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Abstract
This paper examines a spike-adding bifurcation phenomenon whereby small-
amplitude canard cycles transition into large-amplitude bursting oscillations along a
single continuous branch in parameter space.We consider a class of three-dimensional
singularly perturbed ODEs with two fast variables and one slow variable and singu-
lar perturbation parameter ε ! 1 under general assumptions which guarantee such
a transition occurs. The primary ingredients include a cubic critical manifold and a
saddle homoclinic bifurcation within the associated layer problem. The continuous
transition from canard cycles to N -spike bursting oscillations up to N ∼ O(1/ε)
spikes occurs upon varying a single bifurcation parameter on an exponentially thin
interval. We construct this transition rigorously using geometric singular perturbation
theory; critical to understanding this transition are the existence of canard orbits and
slow passage through the saddle homoclinic bifurcation, which are analyzed in detail.

Keywords Bursting oscillations · Spike-adding · Canards · Geometric singular
perturbation theory · Saddle-homoclinic bifurcation

Mathematics Subject Classification 34C25 · 34E17 · 34D15 · 37G15 · 92B25

1 Introduction

The phenomenon of bursting has been widely studied in models of neurons and neu-
roendocrine cells, as well as other excitable media, including physical systems such as
semiconductor lasers (Al-Naimee et al. 2009; Ruschel andYanchuk 2017), or in chem-
ical reactions (Rinzel and Troy 1982). These solutions are characterized by alternation
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between slow quiescent phases and active bursting phases comprised of a sequence of
action potentials or spikes and can be time periodic or aperiodic. One of the earliest
models was introduced by Chay and Keizer (1983) to describe bursting dynamics in
pancreatic beta cells, which formed the basis in Rinzel (1985), Rinzel (1987) for ana-
lyzing the bursting phenomenon in the context of singularly perturbed, or fast–slow,
ordinary differential equations. This has since been a primary mathematical formu-
lation for understanding bursting in numerical and analytical studies. In this context,
bursting solutions can frequently arise as periodic orbits, in which the active phase is
governed by oscillations on the fast timescale, and the quiescent phase is associated
with drift along a slow manifold.

A feature which is prevalent in many bursting models is that of spike-adding, in
which variation in system parameters can result in additional spikes during the bursting
phase. This has been demonstrated and analyzed numerically in a variety of bursting
models (Desroches et al. 2016a, 2013; Guckenheimer and Kuehn 2009; Linaro et al.
2012; Nowacki et al. 2012; Osinga and Tsaneva-Atanasova 2010; Tsaneva-Atanasova
et al. 2010). In particular, these studies find that bursting solutions with different
numbers of spikes can exist in nearby parameter regimes and furthermore that different
branches of spiking solutions can be connected, so that a bursting orbit with N spikes
can be continuously deformed into one with N + 1 (or more) spikes upon parameter
continuation. Spike-adding has been shown to occur when varying the location of an
equilibrium (Desroches et al. 2013; Osinga and Tsaneva-Atanasova 2010), or when
varying the singular perturbationparameter itself (Guckenheimer andKuehn2009;Lee
and Terman 1999; Terman 1991; Tsaneva-Atanasova et al. 2010). In many cases, this
behavior has been intimately linked to the phenomenon of canards (Dumortier and
Roussarie 1996; Eckhaus 1983; Krupa and Szmolyan 2001b): For instance, canard
dynamics have been analyzed in relation to spike-adding in square-wave neuronal
bursting models with one slow variable, such as the Morris–Lecar–Terman model
(Guckenheimer and Kuehn 2009; Morris and Lecar 1981; Rinzel and Ermentrout
Rinzel and Ermentrout; Terman 1991) and the Hindmarsh–Rose model (Hindmarsh
and Rose 1982, 1984; Linaro et al. 2012), in which a canard explosion of periodic
orbits is responsible for the onset of spike-adding (Desroches et al. 2013, §III). In
systems with two slow variables, the role of folded singularities and their associated
canard dynamics have been analyzed in relation to spike-adding in parabolic bursting
models such as the Plantmodel of bursting in theAplysia ganglionR15 cell (Desroches
et al. 2016a; Plant and Kim 1975) and in the study of mixed-mode bursting oscillations
(Desroches et al. 2013).

In many contexts, canard solutions provide a mechanism whereby small parameter
changes can produce continuous transitions between globally distinct solutions, for
example in the classical planar canard explosion (Krupa and Szmolyan 2001b), or
in transitions between different traveling pulse solutions in the FitzHugh–Nagumo
system of nerve impulse propagation (Carter and Sandstede 2018). In this spirit, this
paper aims to rigorously analyze the link between canard explosion and the spike-
adding phenomenon in an example class of square-wave bursting models and identify
general techniques which can be used in the analysis of similar global transitions in
singular perturbation problems. We focus on one of the simpler, well-studied geo-
metric descriptions of square-wave bursting with one slow variable, introduced and
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Fig. 1 Shown is the continuous spike-adding transition in (1.1) for ε = 0.001 obtained in AUTO; all
solutions exist for values of k ≈ − 0.0002 on an interval of width O(e−1/ε). The upper left panel shows
the transition sequence labeled 1–4 from small-amplitude canard orbits (blue label 1) to a 1-spike bursting
solution (green label 4), and the critical manifold M is shown in dashed red. The lower left panel depicts
the v profile for the 1-spike solution. The upper right panel shows the transition sequence labeled 5–8 from
a 1-spike bursting solution to a 2-spike bursting solution (green label 8). The solutions labeled 5–8 all
traverse the spike labeled A. The second spike is grown from right to left until reaching the upper fold F",
where it turns back (see solution with orange label 6) and continues from left to right to solution 7 before
finally being deposited at the spike labeled B, culminating in a 2-spike bursting solution (green label 8);
the v profile for the 2-spike solution is shown in the lower right panel (Color figure online)

analyzed by Terman (1991), which includes the Morris–Lecar model below as a pri-
mary motivating example. Our interest lies in the spike-adding process that is induced
by a canard explosion when adjusting a parameter which controls the location of an
equilibrium of the system. Although we are concerned with Terman’s geometric for-
mulation in this work, we note that square-wave bursters with different geometries,
such as the Hindmarsh–Rose model, exhibit a similar transition from canard explosion
to spike-adding bursting oscillations (Desroches et al. 2013).

The Morris–Lecar system (Morris and Lecar 1981)

v̇ = y − 0.5 (v + 0.5) − 2w (v + 0.7) − m∗(v) (v − 1)

ẇ = 1.15 (w∗(v) − w) τ (v)

ẏ = ε(k + k̄r − v)
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Fig. 2 Bifurcation diagram of
spike-adding sequence of
bursting oscillations, obtained
numerically in (1.1) for
ε = 0.001. Here, the period is
plotted versus the bifurcation
parameter k, along with the
locations of the bursting orbits
from Fig. 1 labeled 1–8, as well
as the orbit from Fig. 5 (red
circle) and the orbit from Fig. 6
(red diamond) (Color figure
online)

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

500

1000

1500

2000

2500

3000

pe
ri
od

k

1

3

2

4
5

6

7

8

w∗(v) =
1
2

(
1+ tanh

(
v − 0.1
0.145

))
, m∗(v) =

1
2

(
1+ tanh

(
v + 0.01
0.15

))
,

τ (v) = cosh
(
v − 0.1
0.29

)
, (1.1)

was originally proposed as a model of electrical activity in barnacle muscle fibers.
In that context, v is interpreted as membrane potential, w is fraction of open potas-
sium ion channels, and y is related to the near-membrane calcium concentration.
The quantity k + k̄r determines the equilibrium potential corresponding to potassium
conductance. We identify (1.1) as being among the simplest examples of onset of
spike-adding of bursting oscillations through canard explosion. Figure 1 depicts the
transition from local canard explosion to large-scale bursting oscillations, obtained
numerically in (1.1) for ε = 0.001. The lower panels show the v-profiles of bursting
oscillations with 1 and 2 spikes in bursting phase; all solutions along the transition
from local canard explosion born at a Hopf bifurcation to large-amplitude bursting
oscillations were found along the same branch in parameter space and were obtained
in the numerical continuation software AUTO upon varying the parameter k for fixed
ε = 0.001. Figures 2 and 3 depict numerically computed bifurcation diagrams of the
spike-adding process, labeled with the locations of the orbits from Fig. 1. We note that
all of these orbits occur at very nearby (exponentially close) values of the parameter
k.

In Terman (1991), Terman developed general assumptions in a class of three-
dimensional ODEs which ensure that the geometry of the equations is qualitatively
similar to that of (1.1). This formed the basis for the analysis of bursting solutions
of the system (1.1) in Lee and Terman (1999), Terman (1991), Terman (1992) using
geometric methods, and later using Conley index techniques (Kinney 2000, 2008).
See Fig. 4 for a visualization of the singular limit geometry. The primary features are
a cubic critical manifold M with three branches: an attracting bottom branch Mb, a
saddle-typemiddle branchMm , and upper branchMu (typically repelling). In the fast
layer dynamics for a value of y = ȳh, the system undergoes a saddle homoclinic bifur-
cation along the middle branch, from which bifurcates a family P of periodic orbits
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Fig. 3 (Left) Bifurcation diagram of spike-adding sequence of bursting oscillations, obtained numerically
in (1.1) for ε = 0.001. Here, the period is plotted versus themaximum v value obtained over one period. The
period wiggles back and forth as max v increases, as each spike is continually added along the transition.
A zoom of the upper portion of the spike-adding bifurcation curve is plotted in the right inset. Also shown
are the locations of the bursting orbits from Fig. 1 labeled 1–8, as well as the orbit from Fig. 5 (red circle)
and the orbit from Fig. 6 (red diamond) (Color figure online)
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Fig. 4 Shown is the singular limit geometry for the class of square-wave bursting models considered by
Terman (1991). The cubic critical manifold admits three branches:Mu (repelling),Mm (saddle-type), and
Mb (attracting). There are two folds:F" (classical fold) andFr (canard point). In the fast layer dynamics,
there is a saddle homoclinic bifurcation at y = ȳh, which results in a family of periodic orbitsP for y > ȳh

for y > ȳh. The cubic critical manifold also admits two fold points: one of classical
fold type (F") and one of canard type (Fr ); in (1.1), the constant k̄r denotes the v-
coordinate of the fold Fr , which can be approximated numerically as k̄r ≈ −0.2449.
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The fold points and the saddle homoclinic bifurcation are the key pieces (and main
technical challenges) to understanding the spike-adding transitions in this setting.

The spike-adding sequence is then generated as follows (Fig. 1 for sample periodic
orbits along the transition in theMorris–Lecar system (1.1) obtained using AUTO). At
the lower right fold, Fr are born small-amplitude canard orbits; see, for example, the
blue orbit in the left panel of Fig. 1. As the parameter k is varied on an exponentially
thin interval, the orbits grow into large-amplitude canards until reaching the upper left
foldF", thoughwhen continuing along the repelling upper branchMu , eventually they
begin to interact with the family P of periodic orbits. The number of spikes in a given
bursting solution is determined by the number of excursions around the upper branch
Mu , and the family of periodic orbitsP allows formany such excursions. In particular,
passing near the saddle homoclinic bifurcation allows for a fast spike which follows
the singular homoclinic orbit to be “deposited,” while the growth continues back along
the middle branchMm toward the fold, and back to the saddle homoclinic bifurcation
to deposit another spike, and so on. Figure 5 depicts a bursting solution obtained
numerically in (1.1) after many such spike-adding events by continuing numerically
in parameter space from the local canard explosion at the fold Fr . The fact that the
slow portion of the bursting orbits passes near the lower fold from an attracting slow
manifold to a saddle slow manifold (i.e., along a canard segment) is what allows each
successive spike-adding event to take place within an exponentially thin interval of
the parameter k; this also explains the proximity of these solutions in the bifurcation
diagram in Fig. 2.

Remark 1.1 If the manifold P extends beyond the fold point Fr—as is the case
in (1.1)—then outside the canard regime, that is, once the equilibrium has moved
up onto the middle branch, Terman showed in Terman (1991) that the system admits
relaxation-type bursting oscillations which follow the bottom branch Mb and then
jump off the fold point Fr up to the manifold P , completing excursions around P
until finally jumping back down toMb; see Fig. 6 for an example bursting orbit in this
regime computed numerically for (1.1). In fact, numerical studies have demonstrated
that spike-adding persists in this regime (Guckenheimer and Kuehn 2009); see also the
bifurcation diagrams in Figs. 2 and 3, in which all of the bursting orbits, including the
relaxation-type bursting oscillations as in Fig. 6, are contained on the same continuous
spike-adding branch, though no longer at exponentially close values of the parameter
k, as these orbits lie outside the canard explosion regime. Such orbits, however, do
still contain “canard-like” segments along the saddle-type middle branch Mm of the
slow manifold.

The aim of this work is to analyze the canard explosion regime in detail for
0 < ε ! 1 and rigorously construct the spike-adding sequence from small-amplitude
canard cycles to bursting solutions with an O(1/ε) number of spikes. We will show
that this transition occurs along a single continuous branch under exponentially small
variations in the single bifurcation parameter k for fixed ε. The primary technical
challenges relate to analysis near the fold points F",r as well as tracking solutions
near the saddle homoclinic bifurcation. We present a detailed analysis of slow passage
near the saddle homoclinic bifurcation in order to understand how solutions behave

123



Journal of Nonlinear Science (2020) 30:2613–2669 2619

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.02 0 0.02 0.04 0.06 0.08

v

y t

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

v

Fig. 5 Spikes are continuously added to the bursting oscillations along the spike-adding transition, achieving
an O(1/ε) number of spikes. The left panel depicts a bursting solution of (1.1) along the transition from
7 to 8 spikes, and the right panel depicts the corresponding v-profile. The solution was obtained in AUTO
for ε = 0.001 and k ≈ 0.0002

Fig. 6 Shown is a bursting
solution obtained in (1.1) for
ε = 0.001 and k ≈ 0.0539. Note
that this parameter regime is
away from the canard explosion,
and the solution no longer
follows a canard trajectory along
Mm

ε after passing the fold Fr ,
but rather jumps directly from
Fr to the periodic manifold Pε
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in this region; this analysis is critical in showing how branches of periodic orbits with
different numbers of spikes are connected.

The remainder of this paper is outlined as follows. The general setup and assump-
tions are detailed in Sect. 2, as well as the statement of the main result, Theorem 2.2.
The proof of Theorem 2.2 is given in Sect. 3, followed by a brief discussion in Sect. 4.

2 Setup

The model system under consideration is a three-dimensional singularly perturbed
ordinary differential equation with two fast variables and one slow variable, which we
write in the form

v̇ = f1(v,w, y, k, ε)

ẇ = f2(v,w, y, k, ε)

ẏ = εg(v,w, y, k, ε),

(2.1)
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where ˙ = d
dt , k is a bifurcation parameter, ε > 0 is a small parameter, and f1, f2, g

are Cr+1-smooth functions of their arguments for some r ≥ 3. We refer to (2.1) as
the fast system. By rescaling τ = εt , we obtain the corresponding slow system

εv′ = f1(v,w, y, k, ε)

εw′ = f2(v,w, y, k, ε)

y′ = g(v,w, y, k, ε),

(2.2)

where ′ = d
dτ . These two systems are equivalent for any ε > 0, though the dynamics

are best understood by perturbing from the distinct singular limits obtained by setting
ε = 0 in each of (2.1), (2.2). We outline hypotheses with respect to each of these
limits in Sects. 2.1 and 2.2, respectively. Assumptions on the slow/fast geometry of this
systemwhich guarantee bursting orbits were formulated by Terman in Terman (1991),
and these form the basic setting in which we shall work. In some places, stronger
hypotheses are required and we outline these in detail. Lastly, we describe additional
assumptions regarding the nonhyperbolic fold points in the system in Sect. 2.3, and
we state the main result in Sect. 2.4.

2.1 Layer Problem

Setting ε = 0 in (2.1) results in the layer problem

v̇ = f1(v,w, y, k, 0)

ẇ = f2(v,w, y, k, 0)

ẏ = 0,

(2.3)

which we consider for k ∈ [−k0, k0] for some k0 > 0. The dynamics are restricted to
planes y =const, and this system admits a manifold of equilibria

M0 := {(v,w, y) : F(v,w, y, k, 0) = 0}, F(v,w, y, k, ε) :=
(

f1(v,w, y, k, ε)
f2(v,w, y, k, ε),

)

(2.4)

which is called the critical manifold. For simplicity we assumeM0 can be written as
a graph over the v-coordinate. We also assume the following (Fig. 4).

Hypothesis 1 (S-shaped critical manifold) We assume the critical manifold is S-
shaped, consisting of three branches; that is, we assume there exists ȳr , ȳ" such that
the layer problem (2.3) admits a single equilibrium pb(y) for y ∈ (−∞, ȳ"), three
equilibria pb(y), pm(y), pu(y) for y ∈ (ȳ", ȳr ) and a single equilibrium pu(y) for
y ∈ (ȳr ,∞), with two equilibria colliding at saddle-node bifurcations at each of
y = ȳ", ȳr with p" := pu(ȳ") = pm(ȳ") and pr := pb(ȳr ) = pm(ȳr ).

We denote the fold points by

F",r = (v̄",r , w̄",r , ȳ",r ). (2.5)
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φu

v
w

φbpb
p!

(d) y = ȳ!
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Fig. 7 Shown is the structure of the layer problem (2.3) in the cases: a y ∈ (ȳ", ȳh), b y = ȳh, and c
y ∈ (ȳh, ȳp), as well as d y = ȳ" and e y = ȳr corresponding to the layer problems which contain the fold
pointsF",r . Pictured in each phase portrait for y ∈ (ȳ", ȳp) are the heteroclinic orbitsφu(y),φb(y),φp(y);
note that for y = ȳh, the orbit φu(y) coincides with the homoclinic orbit γh. In (c), also pictured are the
periodic orbits γp(·; y) which bifurcate from γh for y > ȳh

We can therefore decompose M0 as

M0 = Mb
0 ∪ Fr ∪ Mm

0 ∪ F" ∪ Mu
0, (2.6)

where the three branchesMb,m,u
0 (bottom, middle, upper) are contained in the regions

{−∞ < y < ȳr }, {ȳ" < y < ȳr }, {ȳ" < y < ∞}, respectively. We will sometimes
writeM∗

0(y1, y2), for ∗ = b,m, u to refer the intersection M∗
0 ∩ {y1 ≤ y ≤ y2}.

Hypothesis 2 The bottom and middle branches of the critical manifold M0 satisfy
the following.

(i) The bottom branchMb
0 is normally attracting, that is, D(v,w)F |Mb

0
has two eigen-

values with negative real part.
(ii) The middle branch Mm

0 is of saddle type, so that D(v,w)F |Mm
0
has one positive

and one negative eigenvalue.

Crucial to the spike-adding process in (2.1) is a saddle homoclinic bifurcation in
the layer problem which occurs along the middle branch Mm

0 .

Hypothesis 3 (Saddle homoclinic orbit) There exists y = ȳh(k) ∈ (ȳ", ȳr ) such
that (2.3) admits a homoclinic orbit γh(t) = (vh(t), wh(t)) bi-asymptotic to the saddle
equilibrium ph := pm(ȳh); further, the homoclinic orbit γh(t) surrounds the equilib-
rium pu(ȳh) (Figs. 4 and 7).

We now consider the dynamics for nearby values of y. In order to construct a
continuous spike-adding transition, we require some nondegeneracy with respect to
the saddle homoclinic bifurcation. We first consider the linearization of the layer
problem (2.3) about the equilibrium ph, which by Hypothesis 2 admits one positive
and one negative eigenvalue, which we denote by λ±h , respectively.
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We next linearize (2.3) about γh, which results in the system

'̇ = D(v,w)F(vh(t), wh(t), ȳh, k, 0)'. (2.7)

The associated adjoint equation is given by

(̇ = −D(v,w)F(vh(t), wh(t), ȳh, k, 0)T(, (2.8)

which admits a unique bounded solution(h(t) (up tomultiplication by a constant).We
assume the following regarding the bifurcation of periodic orbits from the homoclinic
orbit γh (Fig. 7).

Hypothesis 4 (Periodic manifold) The saddle quantity νh := λ+h −λ−
h associated with

the equilibrium ph satisfies νh < 0 and the Melnikov integral

Mh =
∫ ∞

−∞
DyF(vh(t), wh(t), ȳh, 0, 0) · (h(t)dt -= 0, (2.9)

is nonzero so that γh breaks transversely as y is varied near y ≈ ȳh (Lin 1990).
Therefore, from the homoclinic orbit γh bifurcates a family of attracting periodic
orbits (Homburg and Sandstede 2010) for either y < ȳh or y > ȳh; we assume the
latter and denote this family by

P =
{
γp(·; y) =

(
vp(·; y), wp(·; y)

)
: y ∈ (ȳh, ȳp)

}
(2.10)

for some ȳh < ȳp < ȳr . As a result, we have the following (see, for instance, the
discussion in Homburg and Sandstede 2010, §3.6).

(i) The periodic orbits {γp(·; y) : y ∈ (ȳh, ȳp)} have corresponding periods
Tp(y), y ∈ (ȳh, ȳp), where Tp(y) is a smooth function of y and Tp(y) → ∞
as y → ȳh.

(ii) Each periodic orbit γp(·; y), y ∈ (ȳh, ȳp) admits a single nontrivial Floquet mul-
tiplier e−µp(y)Tp(y) < 1, where µp(y) > 0 is a smooth function of y.

We note that away from the endpoints y = ȳh, ȳp, the family P forms an invariant
manifold, which is normally attracting; this manifold is shaped as a cylinder which
surrounds the upper branch Mu

0 (Fig. 4).
The next hypothesis concerns the existence of heteroclinic orbits connecting the

middle branch Mm
0 to the bottom branch Mb

0 as well as heteroclinic orbits between
Mm

0 and P (Fig. 7).

Hypothesis 5 (Behavior of Wu(Mm
0 )) For each value of y ∈ (ȳ", ȳr ), the saddle

equilibrium pm(y) has a one-dimensional unstable manifold Wu(pm(y)) which is
composed of two orbits Wm

− ,Wm
+ .

(i) For each y ∈ (ȳ", ȳr ), Wm
− is given by a heteroclinic orbit φb(y) which limits

onto the stable equilibrium pb(y) on the bottom branch Mb
0.
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(ii) The behavior of Wm
+ varies: For y = ȳh, Wm

+ is precisely the homoclinic orbit
γh. For y ∈ (ȳ", ȳh), Wm

+ is given by a second heteroclinic orbit φu(y) which
limits onto the stable equilibrium pb(y) on the bottom branch Mb

0, while for
y ∈ (ȳh, ȳp), Wm

+ is a heteroclinic orbit φp(y) which limits onto the attracting
periodic orbit γp(·; y). The behavior of Wm

+ for y ≥ ȳp is not relevant.

2.2 Reduced Problem

Taking ε = 0 in (2.2) results in the associated reduced problem

0 = f1(v,w, y, k, 0)

0 = f2(v,w, y, k, 0)

y′ = g(v,w, y, k, 0),

(2.11)

which is a differential–algebraic system in which the flow is restricted to the critical
manifold M0. Regarding the slow flow, we have the following.

Hypothesis 6 (Slow flow) The function g0(v,w, y) = g(v,w, y, 0, 0) satisfies

g0|Mm
0
< 0, g0|Mb

0
> 0, g0(v̄r , w̄r , ȳr ) = 0, g0(v̄", w̄", ȳ") < 0

(2.12)

and

1
Tp(y)

∫ Tp(y)

0
g0(vp(t; y), wp(t; y), y)dt < 0, y ∈ (ȳh, ȳp). (2.13)

2.3 Fold Points

Finally, we discuss hypotheses regarding the fold points F",r . At each of the folds,
the linearization of (2.1) for ε = 0 admits a double-zero eigenvalue due to the loss
of normal hyperbolicity occurring along the critical manifold. There is one remaining
hyperbolic direction, which we assume is repelling in the case of F" and attracting in
the case of Fr . Hence, near the fold points, there exist local two-dimensional center
manifolds, on which we assume thatF" andFr take the form of nondegenerate planar
fold and canard points (in the sense of Krupa and Szmolyan 2001a), respectively. The
corresponding center manifold is repelling in the case of F" and attracting in the
case of Fr , and hence, we refer to F" as a normally repelling fold point and Fr as a
normally attracting canard point.

This is the content of the following.

Hypothesis 7 The fold points F",Fr satisfy the following.

(i) (Normally repelling nondegenerate fold point) The point F" is a normally
repelling fold point, in the sense that

D(v,w)F(v̄", w̄", ȳ", k, 0) (2.14)
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has one positive eigenvalue for k ∈ [−k0, k0]. The full system (2.1) therefore
admits a two-dimensional local center manifold Wc(F"), on which we assume
the point F" is a nondegenerate fold (or jump) point in the sense of Krupa and
Szmolyan (2001a, §2.1).

(ii) (Normally attracting nondegenerate canard point) The point Fr is a normally
attracting canard point, i.e.,

D(v,w)F(v̄r , w̄r , ȳr , k, 0) (2.15)

has one negative eigenvalue for k ∈ [−k0, k0]. The full system (2.1) therefore
admits a two-dimensional local center manifold Wc(Fr ), on which we assume
the point Fr is a nondegenerate canard point with unfolding parameter k in the
sense of Krupa and Szmolyan (2001a, §3.1). This two-dimensional system there-
fore admits a singular Hopf bifurcation for k = ε = 0, which we assume is
nondegenerate, in the sense of Krupa and Szmolyan (2001b, §3.4).

Remark 2.1 The nondegeneracy condition for the singular Hopf bifurcation can be
determined from the normal form of the reduced equations on Wc(Fr ); we refer to
Theorem 3.2.

2.4 Statement of theMain Result

We are now able to state our main result.
We define an N -spike bursting solution to be a periodic orbit which completes N

excursions around the upper branchMu . We have the following.

Theorem 2.2 Consider system (2.1) satisfying Hypotheses 1–7. Then, there exist
ρ, η, ε0 > 0 such that for each ε ∈ (0, ε0), there exists a continuous one-parameter
family

θ /→ (ksa(θ,
√

ε),B(θ,
√

ε)), θ ∈ (0,-(ε)) (2.16)

of periodic orbits B(θ,
√

ε) originating at a Hopf bifurcation near the fold point Fr ,
where ksa,B are C1 in (θ,

√
ε). For θ ∈ (N , N +1), the periodic orbit B(θ,

√
ε) is an

N-spike bursting solution, and the quantity -(ε) satisfies limε→0 ε-(ε) = θ0 > 0.
Further, for θ ∈ (ρ,-(ε)), the parameter ksa(θ,

√
ε) satisfies

|ksa(θ,√ε) − kmc(
√

ε)| = O(e−η/ε) (2.17)

for a Cr function kmc(
√

ε) = O(ε).

Theorem 2.2 guarantees the existence of a single connected branch of bursting solu-
tions which encompasses the transition from canard explosion (i.e., small-amplitude
Hopf cycles local to the fold point Fr ) to large-amplitude bursting oscillations with
an O(1/ε) number of spikes. Each spike is added sequentially throughout the spike-
adding process as the single bifurcation parameter k varies on an interval of size
O(e−η/ε).

The remainder of this paper is concerned with the proof of Theorem 2.2.
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3 Construction of Spike-Adding Sequence

In this section, we present the proof of Theorem 2.2 by constructing the entire spike-
adding sequence of bursting solutions for small ε > 0. We begin in Sect. 3.1 by
collecting facts regarding the perturbation of normally hyperbolic portions of the
critical manifold M0 and their (un)stable manifolds, which follow from standard
results of geometric singular perturbation theory (Fenichel 1979). In Sects. 3.2 and
3.3, we analyze the fold point Fr and the canard explosion which occurs in a local
two-dimensional center manifoldWc(Fr ) containing the fold.

We then proceed by constructing bursting solutions which complete large excur-
sions in phase space, that is, periodic orbits which do not remain in a small
neighborhood of the fold point Fr . We describe in Sect. 3.4 the general strategy for
constructing such solutions, and in Sects. 3.5–3.7, we construct the transition from
0-spike solutions to 1-spike solutions. To understand how additional spikes are gen-
erated, a detailed understanding of the flow near the saddle homoclinic bifurcation is
needed, which we present in Sect. 3.8, and the proof of the key technical result is given
in Sect. 3.9. In Sects. 3.10–3.11, we construct N -spike solutions for any N and show
how the branches of N -spike solutions and (N + 1)-spike solutions are connected.
Finally, the proof of Theorem 2.2 is briefly concluded in Sect. 3.12.

3.1 Persistence of Invariant Manifolds

We collect several preliminary results which follow from standard geometric singular
perturbation theory and center manifold theory. For sufficiently small ε0, k0, we have
the following:

1. Away from the fold points F",r , the three branches Mb,m,u
0 are normally hyper-

bolic and persist for (k, ε) ∈ (−k0, k0) × (0, ε0) as locally invariant slow
manifolds Mb,m,u

ε . The middle branch Mm
0 has two-dimensional stable and

unstable manifoldsWs(Mm
0 ),Wu(Mm

0 )which persist as locally invariant mani-
foldsWs(Mm

ε ),Wu(Mm
ε ) for (k, ε) ∈ (−k0, k0)× (0, ε0). Similarly, the bottom

branch Mb
0 has a three-dimensional stable manifold Ws(Mb

0) which persists as
a locally invariant manifold Ws(Mb

ε) for (k, ε) ∈ (−k0, k0) × (0, ε0).
2. Near the fold point Fr , there is a local two-dimensional attracting Cr -smooth

center manifold Wc(Fr ) which persists for (k, ε) ∈ (−k0, k0) × (0, ε0). The
slow manifolds Mb

ε and Mm
ε extend into a neighborhood of Fr , where they

shadow corresponding basepoint solution orbits Mb,r
ε and Mm,r

ε which lie on
Wc(Fr ).

3. Near the fold point F", there is a local two-dimensional repelling Cr -smooth
center manifold Wc(F") which persists for (k, ε) ∈ (−k0, k0) × (0, ε0).

4. Away from the saddle homoclinic bifurcation at y = ȳh, the periodic manifold P
persists as a two-dimensional normally attracting locally invariant manifold Pε

for (k, ε) ∈ (−k0, k0) × (0, ε0).
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Fig. 8 Pictured is a schematic of
the singular flow in a
neighborhood of the right fold
point Fr . The normally
attracting center manifold
Wc(Fr ) corresponds to the
plane {xr = 0}

xr

yr

zr

Mm
0

Mb
0

Σr

3.2 Local Coordinates NearF r andMaximal Canards

By Hypothesis 7, in a neighborhood of the fold Fr , after a change of coordinates
we obtain the system (see, for instance, Krupa and Szmolyan 2001a; or Carter and
Sandstede 2015, §6)

ẋr = xr (−cr (k)+O(xr , yr , zr , ε))

żr = yr h1(yr , zr , k, ε)+ z2r h2(yr , zr , k, ε)+ εh3(yr , zr , k, ε)

ẏr = ε (−zr h4(yr , zr , k, ε)+ kh5(yr , zr , k, ε)+ yr h6(yr , zr , k, ε))

k̇ = 0

ε̇ = 0 ,

(3.1)

where cr (k) > 0, and the functions h j , j = 1, . . . , 6 are Cr and satisfy

h3(yr , zr , k, ε) = O(yr , zr , k, ε)

h j (yr , zr , k, ε) = 1+O(yr , zr , k, ε), j = 1, 2, 4, 5.
(3.2)

At the linear level, the slow variable yr in these local coordinates corresponds to a
rescaling of the original slowvariable (y− ȳr ).Here, the variables (zr , yr )parameterize
the center manifold Wc(Fr ), while xr parameterizes the strong stable fibers, which
have been straightened so that the (zr , yr ) center dynamics are decoupled from xr .
See Fig. 8 for a schematic of the singular ε = 0 flow near Fr .

The manifoldWc(Fr ) is given by xr = 0; we recall that by constructionWc(Fr )

contains the one-dimensional (shadowed) slow manifolds Mb,r
ε and Mm,r

ε . We note
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that the (zr , yr ) coordinates are in the canonical form for a canard point (compare
Krupa and Szmolyan 2001a). Canard points are characterized by canard trajectories
which follow a strongly attracting manifold (in this caseMb,r

ε ), pass near the equilib-
rium and continue along a strongly repelling manifold (in this case Mm,r

ε ) for some
time. To understand the flow near this point, we use blow-up methods as in Krupa and
Szmolyan (2001a). Restricting to the center manifold xr = 0, the blow-up transfor-
mation is given by

yr = r̄2 ȳ, zr = r̄ z̄, k = r̄ k̄, ε = r̄2ε̄ , (3.3)

defined on the manifold B = S2 × [0, r̄0] × [−k̄0, k̄0] for sufficiently small r̄0, k̄0
with (ȳ, z̄, ε̄) ∈ S2. There is one relevant coordinate chart which will be needed for
the matching analysis; in the literature, this is frequently referred to as the “family
rescaling” chart, which corresponds to an ε-rescaling of the variables and parameters.
Keeping the samenotation as inKrupa andSzmolyan (2001a) andKrupa andSzmolyan
(2001b), the family rescaling chart K2 uses the coordinates

yr = r22 y2, zr = r2z2, k = r2k2, ε = r22 . (3.4)

Using these blow-up charts, the authors of Krupa and Szmolyan (2001a) stud-
ied the behavior of the manifolds Mb,r

ε and Mm,r
ε and determined conditions

under which these manifolds coincide along a canard trajectory. We place a sec-
tion .r = {zr = 0, |xr | ≤ δx , |yr | < ρ} for small fixed δx , ρ which will serve as a
Poincaré section for constructing the periodic orbits.

In the chart K2, the section .r is given by .r =
{
z2 = 0, |xr | ≤ δx , |r22 y2| < ρ

}
.

It was shown in Krupa and Szmolyan (2001a) that for all sufficiently small r2, k2,
the manifolds Mb,r

ε and Mm,r
ε reach .r at y2 = yb2 (k2, r2) and y2 = ym2 (k2, r2),

respectively. We have the following result which describes the distance betweenMb,r
ε

and Mm,r
ε in .r .

Proposition 3.1 (Krupa and Szmolyan 2001a, Proposition 3.5) The distance between
the slow manifolds Mb,r

ε and Mm,r
ε in .r is given by

yb2 − ym2 = D0(k2, r2) = dk2k2 + dr2r2 +O(r22 + k22) , (3.5)

where the coefficients dk2 , dr2 are constants, bounded away from zero independently
of k2, r2. Hence, we can solve for the existence of a maximal canard trajectory within
Wc(Fr ), corresponding to a zero of the distance function D0(k2, r2), which occurs
when

k2 = kmc
2 = µr2 +O(r22 ), (3.6)

where µ = − dr2
dk2

-= 0.

This proposition describes the splitting of the manifoldsMb,r
ε andMm,r

ε as a function
of k2, r2, and in particular ensures that this splitting occurs in a transverse fashion as
the parameter k = k2r2 is varied near k ≈ kmc(

√
ε), where the function
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kmc(
√

ε) = kmc
2

√
ε = µε +O(ε3/2) (3.7)

denotes the location of the maximal canard solution.
Further, it was shown in Krupa and Szmolyan (2001a) that the system (3.1) under-

goes a singular Hopf bifurcation, which also occurs near the location of the maximal
canard. The sub/supercriticality of the Hopf bifurcation is determined via the quantity

AH = −a1 + 3a2 − 2a4 − 2a5, (3.8)

where

a1 =
∂h1
∂zr

(0, 0, 0, 0), a2 =
∂h2
∂zr

(0, 0, 0, 0), a3 =
∂h3
∂zr

(0, 0, 0, 0)

a4 =
∂h4
∂zr

(0, 0, 0, 0), a5 = h6(0, 0, 0, 0).

We have the following.

Theorem 3.2 (Krupa and Szmolyan 2001a, Theorem 3.1) There exist ε0, k0 > 0 such
that for (k, ε) ∈ (−k0, k0) × (0, ε0) system (3.1) admits a single equilibrium. The
equilibrium is stable for k < kH (

√
ε), where

kH (
√

ε) = −a3 + a6
2

ε +O(ε3/2) (3.9)

and loses stability through a Hopf bifurcation as k passes through kH (
√

ε). The
Hopf bifurcation is nondegenerate if the quantity AH defined in (3.8) is nonzero. It is
supercritical if AH < 0 and subcritical if AH > 0.

3.3 Local Canard Explosion

Within the center manifoldWc(Fr ), we refer to Krupa and Szmolyan (2001b) for the
bifurcation of local canard orbits from the singular Hopf bifurcation at the equilibrium
at the origin. Upon varying the parameter k ≈ kmc(

√
ε), these orbits grow to small,

but O(1), size within Wc(Fr ). We quote the following from Krupa and Szmolyan
(2001b).

Theorem 3.3 (Krupa and Szmolyan 2001b, Theorems 4.1, 4.2, Proposition 4.3)
Assume that AH -= 0 and that ρ > 0 is sufficiently small. Then, there exists ε0 > 0
such that for ε ∈ (0, ε0), system (3.1) undergoes a Hopf bifurcation at k = kH (

√
ε),

from which bifurcates a continuous family of periodic orbits

s /→ (ksc(s,
√

ε),1sc(s,
√

ε)), s ∈ (0, ρ], (3.10)

where ksc(s,
√

ε) is Cr in (s,
√

ε) with ksc(s,
√

ε) → kH (
√

ε) as s → 0, and

|ksc(ρ,√ε) − kmc(
√

ε)| = O(e−q/ε). (3.11)
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For each s ∈ (0, ρ], the orbit 1sc(s,
√

ε)) ⊂ Wc(Fr ) passes through the point
(xr , yr , zr ) = (0,−s, 0).

This theorem guarantees the existence of a singular Hopf bifurcation and the bifur-
cation of a continuous family of periodic orbits within the center manifold Wc(Fr )

which grow to O(1) amplitude for all sufficiently small ε (determined via the small
parameter ρ which, in general, satisfies 0 < ε ! ρ).

3.4 General Strategy of ConstructingO(1)-Amplitude Periodic Orbits

In this section, we describe a general strategy for constructing a periodic orbit which
completes anO(1) excursion in phase space before returning to a neighborhood of the
fold Fr . The idea is to determine an appropriate one-dimensional curve I of initial
conditions which can be evolved both forward and backward in time, spanning a two-
dimensional manifold I of candidate solution orbits. This manifold is tracked forward
and backward until it first intersects the section .r ; this intersection is therefore
given by two curves I+, I−, resulting from the forward and backward evolution,
respectively. The geometric setup for the construction strategy is shown in Fig. 9.

We then consider the Poincaré map 2r : .r → .r and search for solutions with
initial conditions onI− which return to.r ,meeting the curveI+. The desired periodic
orbit is then given by a fixed point of this map, corresponding to an intersection of the
curves I+, I− which occurs along a single solution orbit, lying entirely within the
manifold I.

We now describe this procedure in more detail and determine conditions on the
initial curve I which guarantee that this strategy results in a unique solution. We
assume the following.

(i) The curve I lies outside a small 3-neighborhood of Fr .
(ii) Under the forward evolution of (2.1), the manifold I is contained inWs(Mb

ε).
(iii) Under the backward evolution of (2.1), the manifold I transversely intersects

Wu(Mm
ε ).

Under these conditions, we can construct a periodic orbits as follows. When evolv-
ing forward, since the manifold I is contained in Ws(Mb

ε), we can track I as it is
exponentially contracted toMb

ε until reaching a small neighborhood of Fr , whereby
I intersects.r in a curve I+ which isO(e−η/ε)-close toMb

ε ∩.r . On the other hand,
since I transversely intersects Wu(Mm

ε ) under the backward evolution of (2.1), by
the exchange lemma (Schecter 2008b), in backward time I intersects .r in a curve
I− which is aligned C1-O(e−η/ε)-close to the strong stable fibers of the manifold
Wc(Fr ). In particular, I− intersectsWc(Fr )∩.r at a basepoint which isO(e−η/ε)-
close to Mm

ε ∩ .r , and I− is thus aligned C1-O(e−η/ε)-close to the strong stable
fiber of that basepoint.

The Poincaré map 2r : .r → .r by construction satisfies 2r (I−) ⊆ I+. We use
the blow-up coordinates (3.4) to set up fixed point matching conditions in the section
.r . Within .r , it is most natural to parameterize solutions using the coordinates
(xr , y2).
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Fig. 9 Shown is a schematic of the strategy for constructing large-amplitude bursting oscillations outlined
in Sect. 3.4.Aone-dimensionalmanifoldI of candidate solutions is evolved forward and backward under the
flow of (2.1) until intersecting the section .r . This intersection consists of two curves: I± (corresponding
to the forward and backward evolution, respectively); matching conditions are then determined within the
section .r which guarantee the existence of a periodic orbit

3.5 (Lower) 0-Spike Orbits

In this section, we construct 0-spike orbits, which encompass the transition from the
local canard explosion occurring within the center manifold Wc(Fr ) to large canard
orbits which complete a global excursion. This excursion is characterized by a long
canard trajectory, which consists of first following Mb

ε , then Mm
ε , and then finally

returning to Mb
ε via one of the heteroclinic orbits φb(y) (Fig. 10). We refer to these

orbits as “lower” 0-spike orbits as they traverse one of the heteroclinic orbits φb(y),
as opposed to one of the upper heteroclinics φu(y). These orbits are most naturally
parameterized by which heteroclinic connection φb(y) is followed, or equivalently,
the minimum y-value achieved along the orbit. Hence, for s ∈ [ȳ" + 3, ȳr − 3], we
search for a 0-spike periodic orbit which achieves a minimum y-value of y = s, and
is obtained as a perturbation from the singular orbit

10(s) := Mb
0(s, ȳr ) ∪ Mm

0 (s, ȳr ) ∪ φb(s). (3.12)

Following the strategy of the previous section, we choose an appropriate one-
dimensional curve Ib(s) of candidate initial conditions. For this, we denote by wb

the w-coordinate at which the orbit φb(s) intersects the set {v = v̄r }. For sufficiently
small δ > 0, we then define Ib(s) to be an interval of width δ which lies in the plane
{y = s} and is transverse to the fast layer dynamics, and which intersects φb(s) at
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ȳh
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s

Fig. 10 Shown are singular periodic orbits in the case of lower 0-spike orbits and upper 1-spike orbits. The
lower/upper descriptor refers to which of the heteroclinic orbits φb,φu is followed. A lower 0-spike orbit
followsMb , thenMm , then the heteroclinic orbit φb . An upper 1-spike orbit followsMb , thenMm , then
the heteroclinic orbit φu ; the fast increase then decrease in the v-variable along the orbit φu constitutes the
“spike”

w = wb. We now determine the behavior of Ib(s) under the forward and backward
evolution of (2.1).

Since φb(s) lies in the intersectionWs(Mb
0)∩Wu(Mm

0 ) for ε = 0, we see that for
all sufficiently small ε > 0, the forward evolution of Ib(s) must also lie inWs(Mb

ε).
On the other hand, the backward evolution ofIb(s) transversely intersects themanifold
Wu(Mm

ε ). By the exchange lemma, the backward evolution of Ib(s) traces out a two-

dimensional manifold Ib
(s)which intersects.r in a curve I−(s)which is alignedC1-

O(e−η/ε)-close to the stable fiber of a basepoint onWc(Fr )which itself isO(e−η/ε)-
close to Mm,r

ε ∩ .r (Fig. 11).
We sum this up in the following

Lemma 3.4 Within .r , the curve I−(s) is given as a graph

I−(s) = {(xr , y2) : y2 = ym2 + I−(xr , s, k, ε), |xr | ≤ δx }, (3.13)

where

I−(0, s, k, ε) = O(e−η/ε), ∂ν I−(0, s, k, ε) = O(e−η/ε) (3.14)

for ν = xr , s, k.

We now consider the forward evolution of I−(s), which is contained in the two-
dimensional manifold Ib

(s). By construction and by the above discussion, we have
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Σr

I+I−

Mm,r
ε

Mb,r
ε

xr

yr

Fig. 11 Shown are the matching conditions within the Poincaré section .r . Note that under the Poincaré
map 2r : .r → .r , we have that 2(I−) ⊆ I+. A periodic orbit can be therefore be found when the
curves I± intersect along a single solution orbit

that Ib
(s) ⊂ Ws(Mb

ε), and therefore Ib
(s) will be C1-exponentially contracted to

Mb
ε and thus meets the section .r in a curve I+(s) which is C1-O(e−η/ε)-close to

Mb,r
ε ∩ .r (Fig. 11). We have the following

Lemma 3.5 Consider the Poincaré map 2r : .r → .r . We have that 2r (I−(s)) ⊆
I+(s); parameterizing points on I−(s) by their initial xr coordinate given by xr = x−

for |x−| ≤ δx , we have that the curve 2r (I−(s)) is given by

2r (I−(s)) =
{(

xr
y2

)
=

(
x+(x−, s, k, ε)

yb2 + I+(x−, s, k, ε)

)
, |x−| ≤ δx

}
, (3.15)

where

I+(x−, s, k, ε) = O(e−η/ε), ∂ν I+(x−, s, k, ε) = O(e−η/ε)

x+(x−, s, k, ε) = O(e−η/ε), ∂νx+(x−, s, k, ε) = O(e−η/ε)
(3.16)

for ν = x−, s, k.

It remains to solve for a fixed point of2r which lies on the intersection of the curves
I±(s); this corresponds to a periodic orbit which is a perturbation of the singular orbit
10(s). An intersection of I±(s) occurs along a single solution orbit if

x− = x+(x−, s, k, ε)

ym2 + I−(x−, s, k, ε) = yb2 + I+(x−, s, k, ε)
(3.17)

for some value of |x−| ≤ δx . Using estimates (3.16), the first equation can be solved
for

x− = x−(s, k, ε) = O(e−η/ε), ∂k x−(s, k, ε) = O(e−η/ε). (3.18)
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Plugging this into the second equation and rearranging results in the equation

yb2 − ym2 + I+(x−(s, k, ε), s, k, ε) − I−(x−(s, k, ε), s, k, ε) = 0, (3.19)

which by Proposition 3.1 can be rewritten as

D0(k2, r2)+ I+(x−(s, k, ε), s, k, ε) − I−(x−(s, k, ε), s, k, ε) = 0. (3.20)

Using estimates (3.14), (3.16), (3.18), and the implicit function theorem, this equation
can be solved for a unique solution when

k = ksa0 (s, ε) = kmc(
√

ε)+O(e−η/ε). (3.21)

3.6 Upper 1-Spike Orbits

In this section, we construct 1-spike orbits which complete an excursion around the
upper branchMu

ε , corresponding to a single spike. We first consider the simpler case
of orbits which stay away from the upper left fold F" and the saddle homoclinic
bifurcation occurring along Mm

ε , as these orbits can be constructed in a very similar
manner to the 0-spike orbits from Sect. 3.5.

These solutions are again characterized by a long canard trajectory, which consists
of first followingMb

ε , thenMm
ε , and then finally returning toMb

ε ; however, in contrast
to the solutions constructed in Sect. 3.5, the fast jump down to Mb

ε instead follows
one of the heteroclinic orbits φu(y) (Fig. 10). Similarly, these orbits are most naturally
parameterized by which heteroclinic connection φu(y) is followed, or equivalently,
the minimum y-value achieved along the orbit. Hence, for each s ∈ [ȳ" +3, ȳh − 3]
we search for a 1-spike periodic orbit which achieves a minimum y-value of y = s
and is obtained as a perturbation from the singular orbit

Mb
0(s, ȳr ) ∪ Mm

0 (s, ȳr ) ∪ φu(s). (3.22)

Following the strategy of Sect. 3.5,we choose an appropriate one-dimensional curve
Iu(s) of candidate initial conditions. For this, we denote by wu the w-coordinate at
which the orbit φu(s) intersects the set {v = v̄"}. For sufficiently small δ > 0, we
then define Iu(s) to be an interval of width δ which lies in the plane {y = s} and is
transverse to the fast layer dynamics, and which intersects φu(s) at w = wu . Since
φu(s) lies in the intersection Ws(Mb

0) ∩ Wu(Mm
0 ) for ε = 0, the remainder of the

analysis follows identically to that in Sect. 3.5, with the periodic orbit occurring for

k = ksa,upper1 (s, ε) = kmc(
√

ε)+O(e−η/ε), (3.23)

and we omit the details.
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Fig. 12 Shown is a schematic of
the singular ε = 0 flow near the
upper left fold point F". The
locally invariant attracting center
manifoldWc(F") is given by
the set {x" = 0}

z!

y!

x!

Mm
0

Mu
0

3.7 Overlap of 0-Spike Orbits and Upper 1-Spike Orbits: Analysis of Upper Left
Fold PointF!

We consider the upper left fold F". We note that the geometry near the fold is similar
to that considered in Carter and Sandstede (2015, §4), and hence, we draw on the
local analysis as presented in Carter and Sandstede (2015). We first move to a local
coordinate system in a neighborhood of F", in which the equations take the form

ẋ" = x" (c"(k)+O(x", y", z", ε))

ż" = −y" + z2" + h"(y", z", k, ε)

ẏ" = εg"(y", z", k, ε),

(3.24)

where c"(k) > 0, and h", g" are Cr -functions satisfying

h"(y", z", k, ε) = O(ε, y"z", y2" , z
3
"),

g"(y", z", k, ε) = −1+O(y", z", ε),

uniformly in k ∈ (−k0, k0). The geometry of (3.24) for ε = 0 is depicted in Fig. 12. In
the transformed system (3.24), the (z", y")-dynamics are decoupled from the dynamics
in the hyperbolic x"-direction along the straightened strong unstable fibers. At the
linear level, the slow variable y" in these local coordinates corresponds to a rescaling
of the original slow variable (y − ȳ").

123



Journal of Nonlinear Science (2020) 30:2613–2669 2635

We consider the flow of (3.24) on the invariant manifold x" = 0. We append an
equation for ε, arriving at the system

ż" = −y" + z2" + h"(y", z", k, ε)

ẏ" = εg"(y", z", k, ε)

ε̇ = 0.

(3.25)

For ε = 0, this system possesses a critical manifold given by {(y", z") : −y" +
z2" + h"(y", z", k, 0) = 0}, which in a sufficiently small neighborhood of the origin
is shaped as a parabola opening to the right (Fig. 12). The branch of this parabola for
z" < 0 is attracting and corresponds to the manifoldMm

0 . We defineMm,+
0 to be the

singular trajectory obtained by appending the fast trajectory given by the line segment
{(y", z") : y" = 0, 0 ≤ z" ≤ δz} to the attracting branchMm

0 of the critical manifold.
We have the following

Proposition 3.6 (Carter and Sandstede 2015, Proposition 4.1)For all sufficiently small
ε > 0, we have the following.

(i) Within the center manifold {x" = 0}, the singular trajectory Mm,+
0 perturbs to

a solution Mm,+
ε , which is C0-O(ε2/3)-close and C1-O(ε1/3)-close to Mm,+

0 ,
uniformly in |k| < k0. This solution can be represented as a graph

Mm,+
ε = {(0, y", z") : y" = sm,+(z", k, ε), |z"| ≤ δz}. (3.26)

(ii) The manifoldWu(Mm,+
0 ) composed of the strong unstable fibers of the singular

trajectory Mm,+
0 also perturbs to a two-dimensional locally invariant manifold

Wu(Mm,+
ε ) which is C0-O(ε2/3)-close and C1-O(ε1/3)-close to Wu(Mm,+

0 ),
uniformly in |k| < k0.

The results of Proposition 3.6 are depicted in Fig. 13.
Weproceed by constructing solutionswhich pass near the fold. These solutions form

a “bridge” between orbits which depart Mm
ε along the heteroclinics φb(y) and those

which depart along the heteroclinicsφu(y), which are constructed in Sects. 3.5 and 3.6,
respectively. The geometric intuition is that the fold acts as a means of continuously
transitioning from one “side” ofMm

ε to the other. The challenge lies in parameterizing
these orbits, as the exact orbit φb(y) or φu(y) which is followed when leaving a
neighborhood of F" is not naturally determined.

We choose 0 < δ ! δz and define the section ."
in (Fig. 13) by

."
in = {(x", y", z") : y" = sm,+(−δz, k, 0), |x"| ≤ δx , |z" + δz | ≤ δ}. (3.27)

We have the following.

Lemma 3.7 For all sufficiently small ε > 0, we have that ."
in ⊆ Ws(Mb

ε).
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y
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Mm
0

Mu
0

Mm,+
ε

Wu(Mm,+
ε )

Σin

−δz

δx

δ

x

Fig. 13 Depicted are the results of Proposition 3.6. For sufficiently small ε > 0, the singular trajectory
Mm,+

0 perturbs to a solution Mm,+
ε within the center manifold Wc(F") = {x" = 0}. Furthermore, the

two-dimensional manifoldWu(Mm,+
0 ) composed of the strong unstable fibers ofMm,+

0 also perturbs to

a two-dimensional locally invariant manifold Wu(Mm,+
ε ) depicted by the purple surface. Also shown is

the section ."
in, transverse to the center manifoldWc(F")

Proof We first define a collection of potential “exit” sections for solutions with initial
conditions in ."

in. The first is given by

."
out,1 = {(x", y", δz) : |x"| ≤ δx , |y"| ≤ δ}. (3.28)

For the other sections,wefirst defineU " to be a planar δ-neighborhood ofMm,+
0 within

the center manifold {x" = 0}. This neighborhoodU " is bounded by four curves, given
by ."

in ∩ {x" = 0}, ."
out,1 ∩ {x" = 0}, as well as two other curves U "

upper and U "
lower,

chosen to lie anO(δ) distance on either side ofMm,+
0 , so that the union of these four

curves bounds a well-defined planar region U " within {x" = 0} containing Mm,+
0 ,

with O(δ) thickness.
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We now define four additional exit sections

."
out,2 = {(δx , y", z") : (y", z") ∈ U "}

."
out,3 = {(−δx , y", z") : (y", z") ∈ U "}

."
upper = {(x", y", z") : |x"| ≤ δx , (y", z") ∈ U "

upper}
."

lower = {(x", y", z") : |x"| ≤ δx , (y", z") ∈ U "
lower}.

(3.29)

Previous blow-up analyses (Carter and Sandstede 2015; Krupa and Szmolyan
2001a) of nondegenerate fold points have studied the behavior of basepoint solutions
with initial conditions in ."

in ∩ {x" = 0} for 0 < ε ! 1. In particular, these analyses
show that initially such solutions are quickly contractedO(e−η/ε)-close toMm,+

ε and
remain O(e−η/ε)-close to Mm,+

ε until reaching the set ."
out,1 ∩ {x" = 0}. Hence,

when considering the full dynamics of (3.25), i.e., with the x"-dynamics included,
since solutions on the strong unstable fibers shadow their respective basepoint trajec-
tories, any solution with initial condition in ."

in must pass through one of the three
sections ."

out, j , j = 1, 2, 3. In particular, such solutions do not pass through ."
upper

or ."
lower. It remains to show that ."

out, j , j = 1, 2, 3 are contained in Ws(Mb
ε).

To see this, wefirst consider solutionswithin."
out,2∩{y" ≥ δ} and."

out,3∩{y" ≥ δ}.
Provided δ ! δx , the fact that such solutions are contained inWs(Mb

0) is clear due to
their proximity with the heteroclinic orbits φu(y),φb(y) which lie in Ws(Mb

0). For
sufficiently small ε > 0, by standard geometric singular perturbation theory, these
solutions are contained inWs(Mb

ε).
For the remaining solutions, i.e., those within {|y"| ≤ δ}, we first note that due to

Hypothesis 7 as well as Hypothesis 5 regarding the layer problem (2.3) for ε = 0, any
solution within the plane {y" = 0} lying a small fixed distance δx from the fold F"

must lie inWs(Mb
0). For sufficiently small δ ! δx , by the smooth dependence of the

layer problem on y", this also holds for solutions lying distance δx fromF", which are
contained in the region {|y"| ≤ δ}. Again, the fact that these solutions are contained
in Ws(Mb

ε) for small ε > 0 follows from standard geometric singular perturbation
theory. Hence, by appropriately choosing δ ! δx , δz , we obtain the result. 45

We note that for ε = 0, we have that

Wu(Mm
0 ) ∩ ."

in = {(x", y", δz) : y" = sm,+(δz, k, 0), |x"| ≤ δx }. (3.30)

Therefore, for each |x̄ | ≤ δx , we can define the interval

I"(x̄) = ."
in ∩ {x" = x̄}, (3.31)

which clearly intersectsWu(Mm
0 ) transversely within."

in. This transversality persists
for sufficiently small ε > 0. Combining this with Lemma 3.7, we see that I"(x̄)
satisfies the conditions outlined in the strategy from Sect. 3.4, and the construction of
periodic orbits which pass through I"(x̄) follows as in Sect. 3.5.
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Mm
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ε )
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v
w

Fig. 14 Shown is the flow near the saddle homoclinic bifurcation for sufficiently small ε > 0. The stable
and unstable manifolds Ws,u(Mm

0 ) of the critical manifold Mm
0 , which intersect transversely for ε = 0,

perturb to two-dimensional locally invariant manifoldsWs,u(Mm
ε )which again intersect transversely near

y ≈ ȳh for 0 < ε ! 1. Away from the saddle homoclinic bifurcation, the periodic manifold P0 persists as
a locally invariant manifold Pε

3.8 The Flow Near the Saddle Homoclinic Point

Before proceeding to construct N -spike solutions for N > 1, it is necessary to under-
stand the passage of solutions the near the saddle homoclinic point ph. This analysis
is also critical in determining how the different branches of bursting solutions are con-
nected. The main result of this section is Proposition 3.8, which concerns the behavior
of solutions which spend long times hear the saddle homoclinic point. The proof of
Proposition 3.8 is given in Sect. 3.9.

We continue by considering the flow in a neighborhood of the saddle homoclinic
point ph. The existence of a saddle homoclinic orbit γh at ph when ε = 0 implies that
the manifolds Wu(Mm

0 ) and Ws(Mm
0 ) intersect transversely along γh in the plane

y = ȳh. This transverse intersection therefore persists for the manifolds Wu(Mm
ε )

and Ws(Mm
ε ) for ε > 0 sufficiently small (Fig. 14).

In a neighborhood of Mm
ε , there exists a smooth change of coordinates such that

the equations can be written in the Fenichel normal form

Ȧ = F1(A, B, Y , k, ε)A

Ḃ = F2(A, B, Y , k, ε)B

Ẏ = ε(G1(Y , k, ε)+ G2(A, B, Y , k, ε)),

(3.32)
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Wu(Mm
ε )

Mm
ε

Ws(Mm
ε )

Wu(Mm
ε )

Y

AB

Πloc(I∗)

Σh
AΣh

B
Πgl ◦ Πloc(I∗)

I∗

Fig. 15 Shown is the local geometry associated with the flow of the Fenichel normal form (3.32) near
the saddle homoclinic bifurcation for sufficiently small ε > 0. The manifolds Wu(Mm

ε ) and Ws(Mm
ε )

coincide with the sets A = 0 and B = 0, respectively, and the slow manifoldMm
ε is given by A = B = 0.

The sections .h
A,.

h
B defined in (3.34) are placed at A = 3 and B = 3, respectively for small fixed

3 > 0. Due to Hypothesis 4 manifold Wu(Mm
ε ) transversely intersects Ws(Mm

ε ) in the section .h
A

for all sufficiently small ε > 0. Also depicted are the results of Lemma 3.13, concerning the return map
2gl ◦ 2loc : .h

B → .h
B induced by the backward flow of (3.32), applied to a curve I∗ which transversely

intersects Wu(Mm
ε ) in .h

B

where

F1(A, B, Y , k, ε) = −α(k)+O(A, B, Y , ε)

F2(A, B, Y , k, ε) = β(k)+O(A, B,Y , ε)

G1(Y , k, ε) = −γ (k)+O(Y , ε)

G2(A, B, Y , k, ε) = O(AB),

(3.33)

where α(k),β(k), γ (k) > 0 uniformly in |k| < k0, and α(k) > β(k) due to Hypothe-
sis 4. In the following, we will suppress the dependence on k in the notation. In these
coordinates, the set A = 0 corresponds to Wu(Mm

ε ), the set B = 0 coincides with
Ws(Mm

ε ), and the slow manifold Mm
ε is given by A = B = 0 (Fig. 15).

We fix the two-dimensional sections

.h
A = {A = 3, |B| ≤ 3, |Y | ≤ δY }

.h
B = {B = 3, |A| ≤ 3, |Y | ≤ δY }

(3.34)

for small 3 > 0 to be chosen later (Fig. 15).
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By the above discussion, we can track Wu(Mm
ε ) along γh and deduce that this

manifold transversely intersectsWs(Mm
ε ) in the section .h

A for all sufficiently small
ε > 0 (Fig. 15). Thus, the intersection ofWu(Mm

ε ) with the section .h
A is given by a

curve which can be represented as a graph over the B-coordinate, that is,

Wu(Mm
ε ) ∩ .h

A = {(3, B, Yh(B, k, ε)) : |B| ≤ δ}, (3.35)

for some 0 < δ ! 3, where we can assume without loss of generality (by shifting
coordinates) that

Yh(0, k, ε) = 0, ∂BYh(0, k, ε) = K (k, ε,3), (3.36)

where K1 < K (k, ε,3) < K2 uniformly in |k| < k0 and 0 < ε ! 1 for some
K j = K j (3) > 0 for j = 1, 2; note that Yh(0, k, 0) = 0 represents the location of
the homoclinic orbit γh for ε = 0.. In the following, it will also be useful to invert this
relation, i.e., represent Wu(Mm

ε ) as a graph B = Bh(Y , k, ε) for |Y | ≤ δY , where

Bh(0, k, ε) = 0, ∂Y Bh(0, k, ε) = 1/K (k, ε,3). (3.37)

The primary result of this section is the following proposition, the proof of which
is given in Sect. 3.9.

Proposition 3.8 Consider the backward flow of (3.32). For each sufficiently small
3 > 0, there exists C, δY , k0, ε0 > 0 such the following holds. For each (k, ε) ∈
(−k0, k0)×(0, ε0), consider a one-dimensionalmanifold I∗ ⊂ .h

B which transversely
intersects Wu(Mm

ε ) in the section .h
B at some Y ∈ (−δY ,Cε| log ε|). Then, there

exists N̄ (ε) = O(1/ε) such that under the backward flow of (3.32), I∗ traces out a
two-dimensional manifold I which returns to the section .h

B a total of N̄ times, each
time transversely intersecting themanifoldWu(Mm

ε ). Furthermore, the transversality
is uniform in ε > 0 sufficiently small.

Remark 3.9 The uniformity of the transversality with respect to ε means that this
intersection does not approach tangency as ε → 0. This is important as the manifold
I is tracked over N̄ = O(1/ε) excursions.

Remark 3.10 We also remark briefly on the ε| log ε|-bound for the Y -coordinate of
intersection withWu(Mm

ε ). For larger values of Y , it is not possible to guarantee that
I will intersect Wu(Mm

ε ) again on its subsequent returns to .h
B under the backward

flow of (3.32), unless additional transversality conditions are satisfied. However, we
will show that these conditions will be satisfied after an O(1) number of returns to
.h

B ; see Lemmas 3.13 and 3.14.

3.9 Proof of Proposition 3.8

The proof of Proposition 3.8 involves understanding both the flow near the saddle
homoclinic point ph and how solutions leave a neighborhood of the saddle homoclinic
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orbit γh and interact with the periodic manifold Pε. We begin by analyzing the flow
near γh in Sect. 3.9.1, followed by the flow in a neighborhood of Pε in Sect. 3.9.2. The
proof of Proposition 3.8 is briefly concluded in Sect. 3.9.3.

3.9.1 Analysis Near the Saddle Homoclinic Point

The estimates on the flow near the saddle homoclinic orbit γh necessary in the proof
of Proposition 3.8 are outlined in the following four lemmas. The first two lemmas
give estimates on the local map .h

B → .h
A under the backward flow of (3.32), and

the global map .h
A → .h

B in backward time, respectively. The third then combines
these to give a precise return estimate .h

B → .h
B under the backward flow of (3.32)

in the case when I∗ satisfies additional assumptions. The final lemma then shows that
any choice of I∗ from Proposition 3.8 will satisfy these extra assumptions after only
an O(1) number of these excursions.

It is essential that the estimates are uniform with respect to the small parameters
involved in the analysis, as the two-dimensional manifold I, traced out by the one-
dimensional manifold I∗ under the backward flow of (3.32), must be tracked over
an asymptotically large number of excursions. To this end, we introduce the notation
a ∼ b for a, b > 0 if there exists C = C(3) > 0 independent of all sufficiently small
δY , ε0 such that

b
C

≤ a ≤ Cb. (3.38)

Here, 3 is the small constant from (3.34). Similarly, we use the notation a ! b for
a, b > 0 if there exists C = C(3) > 0 such that a ≤ C(3)b. Furthermore, any terms
designated byO notation which do not contain explicit 3-dependence are understood
to be taken up to a constant which may depend on 3.

We begin with the following Shilnikov-type estimate (Deng 1990; Krupa et al.
1997; Schecter 2008a), the proof of which is given in Appendix A.

Lemma 3.11 For each sufficiently small 3 > 0, consider the local map 2loc : .h
B →

.h
A under the backward flow of (3.32). There exists δY , δ > 0 such that the following

holds. Consider (A,3, Y ∗) ∈ .h
B satisfying |A| ≤ δ. Then, for all sufficiently small

ε > 0, we have

2loc




A
3

Y ∗



 =




3

Bloc(R,Y ∗)
Yloc(R, Y ∗),



 (3.39)

where 3Rρ = A and

ρ(R, Y ∗; k, ε) = α/β +O(3)

Bloc(R, Y ∗; k, ε) = 3R(1+O(3))

Yloc(R, Y ∗; k, ε) = Y ∗ − εγ log(R)
β

(1+O(3)),

(3.40)
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and the derivatives of these functions with respect to R,Y ∗ satisfy

∂Rρ = O
(

3

R log R

)
, ∂Y ∗ρ = O(1)

∂R Bloc = 3(1+O(3)), ∂Y ∗ Bloc = O(R log R)

∂RYloc = − ε

βR
(1+O(3)), ∂Y ∗Yloc = (1+O(3)),

(3.41)

where the estimates are uniform for all sufficiently small δY , δ, ε > 0.

The next lemma concerns the nature of the global map 2gl : .h
A → .h

B under the
backward flow of (3.32).

Lemma 3.12 For each sufficiently small3 > 0, consider the global map2gl : .h
A →

.h
B under the backward flow of (3.32). There exists Cgl, δY , δ > 0 such that the

following holds. For all sufficiently small ε > 0, consider a solution (3, B,Y ) ∈ .h
A

satisfying |B| ≤ δ and |Y | ≤ δY . Then,

2gl




3

B
Y



 =




Agl(B, Y )

3

Ygl(B, Y )



 , (3.42)

where

Agl(B,Y ) = Cgl(B − Bh(Y , k, ε))

+O
(
|Y ||B − Bh(Y , k, ε)|, ε|B − Bh(Y , k, ε)|, |B − Bh(Y , k, ε)|2

)

Ygl(B,Y ) = Y +O(ε).

(3.43)

The estimateswill in general dependon3but are uniformwith respect to all sufficiently
small δ, δY > 0 provided ε > 0 is taken sufficiently small.

Proof For fixed 3, the map 2gl : .h
A → .h

B for solutions with initial conditions
sufficiently close to Wu(Mm

ε ) ∩ .h
A can be determined by a finite time integration.

In particular, the set Wu(Mm
ε ) ∩ .h

A will map onto the set .h
B ∩ {A = 0}, and the

estimates follow from the smoothness of this map. 45

The next lemma combines the estimates in Lemmas 3.11 and 3.12 to determine the
effect of the return map

2gl ◦ 2loc : .h
B → .h

B (3.44)

under the backward flow of (3.32). In particular, for a manifold which satisfies certain
transversality estimateswith respect to themanifoldWu(Mm

ε ) in the section.h
B , these

estimates are preserved (in an appropriate sense) under the backward flow of (3.32)
(Fig. 16).
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∆

δY
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∆
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Fig. 16 Depicted is the setupwithin the sections.h
B (left) and.h

A (right) as in Lemma 3.13; see also Fig. 15.
Note that in the right panel, the B-coordinate increases to the left in order to preserve the orientation of
Fig. 15. The curveI∗, which is given by the graphY = Y1(A, k, ε), transversely intersectsWu(Mm

ε )within
the section .h

B at Y = Y1,0. Under the reverse flow of (3.32), I∗ is mapped via 2loc to .h
A , and the image

2loc(I∗) again transversely intersects Wu(Mm
ε ) within .h

A at a point (B, Y ) = (Bloc(R!), Yloc(R!)),
where R! is as in (3.55). Further, in backward time,2loc(I∗) returns to.h

B via the global map2gl, and the
image 2gl ◦ 2loc(I∗) corresponds to the graph of Y = Y2(A, k, ε), intersecting Wu(Mm

ε ) transversely
at Y = Y2,0

Lemma 3.13 Fix 3 > 0 sufficiently small. For each C1 > 0 and each sufficiently
small C2 > 0, there exists C, δY , k0, ε0 > 0 such that for (k, ε) ∈ (−k0, k0)× (0, ε0),
the following holds. Suppose that the one-dimensional manifold I∗ ⊂ .h

B can be
represented as a graph Y = Y1(A, k, ε) which satisfies

C1ε| log ε| < Y1,0 < δY , sup
|A|≤C2|Y1,0|

|∂AY1(A, k, ε)| ≤
∣∣∣∣
ε log |Y1,0|

Y1,0

∣∣∣∣ , (3.45)

where Y1,0 := Y1(0, k, ε). Then, under the reverse flow of (3.32), I∗ traces out a
two-dimensional manifold I, which again intersects .h

B in a curve which can be
represented as a graph Y = Y2(A, k, ε) satisfying

Y2,0 > Y1,0 + Cε, sup
|A|≤C2|Y2,0|

|∂AY2(A, k, ε)| ≤
∣∣∣∣
ε log |Y2,0|

Y2,0

∣∣∣∣ , (3.46)

where Y2,0 := Y2(0, k, ε).

Proof The strategy of the proof is to combine the results of Lemma 3.11 and
Lemma 3.12. Care must be taken to ensure that for fixed 3, the estimates hold
independently of Y1,0 ∈ (C1ε| log ε|, δY ) for sufficiently small choice of δY , ε0 with
ε ∈ (0, ε0).

We first use Lemma 3.11 to determine the image of I∗ under the local map 2loc :
.h

B → .h
A. Under the map 2loc, I∗ is mapped to a curve in .h

A parameterized by
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R = (A/3)1/ρ as

2loc




A
3

Y1(A, k, ε)



 =




3

Bloc(R)
Yloc(R)



 , (3.47)

where the functions

Bloc(R) := Bloc(R, Y1(3Rρ, k, ε))

Yloc(R) := Yloc(R, Y1(3Rρ, k, ε)).
(3.48)

defined as in Lemma 3.11 satisfy

ρ(R) = α/β +O(3)

Bloc(R) = 3R(1+O(3))

Yloc(R) = Y1(3Rρ, k, ε) − εγ log R
β

(1+O(3))

(3.49)

and

∂R(Rρ) = ρRρ−1(1+O(3))

∂R Bloc(R) = 3(1+O(3))

∂RYloc(R) = 3Rρ−1∂AY1(3Rρ, k, ε)(1+O(3)) − εγ

βR
(1+O(3))

(3.50)

by implicitly differentiating the functions Bloc,Yloc in (3.48) and using esti-
mates (3.41).

We first claim that the curve (B,Y ) = (Bloc,Yloc)(R) transversely intersects
Wu(Mm

ε ) within .h
B . The intersection of the manifold Wu(Mm

ε ) with .h
B is given

as a curve Y = Yh(B, k, ε). We therefore need to solve the following equation.

Yh(Bloc(R), k, ε) = Yloc(R)

= Y1(3Rρ, k, ε) − εγ log R
β

(1+O(3))

= Y1,0 +O(Rρ) − εγ log R
β

(1+O(3)),

(3.51)

where we used (3.49). At first, we ignore the last term on the right-hand side and
consider the simpler equation

Yh(Bloc(R), k, ε) = Y1,0 +O(Rρ). (3.52)
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Using (3.36) and (3.50), this equation can be solved for R = R0 = Y1,0
K3 (1 +O(3)).

We set R = R0(1+ R1) and return to the full equation, which becomes

K3R1R0(1+O(3))+O(R1Rν
0 ) = −εγ log R0

β
(1+O(3))+O(εR1),

(3.53)

where ν := min{ρ, 2} > 1. It is now possible to solve for

R1 = −εγ log R0

βK3R0
(1+O(3, Rν−1

0 )). (3.54)

From this, we obtain the solution R = R!(k, ε) = R0(1+ R1) given by

R!(k, ε) =
Y1,0
K3

(1+O(3)) − εγ

βK3
log

(
Y1,0
K3

)
(1+O(3)). (3.55)

Provided δY , ε0 are sufficiently small and since C1ε| log ε| < Y1,0 < δY by (3.45), we
have that R! ∼ |Y1,0|. Note that the lower bound on Y1,0 is crucial in order to obtain
that R! ∼ |Y1,0|.

We now focus on the global map 2gl : .h
A → .h

B . Using Lemma 3.12, we have
that

2gl




3

Bloc(R)
Yloc(R)



 =




Agl(Bloc(R), Yloc(R))

3

Ygl(Bloc(R), Yloc(R))



 (3.56)

where

Agl(R) = Cgl(Bloc(R) − Bh(Yloc(R), k, ε))

+O ((|Yloc(R)| + ε + |Bloc(R)

−Bh(Yloc(R), k, ε)|)|Bloc(R) − Bh(Yloc(R), k, ε)|)
Ygl(R) = Yloc(R)+O(ε),

(3.57)

where we have simplified the notation by writing Agl(R) = Agl(Bloc(R), Yloc(R))
and Ygl(R) = Ygl(Bloc(R), Yloc(R)). The goal is to express Ygl as a graph Ygl =
Y2(Agl, k, ε) over Agl and verify estimates (3.46) are satisfied. We first determine

Y2,0 = Ygl(R!)

= Y1(3Rρ
!, k, ε) − εγ log R!

β
(1+O(3))+O(ε),

(3.58)

using (3.49). Using the fact that R! ∼ |Y1,0|, for all sufficiently small δY , ε0 and
C1ε| log ε| < Y1,0 < δY , we have that

Rρ
! ! |Y1,0|, (3.59)
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so that

0 < (Y2,0 − Y1,0) ∼ ε
∣∣log |Y1,0|

∣∣ +O(ε). (3.60)

From this, we obtain

Y2,0 > Y1,0 + Cε, (3.61)

for some C = C(3), and further we note that |Y2,0| ∼ |Y1,0|.
In order to prove estimate (3.46) regarding the derivative of Y2(A, k, ε) on the

interval |A| ≤ C2|Y2,0|, we first determine the endpoints of this interval in terms of
R, which we denote by Rstart, Rend. To find these endpoints, we must solve for when

Agl(R) = ±C2Y2,0 (3.62)

in terms of R. By the implicit function theorem, after somemanipulations using (3.50)
and (3.57), and using the relations (3.51), and (3.58) satisfied by R!, we find that we
can solve for

Rstart =
(
1 − C2K

Cgl

)
R!(1+O(3))

Rend =
(
1+ C2K

Cgl

)
R!(1+O(3)),

(3.63)

provided C2 is sufficiently small, and in particular, we have Rstart, Rend ∼ R!. There-
fore, also Rstart, Rend ∼ |Y1,0| and hence for all sufficiently small δY , ε0 and any
C1ε| log ε| < Y1,0 < δY , we have

Rρ
end < C2|Y1,0|. (3.64)

We now compute

dYgl
dR

= ρ3Rρ−1∂AY1(3Rρ, k, ε)(1+O(3)) − εγ

βR
(1+O(3))+O(ε)

(3.65)

whereby

∣∣∣∣
dYgl
dR

∣∣∣∣ ≤ ρ3Rρ−1
∣∣∣∣
ε log |Y1,0|

Y1,0

∣∣∣∣ (1+O(3))+ εγ

βRstart
(1+O(3))

!
(
|Y2,0|ρ−1 + 1

| log |Y2,0||

) ∣∣∣∣
ε log |Y2,0|

Y2,0

∣∣∣∣ .
(3.66)
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We now use (3.57) and compute the derivative

dAgl

dR
= Cgl

(
1+O

(
3, R,

∣∣∣∣
dYgl
dR

∣∣∣∣

))
. (3.67)

We can then compute the slope dYgl
dAgl

as the ratio of (3.66) and (3.67)

∣∣∣∣
dYgl
dAgl

∣∣∣∣ =

∣∣∣ dYgldR

∣∣∣

Cgl

(
1+O

(
3, R,

∣∣∣ dYgldR

∣∣∣
))

≤
∣∣∣∣
ε log |Y2,0|

Y2,0

∣∣∣∣

(3.68)

independently of the initial Y1,0 ∈ (C1ε| log ε|, δY ), by choosing δY , ε0 sufficiently
small. It follows that the manifold I intersects.h

B in a curve which can be represented
as a graph Y = Y2(A, k, ε) for values of |A| ≤ C2|Y2,0|, satisfying estimates (3.46).

45
The final technical lemma ensures that a manifold I∗ which intersects Wu(Mm

ε )

transversely in the section .h
B as in Proposition 3.8 satisfies the assumptions of

Lemma 3.13 after finitely many returns to .h
B .

Lemma 3.14 Consider the backward flow of (3.32). For each sufficiently small 3 > 0
there exist C1,C2 and δY , ε0, k0 > 0 such that for each (k, ε) ∈ (−k0, k0) × (0, ε0),
the following holds. Consider a one-dimensional manifold I∗ ⊂ .h

B which can be
represented as a graph Y = Y1(B, k, ε)with Y1(0, k, ε) =: Y1,0 ∈ (−δY ,C1ε| log ε|),
and which transversely intersectsWu(Mm

ε ) in the section .h
B. Then, under the back-

ward flow of (3.32), I∗ traces out a two-dimensional manifold I which, after finitely
many excursions, transversely intersects .h

B in a curve which can be represented as
a graph Y = Y2(A, k, ε) satisfying

C1ε| log ε| < Y2,0 < δY , sup
|A|≤C2|Y2,0|

|∂AY2(A, k, ε)| ≤
∣∣∣∣
ε log |Y2,0|

Y2,0

∣∣∣∣ , (3.69)

where Y2,0 := Y2(0, k, ε).

Proof We proceed as in the proof of Lemma 3.13, and we begin by determining the
image of I∗ under the local map2loc : .h

B → .h
A. Under the map2loc, I∗ is mapped

to a curve in .h
A parameterized by R = (A/3)1/ρ as

2loc




A
3

Y1(A, k, ε)



 =




3

Bloc(R)
Yloc(R)



 , (3.70)

where the functions Bloc(R), Yloc(R) satisfy (3.49) and (3.50). We search for the loca-
tion of a transverse intersection of the curve (B, Y ) = (Bloc,Yloc)(R) withWu(Mm

ε )
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within .h
B , where W

u(Mm
ε ) is given by the graph Y = Yh(B, k, ε). As in the proof

of Lemma 3.13, we therefore need to solve an equation of the form

Yh(Bloc(R), k, ε) = Y1,0 +O(Rρ) − εγ log R
β

(1+O(3)), (3.71)

where Y1,0 ∈ (−δY ,C1ε| log ε|). We first focus on the region |Y1,0| < C1ε| log ε|, and
we consider the simpler equation

Yh(Bloc(R), k, ε) = −εγ log R
β

(1+O(3))+O(Rρ). (3.72)

Proceeding in a similar fashion as in the proof of Lemma 3.13, we set

R = γ ε| log ε|
β3K

(1+ R0), (3.73)

which results in the equation

R0(1+O(3))+O((ε| log ε|)ν−1R0) = O
(

3,
log(log ε)

log ε
,

R0

log ε

)
, (3.74)

which can be solved for

R0 = O(3) (3.75)

for all sufficiently small ε > 0. This gives a solution to (3.72) defined by (3.73), which
we denote by R1. We now return to the full equation (3.71) and set R = R1(1+ R2),
which results in the equation

R2(1+O(3))+O((ε| log ε|)ν−1R2) =
Y1,0

3K R1
+O

(
3,

log(log ε)

log ε
,

R0

log ε

)

= βY1,0
γ ε| log ε| +O

(
3,

log(log ε)

log ε
,

R0

log ε

)
,

(3.76)

which can be solved in the region |Y1,0| < C1ε| log ε| for

R2 =
βY1,0

γ ε| log ε| +O (3) , (3.77)

resulting in a solution R = R! := R1(1+ R2) of Eq. (3.71) given by

R! = γ ε| log ε|
β3K

(
1+ βY1,0

γ ε| log ε| +O (3)

)
. (3.78)
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We now focus on the global map 2gl : .h
A → .h

B . Using Lemma 3.12, we have that

2gl




3

Bloc(R)
Yloc(R)



 =




Agl(Bloc(R), Yloc(R))

3

Ygl(Bloc(R), Yloc(R))



 , (3.79)

where

Agl(R) = Cgl(Bloc(R) − Bh(Yloc(R), k, ε))

+O ((|Yloc(R)| + ε + |Bloc(R)

−Bh(Yloc(R), k, ε)|)|Bloc(R) − Bh(Yloc(R), k, ε)|)
Ygl(R) = Yloc(R)+O(ε).

(3.80)

We now show that Ygl can be written as a graph Ygl = Y2(Agl, k, ε) over Agl and
verify estimates (3.69) are satisfied. We first determine

Y2,0 = Ygl(R!)

= Y1(3Rρ
!, k, ε) − εγ log R!

β
(1+O(3))+O(ε),

(3.81)

and using (3.78), we have that

Y2,0 = Y1,0 − εγ log ε

β
(1+O(3))+O(ε), (3.82)

so that

Y2,0 > C1ε| log ε| (3.83)

providedC1 = C1(3) is sufficiently small and |Y1,0| < C1ε| log ε|, for all sufficiently
small ε > 0. Estimates (3.69) which concern the derivative of Y2(A, k, ε) proceed as
in the proof of Lemma 3.13, noting that R! ∼ ε| log ε|.

Finally, it remains to consider the region Y1,0 ∈ (−δY ,−C1ε| log ε|). The strategy
is to show that in this case I∗ returns to .h

B under the backward flow of (3.32), this
time intersecting Wu(Mm

ε ) at a value of Y > −C1ε| log ε|, in which case the above
argument can be repeated to complete the proof. We therefore return to Eq. (3.71),
which we now aim to solve assuming Y1,0 ∈ (−δY ,−C1ε| log ε|).

We set R = R0R1 for some R0 ∈ (0, 1) and obtain the equation

K3R0R1(1+O(3, (R0R1)
ν−1))

= Y1,0 − εγ log R1

β
(1+O(3)) − εγ log R0

β
(1+O(3)).

(3.84)
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We first solve for R0 in terms of R1, Y1,0 by solving

K3R0R1(1+O(3, (R0R1)
ν−1)) = −εγ log R0

β
(1+O(3)). (3.85)

For C3 = C3(3) sufficiently large so that

C3 >
γ

β3K
, (3.86)

we separate two cases: R1 > C3ε and R1 < 2C3ε. If R1 > C3ε, proceeding similarly
as above, we can solve (3.85) by setting

R0 = − εγ

β3K R1
log

(
εγ

β3K R1

)
(1+ R2), (3.87)

substituting into (3.85), and solving for R2 = O(3) for all sufficiently small R1
satisfying R1 > C3ε.

Substituting back into (3.84), we now determine R1 by solving

0 = Y1,0 − εγ log R1

β
(1+O(3)), (3.88)

whereby we obtain

R1 = exp
(

βY1,0
εγ

(1+O(3))

)
, (3.89)

and therefore, the full solution R = R! := R0R1 of (3.71) is given by

R! = − εγ

β3K
log

(
εγ

β3K

)
(1+O(3))+ Y1,0

3K
(1+O(3)). (3.90)

On the other hand, returning to (3.85), in the region R1 < 2C3ε, after some rear-
ranging we obtain the equation

R0 = exp
(

−βK3R1

εγ
R0(1+O(3, (R0R1)

ν−1))

)
. (3.91)

For 0 < R1 < 2C3ε, this relation defines R0 as a strictly positive,monotone decreasing
function of R1, and in this region, R0 is confined to the interval (C4, 1) for some
0 < C4(3) < 1, which is independent of δY , ε. In particular, this relation can be
solved for

R0 =
W [Z ]
Z

, Z = βK3R1

εγ
(1+O(3)), (3.92)
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where W [·] denotes the principal branch of the Lambert W -function. Proceeding
as above, we substitute back into (3.84), solve for R1, and obtain the full solution
R = R! := R0R1 of (3.71), given by

R! = R0 exp
(

βY1,0
εγ

(1+O(3))

)
. (3.93)

We now determine

Y2,0 = Ygl(R!)
= Yloc(R!)+O(ε)

= Yh(Bloc(R!))+O(ε)

= K3R!(1+O(3, R!))+O(ε).

(3.94)

Using (3.84), we have that

Y2,0 = −εγ log R0

β
(1+O(3))+O(ε, Rν

!). (3.95)

In the region R1 > C3ε, R0 is given by (3.87) so that

Y2,0 > −C1ε| log ε| (3.96)

for all sufficiently small ε > 0. In the region R1 < 2C3ε, we have that R0 is given
by (3.92) so that

Y2,0 = O(ε) (3.97)

for all sufficiently small ε > 0. Estimates (3.69) which concern the derivative of
Y2(A, k, ε) are similar as in the proof of Lemma 3.13, though with minor differences
outlined below.

Using expressions (3.80), we now compute

dYgl
dR

= ρ3Rρ−1∂AY1(3Rρ, k, ε)(1+O(3)) − εγ

βR
(1+O(3))+O(ε),

(3.98)

whereby

dYgl
dR

≤ K3 (3.99)

for all sufficiently small ε > 0. We now use (3.57) and compute the derivative

dAgl

dR
= Cgl

(
1+O(3, R) − 1

K
dYgl
dR

(1+O(3, R))
)
. (3.100)
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We can then compute the slope dYgl
dAgl

as the ratio of (3.99) and (3.100)

∣∣∣∣
dYgl
dAgl

∣∣∣∣ =

∣∣∣ dYgldR

∣∣∣

Cgl

(
1+O(3, R) − 1

K
dYgl
dR (1+O(3, R))

)

≤ C5(3)

(3.101)

for some C5(3) independent of the initial Y1,0 ∈ (−δY ,−C1ε| log ε|), by choosing
δY , ε0 sufficiently small. 45

3.9.2 The Flow Near the Periodic ManifoldP"

We now consider the dynamics near the periodic manifold and the interaction with the
analysis near the saddle homoclinic point outlined in Sect. 3.9.1.

We consider a compact portion of the periodicmanifoldP0∩{ȳh+δY /2 ≤ y ≤ ȳp−
δY }, outside a small neighborhood of the saddle homoclinic point. By Hypothesis 4,
we note that in this region for ε = 0, the cylindrical singular periodic manifold
P0 is a two-dimensional normally attracting invariant manifold. By Fenichel theory
(Fenichel 1971, Theorem 3), this manifold therefore persists for small ε > 0 as
a two-dimensional normally attracting locally invariant manifold Pε in the region
y ∈ (ȳh + δY /2, ȳp − δY ), which again takes the form of a cylinder which is Cr -close
to P0.

In particular, this cylindrical manifold extends into a small neighborhood of the
saddle homoclinic point. As the periodic orbits contained in P0 bifurcate from the
saddle homoclinic orbit γh, in its region of definition the perturbed manifold Pε lies
near the stable/unstable manifolds Ws,u(Mm

ε ). We now determine the proximity of
Pε and Wu(Mm

ε ) within the section .h
B , which is given in the next lemma.

Lemma 3.15 Fix3 > 0. For all sufficiently small δY and each sufficiently small ε > 0,
the following holds. The periodic manifold Pε intersects the section .h

B in a curve

Pε ∩ .h
B = {(3, Bp(y; k, ε),Y ) : Y ∈ (δY /2, δY )}, (3.102)

where Bp(Y ; k, ε) is a smooth positive function of (Y , k, ε) which satisfies

Bp(Y ; k, ε) = O(Y α/β , ε). (3.103)

Proof This estimate is derived from two simpler estimates: first the nature of the
bifurcation of the periodic orbits from the saddle homoclinic orbit for ε = 0, and
second from the proximity of the perturbed manifold Pε to its ε = 0 counterpart P0.

We first consider the layer problem (2.3) to determine the proximity of P0 and
Wu(Mm

0 ) for ε = 0. The periodic orbits are obtained by bifurcating from the saddle
homoclinic orbit γh for values of y > ȳh. Here, y acts as the bifurcation parameter
which, as outlined in Hypothesis 4, we assume unfolds this bifurcation in a transverse
fashion. It then follows from homoclinic bifurcation theory (Homburg and Sandstede
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2010) that the periodic orbits which bifurcate from γh for y ∈ (ȳh, ȳh + δY ) for
sufficiently small δY lie at an O(|y − ȳh|α/β) distance from Wu(Mm

0 ) in the section
.h

B . In particular, we have that the manifold P0 intersects the section .h
B in a graph

B = Bp(Y ; k, 0), where Bp(Y ; k, 0) is a smooth positive function of (Y , k) which
satisfies

Bp(Y ; k, 0) = O(Y α/β). (3.104)

To obtain the full estimate (3.103), we now use the fact that away from the saddle
homoclinic point, i.e., for Y > δY /2, the periodic manifold Pε persists as a C1-O(ε)

perturbation of its ε = 0 counterpart P0. 45
We now determine the local dynamics in a tubular neighborhood of Pε away from

the saddle homoclinic point. See Fig. 17 for a visualization. We have the following.

Lemma 3.16 For sufficiently small δ > 0 and ε0 > 0, there exists a smooth change
of coordinates S1 × [−δ, δ] × (ȳh + δY /2, ȳp − δY ) → R3 in a neighborhood of Pε

which transforms (2.1) to the system

ẋc =
2π

Tp(y)
+ hc(xc, y, ε)

ẋs = −(µp(y)+ hs(xc, xs, y, ε))xs
ẏ = εgp(xc, y, ε),

(3.105)

where hc, hs, gp are smooth functions of (xc, xs, y, ε) which satisfy

hc(xc, y, ε) = O(ε)

hs(xc, xs, y, ε) = O(xs, ε)∫

S1
gp(xc, y, ε) < 0,

(3.106)

uniformly (xc, xs, y, ε) ∈ S1 × [−δ, δ] × (ȳh + δY /2, ȳp − δY ) × [0, ε0).
Proof We consider the variational equation about the periodic orbit γp(t; y) =
(vp(t; y), wp(t; y)) in the layer problem (2.1), given by

'̇ = D(v,w)F(vp(t; y), wp(t; y), y, k, 0)'. (3.107)

By Hypothesis 4 and standard Floquet theory, there exists a nontrivial solution'(t) =
e−µp(y)t p(t; y) to (3.107), where p(t; y) = (pv, pw)(t; y) ∈ R2 is a Tp(y)-periodic
function of t . At the linear level, for small δ > 0, the transformation S1 × [−δ, δ] ×
(ȳh + δY /2, ȳp − δY ) → R3 given by




xc
xs
y



 /→





vp

(
Tp(y)
2π xc, y

)
+ xs pv

(
Tp(y)
2π xc, y

)

wp

(
Tp(y)
2π xc, y

)
+ xs pw

(
Tp(y)
2π xc, y

)

y



 (3.108)
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maps (·, 0, y) onto γp(·; y), while xs parameterizes the tangent space of the stable
fiber Ws(γp(·; y)) of γp(·; y). In other words, in a plane of fixed y, xc parameterizes
the direction tangent to γp(·; y), while xs parameterizes the normal direction.

In particular, the manifold P0 is given by the set xs = 0; this manifold persists
for small ε > 0 as a locally invariant manifold Pε, which can be given as a graph
xs = xPs (xc, y, ε). Setting x̃s = xs − xPs (xc, y, ε), we arrive at the equations

ẋc =
2π

Tp(y)
+ hc(xc, x̃s, y, ε)

˙̃xs = −(µp(y)+ hs(xc, x̃s, y, ε))xs
ẏ = εgp(xc, x̃s, y, ε),

(3.109)

where hc, hs, gp are Cr functions which satisfy

hc(xc, x̃s, y, ε) = O(x̃s, ε)

hs(xc, x̃s, y, ε) = O(x̃s, ε)∫

S1
gp(xc, 0, y, 0)dxc < 0,

(3.110)

where the estimate on gp is due to Hypothesis 6. To obtain the form of Eq. (3.105), we
apply a final coordinate transformation to straighten the strong stable fibers (see, e.g.,
(Fenichel 1979, §X)), and abusing notation, we drop the tildes for x̃s and continue to
denote the (slightly modified) functions on the right-hand side by hc, hs, gp. 45

The flow in a neighborhood of Pε is shown in Fig. 17. The manifold Pε is given by
the set {xs = 0}, and we define the section

.p := {xs = δ}. (3.111)

Solutions in this neighborhood are quickly attracted to Pε and follow the flow of
basepoint solutions on Pε. These solutions wind around Pε in forward time, slowly
drifting downward, in the shape of a helix. Since the y-drift is of O(ε), and away
from y ≈ ȳh the periods {Tp(y)} are bounded from above, given an orbit which starts
at y(0) = y0 for some y0 > ȳh + δY /2, we can compute the change in y after one
rotation around Pε from xc = 0 to xc = 2π to leading order as

∫ 2π

0

dy
dxc

dxc =
εTp(y0)
2π

∫ 2π

0
gp(xc, y0, 0)dxc +O(ε2), (3.112)

where the quantity

∫ 2π

0
gp(xc, y0, 0)dxc < 0 (3.113)

is independent of ε and is bounded away from zero uniformly in y0 > ȳh + δY /2 due
to Hypothesis 6. That is, after each successive “lap” around Pε, the y-coordinate of a
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PεWu(Mm
ε )

Σp

γp

Ws(γp)
y

xc

xs

y

Wu(Mm
ε )

Ws(γp)
xc

O(ε)

Σp

0 2π

Fig. 17 The left panel depicts the flow near the periodic manifoldPε for sufficiently small ε > 0. Solutions
on Pε wind around in forward time, with the y-coordinate decreasing by anO(ε) amount after each loop;
a sample basepoint solution γp on Pε is depicted in blue. The strong stable fibers of such a trajectory form
a two-dimensional locally invariant manifold Ws(γp) on which solutions are contracted in forward time
toward γp. The right panel depicts the two-dimensional section .p which is placed transverse to the flow
at a small fixed distance from the manifold Pε . Note that .p in fact forms a cylinder which extends all the
way around Pε , though only a portion is shown in the left panel for clarity. The manifold Ws(γp) as well
as the unstable manifold Wu(Mm

ε ) of the slow manifold Mm
ε intersect .p in smooth curves

given solution decreases by an O(ε) amount. Equivalently, under the backward flow
of (3.105), solutions on the manifold Pε wind around Pε, slowly drifting upward.

We now recall the existence of the heteroclinic orbits φp(y) for y ∈ (ȳh, ȳp) for
ε = 0 which form connections between Mm

0 and P0. These orbits form part of
Wu(Mm

0 ) in the region y ∈ (ȳh, ȳp). Therefore, Wu(Mm
0 ) enters a neighborhood of

Pε; in particular, Wu(Mm
0 ) transversely intersects the section .p in a smooth curve

which can be represented as a graph xc = xc(y) for y ∈ (ȳh + δY /2, ȳp − δY ). For
sufficiently small ε > 0, the perturbed manifoldWu(Mm

ε ) therefore also transversely
intersects .p in a curve graph xc = xc(y, ε) for y ∈ (ȳh + δY /2, ȳp − δY ).

We now consider the behavior under the backward flow of (3.105) of a basepoint
solution γp onPε. We refer to Fig. 17 for the relevant geometry. This solution admits a
two-dimensional stablemanifoldWs(γp), which forms a surface thatwinds aroundPε .
Along each “lap” around Pε,Ws(γp) is aligned C1-O(ε)-close to a planes y =const.
Hence, Ws(γp) repeatedly intersects Wu(Mm

ε ) in a transverse fashion on each lap
around Pε.

3.9.3 Conclusion of the Proof of Proposition 3.8

Combining the results of Sects. 3.9.1 and 3.9.2, we have the following.

Proof of Proposition 3.8 Using Lemma 3.14 and applying Lemma 3.13, the manifold
I returns repeatedly to the section .h

B , each time transversely intersecting Wu(Mm
ε )

and satisfying estimates (3.46).
Eventually I will transversely intersect Wu(Mm

ε ) within .h
B at some value of

Y > δY , whereby Lemma 3.13 is no longer applicable. However, this intersection
point now occurs an O(δY ) distance from the saddle homoclinic bifurcation point,
in a region where the periodic manifold Pε is known to persist. Using Lemma 3.15
in combination with Lemma 3.13, we deduce that I transversely intersects Pε in the
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section .h
B . Further, in backward time I quickly aligns along the strong stable fibers

ofPε, tracking a solution which winds repeatedly aroundPε. The results of Sect. 3.9.2
imply that I continues to repeatedly transversely intersect Wu(Mm

ε ) after each time
around Pε, until nearing y = ȳp. The total number of intersections is ofO(1/ε) as the
y coordinate changes by an O(ε) amount on each lap around Pε. 45

3.10 Upper and Lower N-Spike Orbits

Using the results of the previous section, it is possible to construct N -spike bursting
orbits for any N < N̄ for some N̄ (ε) = O(1/ε). With the help of Proposition 3.8, the
construction is nearly identical to the construction of lower 0-spike orbits and upper
1-spike orbits in Sects. 3.5 and 3.6.

The N -spike orbits are still characterized by a long canard trajectory, which consists
of first following Mb

ε , then Mm
ε . The orbit then completes N spikes, or excursions,

around the upper branch Mu
ε before returning to Mm

ε , then finally returning to Mb
ε

via one of the heteroclinic connections, either φu(y) in the case of an upper N -spike
orbit, or φb(y) for a lower N -spike orbit.

Again, these orbits are most naturally parameterized by which heteroclinic con-
nection φu or φb is followed, in addition to the minimum y-value achieved along the
orbit, i.e., the y-value of φu(y) or φb(y). Hence, for each s ∈ [ȳ" + 3, ȳh − 3] we
search for an N -spike periodic orbit which achieves a minimum y-value of y = s, and
passes near φ j (s), for j = u, b.

Following the general strategy in Sect. 3.4, in order to construct a periodic orbit,
it is necessary to find a one-dimensional manifold of initial conditions I which lies
in Ws(Mb

ε), and which in backward time traces out a two-dimensional manifold Ī
which transversely intersects Wu(Mm

ε ). Whenever these conditions hold, then using
the exchange lemma, it is possible to set up and solve matching conditions near the
foldFr for a periodic orbit as in Sect. 3.5. Hence, to construct an N -spike orbit, we aim
to find a manifold which satisfies these conditions which also completes N excursions
around the upper branch, whichwewill accomplish through the use of Proposition 3.8.

For lower N -spike orbits, we therefore follow the strategy of Sect. 3.5 by choosing
an appropriate one-dimensional curve of candidate initial conditions. As before, we
denote by wb the w-coordinate at which the heteroclinic orbit φb(s) intersects the set
{v = v̄r }. For sufficiently small δ > 0, we then define Ib(s) to be an interval of width
δ which lies in the plane {y = s} and is transverse to the fast layer dynamics, and
which intersects φb(s) at w = wb.

In particular, Ib(s) transversely intersects Wu(Mm
ε ), and therefore in backward

time Ib(s) traces out a two-dimensional manifold Ib
(s) which, by the exchange

lemma, quickly aligns C1-O(e−η/ε)-close toWs(Mm
ε ).

In particular, now transitioning to the local coordinates of Sect. 3.8, we have Ib
(s)

reaches the section .h
A aligned C1-O(e−η/ε)-close to Ws(Mm

ε ) and therefore trans-
versely intersectsWu(Mm

ε ) within .h
A at a value of Y = O(e−η/ε). Using the global

map 2gl, this transverse intersection persists as Ib
(s) completes an excursion fol-
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lowing the singular homoclinic orbit γh, and therefore Ib
(s) transversely intersects

Wu(Mm
ε ) within .h

B at a value of Y = O(ε).

We now use the results of Proposition 3.8, which guarantee that Ib
(s) completes

N̄ (ε) = O(1/ε) excursions around the upper branch in backward time, transversely
intersecting Wu(Mm

ε ) after each such excursion. Therefore, for each fixed N , by
construction the set of initial conditions Ib(s) lies in the stable manifold Ws(Mb

ε),

and by the above argument Ib(s) traces out a two-dimensional manifold Ib
(s) which

completes N excursions around the upper branch in backward time before transversely
intersecting Wu(Mm

ε ).
Hence, Ib(s) completes N excursions around Mu

ε and satisfies the conditions
outlined in Sect. 3.4. We may therefore proceed identically as in Sect. 3.5 to set up
matching conditions in order to construct the periodic orbit, which occurs for

k = ksa,lowerN (s, ε) = kmc(
√

ε)+O(e−η/ε). (3.114)

For upper N -spike orbits, we follow the strategy of Sect. 3.6, again choosing an
appropriate one-dimensional curve of candidate initial conditions. As before, we
denote by wu the w-coordinate at which the heteroclinic orbit φu(s) intersects the
set {v = v̄"}. For sufficiently small δ > 0, we define Iu(s) to be an interval of width δ

which lies in the plane {y = s} and is transverse to the fast layer dynamics, and which
intersects φu(s) at w = wu . The remainder of the analysis is identical to the above
construction of lower N -spike orbits, and we obtain a solution for

k = ksa,upperN (s, ε) = kmc(
√

ε)+O(e−η/ε). (3.115)

Finally, for N -spike orbits which pass near the upper left fold F", the analysis is
identical to that in Sect. 3.7, in combination with the application of Proposition 3.8 as
above. Additionally, arguing similarly as with the overlap of lower 0-spike orbits and
upper 1-spike orbits, this guarantees the overlap of lower N spike orbits and upper
(N + 1)-spike orbits as one continuous family.

3.11 OrbitsWhich Pass Near the Saddle Homoclinic Point

In Sect. 3.10, we constructed upper and lower N spike orbits, and we argued that
the branch of lower N -spike orbits and the branch of upper (N + 1)-spike orbits are
connected via orbits which pass near the upper left fold F". However, in order to
show that all of these bursting solutions (i.e., N -spike solutions for any N ) lie on the
same branch, it remains to show that the branches of lower N -spike orbits and upper
N -spike orbits are connected. These two families are constructed in different ways,
based on either following φu(y) or φb(y) for values of y ∈ [ȳ" + 3, ȳh − 3]; we
must show that these two separate constructions can be extended in such a way that
they have an overlapping description for values of y ≈ ȳh, that is, near the saddle
homoclinic point.
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3.11.1 Upper and Lower Families of N-Spike Orbits Near the Saddle Homoclinic Point

We use the coordinate system from Sect. 3.8, and Taking δ > 0 sufficiently small and
Y ∗ ∈ [−3,−δY /2], we consider the set

I∗
+(Y

∗) = {(A,3, Y ∗) : |A| ≤ δ} (3.116)

within the section {B = 3}. It is clear that I∗
+(Y

∗) transversely intersects Wu(Mm
ε )

within this section nearby one of the singular orbits φu(y) for some value of y <

ȳh − δY /2. In particular, if δ is sufficiently small, then every solution which crosses
I∗
+(Y

∗) also lies in the stable manifold Ws(Mb
ε). Following a similar construction

in 3.10, we see that for each N and each Y ∗ ∈ [−3,−δY /2], the manifold I∗
+(Y

∗)
can be used as the basis for constructing an upper N -spike orbit, and in particular,
this construction forms an overlapping family with the construction of upper N -spike
orbits from 3.10.

On the other hand, if we likewise consider the section {B = −3}, we can perform
an analogous procedure. Taking δ > 0 sufficiently small and Y ∗ ∈ [−3,−δY /2], we
consider the set

I∗
−(Y

∗) = {(A,−3,Y ∗) : |A| ≤ δ} (3.117)

within the section {B = −3}. Again it is clear that I∗
−(Y

∗) transversely intersects
Wu(Mm

ε ) within this section. However, this now occurs nearby one of the singular
orbits φb(y) for some value of y < ȳh − δY /2. We again see that every solution on
I∗

−(Y
∗) also lies in the stablemanifoldWs(Mb

ε), and for each N , themanifold I∗
−(Y

∗)
can be used as the basis for constructing a lower N -spike orbit, and this construction
similarly forms an overlapping family with the construction of lower N -spike orbits
from 3.10.

3.11.2 Extending the Upper and Lower Families of Orbits

We now work to extend the two families of N -spike solutions defined through the
above constructions involving either I∗

− (the lower family) or I∗
+ (the upper family)

in such a way that they form a single overlapping family of N -spike orbits.
We begin with the upper family. We recall from §3.8 the definition of the sections

.h
A = {A = 3, |B| ≤ 3, |Y | ≤ δY }

.h
B = {B = 3, |A| ≤ 3, |Y | ≤ δY },

(3.118)

and we consider the intersection of Wu(Mm
ε ) with the section .h

A. We recall
from Sect. 3.8 that this intersection is given by a curve which can be represented
as a graph Y = Yh(B, k, ε) for |B| ≤ δ which satisfies (3.36). We consider the set of
curves

J †
+ := {I†

+(B
†) : B† ∈ (−δ,−εκ )} (3.119)
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Y

Σh
A

Ws(Mm
ε )

B

Wu(Mm
ε )

Σh
B,−

Wu(Mm
ε )

A

Y

Fig. 18 Depicted is the setup within the sections .h
A (left) and .h

B,− (right) as in Lemma 3.17. Note
that in the left (resp. right) panel, the B-coordinate (resp. A-coordinate) increases to the left in order to
preserve the orientation of Fig. 15. The two-dimensional set J †

+, shaded orange in the left panel, consists

of the union of the one-dimensional curves I†+(B†) for B† ∈ (−δ,−εκ ). Likewise, the two-dimensional

set J †
−, shaded green in the right panel, consists of the union of the one-dimensional curves I†−(Y †) for

Y † ∈ (−δY ,−Cε| log ε|). The image of the setJ †
− under the map2loc,−, as in Lemma 3.17, is also shown

in the left panel

parameterized by B† ∈ (−δ,−εκ ), for some κ = κ(3) > 0, where each curve
I†
+(B

†) within .h
A is defined by

I†
+(B

†) = {(3, B†, Y ) : |Y − Yh(B†, k, ε)| ≤ δY /2}. (3.120)

We refer toFig. 18 for an illustration. For eachfixed B† ∈ (−δ,−εκ ), the curveI†
+(B

†)

clearly intersectsWu(Mm
ε ) transversely within the section .h

A. Using the global map
2gl for the backward flow of (3.32), I†

+(B
†) is mapped to a curve in .h

B which also
transversely intersects Wu(Mm

ε ). Hence, using Proposition 3.8, under the backward

flow of (2.1), I†
+(B

†) traces out a two-dimensional manifold I†
+(B

†) in backward
time which completes N̄ = O(1/ε) excursions around the upper branch, transversely
intersectingWu(Mm

ε ) after each such excursion. The construction therefore proceeds
as in the case of upper N -spike orbits as in Sect. 3.10 provided it can be shown that
I†
+(B

†) is also contained in the stable manifold Ws(Mb
ε) of the lower branch Mb

ε ,
which will be shown below. We first note that orbits constructed in this manner form
an overlapping family with those constructed via the sets I∗

+.
We now define the section

.h
B,− = {B = −3, |A| ≤ 3, |Y | ≤ δY }. (3.121)

To show I†
+(B

†) ⊆ Ws(Mb
ε), we consider the forward evolution of I†

+(B
†) from

.h
A to .h

B,− under the flow of (3.32). This induces a map .h
A → .h

B,− under which
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points on I†
+(B

†) ∈ .h
A are mapped as




3

B†

Y



 /→




(B†)ρ31−ρ(1+O(3))

3

Y +O(ε log B†)



 . (3.122)

Every point on I†
+(B

†) is therefore mapped O((B†)ρ) close to Wu(Mm
ε ), and the Y

coordinate of each point changes by no more than O(ε log ε), provided |B†| is not
too small. Since Wu(Mm

ε ) is contained in Ws(Mb
ε), we must also have I†

+(B
†) ⊆

Ws(Mb
ε), for sufficiently small choice of the constants δY , δ > 0, and all sufficiently

small ε > 0.
Since I†

+(B
†) ⊆ Ws(Mb

ε), we can now proceed as in the case of upper N -spike
orbits from Sect. 3.10 and construct N -spike orbits passing through I†

+(B
†) for each

B† ∈ (−δ,−εκ ), for a constant κ = κ(3) > 0.
We now work to extend the lower family, i.e., those orbits constructed via the sets

I∗
−(Y

∗). For each Y † ∈ (−δY ,−Cε| log ε|), we consider the curve I†
−(Y

†) within
.h

B,− defined by

I†
−(Y

†) = {(A,−3,Y †) : |A| ≤ δ}. (3.123)

We first note thatWu(Mm
ε ) ⊂ Ws(Mb

ε), and in the section .h
B,−,W

u(Mm
ε ) is given

by the set {A = 0}; hence, for δ sufficiently small, we have that I†
−(Y

†) ⊂ Ws(Mb
ε).

We now aim to show that the backward evolution of I†
−(Y

†) under the flow of (3.32)
transversely intersectsWu(Mm

ε ) within the section .h
A, in which case N -spike orbits

can be constructed similarly to those constructed via the sets I†
+ above. We also show

that these two constructions have an overlapping region of definition, forming a single
continuous family. (We note that it is clear that orbits constructed via the sets I†

−(Y
†)

have an overlapping region of definition with the lower family constructed via the sets
I∗

−(Y
∗).)

We have the following, regarding the local map 2loc,− : .h
B,− → .h

A induced by

the backward flow of (3.32), when applied to I†
−(Y

†) (Fig. 18).

Lemma 3.17 For each sufficiently small 3 > 0, there exist C, δY , κ > 0 such that the
following holds. Consider the set of curves J †

− ⊂ .h
B,− defined by

J †
− := {I†

−(Y
†),Y † ∈ (−δY ,−Cε| log ε|)}. (3.124)

This set is mapped by 2loc,− onto a set {Ĩ†
−(B

†), B† ∈ (−εκ ,O(e−η/ε))} ⊂ .h
A,

where Ĩ†
−(B

†) is a curve which transversely intersectsWu(Mm
ε ) at B = B†.
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Proof For a point (A,−3, Y †) ∈ I†
−(Y

†), we have

2loc,−




A

−3

Y †



 /→




3

−3R(1+O(3))

Y † +O(ε log R)



 , (3.125)

where A = 3Rρ .
We proceed similarly as in the proof of Lemma 3.13, solving for when this curve

intersects Wu(Mm
ε ) within the section .h

A. This results in an equation of the form

−K3R(1+O(3, R)) = Y † − εγ log R
β

(1+O(3)). (3.126)

We use a similar strategy as in the proof of Lemma 3.14 and set R = R0R1 for
some R0 > 1 and obtain the equation

− K3R0R1(1+O(3, R0R1)) = Y † − εγ log R1

β
(1+O(3)) − εγ log R0

β
(1+O(3)).

(3.127)

We first solve for R0 in terms of R1, Y † by solving

−K3R0R1(1+O(3, R0R1)) = −εγ log R0

β
(1+O(3)). (3.128)

After some rearranging, we obtain the equation

R0 = exp
(

βK3R1

εγ
R0(1+O(3, R0R1))

)
. (3.129)

It suffices to solve in the region 0 < R1 ≤ O(ε), where this relation defines R0 as a
strictly positive, monotone increasing function of R1; in this region, R0 is confined to
the interval (1, C̃(3)) for some C̃(3) > 1. We substitute back into (3.127), solve for
R1, and obtain the full solution R = R† := R0R1 of (3.126), given by

R† = R0 exp
(

βY †

εγ
(1+O(3))

)
. (3.130)

Over the interval of Y † ∈ (−δY ,−Cε| log ε|) for sufficiently large C = C(3),
the locations R† of intersection span an interval R† ∈ (εκ ,O(e−η/ε)) for some
κ = κ(3) > 1. Using (3.125) to determine the corresponding B-coordinate of this
intersection, and possibly taking κ slightly larger, we obtain the result. 45

Since the choice of κ = κ(3) > 0 in (3.119) was arbitrary, it follows from
Lemma 3.17 that N -spike solutions constructed via the sets I†

−(Y
†) have an overlap-

ping region of definition with those constructed via I†
+(B

†) and thus can be taken to
form a single continuous family.
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3.12 Proof of Theorem 2.2

In this section, we briefly conclude the proof of the main theorem.

Proof of Theorem 2.2 The transition from the singular Hopf bifurcation and local
canard explosion to 1-spike bursting solutions was constructed in Sects. 3.3–3.7.

In Sects. 3.10 and 3.11, upper and lower N -spike bursting solutions were con-
structed for each N < N̄ , where N̄ = O(1/ε). It was also shown that the upper/lower
families of N -spike orbits form a continuous family and further that the branch of
N -spike orbits is connected to the branch of (N + 1)-spike orbits via orbits which
pass near the upper fold F". Hence, we inductively obtain a single continuous family
of orbits beginning with the local canard explosion which contains all of the bursting
solutions up to those with N̄ spikes.

In order to parameterize the sequence of solutions, by Theorem 3.2, the Hopf
bifurcation and local canard explosion occur for k = ksc(s,

√
ε) for s ∈ (0, ρ], and

hence, for θ ∈ (0, ρ] we set ksa(θ,√ε) := ksc(θ,
√

ε), and we define B(θ,
√

ε) to be
the corresponding orbit 1sc(s,

√
ε). Next, we recall from Sects. 3.5 that the 0-spike

solutions were parameterized by the minimum y-value achieved given by y = s for
s ∈ [ȳ" + 3, ȳr − 3] and

|ksa,lower0 (s,
√

ε) − kmc(
√

ε)| = O(e−η/ε). (3.131)

We therefore set

ksa(θ,
√

ε) := ksa,lower0 (ȳ" + θ(ȳr − ȳ"),
√

ε) (3.132)

for θ ∈ [3/(ȳr− ȳ"), 1−3/(ȳr− ȳ")] andwe defineB(θ,
√

ε) to be the corresponding
bursting orbit. Provided 3 is sufficiently small, there will be overlap with the small-
amplitude canard orbits from the Hopf bifurcation, in the sense that some orbits could
have been constructed as both 0-spike bursting and small-amplitude canard orbits.
Since each of these families was constructed using the implicit function theorem, they
are locally unique and hence form one continuous family. As these two families were
parameterized slightly differently in s, solutions on the overlapping region can be
reparameterized if necessary.

For N ≥ 1, there are two families of N -spike orbits, namely the upper and lower
families constructed in Sect.3.10, which occur for k = ksa,upperN (s,

√
ε) and k =

ksa,lowerN (s,
√

ε), respectively, where s ∈ [ȳ" + 3, ȳh − 3] denotes the y-layer of the
fast jump φu(s) or φb(s) which is followed.

We therefore set

ksa(θ,
√

ε)

:=






ksa,upperN (ȳ" + 2(θ − N )(ȳh − ȳ"),
√

ε), θ ∈
[
N + 3

2(ȳh−ȳ")
, N + 1

2 − 3
2(ȳh−ȳ")

]

ksa,lowerN (ȳ" + 2(N + 1 − θ)(ȳh − ȳ"),
√

ε), θ ∈
[
N + 1

2 + 3
2(ȳh−ȳ")

, N + 1 − 3
2(ȳh−ȳ")

]

(3.133)
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and we define B(θ,
√

ε) to be the corresponding bursting orbit. In Sect. 3.10, it is
shown that there exists a family of solutions which pass near the fold F" which form
a bridge between the lower N -spike solutions and upper (N + 1)-spike solutions.
Further, in Sect. 3.11 it is shown that there exists a family of solutions which pass near
the saddle homoclinic bifurcation which form a bridge between the upper and lower
N -spike solutions, which are not naturally parameterized by the y-jump which was
followed, and hence, we may reparameterize ksa(θ,

√
ε) on the intervals

θ ∈
[
N + 1

2
− 3

2(ȳh − ȳ")
, N + 1

2
+ 3

2(ȳh − ȳ")

]
∪

[
N − 3

2(ȳh − ȳ")
, N + 3

2(ȳh − ȳ")

]

(3.134)

for each N to account for this. We therefore obtain N spike bursting solutions for
N < N̄ (ε), corresponding to θ ∈ (0,-(ε)), where -(ε) := N̄ (ε) = O(1/ε).

Finally, the estimate

|ksa(θ,√ε) − kmc(
√

ε)| = O(e−η/ε) (3.135)

for θ > ρ follows from estimates (3.21) and analogous estimates for the solutions
with additional spikes. 45

4 Discussion

In this paper, we considered a class of three-dimensional singularly perturbed ODEs
under general assumptions which guarantee the existence of a one-parameter family
of periodic bursting orbits, encompassing the spike-adding transition from a local
canard explosion to large-amplitude bursting oscillations with an O(1/ε)-number
of spikes. Among the geometric features necessary for this construction is a cubic
critical manifold, where the middle branch is of saddle type and one of the folds
is a canard point (Krupa and Szmolyan 2001a), which allows for a local canard
explosion as well as long canard trajectories along the middle branch. The other
crucial feature is a saddle homoclinic bifurcation on the middle branch in the fast
subsystem, from which bifurcates a family of periodic orbits in the layer prob-
lem.

The construction of the spike-adding sequence was obtained by considering the
global aspects of the flow via geometric singular perturbation theory as well as call-
ing on prior results for local analyses of the fold points (Carter and Sandstede 2015;
Krupa and Szmolyan 2001a). New to this work is a detailed analysis of slow passage
through the saddle homoclinic bifurcation, which was essential for guaranteeing the
transverse construction of the bursting solutions as well as ensuring that the branches
of N -spike and (N + 1)-spike bursting solutions are in fact connected, so that the
entire sequence forms a single uninterrupted branch. The analysis of this bifurcation
is based on well known homoclinic bifurcation theory (Homburg and Sandstede 2010)
combined with Shilnikov-type estimates (Deng 1990; Krupa et al. 1997; Schecter
2008a). Of particular difficulty is tracking solutions in this region for O(1/ε) time,
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for which new analysis involving geometric singular perturbation methods is neces-
sary.

We remark on the relation of the bursting solutions constructed here to the classical
square-wave-type bursting solutions studied in detail in prior works (Terman 1991,
1992), in which solutions were constructed using similar geometric ideas. However,
ultimately the geometry of the classical bursting solutions differs in that they are
constructed outside the canard regime and involve trajectories which “fall off” the
fold point Fr onto the periodic manifold Pε (Fig. 6), rather than continue up the
middle branch Mm

ε along a canard trajectory before doing so. In particular, for such
solutions to exist, one must have that the periodic manifold Pε extends to some value
of ȳp > ȳr . Associated with these solutions are rich dynamics and chaotic behavior
(Terman 1992), andwithout further detailed analysis, it is not immediately obvious that
these solutions lie on the same branch as those constructed in Theorem 2.2, or whether
a continuous spike-adding process persists into this region, though numerical evidence
suggests this is the case (Fig. 2). Under additional technical assumptions, we expect
that the solutions constructed in Theorem 2.2 should indeed lie on the same branch
as the classical solutions, with the spike-adding process continuing upon varying k.
While the focus of the current work is on the onset of the spike-adding process as
a canard-induced phenomenon, we expect that similar methods will be applicable
in this regime. This is beyond the scope of this paper and is the subject of ongoing
work.

While the assumptions for system (2.1) are fairly general, in a broader sense the
geometric setup is still rather specific. Systems such as the Morris–Lecar–Terman
model (1.1) fit directly into such a framework, and other three-dimensional square-
wave bursting models, such as the Hindmarsh–Rose model, which admits Hopf
bifurcations and an additional saddle homoclinic bifurcation in the layer problem
(Desroches et al. 2013), could be analyzed via the same analysis, with some addi-
tional steps, to obtain a result analogous to Theorem 2.2. However, systems with
more complicated geometry would require the analysis of canard phenomena not
treated in this work; for instance, the role of folded saddle canards on a two-
dimensional slow manifold has been emphasized in some four-dimensional parabolic
bursting oscillation models (Desroches et al. 2016b). Additionally, slow passage
through a spike-adding bifurcation has been used to explain the phenomenon of
mixed-mode bursting oscillations (Desroches et al. 2013). We note that canards
and saddle homoclinic bifurcations are still identified in these contexts as being
important for the spike-adding phenomenon, and we emphasize that the techniques
used in this current work are general; the fundamental idea involves combining
local and global analyses, geometric singular perturbation methods, blow-up, and
homoclinic bifurcation theory in such a way that global transitions between dif-
ferent solutions can be captured. These techniques likely have wide applicability
into these more complicated bifurcation scenarios, and this will be the subject of
future work. Furthermore, we remark that these methods are not limited to the
study of bursting solutions or periodic orbits in ODEs; for example, similar meth-
ods were used with success in constructing transitions between single and double
traveling pulse solutions in the FitzHugh–Nagumo system (Carter and Sandstede
2018).
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A Estimates Near the Saddle Homoclinic Point

In this section, we present a proof of Lemma 3.11. We first quote the following result
regarding the nature of solutions to the boundary value problem with entry/exit con-
ditions in the sections .h

A,.
h
B .

Proposition A.1 (Schecter 2008a, Theorem2.1)Fix3 > 0 small. There exists K0, η >

0 such that the following holds. For any sufficiently small ε > 0, any T > 0 and any
|Y ∗| ≤ δY , there exists a solution (A, B, Y )(ξ ; Y ∗, T ) to (3.32) with (A, B, Y )(0) ∈
.h

A and (A, B, Y )(T ) ∈ .h
B with Y (T ; Y ∗, T ) = Y ∗. Furthermore,

|A(ξ ; Y ∗, T )| ≤ K0e−ηξ

|B(ξ ; Y ∗, T )| ≤ K0eη(ξ−T )

|Y (ξ ; Y ∗, T ) − '(ξ, Y ∗, T )| ≤ K0εe−ηT ,

(A.1)

where '(ξ, Y ∗, T ) denotes the solution of Ẏ = εG1(Y , k, ε) satisfying Y (T ) = Y ∗.
The partial derivatives of (A, B, Y )(ξ ; Y ∗, T ) with respect to ξ,Y ∗, T up to order r
satisfy the same estimates.

Remark A.2 We remark on the appearance of the factor of ε appearing in esti-
mates (A.1) for the solution Y (ξ ; Y ∗, T ) which is not present in Schecter (2008a,
Theorem 2.1). This is due to the fact that the Y -dynamics are of O(ε), in contrast
to the more general case in Schecter (2008a), where there is no small parameter and
hence the center dynamics are O(1).

Proof of Lemma 3.11 We use the formulation of Proposition A.1 to prove the estimates
on the local map2loc. We fix3 > 0 and assume 0 < δY , δ ! 3 are taken sufficiently
small.

For a solution (A, B, Y )(ξ ; Y ∗, T ) of Proposition A.1, we set Ã(Y ∗, T ) :=
A(T ; Y ∗, T ) and B̃(Y ∗, T ) := B(0; Y ∗, T ) = O(e−ηT ). The map 2loc is then deter-
mined by

Bloc(R, Y ∗) = B̃(Y ∗, T )
Yloc(R, Y ∗) = Y (0; Y ∗, T ).

(A.2)

where R is defined via the relation 3Rρ = Ã(Y ∗, T ), and the exponent ρ is as yet to
be determined.

Let '(ξ, Y ∗, T ) denote the solution of Ẏ = εG1(Y , k, ε) satisfying Y (T ) = Y ∗;
in particular, '(ξ, Y ∗, T ) satisfies the integral equation

'(ξ, Y ∗, T ) = Y ∗ +
∫ ξ

T
εG1('(ξ, Y ∗, T ), k, ε)dξ, (A.3)
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and we have the estimates

'(0, Y ∗, T ) = Y ∗ + εγ T (1+O(3))

∂Y ∗'(ξ, Y ∗, T ) = 1+O(3)

∂T'(ξ, Y ∗, T ) = O(ε).

(A.4)

We now define the functions

α̃0(Y ∗, T ) :=
∫ T

0
F1(0, 0,'(ξ,Y ∗, T ), k, ε)dξ

=
∫ T

0
α +O(', ε)dξ

β̃0(Y ∗, T ) :=
∫ T

0
F2(0, 0,'(ξ,Y ∗, T ), k, ε)dξ

=
∫ T

0
β +O(', ε)dξ,

(A.5)

where

∂Y ∗ α̃0(Y ∗, T ) = O(T )

∂T α̃0(Y ∗, T ) = α +O(3)

∂Y ∗ β̃0(Y ∗, T ) = O(T )

∂T β̃0(Y ∗, T ) = β +O(3).

(A.6)

We further define the functions

α̃(Y ∗, T ) :=
∫ T

0
F1

(
A(ξ ; Y ∗, T ), B(ξ ; Y ∗, T ),Y (ξ ; Y ∗, T ), k, ε

)
dξ

β̃(Y ∗, T ) :=
∫ T

0
F2

(
A(ξ ; Y ∗, T ), B(ξ ; Y ∗, T ),Y (ξ ; Y ∗, T ), k, ε

)
dξ .

(A.7)

We use the estimates in Proposition A.1 combined with directly integrating Eq. (3.32)
in reverse time and obtain

Ã = 3 exp
(
−α̃(Y ∗, T )

)

B̃ = 3 exp
(
−β̃(Y ∗, T )

)
.

(A.8)

Using these expressions along with estimates (A.1), we have that

|α̃(Y ∗, T ) − α̃0(Y ∗, T )| = O(3)

|β̃(Y ∗, T ) − β̃0(Y ∗, T )| = O(3)
(A.9)

and the partial derivatives of these expressions with respect to Y ∗, T are also O(3).
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The ultimate goal is to express the quantities B̃ and Y (0; Y ∗, T ) in terms of the
quantities R,Y ∗, where we define

R =
(
Ã
3

)β̃0/α̃0

. (A.10)

To achieve this, we recall (A.8) combined with (A.9)

Ã = 3 exp
(
−α̃0(Y ∗, T )+O(3)

)

= 3 exp
(
−α̃0(Y ∗, T )

)
(1+O(3)),

(A.11)

where the derivatives of the O(3) remainder terms with respect to Y ∗, T are also
O(3). Hence,

R =
(
Ã
3

)β̃0/α̃0

= exp
(
−β̃0(Y ∗, T )

)
(1+O(3))β̃0/α̃0 .

(A.12)

This relation can be used to solve for T = T (R,Y ∗), obtaining

T (R, Y ∗) = − log R
β

(1+O(3)). (A.13)

Note, due to the exponent β̃0/α̃0 appearing in the remainder term of (A.12), the
derivatives of the remainder terms in (A.13) with respect to R, Y ∗ no longer satisfy the
same estimates. However, we are still able to estimate the first order partial derivatives

∂RT (R, Y ∗) = − 1
βR

(1+O(3))

∂Y ∗T (R, Y ∗) = O(log R),
(A.14)

by implicitly differentiating (A.12).
We set Bloc(R, Y ∗) := B̃ and determine

B̃ = 3 exp
(
−β̃0(Y ∗, T )

)
(1+O(3))

= 3R(1+O(3)),
(A.15)

where the derivatives of the O(3) remainder terms with respect to Y ∗, T are also
O(3), and using the expressions (A.14), we obtain

∂R Bloc(R, Y ∗) = 3(1+O(3))

∂Y ∗ Bloc(R, Y ∗) = O(R log R).
(A.16)
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Next, using (A.1), (A.4), and (A.14), and setting Yloc(R,Y ∗) := Y (0), we have that

Yloc(R, Y ∗) = Y ∗ − εγ log R
β

(1+O(3))

∂RYloc(R, Y ∗) = − εγ

βR
(1+O(3))

∂Y ∗Yloc(R, Y ∗) = 1+O(3).

(A.17)

Finally, we define ρ(R, Y ∗) := α̃0/β̃0, and using (A.5) and (A.14), we have

ρ(R, Y ∗) = α/β +O(3)

∂Rρ(R, Y ∗) = O
(

3

R log R

)

∂Y ∗ρ(R, Y ∗) = O(1),

(A.18)

which completes the proof of estimates (3.41). 45
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