We will see in the following analysis that this folded singularity allows for the smooth transition
from subsonic to supersonic speeds for small € > 0, and we therefore refer to this as the sonic
point. We now choose the (previously undetermined) scaling

4(v—1)
e W) )
4T TE 3y

for convenience, so that the location of the sonic point is fixed at
(3.26) (s",0") = (1,1)

for all values of v € (1,5/3). We have the following.
Proposition 3.3. The folded singularity is of saddle type for all values of v € (1,5/3).

Proof. We calculate the linearization of the desingularized system (3.23) at the folded
singularity (3.26) as
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1—2? —2sv
Jrs = _U(’U2(’7—1)+2)(Oé+1) (1—5)(31}2(7—1)+2)
(ats)? a+s (s,v)=(s*,v*)
0 -2

(3.27) =

~(5-37) 0
We have that
(3.28) detJi = —2(b—3y) <0 forye (1,5/3)
so that the folded singularity (3.26) is a folded saddle [37]. [ ]

Associated with this folded saddle singularity are a pair of canard orbits, one which tra-
verses the sonic point from the subsonic branch to the supersonic branch as s increases, and
one which crosses the sonic point moving from supersonic to subsonic [37]. The former, which
we denote by @€, is referred to as the “true” canard, while the latter, which we denote by
®7 is sometimes called a “faux” canard. The distinguished true canard orbit ®¢ provides a
means of accelerating from subsonic to supersonic speeds along the critical manifold via the
sonic point.

3.4. Construction of singular orbits. By combining orbits from the layer and reduced
problems, discussed in sections 3.2-3.3, we are able to construct singular orbits, which will
serve as candidates for transonic stellar wind solutions of the full problem (3.1) for 0 < ¢ < 1.
We recall from section 2.2 that a transonic stellar wind solution must be subsonic at the
stellar surface, which we denote by s = sy in the rescaled radial coordinate, accelerating to
supersonic speeds in a bounded region in space, before returning to subsonic speeds in the far
field. Stated in the rescaled variables (s, v), this means that a transonic stellar wind solution
(v(s),n(s),t(s)), on the interval s € (sp,00), must satisfy the following:

(i) The velocity v(s) is subsonic (v < 1) at the inner boundary s = sy and asymptotically
subsonic as s — oo.
(ii) wv(s) is supersonic (v > 1) for s € I, where I C (sg,00) is a bounded interval.

To build such a solution, we note that in the limiting singular systems, for a solution which
is subsonic at the surface s = sg, the only means of accelerating to supersonic speeds is via
the canard orbit ®¢ which crosses the sonic point on the critical manifold Sy. If sg > 1, then
no such orbit exists; hence we assume sy < 1. In order for a supersonic solution to return to
subsonic speeds as s — oo, we recall from Proposition 3.1 that the upper supersonic branch
Sy is normally repelling, while the lower subsonic branch is of saddle type. Therefore it will
be possible to transition from 8§ to SS“b provided there exists a heteroclinic orbit of the
layer problem (3.3) which connects the repelling supersonic fixed point to the corresponding
saddle-type subsonic fixed point within the same (s, n)-slice. This fast heteroclinic orbit will
manifest as a viscous shock in the perturbed solution. Once the solution returns to Sgub in
the region s > 1, it will be possible to follow one of the singular reduced orbits which satisfies
0<ov<1ass— oo

We therefore construct candidate singular orbits in three pieces ®g = ®§ U 2 U ®Y (see

sub

Figures 2 and 3), where ®} is an orbit of the reduced system (3.6) on Sgt° with appropriate
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AV

Yo

Oy = ¢ U TP U DY

Figure 3. Shown is a schematic for the construction of a singular transonic solution ®o on a bounded
interval s € (so,s1). The solution consists of three trajectories ®o = P° U 7l U B, where ®° is the canard
on the critical manifold Sy which accelerates from sub- to supersonic speeds via the sonic point, T° is the

fast heteroclinic orbit from Proposition 3.4 which defines the projection W: S3™*" — S§'°, and ®f is a slow

trajectory on the subsonic branch S§™® with the appropriate boundary condition v = v} at s = s1.

far-field boundary conditions as s — oo, and 7r$’ is a fast heteroclinic orbit which connects ®§
to <I>8, provided such an orbit exists. We will then perturb from ®¢ for 0 < ¢ < 1 to obtain a
solution of the full problem (3.1).

To construct the orbit 7%, we return to the desingularized system (3.23), which we recall
is conservative with conserved quantity E(s,v) defined in (3.24). The canard solutions ®¢ and
®/ lie on the level set

(3.29) E(1,1) = 4((7;111)) In (5 _137) —: Ey.

This level set divides the phase portrait of (3.23) into four regions: in the regions to the left
and right of the two canard curves ®¢ and ®/, we have E > Ej, while the regions above and
below both ®¢ and ®f satisfy E < Ej.

In order to find an orbit which jumps from the canard ®°¢ on S;"P” for s > 1 to the
subsonic branch S§"P, there must exist a heteroclinic orbit of the layer problem (3.3) between
the unstable fixed point on S;""® and the corresponding saddle point on S§UP. We recall
from section 3.2 that these fixed points of (3.3) are denoted by (vi(s,n),t+(s,n)) where

v = vy satisfy (3.14), with corresponding temperatures given by (3.12) as

n2 841)1,72

(v = 1)?(yoi + 1%

(3.30) ty(s,n) =

We also recall from Lemma 3.2 that v4 > 1 and v_ < 1, so that (vg, t4) corresponds to the
repelling (supersonic) fixed point and (v_, t_) corresponds to the (subsonic) saddle point.
We have the following proposition, which is proved in Appendix A.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/10/21 to 169.234.199.75. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

278 ADAM BAUER AND PAUL CARTER

Proposition 3.4. For any v € (1,5/3), and any s > 1 and n > 0 satisfying the bounds in
Lemma 3.2, there exists a heteroclinic orbit in the layer problem (3.3) connecting (vy,t4) €
SgP to (v_,t_) € SgP.

The idea of the proof is to establish a trapping region of (3.3) using its nullclines. We
show that the flow of (3.3) in forward time is directed out of the region, thus creating a
trapping region under the reverse flow (see Figure 4); the result then follows from the Poincaré—
Bendixson theorem.

We can now define a projection ¥: ;""" — S§UP to be the map that projects a point
on the supersonic repelling branch to the subsonic saddle branch via a heteroclinic orbit, the
existence of which is guaranteed by Proposition 3.4. Thus, we can define the projection ¥ via

(3.31) U(s,n,v4(s,n),t1(s,n)) = (s,n,v_(s,n),t_(s,n)).

Lemma 3.5. The projection W(®°) for s > 1 lies above the faux canard ® on S§"°, so that
U (D) is confined to the region E > Ey. Furthermore, the trajectory W(®C) crosses level sets

E(s,n) = constant transversely.
Proof. Any solution to the reduced problem satisfies F(s,v) = constant. Using Vieta’s
formulas and (3.13), the quantity v_ can be represented in term of vy as
2+ (y — 1)v?
(3.32) V2 = #
2yvi — (v — 1)

We can replace v — v_ as defined in (3.32) to compute the value of E along the projection
U(®°) as a function of (s,vy). We compute that

Figure 4. Shown are the nullclines of the layer problem for v = 1.4, n = 1.15, s = 1.1, and 6 = 0.04.
Note that the saddle equilibrium is located where v < 1, and the unstable fized point is in the v > 1 regime.
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dE(s,v-) _ 2y(s —1)(v} — 1)
dy s(a+s) (2yv2 — (v — 1))

>0

in the region s > 1 since v2 > 1. Thus the value of E along the projection W(®°) is strictly
increasing for s > 1, so that ¥(®°) cross level sets transversely on SS“b. This also immediately

implies Elygec) > Eo, so that W(®°) lies above the faux canard trajectory <I>£. [ |

We now complete the construction of solutions to (3.1) on bounded intervals for 0 < ¢ < 1.
We recall that the sonic point is located at (s,v) = (1,1). We fix the bounded domain
s € [so,s1] with 59 < 1 < s;3. We define v§ to be the v coordinate of the canard solution
®¢ at s = sp. Note that v5 < 1. Likewise, we define v{ and v{ to be the v coordinates of
the projected canard solution ¥ (®€) and the faux canard solution 7 respectively, at s = s.
Note that both v{ < 1 and v{ <1

For every v} € (v{c ,v§) there exists a solution to the layer problem ®} which meets s = s
at v = v}. By Lemma 3.5 this solution intersects W(®°) transversely at some v = v? > 1 and
s = s? satisfying 1 < s? < s1; the transversality of the intersection follows from the fact that
solutions in the region bounded above by ®¢ and below by ®f lie on level sets of E > Ej, and
E is increasing along the projected canard W(®°). Let n? and t be the n and ¢ coordinates,
respectively, of the intersection of ® and ¥(®¢). Using the projection formula (3.32), and
the fact that the v coordinate along W(®¢) decreases in s, we have that v? > = 1.

A short computation then shows that n satisfies the bounds in Lemma 3 2, and thus
by Proposition 3.4 there exists a fast heterochmc orbit, which We denote by 7r , which con-
nects the repelling branch S5™*" to the saddle branch at (s?,n?,v?,t?) via the projection V.
Furthermore, by construction, we have that ¥—!(s?, nz,vz,tf) € &P lies on the canard
orbit ®¢. Therefore, tracing backward along ®¢ yields a singular transonic canard solution
®p = ¢ U 2 U BY—see Figure 2.

Additionally, we have that for each v € (0, v{ ), there exists a trajectory ® of the reduced

flow that remains subsonic for all s € [sp,s1]; the trajectory at s = so approaches v = v},

where v} € (0,v§), and approaches v = v? at s = s;. We have the following proposition

regarding the existence of stellar wind solutions on bounded domains.

Proposition 3.6. Fiz sp < 1 < sy and~y € (1,5/3), with v, v(];, v§, and v{ as defined above,
and consider the system (3.2).

(i) Let v} € (0, v{) and let g = ®Y be the singular subsonic trajectory which approaches
v = UI1) at s = s1. For each sufficiently small € > 0, ®q perturbs to a solution ®. of
(3.2) which is O(g)-close to Py.

(ii) Let v® € (v{, vf) and let &g = ®¢ U 72 U DY be the singular tmjectory that follows ®°
from s = sg to s = s tmverses the fast layer orbit 7r at s = s , and then follows the
trajectory ®° from s = 5@ to s = s1. Then for suﬁﬁczently small e >0, &g perturbs to
a solution ®. of (3.2) which is O(/?)-close to .

4. Existence of transonic canard solutions for 0 < € < 1. In order to prove Proposition
3.6, we must first analyze the dynamics near the sonic point to determine how the canard
trajectory @€ perturbs for small € > 0. Using a center manifold reduction procedure as in [39],
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we show that near the sonic point, the system (3.2) admits a three-dimensional center manifold
on which the results of [37] concerning the persistence of canard trajectories apply.

4.1. Center manifold reduction near the sonic point. For ¢ = 0, the sonic point, cor-
responding to the folded saddle singularity of the reduced flow (3.23), is located at (s,v) =
(s*,v*) = (1,1) on the critical manifold. We determine the corresponding (n,t)-coordinates
via (3.20)—(3.21) as

2
5— 3y’

21 2
n* =n(1,1,t*) = i )
o 5—3y

The linearization of (3.2) at (s,n,v,t) = (1,n*,1,t*) for ¢ = 0 admits a triple zero eigen-
value with a corresponding three-dimensional eigenspace spanned by the two slow directions
(1,0,0,0)7,(0,1,0,0)T, and the eigenvector

=t(1,1) =
(4.1)

0
49 0
(4.2) VU= -3y
4(y—-1)
1

as well as a positive eigenvalue

1301 0
(4.3) M= 7( 17) *5@*))

with corresponding eigenvector

0

0

(5-37)(20-3)
860

1

(4.4) vy =

Hence by the center manifold theorem, near the sonic point there exists a locally invariant
normally repelling three-dimensional center manifold Wg, tangent to the subspace spanned
by the vectors (1,0,0,0)7,(0,1,0,0)7, and v;. This manifold persists as a locally invariant
repelling center manifold for 0 < € < 1 in a neighborhood of the sonic point, foliated by strong
unstable fibers which are tangent to vy at the sonic point. Within this center manifold, we
have the following. The proof and additional details are given in Appendix B.

Proposition 4.1 ([37, Theorem 4.1]).  On the center manifold Wg,, for all sufficiently small
e > 0, the repelling and saddle branches, S and Ssub, break transversely and intersect along
the maximal canard solution ®F, which is O(eY?)-close to the corresponding singular canard
solution ®°.
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4.2. Existence of canard solutions on bounded intervals. In this section, we complete
the construction of transonic canards on bounded intervals.

Proof of Proposition 3.6. For (i), let 0% denote the intersection point of ®y with the sub-
space s = s1. We choose any one-dimensional boundary manifold ¥; which for € = 0 trans-
versely intersects the unstable manifold W"(S5) of S§"P at ¢% within the subspace s = s.

Since &g = CIDS is subsonic for s € (s, s1), the entire orbit @ lies on SS“b and is bounded

away from the fold curve. Further, S5*® is normally hyperbolic away from the fold curve, and

therefore Fenichel theory implies that SS“b perturbs for sufficiently small € > 0 to a normally
hyperbolic slow manifold S$', and the flow on S$'P is an O(g) perturbation of the reduced
flow (3.6) on S5%P; in particular the orbit ®} perturbs to an orbit ®2 on S$*P. However, this
orbit may not satisfy the desired boundary conditions, so we instead find a perturbed solution
which meets the boundary manifold ¥; at s = s;.

To this end, the three-dimensional unstable and stable manifolds W"(S5%P) and W*(S§uP)
of S§% perturb to three-dimensional locally invariant manifolds WY (S$UP) and W3(S5UP),
respectively, foliated by the perturbed strong unstable/stable fibers of orbits on the slow
manifold S$'P. Thus the transversality of the intersection of ¥; and the unstable manifold
Wu(S€S“b) in the subspace s = s1 persists, with the intersection occurring in the strong unstable
fiber of a solution O(e)-close to ®). Tracing the intersection of ¥ and W*(S"P) backward
under the flow of (3.2) thus yields a one-dimensional trajectory ®., which is O(e)-close to ®
and lies in the one-dimensional boundary manifold »; at s = s3.

For (ii), we first note that Lemma 3.5 guarantees that the curves ¥(®¢) and ®} intersect
transversely on S5 for ¢ = 0. It immediately follows that the three-dimensional unstable
fiber W"(®€) of the singular canard trajectory ®f transversely intersects the two-dimensional
stable fiber W*(®8) of ®} along the fast jump 72 for ¢ = 0. To construct a solution for ¢ > 0
with the desired boundary conditions, we define two boundary manifolds, ¥y at s = sg and
Y1 at s = s1, and evolve these forward and backward, respectively, under the flow of (3.2) for
£ > 0 and show that the evolved manifolds are close to W*(®¢) and W*(®}), respectively, near
the fast jump 71'8 and hence also intersect transversely along the desired solution for € > 0.

We define the one-dimensional boundary manifold 1 at s = s; the same as above in the
proof of (i). Since X intersects W"(S5'P) transversely for e = 0, this intersection persists for
e > 0 by Fenichel theory. Following ¥; backward under the flow of (3.2) traces out a two-
dimensional manifold £, which, upon entering a neighborhood of s = sf, aligns exponentially
close to the unstable fiber of a slow trajectory on S5, which is O(e)-close to ®j. Therefore,
3 is O(e)-close to W' (®4) near s = s?.

Within the subspace s = sy, we take any two-dimensional boundary manifold Yy which
transversely intersects W3(S5UP) at the point o¢, where o¢ denotes the location of the perturbed
canard orbit ®¢ at s = s9. Away from the fold, the repelling and saddle branches of the critical
manifold, S5'P" and S5, respectively, are normally hyperbolic and therefore for sufficiently
small ¢ > 0 perturb to locally invariant manifolds S and Sg“b, as do their stable and
unstable foliations. Evolving ¥ forward under the flow of (3.2) along ®¢ therefore traces out
a three-dimensional manifold g, which by the exchange lemma [22] aligns exponentially close
to WY (S"P) upon entering the neighborhood of the sonic point.

To determine how X traverses the sonic point, we note that by Proposition 4.1, in a neigh-
borhood of the sonic point, for sufficiently small € > 0, S2*°*" and S intersect transversely
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along the perturbed maximal canard ®¢, which is O(c'/?)-close to the singular canard ®§,
and thus passes O(e 1/ 2)-close to the sonic point. Thus, in this neighborhood, ¥¢ aligns with
the strong unstable foliation W' (S5UP) of S$'P, where trajectories on S shadow orbits on
the center manifold Wg,, and the foliation WU(S5uP) s with respect to the strong unstable
vo-direction. Since SF™P and S2"P*" intersect transversely along the maximal canard ®¢, and
Yo is exponentially close to S$'P, we have that ¥ intersects Sz"P" transversely in the neigh-
borhood of the sonic point. After passing through the sonic point, by the exchange lemma
Yo aligns exponentially close to the unstable fibers of the maximal canard ®£ upon entry into
the neighborhood of the subspace s = s?; hence % is O(e ) close to WY(®¢) near s = s’.
Since the intersection of W"(®f) and We(®8) along w§ is transverse for ¢ = 0, for suffi-
ciently small ¢ > 0, the transversality of the intersection persists. Thus, ¥ and ¥; intersect
along an orbit ®, which is O(e!/?)-close to @, as desired. [ |

4.3. Boundary manifolds at infinity. While Proposition 3.6 concerns the construction of
stellar wind solutions on bounded domains, the proof of Proposition 3.6 is valid for any suitable
choice of one-dimensional boundary manifold ¥ in the subspace s = s1, which transversely
intersects W%(S§'P). This guarantees the existence of a stellar wind solution which satisfies
prescribed boundary conditions at some finite radius from the star. We now show that it is
possible to choose this boundary manifold in such a way that the stellar wind asymptotically
approaches the prescribed far field boundary conditions as s — oo. To achieve this, we
construct invariant far-field boundary manifolds at s = oo, and we show that when these
manifolds are transported back to s = s for some s1 > 1, we obtain boundary manifolds in
the subspace s = s; which satisfy the conditions required by 31 in the proof of Proposition 3.6.

We first consider the system (3.2) near s = co. To do this, we define o = 1/s, from which
we obtain

do 2
dy

dn
diy:7( v — Duvto? —W—ZL( v — Duvtoi (t)@(o,n, v, t, €),

dv 3 2+0'2 1 n 9 7)~( Le)
e—=—=|vo'+ ————— | —2cv0 — -p(o,n,v,t,e
dy 477(t) Yv -1t 9t A\D 0 BE)

dt 1
C_(t) ( nVt — ’Y v 2to? — aod + —to? — 0% + de(y — 1)ﬁ(t)v2ta> ,

(4.5)

dy o

where the asymptotic behavior as s — oo is now determined by the limit ¢ — 0, and the
quantity @(o,n,v,t,e) := oo, n,v,t, 6) denotes the right-hand side of the ¢-equation

D 7 v’to? — ac® lcr -0 i(t)vito
(4.6) @(o,n,v,t,e) = <()< nvt — to +7t 2 4 de(y — 1)i(t) t>.

We switch to the fast timescale and obtain
do 9

(47) @ = —&o0,

n 4
dn_ <—< - Devie = 27—ty - Dovior (07 <a,nvte>),
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dv 3 U2+072_71 D) Zoep —EN( n,v,t,e)
dz_47_](t) g o 7_1\/£ g 2t9007 s Us by ’
-1 1
% _ g(et) <”UTL\/£ . v 5 U2t0'2 o 040'3 + gtO.Z _ 0-2 + 45(7 — 1)77(t)’02t0') .
We now perform the blow-up rescaling v = 0?7 and dz = ¢2dZ to obtain the system
d
& et
dn 2
£ —= E0 —2( — 1)1}\/>0' — 7 — 4 — 1)1}\/>O_ ( ) (U n U t 6)
v
(48) @—i qjg‘lei—Li —251)03—ﬂ p(o,m,v,t,€),
&z 400 T 41 \/i ot ¥
dt 90’ < 2 \/’ P)/ 6 3 1 2 2 — —2 5>
—ao’ + —to” —o° +4e(y — 1)n(t)vto”® |,
e ,Y (v — 1)i(t)

which is equivalent to (4.7) for ¢ > 0 (though we note that the transformation itself extends
smoothly to the region ¢ < 0). We now analyze (4.8) for 0 < o < o for some small gy > 0.
We first observe that this system has a surface of fixed points in the subspace o = 0, defined
via the relation
1 1 n

(4.9) por il b7k

In other words, for each fixed t,n, there exists a fixed point when ¢ = 0 where v is defined
by (4.9). Linearization around any such fixed point reveals a triple zero eigenvalue, and a single

negative eigenvalue — with corresponding eigenvector aligned in the v-direction. ThlS

7

1)2 t I
surface of fixed points therefore forms part of a three-dimensional center manifold WS, a
infinity (¢ = 0) with one-dimensional stable fibers, which extends into the region o < og for
0o < 1; see Figure 5. We now examine the flow on this center manifold.

The center manifold WS, can be expressed as a graph over the center subspace, that is,
U= 7771% + O(0), and the flow on the center manifold is therefore given by

dn 4 ayn )
- =- —+0 )
dt g0t
t—14+0
&= t-1roe).
Performing another rescaling d? = o2dz results in the system
7 _ ¢
dz 7
dn . ( ayn o ))
D ol A o)),
1 == G-V
dt 0
—==—(t-140
&= gy -1+ 00)
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TV (vs)

Figure 5. Shown are the dynamics of (4.8) near o = 0. The three-dimensional center manifold WS, is
foliated by one-dimensional stable fibers (one of the center directions has been suppressed). Also shown are the
special trajectory vS, as well as its stable fiber W*(7S,).

which is a slow-fast system with singular perturbation parameter ¢ and again equivalent
to (4.7) for o > 0, extending smoothly to o < 0. This system has a two-dimensional normally
repelling critical manifold Cy given by the set of equilibria of (4.11) when e = 0. Therefore Cy
can be expressed as a graph t = 1+ O(o), and the flow on Cy is given by the reduced flow

do

FrA

(4.12) .
n_ [ ayn -
dj ((7—1) +ol )>’

on the slow timescale § = €Z. The flow off of Cy is governed by expansion along one-dimensional
fast unstable fibers. We have the following.

Lemma 4.2. For each ne,teo > 0 and sufficiently small og, there exists eg > 0 such
that for € € (0,¢e¢), there exists Zoo, N0, to > 0 and a solution (o,n,t)(Z) to (4.11) satisfying
(o,n,t)(0) = (00, n0,to) and (o,n,t)(20) = (0, Moo, too) with

(4.13) no = Neo + O(00, ), to =14 O(0p,¢).

Proof. This result follows from standard methods of geometric singular perturbation the-
ory. The critical manifold Cy perturbs for small € > 0 to a normally hyperbolic slow manifold
Cc which is O(e)-close to Cp, and the flow on this manifold is an O(e)-perturbation of the
reduced flow (4.12). Furthermore, the unstable fibers of Cy, given by curves aligned in the
t-direction, perturb to form the unstable foliation of the slow manifold C.. The perturbed
flow is then given by the slow flow on C. along with exponential expansion along the fibers;
see Figure 6.
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Figure 6. Shown is the flow given by (4.11) on the three-dimensional center manifold WS, near o = 0. The
trajectory veo from Lemma 4.2 which satisfies the appropriate boundary conditions lies on one of the unstable
fibers of the slow manifold C-.

We choose the fiber of C. which intersects the set {o = 0,n = no} at t = to. This
solution is then evolved under the reverse flow of (4.11), until reaching o = ¢, which occurs
after time 0g/e =: Z. In backward time, the ¢ coordinate is contracted exponentially close
to the slow manifold C., so that ¢ = 1+ O(0g,¢) := to, while the n-coordinate changes by
at most an O(op,e) amount, so that n = ne + O(0p,e) =: ng. The coordinates (o9, ng, to)
therefore define an initial condition which reaches (o, n,t) = (0, N, too) after time Zo, which
completes the proof. |

Lemma 4.2 guarantees the existence of a solution, which we call v, on the far field center
manifold WS, which is asymptotic to (n,t) = (Ne, o) as o — 0, or equivalently as s — 0o;
see Figure 6. In the full space, we now select the stable fiber of the solution v5,, which defines
a two-dimensional manifold W*(v<,), as shown in Figure 5. We claim that this manifold serves
as a boundary manifold which transversely intersects W"(S5"P) in the subspace s = s1 as in
the proof of Proposition 3.6. This is the content of the following proposition.

Proposition 4.3. For each neo,too > 0, and each sufficiently small o9 > 0, there exists
g0 > 0 such that for all ¢ € (0,e0), the manifold W*(~1S,) transversely intersects WY (S§UP) in
the subspace s = 1/0y.

Proof. We consider the intersection of W*(vS,) with the set s = 1/0¢ =: s1, or equivalently
o = 0g. By Lemma 4.2 that the basepoint of this fiber on the center manifold WS, satisfies
(n,t) = (no,t0) = (Moo, tec) + O(00, €), and the fiber itself is aligned along the strong stable
subspace normal to WS .

We now determine how the manifold W"(S§"P) behaves near the subspace s = s1. We
recall that the fast system (3.2) can be equivalently reformulated in terms of the variable
o = 1/s as the system (4.8), and the saddle slow manifold S5 could instead be constructed
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as an invariant manifold using these equations—and we note that any two constructions of
the perturbation of a normally hyperbolic critical manifold may differ only by exponentially
small quantities. We observe that when o = 0p,e = 0 (and noting that v satisfies v < 1 on
the saddle branch and is in particular bounded uniformly for large s) we obtain the singular
fast system

— = - )P0 .0
dz — 47(t) V05 y—1+/4 o Plo0:m,0,4,0),

dt _ bo3 2 Y—=1 9 ¢ 3, 1 5 2
= = voinVt — v°toy — aoy + —toy — o |,
dz C(ﬂ( ’ 2 ° A

do 3 <_4 1 1 n) o2
(4.14)

from which we obtain the subsonic saddle branch SSUb of the critical manifold as the set of

fixed points of this system, expressed as the graph

v—1
=1 0(o),
(4.15) V=" o)

t=1+ O(Uo).

The linearization of (4.14) about any such fixed point admits one positive and one negative
eigenvalue
2

4(y —1)?

with corresponding eigenvectors

(4.16) Ay = — + O(00), A = oy + O(ad),

1 1

(4.17) Yy = + O(00), Ui = . + O(0y),

7—1

so that the stable manifold of a fixed point on the subsonic saddle branch SSUb of the critical
manifold is aligned with the ¥-direction in these rescaled coordinates. We recall that the far-
field center manifold WS, has one-dimensional stable fibers which for ¢ = 0 are aligned along
the v-direction. For small oy > 0, the stable fibers of the center manifold WS are therefore
aligned within O(og) of ¢, in the subspace o = 0 and hence are aligned with the stable
fibers of S5 to leading order in ¢p. Since the stable fibers of S5 transversely intersect its
unstable manifold WY (S§"P), with fibers aligned in the 1 -direction, we have that W*(7<,)
transversely intersects Wu(Sgub) in the subspace o = o, which completes the proof. |

4.4. Accelerating versus decelerating stellar winds. While the construction of transonic
stellar wind solutions in sections 4.2-4.3 is valid for any value of 1 < v < 5/3, and such
solutions transition from subsonic to supersonic speeds along a canard solution through the
sonic point, the physical speed u = cv of such a solution may actually decrease when crossing
the sonic point. In the following lemma, we show that for v € (1,3/2), the transonic stellar
wind accelerates through the sonic point and decelerates for v € (3/2,5/3).
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Lemma 4.4. For a transonic solution constructed as in Proposition 3.6, for v € (1,3/2)
the speed u 1is increasing through the sonic point while for v € (3/2,5/3), u decreases through
the somic point.

Proof. Using (2.12), along the critical manifold Sy we compute

de d d
— = g(cv) =1 (x/'yRthv>

ds
B 8v\/yRkp l-s  (y=1v
Cs2(2(y—1)+2)\1—-v2  5-3y )’

(4.18)

where we used (3.21) and (3.22). By inspecting the eigenvectors of the linearization (3.27) at
the folded saddle, we see the canard ®§ approaches the sonic point (3.26) along the line

5 — 3y

4.1 —-1=
(4.19) v 5

(s —1).

Hence we can evaluate (4.18) along the canard ®f at the sonic point as

du 4\/m
(4.20) & )LD = (’Y T 1) T (\/ \f ) .

We see that this expression is positive (so that the transonic canard accelerates through the
sonic point) whenever 1 < v < v*, where v* is the unique positive solution of the equation

(4.21) V5 — 3y v—-1)=0,

which can be solved directly to find v* = 3/2. [ |

4.5. Proof of Theorem 2.1. In this section, we briefly conclude the proof of the main
result, Theorem 2.1.

Proof of Theorem 2.1. Consider (2.10). Fix v € (1,5/3) and let the Prandtl number § > 0
be sufficiently small. Fix an asymptotic pressure, ps € (0,00), and asymptotic temperature,
T € (0,00) as r — 00. Also let 7g, the radius of the star, satisfy

4E(y —1)

o < Tgp = 7GM(5—37)'

The value 7, corresponds to the radius of the sonic point; hence case 19 > rg, corresponds
to the radius of the star being greater than the radius of the sonic point, which obstructs
the existence of a transonic canard trajectory originating at the stellar surface, and only fully
subsonic solutions are possible.

In Proposition 3.6, it was shown that the right-hand boundary condition at s = s; de-
termines whether a subsonic or a transonic solution is selected in (3.2): given the critical

faux canard value v = v{ and the chosen boundary condition v = v, if 0 < v} < v{ , then

a subsonic trajectory is selected, and in the case where v{ < Ull) < vf, a transonic trajectory

(with accompanying fast shock) is selected. In order to determine the asymptotic behavior of
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these solutions as r — 0o, we see that this depends on the behavior of the faux canard orbit
@g when s gets large, and in particular the asymptotics of the critical value v{ .

The faux canard @g lies on the level set E(s,v) = Ey, where E, Ey are given by (3.24)
and (3.29), respectively. Keeping this in mind and taking the limit where s — oo of (3.24), it
is straightforward to see that v = O(s72) as s — oco. Therefore, any solution v(s) satisfies

v

(4.22) v~

S

for some ¥ > 0, and in particular for the faux canard @g, we have that
1
(4.23) v ~ L

for some 2‘1{, as the boundary s = s; is taken asymptotically large. Using (3.24) and (4.23),

In (5{) - 2(7;—11) o (5 —23fy>

in the limit s — 0o, and thus we can explicitly solve for v{ as

2 \°D
—
(4.24) e .
5 — 3y

Therefore, for a given solution v = v(s) can find an expression for the pressure at infinity, pso,
by taking the limit of (2.5) as s — oo, which yields

KRl
k2 /o

where we’ve used (2.4), as well as the scalings (2.20), and (4.22). By the discussion above, the

we compute

(4.25) Poo = PocRIT =

solution is subsonic or transonic depending on the relation of v(s1) and v{ , or equivalently,
depending on the relation of the asymptotic scalings v and 2‘1{ . Thus, using (4.24) and (4.25)
we can find the critical asymptotic pressure (in terms of the asymptotic density po and
temperature T5,) which determines whether a solution will be subsonic or transonic as

K?RTs  K2RTs (5—3y\ 11
(4.26) pi = i = = o (52377 = koo Tc,
f vk 2
’kaf (“1) "
where
) L KR (5-37\0
. = 5 .
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Therefore, for any given choice of po, € (0,00) and Ty, € (0,00) satisfying p2, > koo Tro,
we can construct boundary manifolds at infinity, as in section 4.3, which when transported
back to a finite radius s = s; > will correspond to a choice of &} < 17{ by (4.26). This
directly implies that v? < v{ and therefore the corresponding solution, constructed as in
Proposition 3.6(i) for sufficiently large Reynolds number Re > 1, will be subsonic on the
entire domain s € (sg,00). Converting to the original physical variables, we obtain a pressure
p(r0) = po and temperature T'(rg) = Ty at the stellar surface r = r( that support this solution,
and the solution satisfies (m(r),T(r)) = (Poo;sToo) as ¥ — oo. Furthermore the solution is
subsonic on the entire domain r € (rg, 00). This completes the proof of (i).

For (ii), fixing a choice of po, € (0,00) and Ts € (0,00) satisfying p%, < kooTso, and

arguing as above, we similarly conclude that 1711’ > 17{ . Additionally, by examining the projec-

tion map (3.32), as vy — o0, it is clear that v — 1/72—_71 =: 0. Therefore, we have that the

boundary condition v = v? satisfies v{ < v < v$ for large s = s1. Thus, we can conclude

that in this case, we can construct a transonic solution and accompanying fast layer shock for
this set of conditions by Proposition 3.6(ii), given that the Reynolds number is sufficiently
large Re > 1. Converting to the original physical variables, we obtain a pressure p(rg) = po
and temperature T'(rg) = Tp at the stellar surface r = ro that support a transonic stellar
wind solution satisfying (m(r),T(r)) — (Peo, ) as 7 — oo. The solution is supersonic in
the bounded region between the sonic point and the viscous layer shock and is otherwise
subsonic. [ |

5. Discussion. In this paper, we constructed steady, spherically symmetric transonic stel-
lar wind solutions in a one-fluid stellar wind model under the effects of heat conduction and
viscosity, in the regime of small Reynolds number and small Prandtl number. The solutions
were constructed rigorously using geometric singular perturbation techniques; solutions arise
as perturbations from singular orbits comprising a saddle canard trajectory, which allows for
the transition from subsonic speeds at the stellar surface to supersonic speeds, followed by a
fast layer shock to return to subsonic speeds in the far field. These dynamics are characterized
by the flow on a two-dimensional critical manifold, with a repelling supersonic branch and
saddle-type subsonic branch separated by a fold curve, with a folded singularity, called the
sonic point, which organizes the canard dynamics and allows for the transition to supersonic
speeds. The location of the shock is then determined by the far-field boundary conditions.

In fact, in the (physically relevant) situation in which the far-field asymptotic pressure
and density are small, while the mass flux is large, we obtain leading order estimates on the
location of the termination shock. The far-field velocity is determined from the mass flux and
asymptotic density via

(5.1) Tlggo riy = p[oi
Converting to dimensionless variables, we define
Voo i= Slggo s?v = kgﬁi)w
_ KVET:
NG
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For small py, (relative to the other physical parameters), the quantity v, satisfies Uoo > 1;
this quantity is related to the location of the shock through the reduced flow on the subsonic
branch SS“b, and in particular it defines the asymptotic value F, of the conserved quantity
E(s,v) as s — o0 as

In (7o) v+1

5.2 Fy = — In 2.

Since the flow on the subsonic branch is to leading order confined to level sets of E, to

determine the location of the shock, we must determine the value of s along the canard

trajectory ®¢ at which the projected canard ¥ (®¢) satisfies E(s,v) = E. Along the canard

trajectory, v — oo as s — oo,lso that under the projection W, the corresponding projected
o

v-coordinate satisfies v? ~ 5 = V2, using (3.32). Therefore to find the location of the

shock, we solve the relation E(s,vait) = Ex for s, obtaining

41

2y ((y+1)*\
(5.3 st~ 2 ()

Converting back to the physical coordinates, we have that the location of the termination
shock satisfies

LH
(5.4) 4 29 <(v+1)2>”‘1 K2RTy,

Toug &
Ty -1 4y P2

In particular, for the solar wind, we take the values K ~ 0.9 — 1.8 x 10? kg -s™1, Tio ~
0.4—1.8x10° K, poo ~ 212—322 fPa, R ~ 4124.2 J - kg=! - K~!, and v = 1.4 as representative
of possible physical conditions in the heliosheath [8, 19, 29, 30, 31, 32, 35]. This results in a
predicted range for the termination shock at 7t ~ 66 —137 AU, which is in line with Parker’s
predictions [10, 23, 28]. We remark that Voyager 1 crossed the termination shock at 94 AU,
while Voyager 2 crossed at 84 AU.

We note that the solutions as constructed in Theorem 2.1 are locally unique, in the sense
that for given boundary conditions (corresponding to boundary manifolds in the proof of
Proposition 3.6), there is precisely one choice of canard trajectory and layer shock which
will produce a steady solution to the full system. However, we have not aimed to address
the temporal stability of this distinguished solution in the full PDE. Numerical simulations
in similar models [4] indicate that such transonic canard trajectories are likely to be stable
under perturbations sharing the same spherical symmetry. However, we are not aware of
rigorous results in this direction. It remains an interesting direction for further research to
perform such a stability analysis. A natural first step would be to linearize the PDE under
the assumption of spherical symmetry and search for purely radial eigenfunctions using Evans
function methods; much is known regarding the stability of viscous shock waves in one (or
more) spatial dimensions [18, 41], though not in the present context with spherical symmetry.
In the context of transonic flows, in a one-dimensional model of flow through a nozzle, linear
stability of an inviscid sub-to-supersonic solution passing through a canard point has been
established in [15]. In the particular case of transonic stellar winds, point eigenvalues are
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likely to arise associated with both the saddle canard and the layer shock. The full problem,
however, allowing perturbations in the angular variables is likely to be a challenging problem.
Some analysis in this direction for similar models of stellar wind has been carried out in, for
instance, [3, 20, 25].

Last, we remark that the model itself is of course simplified. However, this simple model
is able to provide geometric insight into the stellar wind phenomenon while remaining an-
alytically tractable. Natural extensions would incorporate the effects of multiple fluids and
relativistic fluid dynamics. Additionally, we have not yet incorporated the plasma physics of
stellar wind into the model, which would allow for a variable magnetic field within the gas;
this approach, however, would likely prove challenging, as it would extend the state space to
a dimension higher than that which is presented here. These considerations will be the focus
of future work.

Appendix A. Construction of fast heteroclinic orbits. In order to prove Proposition 3.4,
we create a trapping region bounded by the ¢- and v-nullclines; in the region of interest, the
nullclines can be represented as graphs ¢ = ¢(s,n,v) and properties of the flow across the
nullclines can be determined in order to construct the trapping region. This is accomplished
through four technical lemmas. The first lemma shows that 3—2 < 0 along the branch of the
t-nullcline which lies between the two fixed points, while the second shows that 3—; > ( along
the branch of the v-nullcline between the two fixed points. The final two lemmas are concerned
with showing that the v-nullcline lies above the ¢t-nullcline and that the ¢-nullcline does not
have any turning points for v € (v_,v4). This creates a trapping region under the reverse
flow of (3.3); see Figure 4.

Lemma A.1. For all v € (1,5/3), and s,n > 0 satisfying the bounds as in Lemma 3.2,
the branch of the nullcline fa(s,m,v,t,0) = 0 containing the two fized points (vi,ty) can
be represented as a graph t = ta(s,n,v), and we have that fi(s,n,v,t,0) < 0 whenever t =
ta(s,n,v),v € (v_,v).

Proof. From (3.1), we notice that fa(s,n,v,t,0) is quadratic in v/t. Thus we can solve
fa(s,m,v,t,0) = 0 for v/t and then square the result to obtain

2
(A1) £ (s,n,0) = —yons® £ /720220 + 2sy(a + ) (2 — (v — 1) v2) ,
s(2—7(y—1)v?)
where we note that for t; (s,n,v), this expression is only physically meaningful when s(2 —
v(y — 1)v?) < 0. Furthermore, as we only consider positive, real values of ¢, the discriminant
in (A.1) must be positive. We proceed to determine which branch ¢3 contains the fixed points
(vg,ts). We note that any fixed point of (3.3) must also satisfy fi(s,n,v,t,0) = 0. In the
case of t = t,, we compute

fl(s,m,tg,o):?’(u 1L _n sy — 1o? — 2) )

s ys?v v — Lyunsd + \/4202n2s6 + 2sy(a +s) (2 — 7 (7 — 1) 02)
3 <v+ 1 n 8(7(71)022))

2 ys2v oy —1 ~yons3
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B 3(vy+1)
An(t)stuy(y — 1)
> 0.

Thus, on the ¢t = t; branch of the ¢t-nullcline, fi(s,n,v,t,0) has fixed sign and therefore this
branch cannot contain any fixed points.

Hence we restrict attention to the branch ¢t = t;, which contains both fixed points. The
expression (A.1) appears to be undefined as v? — 7(%_1) However, using I’Hopital’s rule,

2
(—’yvnsg + /72021250 + 2sy(a +s) (2 — vy (y — 1) v2)>

lim _ t5(s,n,v) = lim $(2—7(y — 1)v?)

2
U 36D

Y (n?s® +2(a+ s)(y — 1))2
N 8(y — 1)n2sb

so that the graph t;(s, n,v) is in fact continuous in v.

We now are able to determine the sign of fi(s,n,v,t,0) on the branch t5 (s,n,v) of the
t-nullcline between the two fixed points v = vx. Since tJ(s,n,v) and fi(s,n,v,t,0) are
continuous in v, it suffices to evaluate fi(s,n,v,t,0) at one point in the interval (v_,v;) to
determine its sign for all v € (v_,v4). Choose for simplicity v = 1. Then we have

(A.2)
1 1 2 —
filsm 185 (s,m,1),0) = 20D (L 227) ==
i) \s* 7 =1 —ns® + /4220 + 257(a + 5)2 =) (y + 1)
<0,
where we used the bounds on s,n as in Lemma 3.2. [ ]

We now prove a similar lemma for the v-nullcline.

Lemma A.2. For all v € (1,5/3), and s,n > 0 satisfying the bounds as in Lemma 3.2,
the branch of the nullcline fi(s,n,v,t,0) = 0 containing the two fized points (vi,ty) can
be represented as a graph t = t](s,n,v), and we have that fa(s,n,v,t,0) > 0 whenever
t =17 (s,n,v),v € (v_,v4).

Proof. Setting f1(s,n,v,t,0) =0 in (3.3), along the v-nullcline, we have that

3 t 1 nt 0 vy—1v* a 1t 1
&9 (e (0 30) - 350) = (e e w)

which is a quadratic expression in v/, noting that 7(t) = ((t) from (2.15). This expression
can be solved for two roots t = t{(s,n,v) given by

(A4) tf(s,n,v) = (B(Sv”w) + (B(s,n,v)* 4A(s,n,v)0(87n7v))1/2>2

2A(s,n,v)
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where

3n
B -0
(s,m,v) 200y 1) + Bun,
(v +3)
C(s,n,v) =20 R

and for small 0 < # < 1 these roots can be expressed as

2,,2,2 4
Y nvs
t+(s,n,v) = + O(0),
(A.5) Hem )= o g v e OO
] W+ PP =1
ty (s,n,v) = 0256 +O(0°).

We first consider the branch ¢ = ¢; and using (A.3), we compute

fa(s,n,v,t7,0)

= 3 E (U + 1> — L i
C27(t] v | 82 v v—1
O(a+ s) 9
=————+0(6)
n(ty )s?
<0

for all sufficiently small & > 0. Since the sign of fo is fixed, the branch ¢ = t] contains no
fixed points.
We now consider the branch ¢ = tf, on which

3t 1 1 n
(A7) fg(S,n,U,tT,O) = % ) <U+> - - —
2n(t7)v | s Y (v—1) /tf

As in the proof Lemma A.1, we can determine the sign of this expression on the interval
(v—,v4) by examining its sign when v = 1. By a similar computation as in the proof of
Lemma A.1, again using the lower bound on n? from Lemma 3.2, we obtain

(A.8) fa(syn,1,t] (5,n,1),0) < 0. [ |

The next lemma describes the relative positioning of the v- and ¢-nullclines in the phase
portrait of (3.3).

Lemma A.3. For all s > 0, v € (1,5/3), v € (v—,v4), and n as bounded in Lemma 3.2,
the v-nullcline lies above the t-nullcline.
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Proof. By the proofs of Lemmas A.1 and A.2, the fixed points (v, t1) are contained on the
curves t = t;(s, n,v) and t = tf(s, n,v), which represent branches of the ¢- and v-nullclines,
respectively. We consider the quantity

1
(A.9) Apan(s,n,v) := 3 (t1 (s,n,v) — t3 (s,m,v)).

Since t = t3 (s,n,v) and t = t{ (s,n,v) are continuous in v € (v_,v;), and Ay = 0 only at
the two fixed points v = v4, it is sufficient to determine the sign of A, by evaluating at v =
1 € (v—,v4). Furthermore, we note from (A.1) and (A.4) that the quantity n=2t; (s,n,v) is
decreasing in n?, while n=2t{ (s, n, v) is increasing in n?, so that for a given (s,v), Apan(s, n,v)
in minimized by using the lower bound on n? from Lemma 3.2, whence we obtain
Apan(s,n, 1) > QL (tf(s, Nminy 1) — t3 (8, Nomin, 1))
min

=0,
so that the v-nullcline lies above the t-nullcline, as claimed. |

Last, we show that the curve t = ¢ (s,n,v) does not have any turning points on the
interval v € (v_, v, ), which ensures that flow of (3.3) points out of the region bounded by the
nullclines for v € (v_, v ).

Lemma A4. For all s > 1, v € (1,5/3), v € (v—,v4), and n as in Lemma 3.2, we have
vty (s,m,v) # 0.

Proof. Since (t3 (s,m,v))"/? > 0 for v € (v_, v, ), zeros of dyt5 correspond to zeros of
9 1 oty
A.10 —(t3 ) = =2
( ) ov ( 2> 9. Ji+ OV
2

Hence we search for zeros of the latter and show that none occur in the interval v € (v_,vy).
After a lengthy computation, we find that zeros can only occur when

2n2s°
A1l v =02 = .
(A1) G- Cat )G 1)~ )
We now claim that v, ¢ (v_,v,), and in particular, v2 > v%. Using (3.14) we have that

(A.12) v =21 (1 _ Aat sy =1 \/1 C2a+s)(v—1)2(y+ 1)> |

yn2sd s ~v2n256

Since the factor on the right-hand side of (A.12) is increasing in n, using the upper bound
n < Nmax from the proof of Lemma 3.2, we have that

2
5 Ui 1
<=\(14+—
o 2<+\/§)
<02

when s > 1. Therefore we conclude that there are no critical points of the ¢-nullcline in the
interval (v_,vy) for all s > 1, v € (1,5/3), and n as bounded in Lemma 3.2. [ ]
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Using Lemmas A.1-A.4, we can now complete the proof of Proposition 3.4.

Proof of Proposition 3.4. Fix s > 1, and n bounded as in Lemma 3.2. Consider the layer
problem (3.3). By Proposition 3.1 and Lemma 3.2, there exists a repelling fixed point (v4,t4)
of (3.3) on the supersonic branch of the critical manifold, S3"P*", and a saddle fixed point
(v_,t_) on the subsonic branch S5".

Both of these fixed points must lie on both the v- and ¢-nullclines. The results of
Lemmas A.1-A.4 guarantee that these two nullclines can be given as graphs ¢t = t(v) for
v € (v_,vy4) which bound a trapping region (under the reverse flow of (3.3)), such that the
flow of (3.3) points out of this region in forward time. Following the stable manifold of
the saddle fixed point (v_,¢_) under the reverse flow of (3.3), we have that this trajectory
is confined to the trapping region. Any periodic orbit must intersect the nullclines, hence
there are no periodic orbits contained entirely in the trapping region. Therefore, by the
Poincaré-Bendixson theorem, this trajectory must approach a fixed point, and hence there
exists a heteroclinic orbit from (vy, t1) to (v—, t—) for each s > 1 and n as bounded in
Lemma 3.2. |

Appendix B. Center manifold analysis near the sonic point. We shift the sonic point
to the origin and perform a linear change of coordinates

s=s—1,
_ —8(y—1)¢ (v —1)(20 - 3) .
(B1) T 53740+ 37 — 3)(” Dy S o U
8(y—1)¢ 2(1+7)¢ .
L G Y By U ety g g AR

to diagonalize the fast subsystem at the linear level at the sonic point for € = 0, resulting in
the system

& = (5701 02.)
T S, M, V1, V2, )
dz n 1,02
dn e
T 692(57na UlaUQag)a
dz

(B.2)
%—h(éﬁv V2, €)
dz 1\o, 70y, U1, 02,2 ),
d'l)g
— = ho(8,n,v1,v2,€),
dz 2( 1, U2 )

g1(8,n,v1,v9,€) :=q1 (1 +5,n" + 7,14+ Vv, ), t* +TT('U1,U2),€) ,
J2(8,1,v1,v9,€) :=go (1 +5,n" + 7,14+ Vv, )t +TT(’U1,’U2),<€) ,

hi(3,7,v1,v9,€) := "6 _Si)(zw 1937 ) fr(T+8n" + 7,14+ Vv, v), t* + T (v1,v2), €)
(v —1)(20 —3)

+ fo (L4 8,n" + 7,1+ Vv, v), t* + T (vy,02), ),

C(t)(460 + 37 = 3)
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8(y—1)60

1(t)(5 —37)(40 + 37 — 3)
2(147)0

C(t)(460 + 3y = 3)

f (1 +&n*+n,1+ VT(’l)l,’l)Q)7t* + TT(’Ul,’Ug),E)

h2(§7ﬁav1;v2,5) =

+ fa (1+§,n*+ﬁ,1+vT<’Ul,’U2),t*+TT(’U1,’()2),8),

and

Vi (o1, vg) = —(v I(vl)ii)— 37) o — (5 — 3239 _3)

TT(vl, 1)2) = V1 + V.

V2,

The functions hy, ho satisfy

h1(§7

hy (5,7, v1,v2,€) = A o + O(8, 71, 0], v3, ),

, U1, U275) = O(gv ’fL,U%, U%7€)7

puil

where Ay > 0 is given by (4.3), so at the linear level, the dynamics on the center manifold
are parameterized by (§,7,v1), and the fast unstable dynamics off of the center manifold are
governed by the flow in the vo-direction. By standard results of center manifold theory, there
exists a three-dimensional center manifold Wg, which can be represented as a graph vy =
VS%(§, n,v1,€) over the center subspace. Changing coordinates via Uy = vg — Vscp(§, n,v1,€),
and applying one further coordinate transformation to straighten the strong unstable fibers,
so that the flow in the (8, n, v1)-coordinates is decoupled from vy, we obtain the system

ds s -
& = 691(85’”7”1)5)7
dn e/~ ~
a = 695(&”,”1’5))
(B.3) doy .
@ = h1(87navla€)7
do ~
% = h§(§7ﬁ7v17f}256)7
where
(B.4) RS(3, 7, 1,02, €) = (Mg + O(3, 7,01, T2, €)) Ta.

We now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. The dynamics on the center manifold Wg, are governed by the
first three equations of (B.3) in the variables (8,7, v;). This system is a 2-slow-1-fast singularly
perturbed dynamical system with slow variables (§,7) and fast variable vq, with perturbation
parameter £, which is in the normal form for a folded saddle canard point in the sense of [37].
In particular, one can verify that the conditions (6)—(7) from [37] hold via applying the
linear coordinate transformations (B.1), Taylor expanding in (8,72, v1,v2), and computing the
relevant quantities
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1$(0,0,0,0) = 0,

gzl(o,o,o,O) 0,
1

Ot 36~(5 — 37)2

R 000.0) = g s T %0

27 c 9 NT/2
T 0,0,0,0) = - S2UENE =TT
v? 8v2(y — 1)(46 + 3y — 3)

where the last two quantities were calculated using Mathematica. Thus within the center

manifold W¢

<p> the results of [37] hold, and the assertions of the proposition follow from [37,

Theorem 4.1]. [ ]
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