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Abstract

This paper examines a spike-adding bifurcation phenomenon whereby small-
amplitude canard cycles transition into large-amplitude bursting oscillations along a
single continuous branch in parameter space. We consider a class of three-dimensional
singularly perturbed ODEs with two fast variables and one slow variable and singu-
lar perturbation parameter ¢ < 1 under general assumptions which guarantee such
a transition occurs. The primary ingredients include a cubic critical manifold and a
saddle homoclinic bifurcation within the associated layer problem. The continuous
transition from canard cycles to N-spike bursting oscillations up to N ~ O(1/¢)
spikes occurs upon varying a single bifurcation parameter on an exponentially thin
interval. We construct this transition rigorously using geometric singular perturbation
theory; critical to understanding this transition are the existence of canard orbits and
slow passage through the saddle homoclinic bifurcation, which are analyzed in detail.

Keywords Bursting oscillations - Spike-adding - Canards - Geometric singular
perturbation theory - Saddle-homoclinic bifurcation

Mathematics Subject Classification 34C25 - 34E17 - 34D15 - 37G15 - 92B25

1 Introduction

The phenomenon of bursting has been widely studied in models of neurons and neu-
roendocrine cells, as well as other excitable media, including physical systems such as
semiconductor lasers (Al-Naimee et al. 2009; Ruschel and Yanchuk 2017), or in chem-
ical reactions (Rinzel and Troy 1982). These solutions are characterized by alternation
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between slow quiescent phases and active bursting phases comprised of a sequence of
action potentials or spikes and can be time periodic or aperiodic. One of the earliest
models was introduced by Chay and Keizer (1983) to describe bursting dynamics in
pancreatic beta cells, which formed the basis in Rinzel (1985), Rinzel (1987) for ana-
lyzing the bursting phenomenon in the context of singularly perturbed, or fast—slow,
ordinary differential equations. This has since been a primary mathematical formu-
lation for understanding bursting in numerical and analytical studies. In this context,
bursting solutions can frequently arise as periodic orbits, in which the active phase is
governed by oscillations on the fast timescale, and the quiescent phase is associated
with drift along a slow manifold.

A feature which is prevalent in many bursting models is that of spike-adding, in
which variation in system parameters can result in additional spikes during the bursting
phase. This has been demonstrated and analyzed numerically in a variety of bursting
models (Desroches et al. 2016a, 2013; Guckenheimer and Kuehn 2009; Linaro et al.
2012; Nowacki et al. 2012; Osinga and Tsaneva-Atanasova 2010; Tsaneva-Atanasova
et al. 2010). In particular, these studies find that bursting solutions with different
numbers of spikes can exist in nearby parameter regimes and furthermore that different
branches of spiking solutions can be connected, so that a bursting orbit with N spikes
can be continuously deformed into one with N 4 1 (or more) spikes upon parameter
continuation. Spike-adding has been shown to occur when varying the location of an
equilibrium (Desroches et al. 2013; Osinga and Tsaneva-Atanasova 2010), or when
varying the singular perturbation parameter itself (Guckenheimer and Kuehn2009; Lee
and Terman 1999; Terman 1991; Tsaneva-Atanasova et al. 2010). In many cases, this
behavior has been intimately linked to the phenomenon of canards (Dumortier and
Roussarie 1996; Eckhaus 1983; Krupa and Szmolyan 2001b): For instance, canard
dynamics have been analyzed in relation to spike-adding in square-wave neuronal
bursting models with one slow variable, such as the Morris—Lecar-Terman model
(Guckenheimer and Kuehn 2009; Morris and Lecar 1981; Rinzel and Ermentrout
Rinzel and Ermentrout; Terman 1991) and the Hindmarsh—Rose model (Hindmarsh
and Rose 1982, 1984; Linaro et al. 2012), in which a canard explosion of periodic
orbits is responsible for the onset of spike-adding (Desroches et al. 2013, §III). In
systems with two slow variables, the role of folded singularities and their associated
canard dynamics have been analyzed in relation to spike-adding in parabolic bursting
models such as the Plant model of bursting in the Aplysia ganglion R15 cell (Desroches
etal. 2016a; Plant and Kim 1975) and in the study of mixed-mode bursting oscillations
(Desroches et al. 2013).

In many contexts, canard solutions provide a mechanism whereby small parameter
changes can produce continuous transitions between globally distinct solutions, for
example in the classical planar canard explosion (Krupa and Szmolyan 2001b), or
in transitions between different traveling pulse solutions in the FitzHugh—Nagumo
system of nerve impulse propagation (Carter and Sandstede 2018). In this spirit, this
paper aims to rigorously analyze the link between canard explosion and the spike-
adding phenomenon in an example class of square-wave bursting models and identify
general techniques which can be used in the analysis of similar global transitions in
singular perturbation problems. We focus on one of the simpler, well-studied geo-
metric descriptions of square-wave bursting with one slow variable, introduced and
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Fig. 1 Shown is the continuous spike-adding transition in (1.1) for ¢ = 0.001 obtained in AUTO; all
solutions exist for values of k &~ — 0.0002 on an interval of width O(e~1/¢). The upper left panel shows
the transition sequence labeled 1-4 from small-amplitude canard orbits (blue label 1) to a 1-spike bursting
solution (green label 4), and the critical manifold M is shown in dashed red. The lower left panel depicts
the v profile for the 1-spike solution. The upper right panel shows the transition sequence labeled 5-8 from
a 1-spike bursting solution to a 2-spike bursting solution (green label 8). The solutions labeled 5-8 all
traverse the spike labeled A. The second spike is grown from right to left until reaching the upper fold F ¢
where it turns back (see solution with orange label 6) and continues from left to right to solution 7 before
finally being deposited at the spike labeled B, culminating in a 2-spike bursting solution (green label 8);
the v profile for the 2-spike solution is shown in the lower right panel (Color figure online)

analyzed by Terman (1991), which includes the Morris—Lecar model below as a pri-
mary motivating example. Our interest lies in the spike-adding process that is induced
by a canard explosion when adjusting a parameter which controls the location of an
equilibrium of the system. Although we are concerned with Terman’s geometric for-
mulation in this work, we note that square-wave bursters with different geometries,
such as the Hindmarsh—Rose model, exhibit a similar transition from canard explosion
to spike-adding bursting oscillations (Desroches et al. 2013).
The Morris—Lecar system (Morris and Lecar 1981)

v=y—050w+05 —2w{@w+0.7) —my() (v—1)
w = 1.15 (we(v) — w) T(v)
y=elk+k —v)
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Fig.2 Bifurcation diagram of 3000
spike-adding sequence of
bursting oscillations, obtained 25001

numerically in (1.1) for

& = 0.001. Here, the period is
plotted versus the bifurcation
parameter k, along with the
locations of the bursting orbits
from Fig. 1 labeled 1-8, as well
as the orbit from Fig. 5 (red 1000k
circle) and the orbit from Fig. 6
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was originally proposed as a model of electrical activity in barnacle muscle fibers.
In that context, v is interpreted as membrane potential, w is fraction of open potas-
sium ion channels, and y is related to the near-membrane calcium concentration.
The quantity k + k, determines the equilibrium potential corresponding to potassium
conductance. We identify (1.1) as being among the simplest examples of onset of
spike-adding of bursting oscillations through canard explosion. Figure 1 depicts the
transition from local canard explosion to large-scale bursting oscillations, obtained
numerically in (1.1) for ¢ = 0.001. The lower panels show the v-profiles of bursting
oscillations with 1 and 2 spikes in bursting phase; all solutions along the transition
from local canard explosion born at a Hopf bifurcation to large-amplitude bursting
oscillations were found along the same branch in parameter space and were obtained
in the numerical continuation software AUTO upon varying the parameter k for fixed
& = 0.001. Figures 2 and 3 depict numerically computed bifurcation diagrams of the
spike-adding process, labeled with the locations of the orbits from Fig. 1. We note that
all of these orbits occur at very nearby (exponentially close) values of the parameter
k.

In Terman (1991), Terman developed general assumptions in a class of three-
dimensional ODEs which ensure that the geometry of the equations is qualitatively
similar to that of (1.1). This formed the basis for the analysis of bursting solutions
of the system (1.1) in Lee and Terman (1999), Terman (1991), Terman (1992) using
geometric methods, and later using Conley index techniques (Kinney 2000, 2008).
See Fig.4 for a visualization of the singular limit geometry. The primary features are
a cubic critical manifold M with three branches: an attracting bottom branch MPb a
saddle-type middle branch M™, and upper branch M (typically repelling). In the fast
layer dynamics for a value of y = yp, the system undergoes a saddle homoclinic bifur-
cation along the middle branch, from which bifurcates a family P of periodic orbits
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Fig.3 (Left) Bifurcation diagram of spike-adding sequence of bursting oscillations, obtained numerically
in (1.1) for e = 0.001. Here, the period is plotted versus the maximum v value obtained over one period. The
period wiggles back and forth as max v increases, as each spike is continually added along the transition.
A zoom of the upper portion of the spike-adding bifurcation curve is plotted in the right inset. Also shown
are the locations of the bursting orbits from Fig. 1 labeled 1-8, as well as the orbit from Fig. 5 (red circle)
and the orbit from Fig. 6 (red diamond) (Color figure online)
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Fig. 4 Shown is the singular limit geometry for the class of square-wave bursting models considered by
Terman (1991). The cubic critical manifold admits three branches: M (repelling), M™ (saddle-type), and
Mb (attracting). There are two folds: F 4 (classical fold) and F" (canard point). In the fast layer dynamics,
there is a saddle homoclinic bifurcation at y = y},, which results in a family of periodic orbits P for y > y,

for y > yp. The cubic critical manifold also admits two fold points: one of classical
fold type (F) and one of canard type (F"); in (1.1), the constant &, denotes the v-
coordinate of the fold ", which can be approximated numerically as k, ~ —0.2449.
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The fold points and the saddle homoclinic bifurcation are the key pieces (and main
technical challenges) to understanding the spike-adding transitions in this setting.

The spike-adding sequence is then generated as follows (Fig. 1 for sample periodic
orbits along the transition in the Morris—Lecar system (1.1) obtained using AUTO). At
the lower right fold, 7" are born small-amplitude canard orbits; see, for example, the
blue orbit in the left panel of Fig. 1. As the parameter k is varied on an exponentially
thin interval, the orbits grow into large-amplitude canards until reaching the upper left
fold F*¢, though when continuing along the repelling upper branch M*, eventually they
begin to interact with the family P of periodic orbits. The number of spikes in a given
bursting solution is determined by the number of excursions around the upper branch
M, and the family of periodic orbits P allows for many such excursions. In particular,
passing near the saddle homoclinic bifurcation allows for a fast spike which follows
the singular homoclinic orbit to be “deposited,” while the growth continues back along
the middle branch M" toward the fold, and back to the saddle homoclinic bifurcation
to deposit another spike, and so on. Figure 5 depicts a bursting solution obtained
numerically in (1.1) after many such spike-adding events by continuing numerically
in parameter space from the local canard explosion at the fold F”. The fact that the
slow portion of the bursting orbits passes near the lower fold from an attracting slow
manifold to a saddle slow manifold (i.e., along a canard segment) is what allows each
successive spike-adding event to take place within an exponentially thin interval of
the parameter k; this also explains the proximity of these solutions in the bifurcation
diagram in Fig. 2.

Remark 1.1 If the manifold P extends beyond the fold point F"—as is the case
in (1.1)—then outside the canard regime, that is, once the equilibrium has moved
up onto the middle branch, Terman showed in Terman (1991) that the system admits
relaxation-type bursting oscillations which follow the bottom branch M? and then
jump off the fold point 7" up to the manifold P, completing excursions around P
until finally jumping back down to M?; see Fig. 6 for an example bursting orbit in this
regime computed numerically for (1.1). In fact, numerical studies have demonstrated
that spike-adding persists in this regime (Guckenheimer and Kuehn 2009); see also the
bifurcation diagrams in Figs. 2 and 3, in which all of the bursting orbits, including the
relaxation-type bursting oscillations as in Fig. 6, are contained on the same continuous
spike-adding branch, though no longer at exponentially close values of the parameter
k, as these orbits lie outside the canard explosion regime. Such orbits, however, do
still contain “canard-like” segments along the saddle-type middle branch M of the
slow manifold.

The aim of this work is to analyze the canard explosion regime in detail for
0 < ¢ < 1 and rigorously construct the spike-adding sequence from small-amplitude
canard cycles to bursting solutions with an O(1/¢) number of spikes. We will show
that this transition occurs along a single continuous branch under exponentially small
variations in the single bifurcation parameter k for fixed ¢. The primary technical
challenges relate to analysis near the fold points F*" as well as tracking solutions
near the saddle homoclinic bifurcation. We present a detailed analysis of slow passage
near the saddle homoclinic bifurcation in order to understand how solutions behave
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Fig.5 Spikes are continuously added to the bursting oscillations along the spike-adding transition, achieving
an O(1/e) number of spikes. The left panel depicts a bursting solution of (1.1) along the transition from
7 to 8 spikes, and the right panel depicts the corresponding v-profile. The solution was obtained in AUTO
for ¢ = 0.001 and k ~ 0.0002

Fig.6 Shown is a bursting
solution obtained in (1.1) for 01
& =0.001 and k ~ 0.0539. Note
that this parameter regime is or
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in this region; this analysis is critical in showing how branches of periodic orbits with
different numbers of spikes are connected.

The remainder of this paper is outlined as follows. The general setup and assump-
tions are detailed in Sect. 2, as well as the statement of the main result, Theorem 2.2.
The proof of Theorem 2.2 is given in Sect. 3, followed by a brief discussion in Sect. 4.

2 Setup
The model system under consideration is a three-dimensional singularly perturbed
ordinary differential equation with two fast variables and one slow variable, which we

write in the form

v= filv,w, y,k, &)
w= fr(v,w,y, k,¢e) 2.1
y=eg(,w,y k, e,
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where " = (?—[, k is a bifurcation parameter, € > 0 is a small parameter, and fi, f>, g
are C"+!-smooth functions of their arguments for some r > 3. We refer to (2.1) as
the fast system. By rescaling t = ¢¢, we obtain the corresponding slow system

sv' = filv,w, y,k, €)
ew' = fr(v,w, y, k€ (2.2)
y =g, w,y ke,

where ' = %. These two systems are equivalent for any ¢ > 0, though the dynamics
are best understood by perturbing from the distinct singular limits obtained by setting
& = 0 in each of (2.1), (2.2). We outline hypotheses with respect to each of these
limits in Sects. 2.1 and 2.2, respectively. Assumptions on the slow/fast geometry of this
system which guarantee bursting orbits were formulated by Terman in Terman (1991),
and these form the basic setting in which we shall work. In some places, stronger
hypotheses are required and we outline these in detail. Lastly, we describe additional
assumptions regarding the nonhyperbolic fold points in the system in Sect.2.3, and
we state the main result in Sect.2.4.

2.1 Layer Problem

Setting & = 0 in (2.1) results in the layer problem

v = fi(v,w,y, k,0)
w= fr(v,w,y, k,0) (2.3)
y =0,

which we consider for k € [—kg, ko] for some kg > 0. The dynamics are restricted to
planes y =const, and this system admits a manifold of equilibria

fZ(vv w,y, kv 8)7
2.4)

Mo = {(v.w, y) : F(v,w, y,k,0) = 0}, F(v,w, y, k. &) = (fl(v, w, y. k. 8>>

which is called the critical manifold. For simplicity we assume My can be written as
a graph over the v-coordinate. We also assume the following (Fig.4).

Hypothesis 1 (S-shaped critical manifold) We assume the critical manifold is S-
shaped, consisting of three branches; that is, we assume there exists y,, y, such that
the layer problem (2.3) admits a single equilibrium pp(y) for y € (—oo, y¢), three

equilibria pp(y), pm(¥), pu(y) for y € (3¢, ¥») and a single equilibrium p,(y) for
y € (yr,00), with two equilibria colliding at saddle-node bifurcations at each of

y = Ye, yr with pg := py(ye) = pm(ye) and py := pp(3r) = pm(Yr)-
We denote the fold points by

FUT = (Do, Wer, Vo) (2.5)
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Fig. 7 Shown is the structure of the layer problem (2.3) in the cases: a y € (y¢, yh), by = yp, and ¢
Y € (Jn, ¥p), as wellasd y = yp and e y = ¥ corresponding to the layer problems which contain the fold

points FE . Pictured in each phase portrait for y € (3¢, ¥ p) are the heteroclinic orbits ¢* (y), #P (), PP ();
note that for y = jy, the orbit ¢*(y) coincides with the homoclinic orbit 4. In (c), also pictured are the
periodic orbits yp(-; ¥) which bifurcate from yy, for y > yj

We can therefore decompose M as
Mo =MEUF UMEUFEUME, (2.6)

where the three branches Mg’m’“ (bottom, middle, upper) are contained in the regions
{—oo <y < yhL{ye <y < ¥}h{y <y < oo}, respectively. We will sometimes
write M§(y1, y2), for * = b, m, u to refer the intersection Mg N {y; <y < y2}.

Hypothesis 2 The bottom and middle branches of the critical manifold My satisfy
the following.

(i) The bottom branch Mg is normally attracting, thatis, Dy, ) F| M has two eigen-
values with negative real part.

(ii) The middle branch M is of saddle type, so that D, ) F| M has one positive
and one negative eigenvalue.

Crucial to the spike-adding process in (2.1) is a saddle homoclinic bifurcation in
the layer problem which occurs along the middle branch M.

Hypothesis 3 (Saddle homoclinic orbit) There exists y = yn(k) € (y¢, ¥-) such
that (2.3) admits a homoclinic orbit y,, () = (v (2), wy(¢)) bi-asymptotic to the saddle
equilibrium py, := p,, (yn); further, the homoclinic orbit y, (¢) surrounds the equilib-
rium p, (yn) (Figs. 4 and 7).

We now consider the dynamics for nearby values of y. In order to construct a
continuous spike-adding transition, we require some nondegeneracy with respect to
the saddle homoclinic bifurcation. We first consider the linearization of the layer
problem (2.3) about the equilibrium py, which by Hypothesis 2 admits one positive
and one negative eigenvalue, which we denote by AIT, respectively.
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We next linearize (2.3) about y},, which results in the system
b= D, uw) F(on(2), wn(t), yn, k, 0)P. 2.7)
The associated adjoint equation is given by
U = — Dy F (un (), wa(t), n, k, 0)T W, (2.8)

which admits a unique bounded solution Wy, (¢) (up to multiplication by a constant). We
assume the following regarding the bifurcation of periodic orbits from the homoclinic
orbit yy, (Fig. 7).

Hypothesis 4 (Periodic manifold) The saddle quantity vy := )»;' — A, associated with
the equilibrium py, satisfies v, < 0 and the Melnikov integral

My= [ Dy F @) wy(0) 50.0.0) - Yo £ 2.9)

—00

is nonzero so that y}, breaks transversely as y is varied near y ~ y, (Lin 1990).
Therefore, from the homoclinic orbit y;, bifurcates a family of attracting periodic
orbits (Homburg and Sandstede 2010) for either y < y, or y > yp; we assume the
latter and denote this family by

P={1Cy) = (vp(: ), wp(: ) 1 y € Gh, ¥p)} (2.10)

for some y, < ¥, < ¥,. As a result, we have the following (see, for instance, the
discussion in Homburg and Sandstede 2010, §3.6).

(i) The periodic orbits {yp(;y) : ¥ € (Jh,yp)} have corresponding periods
T,(y),y € (Jn, Yp), where T(y) is a smooth function of y and 7,(y) — o0
as'y — yh.

(ii) Each periodic orbit ¥, (-; ¥), y € (Jn, ¥p) admits a single nontrivial Floquet mul-
tiplier e #»MH () < 1, where 1p(y) > 0 is a smooth function of y.

We note that away from the endpoints y = yn, yp, the family /P forms an invariant
manifold, which is normally attracting; this manifold is shaped as a cylinder which
surrounds the upper branch Mg (Fig. 4).

The next hypothesis concerns the existence of heteroclinic orbits connecting the
middle branch M{' to the bottom branch /\/lg as well as heteroclinic orbits between
MG and P (Fig. 7).

Hypothesis 5 (Behavior of W"(M{')) For each value of y € (¥, y-), the saddle
equilibrium p,,(y) has a one-dimensional unstable manifold W"(p,,(y)) which is
composed of two orbits W™, W'

(i) For each y € (y¢, yr), W™ is given by a heteroclinic orbit #?(y) which limits
onto the stable equilibrium pp(y) on the bottom branch /\/lg.
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(i) The behavior of W' varies: For y = yy, W' is precisely the homoclinic orbit
Yh- For y € (y¢, yn), W' is given by a second heteroclinic orbit ¢*(y) which
limits onto the stable equilibrium py(y) on the bottom branch M2, while for
y € (B, yp)» WY is a heteroclinic orbit ¢P(y) which limits onto the attracting
periodic orbit ¥, (-; y). The behavior of WY for y > y, is not relevant.

2.2 Reduced Problem

Taking ¢ = 0 in (2.2) results in the associated reduced problem
0= fiv,w,y, k,0)

0= fo(v,w,y,k,0) (2.11)
Yy =g, w,yk,0),

which is a differential-algebraic system in which the flow is restricted to the critical
manifold M. Regarding the slow flow, we have the following.

Hypothesis 6 (Slow flow) The function go(v, w, y) = g(v, w, y, 0, 0) satisfies

golmy <0, golpge >0, go(r, wr, y) =0, go(ve, We, yo) <0
(2.12)

and

1
Tp()’)

Tp(»)
/0 go(vp(t; y), wp(t; y), y)dt <0,  y € (Oh, yp)- (2.13)

2.3 Fold Points

Finally, we discuss hypotheses regarding the fold points F*". At each of the folds,
the linearization of (2.1) for ¢ = 0 admits a double-zero eigenvalue due to the loss
of normal hyperbolicity occurring along the critical manifold. There is one remaining
hyperbolic direction, which we assume is repelling in the case of F* and attracting in
the case of F". Hence, near the fold points, there exist local two-dimensional center
manifolds, on which we assume that ¢ and F” take the form of nondegenerate planar
fold and canard points (in the sense of Krupa and Szmolyan 2001a), respectively. The
corresponding center manifold is repelling in the case of F¢ and attracting in the
case of 7", and hence, we refer to F* as a normally repelling fold point and F" as a
normally attracting canard point.
This is the content of the following.

Hypothesis 7 The fold points F¢, F" satisfy the following.

(i) (Normally repelling nondegenerate fold point) The point F¢ is a normally
repelling fold point, in the sense that

D,wy F (e, we, ye, k, 0) (2.14)
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has one positive eigenvalue for k € [—ko, ko]. The full system (2.1) therefore
admits a two-dimensional local center manifold W¢(F?), on which we assume
the point F* is a nondegenerate fold (or jump) point in the sense of Krupa and
Szmolyan (2001a, §2.1).

(i) (Normally attracting nondegenerate canard point) The point F” is a normally
attracting canard point, i.e.,

D,w) F (Ur, wr, yr, k, 0) (2.15)

has one negative eigenvalue for k € [—ko, ko]. The full system (2.1) therefore
admits a two-dimensional local center manifold W€ (F"), on which we assume
the point F" is a nondegenerate canard point with unfolding parameter k in the
sense of Krupa and Szmolyan (2001a, §3.1). This two-dimensional system there-
fore admits a singular Hopf bifurcation for k = ¢ = 0, which we assume is
nondegenerate, in the sense of Krupa and Szmolyan (2001b, §3.4).

Remark 2.1 The nondegeneracy condition for the singular Hopf bifurcation can be
determined from the normal form of the reduced equations on W€¢(F"); we refer to
Theorem 3.2.

2.4 Statement of the Main Result

We are now able to state our main result.
We define an N-spike bursting solution to be a periodic orbit which completes N
excursions around the upper branch M*. We have the following.

Theorem 2.2 Consider system (2.1) satisfying Hypotheses 1-71. Then, there exist
0,1, & > 0 such that for each ¢ € (0, gg), there exists a continuous one-parameter

family
0 (K50, /€), B0, /e)), 0 € (0,0()) (2.16)

of periodic orbits B(0, \/¢) originating at a Hopf bifurcation near the fold point F',
where k%, B are Cl in (8, \/€). For6 € (N, N + 1), the periodic orbit B(6, \/€) is an
N-spike bursting solution, and the quantity © (¢) satisfies limg_.0c®(e) = 6y > 0.
Further, for 0 € (p, ©(¢)), the parameter k*(0, \/¢) satisfies

K50, V&) — k™ (V&) = Oe %) 2.17)

for a C” function k™ (\/g) = O(e).

Theorem 2.2 guarantees the existence of a single connected branch of bursting solu-
tions which encompasses the transition from canard explosion (i.e., small-amplitude
Hopf cycles local to the fold point F") to large-amplitude bursting oscillations with
an O(1/¢) number of spikes. Each spike is added sequentially throughout the spike-
adding process as the single bifurcation parameter k varies on an interval of size
O(e™/¢).

The remainder of this paper is concerned with the proof of Theorem 2.2.
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3 Construction of Spike-Adding Sequence

In this section, we present the proof of Theorem 2.2 by constructing the entire spike-
adding sequence of bursting solutions for small ¢ > 0. We begin in Sect.3.1 by
collecting facts regarding the perturbation of normally hyperbolic portions of the
critical manifold Mg and their (un)stable manifolds, which follow from standard
results of geometric singular perturbation theory (Fenichel 1979). In Sects. 3.2 and
3.3, we analyze the fold point " and the canard explosion which occurs in a local
two-dimensional center manifold W€(F") containing the fold.

We then proceed by constructing bursting solutions which complete large excur-
sions in phase space, that is, periodic orbits which do not remain in a small
neighborhood of the fold point F". We describe in Sect. 3.4 the general strategy for
constructing such solutions, and in Sects.3.5-3.7, we construct the transition from
0-spike solutions to 1-spike solutions. To understand how additional spikes are gen-
erated, a detailed understanding of the flow near the saddle homoclinic bifurcation is
needed, which we present in Sect. 3.8, and the proof of the key technical result is given
in Sect.3.9. In Sects.3.10-3.11, we construct N-spike solutions for any N and show
how the branches of N-spike solutions and (N + 1)-spike solutions are connected.
Finally, the proof of Theorem 2.2 is briefly concluded in Sect.3.12.

3.1 Persistence of Invariant Manifolds

We collect several preliminary results which follow from standard geometric singular
perturbation theory and center manifold theory. For sufficiently small ¢¢, kg, we have
the following:

1. Away from the fold points F*", the three branches ./\/lg’m’“ are normally hyper-
bolic and persist for (k,e) € (—ko, ko) x (0, e9) as locally invariant slow
manifolds M5, The middle branch M has two-dimensional stable and
unstable manifolds W* (M), W" (M) which persist as locally invariant mani-
folds WS (MZ), WU (M) for (k, ) € (—ko, ko) % (0, o). Similarly, the bottom
branch Mg has a three-dimensional stable manifold WS(MI(;) which persists as
a locally invariant manifold WS(Mé’) for (k, &) € (—ko, ko) x (0, &9).

2. Near the fold point F", there is a local two-dimensional attracting C”-smooth
center manifold W (F") which persists for (k, &) € (—ko, ko) x (0, &). The
slow manifolds M? and M” extend into a neighborhood of F”, where they
shadow corresponding basepoint solution orbits M%" and M™" which lie on
WE(F).

3. Near the fold point F*, there is a local two-dimensional repelling C”-smooth
center manifold W¢(F*) which persists for (k, €) € (—ko, ko) x (0, &9).

4. Away from the saddle homoclinic bifurcation at y = yy, the periodic manifold P
persists as a two-dimensional normally attracting locally invariant manifold P,
for (k, &) € (—ko, ko) x (0, &9).
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Fig.8 Pictured is a schematic of 2
the singular flow in a

neighborhood of the right fold

point F". The normally

attracting center manifold /
WE(F") corresponds to the M N
plane {x, = 0} 0

3.2 Local Coordinates Near F" and Maximal Canards

By Hypothesis 7, in a neighborhood of the fold F”, after a change of coordinates
we obtain the system (see, for instance, Krupa and Szmolyan 2001a; or Carter and
Sandstede 2015, §6)

)E;r = X, (—Cr(k) + O(-xry Vrs Zrs 8))
Zr = yrhi(yr, 2.k, €) + Z%hl(yrs zr k. &) +eh3(yr, 2r, k, €)
Vr =& (=2rha(yr, zp, k, &) + khs(yr, 2r, k, &) + yrhe(yr, 21, k, €)) G.D

k=0
£=0,
where ¢, (k) > 0, and the functions 4, j =1, ..., 6 are C" and satisfy

h3(yr, 2r, k, &) = OOy, 2r, k, €)

. (3.2)
hj(r,zr, ks &) = 14+ O00r, z2r, k,8), j=1,2,4,5.

At the linear level, the slow variable y, in these local coordinates corresponds to a
rescaling of the original slow variable (y—y, ). Here, the variables (z,, y,) parameterize
the center manifold W€ (F"), while x, parameterizes the strong stable fibers, which
have been straightened so that the (z,, y,) center dynamics are decoupled from x,.

See Fig. 8 for a schematic of the singular ¢ = 0 flow near F”.
The manifold W€ (F") is given by x, = 0; we recall that by construction W€ (F")
contains the one-dimensional (shadowed) slow manifolds M2 and M™". We note
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that the (z,, y,) coordinates are in the canonical form for a canard point (compare
Krupa and Szmolyan 2001a). Canard points are characterized by canard trajectories
which follow a strongly attracting manifold (in this case M’; '), pass near the equilib-
rium and continue along a strongly repelling manifold (in this case M"") for some
time. To understand the flow near this point, we use blow-up methods as in Krupa and
Szmolyan (2001a). Restricting to the center manifold x, = 0, the blow-up transfor-
mation is given by

v =72y, z, =7z, k=rk, =7, (3.3)

defined on the manifold B = S2 x [0, ro] X [—IEO, IE()] for sufficiently small 7y, lgo
with (y,z,€) € S 2. There is one relevant coordinate chart which will be needed for
the matching analysis; in the literature, this is frequently referred to as the “family
rescaling” chart, which corresponds to an e-rescaling of the variables and parameters.
Keeping the same notation as in Krupa and Szmolyan (2001a) and Krupa and Szmolyan
(2001b), the family rescaling chart X, uses the coordinates

Yr = rzzyz, Ir =122, k=rky, e= r22. (3.4)

Using these blow-up charts, the authors of Krupa and Szmolyan (2001a) stud-
ied the behavior of the manifolds M?" and M™" and determined conditions
under which these manifolds coincide along a canard trajectory. We place a sec-
tion X" = {z, =0, |x;| <8y, |yr| < p} for small fixed §,, p which will serve as a
Poincaré section for constructing the periodic orbits.

In the chart /Cy, the section X" is given by X" = {Zz =0, |x;| <8y, |r22y2| < ,0}.
It was shown in Krupa and Szmolyan (2001a) that for all sufficiently small r, k>,
the manifolds Mf” and M}"" reach X" at y, = yg(kz, r2) and y» = y3'(kz, r2),
respectively. We have the following result which describes the distance between M’s’ o
and M{"" in Z".

Proposition 3.1 (Krupa and Szmolyan 2001a, Proposition 3.5) The distance between
the slow manifolds M%" and M™" in " is given by

Yo — i = Do(ka, r2) = diyka + dryra + O3 +k3) (3.5)

where the coefficients dy,, d, are constants, bounded away from zero independently
of ko, ry. Hence, we can solve for the existence of a maximal canard trajectory within
WE(F"), corresponding to a zero of the distance function Dy(ky, ry), which occurs
when

ky = kK = ury + O(3), (3.6)
here ju = — 92 £
where pu = — g~ % 0.
This proposition describes the splitting of the manifolds M? " and M"" as a function

of ky, rp, and in particular ensures that this splitting occurs in a transverse fashion as
the parameter k = kyr is varied near k ~ k™°(/¢), where the function
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k™ (VE) = ke = pe + O(e¥?) 3.7

denotes the location of the maximal canard solution.

Further, it was shown in Krupa and Szmolyan (2001a) that the system (3.1) under-
goes a singular Hopf bifurcation, which also occurs near the location of the maximal
canard. The sub/supercriticality of the Hopf bifurcation is determined via the quantity

Ay = —ay + 3ay — 2a4 — 2as, (3.8)
where
ohy ohy oh3
ap = 0,0,0,0), ax= 0,0,0,0), a3 = 0,0,0,0)
9z, 0z, Zr
0hy
ag = 0,0,0,0), as=he0,0,0,0).
9z,
We have the following.

Theorem 3.2 (Krupa and Szmolyan 2001a, Theorem 3.1) There exist eg, ko > 0 such
that for (k,e) € (—ko, ko) x (0, g9) system (3.1) admits a single equilibrium. The
equilibrium is stable for k < k™ (\/€), where

K (J7) = —#s +O@E? 3.9)

and loses stability through a Hopf bifurcation as k passes through k' (€). The
Hopf bifurcation is nondegenerate if the quantity Ay defined in (3.8) is nonzero. It is
supercritical if Ay < 0 and subcritical if Ay > 0.

3.3 Local Canard Explosion

Within the center manifold W€ (F"), we refer to Krupa and Szmolyan (2001b) for the
bifurcation of local canard orbits from the singular Hopf bifurcation at the equilibrium
at the origin. Upon varying the parameter k ~ k™¢(,/¢), these orbits grow to small,
but O(1), size within W(F"). We quote the following from Krupa and Szmolyan
(2001b).

Theorem 3.3 (Krupa and Szmolyan 2001b, Theorems 4.1, 4.2, Proposition 4.3)
Assume that Ay # 0 and that p > 0 is sufficiently small. Then, there exists g > 0
such that for e € (0, g9), system (3.1) undergoes a Hopf bifurcation at k = k™ (\/¢),
from which bifurcates a continuous family of periodic orbits

s > (k%(s, V), T(s,/e)), s €(0,pl, (3.10)
where k% (s, \/€) is C” in (s, /&) with kK (s, /&) — k" (/&) as s — 0, and

K (p. /&) = K™ (V)| = O(e™*). (3.11)
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For each s € (0, p), the orbit T(s, \/e)) C WC(F") passes through the point
(xrv Yr, Zr) = (07 —S, 0)'

This theorem guarantees the existence of a singular Hopf bifurcation and the bifur-
cation of a continuous family of periodic orbits within the center manifold W€ (F")
which grow to O(1) amplitude for all sufficiently small ¢ (determined via the small
parameter p which, in general, satisfies 0 < ¢ < p).

3.4 General Strategy of Constructing O (1)-Amplitude Periodic Orbits

In this section, we describe a general strategy for constructing a periodic orbit which
completes an O(1) excursion in phase space before returning to a neighborhood of the
fold F”. The idea is to determine an appropriate one-dimensional curve Z of initial
conditions which can be evolved both forward and backward in time, spanning a two-
dimensional manifold Z of candidate solution orbits. This manifold is tracked forward
and backward until it first intersects the section X'; this intersection is therefore
given by two curves I+, 1, resulting from the forward and backward evolution,
respectively. The geometric setup for the construction strategy is shown in Fig. 9.

We then consider the Poincaré map IT" : ¥ — X’ and search for solutions with
initial conditions on Z~ which return to ", meeting the curve Z . The desired periodic
orbit is then given by a fixed point of this map, corresponding to an intersection of the
curves ZT, Z~ which occurs along a single solution orbit, lying entirely within the
manifold Z.

We now describe this procedure in more detail and determine conditions on the
initial curve Z which guarantee that this strategy results in a unique solution. We
assume the following.

(i) The curve Z lies outside a small A-neighborhood of F".
(i) Under the forward evolution of (2.1), the manifold 7 is contained in WS(Mé’ ).
(iii) Under the backward evolution of (2.1), the manifold 7 transversely intersects
WHMT).

Under these conditions, we can construct a periodic orbits as follows. When evolv-
ing forward, since the manifold Z is contained in Ws(/\/l}g’ ), we can track Z as it is
exponentially contracted to Mé’ until reaching a small neighborhood of 7", whereby
7 intersects ¥’ in a curve Z+ which is O(e~"/¢)-close to M? N X". On the other hand,
since 7 transversely intersects W"(M?") under the backward evolution of (2.1), by
the exchange lemma (Schecter 2008b), in backward time 7 intersects ¥’ in a curve
7~ which is aligned C'-O(e~"/¢)-close to the strong stable fibers of the manifold
WE(F"). In particular, 7~ intersects WC(F') N ©" at a basepoint which is O (e~ "/%)-
close to M™ N X", and Z~ is thus aligned C!'-O(e~"/#)-close to the strong stable
fiber of that basepoint.

The Poincaré map I1" : £" — X’ by construction satisfies I1"(Z~) € ZT. We use
the blow-up coordinates (3.4) to set up fixed point matching conditions in the section
%", Within X7, it is most natural to parameterize solutions using the coordinates
(xr, ¥2).
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Fig.9 Shown is a schematic of the strategy for constructing large-amplitude bursting oscillations outlined
in Sect. 3.4. A one-dimensional manifold Z of candidate solutions is evolved forward and backward under the
flow of (2.1) until intersecting the section X" This intersection consists of two curves: Z + (corresponding
to the forward and backward evolution, respectively); matching conditions are then determined within the
section T which guarantee the existence of a periodic orbit

3.5 (Lower) 0-Spike Orbits

In this section, we construct 0-spike orbits, which encompass the transition from the
local canard explosion occurring within the center manifold W€ (F") to large canard
orbits which complete a global excursion. This excursion is characterized by a long
canard trajectory, which consists of first following Mlg’ , then M7, and then finally
returning to /\/lls’ via one of the heteroclinic orbits ¢?(y) (Fig. 10). We refer to these
orbits as “lower” 0-spike orbits as they traverse one of the heteroclinic orbits ¢”(y),
as opposed to one of the upper heteroclinics ¢ (y). These orbits are most naturally
parameterized by which heteroclinic connection ¢”(y) is followed, or equivalently,
the minimum y-value achieved along the orbit. Hence, for s € [y, + A, y, — A], we
search for a 0-spike periodic orbit which achieves a minimum y-value of y = s, and
is obtained as a perturbation from the singular orbit

To(s) == ./\/lg(s, ) U MG (s, yr) U #'(s). (3.12)

Following the strategy of the previous section, we choose an appropriate one-
dimensional curve Z?(s) of candidate initial conditions. For this, we denote by w?
the w-coordinate at which the orbit ¢”(s) intersects the set {v = ,}. For sufficiently
small § > 0, we then define Z?(s) to be an interval of width § which lies in the plane
{y = s} and is transverse to the fast layer dynamics, and which intersects ¢”(s) at
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w

Fig. 10 Shown are singular periodic orbits in the case of lower 0-spike orbits and upper 1-spike orbits. The
lower/upper descriptor refers to which of the heteroclinic orbits P, ¢t is followed. A lower 0-spike orbit
follows M, then M™ , then the heteroclinic orbit ¢?. An upper 1-spike orbit follows M?, then M™ | then
the heteroclinic orbit ¢"; the fast increase then decrease in the v-variable along the orbit ¢* constitutes the
“spike”

w = w’. We now determine the behavior of Z? (s) under the forward and backward
evolution of (2.1).

Since ¢ (s) lies in the intersection W* (/\/lg) NWHMG') for e = 0, we see that for
all sufficiently small & > 0, the forward evolution of Z”(s) must also lie in WS(MIS’ ).
On the other hand, the backward evolution of Z? (s) transversely intersects the manifold
WH(M). By the exchange lemma, the backward evolution of 7' b (s) traces out a two-

dimensional manifold fb (s) which intersects X" inacurve Z~ (s) which is aligned cl-
O(e"¢)-close to the stable fiber of a basepoint on WC(F") which itself is O (e~"/¢)-
close to M7 N X" (Fig. 11).

We sum this up in the following

Lemma 3.4 Within X7, the curve I (s) is given as a graph

7)) =, y2) s y2 =3 + 1 (x5, k,8), x| < 8¢}, (3.13)
where

I7(0,5,k, &) =0, 3,17(0,5,k, &) = O(e” ") (3.14)

forv =x,,s,k.

We now consider the forward evolution of Z~ (s), which is contained in the two-
dimensional manifold fb (s). By construction and by the above discussion, we have
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Z’I"

Fig. 11 Shown are the matching conditions within the Poincaré section X”. Note that under the Poincaré
map IT" : £ — X7, we have that [1(Z~) € ZT. A periodic orbit can be therefore be found when the
curves Z% intersect along a single solution orbit

that fb(s) C WS(M}g), and therefore fb(s) will be Cl—exponentially contracted to
Mf and thus meets the section X" in a curve Z* (s) which is C!-O(e™"/¢)-close to
MBS (Fig. 11). We have the following

Lemma 3.5 Consider the Poincaré map 11" : ¥ — ¥, We have that T1" (Z~ (s)) <
I (s); parameterizing points on I~ (s) by their initial x, coordinate given by x, = x~
for |x™| < 8y, we have that the curve T1" (Z7 (s)) is given by

P IRVEAY xT(x7,s,k, &) _
M@ () = {(m) = (yg It Ges k, 8)) ST = 5x}, (3.15)

where

1Y, s, k,e) = 0@ %), 8,0 (x 7,5, k,g) = O(e™?)

(3.16)
xT (7, s,k e) =0, dxt(xT, s,k e) = O(eF)

forv=x",s,k.

It remains to solve for a fixed point of I1” which lies on the intersection of the curves
T (s); this corresponds to a periodic orbit which is a perturbation of the singular orbit
[o(s). An intersection of Z*(s) occurs along a single solution orbit if

X" =xT(x",s,k, &)

(3.17)
VI (x5 ke) =y + 1T (7, 5,k 8)

for some value of |x~| < §,. Using estimates (3.16), the first equation can be solved
for

X" =x (s, k, &) = O ), x (s, k, &) = O(e?). (3.18)
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Plugging this into the second equation and rearranging results in the equation
yé’ -y + IT(x (s, k, ), s, k, &) — I (x"(s,k, €),s,k, &) =0, (3.19)
which by Proposition 3.1 can be rewritten as
Do(ka, r2) + I (x" (s, k, &), s, k, &) — I~ (x"(s,k, €),5,k, &) =0. (3.20)

Using estimates (3.14), (3.16), (3.18), and the implicit function theorem, this equation
can be solved for a unique solution when

k = k§(s, &) = k™ (V&) + O(e %), (3.21)

3.6 Upper 1-Spike Orbits

In this section, we construct 1-spike orbits which complete an excursion around the
upper branch MY, corresponding to a single spike. We first consider the simpler case
of orbits which stay away from the upper left fold F¢ and the saddle homoclinic
bifurcation occurring along M7, as these orbits can be constructed in a very similar
manner to the 0-spike orbits from Sect. 3.5.

These solutions are again characterized by a long canard trajectory, which consists
of first following /\/lg, then M, and then finally returning to ./\/llg’; however, in contrast
to the solutions constructed in Sect. 3.5, the fast jump down to /\/lf instead follows
one of the heteroclinic orbits ¢* () (Fig. 10). Similarly, these orbits are most naturally
parameterized by which heteroclinic connection ¢“(y) is followed, or equivalently,
the minimum y-value achieved along the orbit. Hence, for each s € [y, + A, y, — A]
we search for a 1-spike periodic orbit which achieves a minimum y-value of y = s
and is obtained as a perturbation from the singular orbit

MG(s, 37) U MG (s, 37) U ¢ (s). (3.22)

Following the strategy of Sect. 3.5, we choose an appropriate one-dimensional curve
T*(s) of candidate initial conditions. For this, we denote by w* the w-coordinate at
which the orbit ¢"(s) intersects the set {v = v¢}. For sufficiently small § > 0, we
then define 7" (s) to be an interval of width § which lies in the plane {y = s} and is
transverse to the fast layer dynamics, and which intersects ¢“(s) at w = w". Since
¢"(s) lies in the intersection WS(MS) NWHME) for & = 0, the remainder of the
analysis follows identically to that in Sect. 3.5, with the periodic orbit occurring for

k= k" (s, £) = k™C(VE) + O ), (3.23)
and we omit the details.
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Fig. 12 Shown is a schematic of
the singular ¢ = 0 flow near the
upper left fold point F ¢ The
locally invariant attracting center
manifold W€ (F?) is given by
the set {x; = 0}

3.7 Overlap of 0-Spike Orbits and Upper 1-Spike Orbits: Analysis of Upper Left
Fold Point F*

We consider the upper left fold F¢. We note that the geometry near the fold is similar
to that considered in Carter and Sandstede (2015, §4), and hence, we draw on the
local analysis as presented in Carter and Sandstede (2015). We first move to a local
coordinate system in a neighborhood of ¢, in which the equations take the form

Xe = xg (ce(k) + O(xe, ye, z2¢, €))
2o =—yo + 22 +he(ye, 20, k, €) (3.24)
ye =ege(ye, ze. k, &),

where c¢(k) > 0, and hy, g¢ are C"-functions satisfying

he(ye, ze, ky €) = O(e, ez, ¥7,23),
g8e(ve, ze, k, &) = =14+ O(ye, 2¢, €),

uniformly in k € (—ko, ko). The geometry of (3.24) for ¢ = 0 is depicted in Fig. 12. In
the transformed system (3.24), the (z¢, y¢)-dynamics are decoupled from the dynamics
in the hyperbolic x,-direction along the straightened strong unstable fibers. At the
linear level, the slow variable y, in these local coordinates corresponds to a rescaling
of the original slow variable (y — y).
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We consider the flow of (3.24) on the invariant manifold x, = 0. We append an
equation for ¢, arriving at the system

20 = —ye + 25 + he(e, ze, k, €)

ye = e8e(ye, ze, k, ©) (3.25)
e=0.
For ¢ = 0, this system possesses a critical manifold given by {(y¢, z¢) : —ye +

z% + he(ye, z¢, k, 0) = 0}, which in a sufficiently small neighborhood of the origin
is shaped as a parabola opening to the right (Fig. 12). The branch of this parabola for
z¢ < Ois attracting and corresponds to the manifold M. We define MSH' to be the
singular trajectory obtained by appending the fast trajectory given by the line segment
{(ye,ze) 1 y¢ = 0,0 < z¢ < 8.} to the attracting branch M’ of the critical manifold.
We have the following

Proposition 3.6 (Carter and Sandstede 2015, Proposition 4.1) For all sufficiently small
e > 0, we have the following.

(i) Within the center manifold {x;, = 0}, the singular trajectory Mg“r perturbs to
a solution M™*, which is C°-O(e*3)-close and C'-O(e'/?)-close to ./\/lg1’+,
uniformly in |k| < ko. This solution can be represented as a graph

MIF = {0, ye20) ¢ ye = sms (os Ky €. 2] < 82 (3.26)

(ii) The manifold VW" (Mg"’Jr) composed of the strong unstable fibers of the singular
trajectory ./\/lg’Jr also perturbs to a two-dimensional locally invariant manifold
WH(M™F) which is C2-0(e23)-close and C'-O(&'/3)-close to W“(Mf)"’+),
uniformly in |k| < ko.

The results of Proposition 3.6 are depicted in Fig. 13.

We proceed by constructing solutions which pass near the fold. These solutions form
a “bridge” between orbits which depart M?* along the heteroclinics #” () and those
which depart along the heteroclinics ¢” (), which are constructed in Sects. 3.5 and 3.6,
respectively. The geometric intuition is that the fold acts as a means of continuously
transitioning from one “side” of M" to the other. The challenge lies in parameterizing
these orbits, as the exact orbit ¢”(y) or ¢*(y) which is followed when leaving a
neighborhood of F* is not naturally determined.

We choose 0 < § « §, and define the section Ef (Fig.13) by

n
S =, yer 20) 1 Yo = S (=82, k, 0), |xe] < 8, lze + 8,1 <8} (3.27)

We have the following.

Lemma 3.7 For all sufficiently small ¢ > 0, we have that ©¢. C WS(Mg).

m

@ Springer



2636 Journal of Nonlinear Science (2020) 30:2613-2669

Ye

in

bz

Fig. 13 Depicted are the results of Proposition 3.6. For sufficiently small ¢ > 0, the singular trajectory
Mg'-" perturbs to a solution ./\/lfg"’+ within the center manifold W¢(F¢) = {x¢ = 0}. Furthermore, the
two-dimensional manifold YW" (MgLJr) composed of the strong unstable fibers of MS"’JF also perturbs to
a two-dimensional locally invariant manifold YW" (M;""") depicted by the purple surface. Also shown is

the section an, transverse to the center manifold W€ (F [)

Proof We first define a collection of potential “exit” sections for solutions with initial
conditions in an. The first is given by

1 = 1o, ye, 82 ¢ 1xel < 8y, lyel < 8). (3.28)

out, 1

For the other sections, we first define U* to be a planar §-neighborhood of ./\/lgl’Jr within

the center manifold {x, = 0}. This neighborhood U* is bounded by four curves, given
by Efn N {x; = 0}, Eﬁut,l N {x; = 0}, as well as two other curves Ufpper and Ulf)wer,
chosen to lie an O(§) distance on either side of ./\/lg“r, so that the union of these four
curves bounds a well-defined planar region U¢ within {x, = 0} containing Mg1 o+,

with O(§) thickness.
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We now define four additional exit sections

ng,z = {(8x, e, 20) : (yer 20) € UY}
Bs = ((=8c, ve.20) : (vev z0) € UY)

: . (3.29)
Zupper = {(xes ye, z0) 2 1xel = 6x, (ve. ze) € Uypper)

S wer = 100, ve, 20) ¢ 1xe] < 8xy ey 20) € Uyer)-

Previous blow-up analyses (Carter and Sandstede 2015; Krupa and Szmolyan
2001a) of nondegenerate fold points have studied the behavior of basepoint solutions
with initial conditions in Ei@n N {x; = 0} for 0 < ¢ K 1. In particular, these analyses
show that initially such solutions are quickly contracted O (e~"/#)-close to M+ and
remain O(e~"/¢)-close to M™F until reaching the set Eﬁut’l N {x; = 0}. Hence,
when considering the full dynamics of (3.25), i.e., with the x,-dynamics included,
since solutions on the strong unstable fibers shadow their respective basepoint trajec-
tories, any solution with initial condition in an must pass through one of the three
sections 3¢ j = 1,2, 3. In particular, such solutions do not pass through >t

out, j’ upper
[ . . . N b
or Xy e j =1, 2,3 are contained in W*(M?).

To see this, we first consider solutions within X gut’zﬂ{ ye¢ > §}and E(fuw N{y¢ > 8}.
Provided § < 8, the fact that such solutions are contained in WS(MS) is clear due to
their proximity with the heteroclinic orbits ¢* (y), ¢”(y) which lie in WS(Mg). For
sufficiently small ¢ > 0, by standard geometric singular perturbation theory, these
solutions are contained in WW$ (Mf ).

For the remaining solutions, i.e., those within {|y¢| < §}, we first note that due to
Hypothesis 7 as well as Hypothesis 5 regarding the layer problem (2.3) for ¢ = 0, any
solution within the plane {y, = 0} lying a small fixed distance 8, from the fold F*
must lie in WS(/\/Ig). For sufficiently small § <« §,, by the smooth dependence of the
layer problem on yy, this also holds for solutions lying distance &, from F*, which are
contained in the region {|y,| < 8}. Again, the fact that these solutions are contained
in WS (Mé’ ) for small ¢ > 0 follows from standard geometric singular perturbation
theory. Hence, by appropriately choosing § < 8y, §;, we obtain the result. O

. ¢
It remains to show that EOM’ It

We note that for ¢ = 0, we have that
WHME) N B = {Cees ves 82)  ye = S 4 (82, k. 0), xe| < 84}, (3.30)
Therefore, for each |x| < §,, we can define the interval
Tx) = =8 N g = 1), (3.31)

which clearly intersects W" (M}') transversely within Efn. This transversality persists
for sufficiently small & > 0. Combining this with Lemma 3.7, we see that Z¢(X)
satisfies the conditions outlined in the strategy from Sect. 3.4, and the construction of
periodic orbits which pass through Z* (i) follows as in Sect. 3.5.
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_WE(MTY)

Fig. 14 Shown is the flow near the saddle homoclinic bifurcation for sufficiently small ¢ > 0. The stable
and unstable manifolds YW1 (Mg) of the critical manifold ./\/16” which intersect transversely for ¢ = 0,
perturb to two-dimensional locally invariant manifolds YW$'% (Mg") which again intersect transversely near
y & yp for 0 < ¢ < 1. Away from the saddle homoclinic bifurcation, the periodic manifold P persists as
a locally invariant manifold Pg

3.8 The Flow Near the Saddle Homoclinic Point

Before proceeding to construct N-spike solutions for N > 1, it is necessary to under-
stand the passage of solutions the near the saddle homoclinic point py. This analysis
is also critical in determining how the different branches of bursting solutions are con-
nected. The main result of this section is Proposition 3.8, which concerns the behavior
of solutions which spend long times hear the saddle homoclinic point. The proof of
Proposition 3.8 is given in Sect.3.9.

We continue by considering the flow in a neighborhood of the saddle homoclinic
point py. The existence of a saddle homoclinic orbit yy, at p, when ¢ = 0 implies that
the manifolds W*(M{') and W*(M(}) intersect transversely along y;, in the plane
¥y = yn. This transverse intersection therefore persists for the manifolds W*"(M")
and WS (M) for ¢ > O sufficiently small (Fig. 14).

In a neighborhood of MY', there exists a smooth change of coordinates such that
the equations can be written in the Fenichel normal form

A=Fi(A B,Y k ¢e)A
B =F)(A,B,Y,k,¢)B (3.32)
Y =e(Gi(Y, k. &)+ G2(A, B, Yk, ¢)),
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Fig. 15 Shown is the local geometry associated with the flow of the Fenichel normal form (3.32) near
the saddle homoclinic bifurcation for sufficiently small ¢ > 0. The manifolds W" (M%) and WS (M)
coincide with the sets A = 0 and B = 0, respectively, and the slow manifold M}" is givenby A = B = 0.
The sections ZZ, E% defined in (3.34) are placed at A = A and B = A, respectively for small fixed

A > 0. Due to Hypothesis 4 manifold YW" (M) transversely intersects W (M) in the section 22
for all sufficiently small ¢ > 0. Also depicted are the results of Lemma 3.13, concerning the return map
Mgj o Mg : E% — E% induced by the backward flow of (3.32), applied to a curve Z* which transversely

intersects WY (M) in 2}1‘9

where

Fi(A, B, Y, k,e) =—a(k)+ O(A,B,Y,¢)

F>(A,B,Y, k,e) = B(k)+ O(A, B,Y,¢)
G1(Y,k,e) =—yk)+ O, ¢)

G>(A,B,Y,k,¢) = O(AB),

(3.33)

where «(k), B(k), y (k) > 0 uniformly in |k| < kg, and o (k) > B(k) due to Hypothe-
sis 4. In the following, we will suppress the dependence on k in the notation. In these
coordinates, the set A = 0 corresponds to W" (M), the set B = 0 coincides with
WS (M), and the slow manifold M7 is given by A = B = 0 (Fig. 15).

We fix the two-dimensional sections

Sh={A=A,|B<A,|Y| <5y}

! (3.34)
Yp={B=A,|Al < A,|Y| < dy)}

for small A > 0 to be chosen later (Fig. 15).
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By the above discussion, we can track W"(M?') along y,, and deduce that this
manifold transversely intersects W*(M?') in the section Eh for all sufﬁ01ently small
& > 0 (Fig. 15). Thus, the intersection of WW"(M?") with the section E is given by a
curve which can be represented as a graph over the B-coordinate, that is,

WM™ N Eh = {(A, B, Yu(B. k., &) : |B| <8}, (3.35)

for some 0 < § < A, where we can assume without loss of generality (by shifting
coordinates) that

Yh(0,k, &) =0, 0pYn(0,k, ) = K(k, e, A), (3.36)

where K1 < K(k, e, A) < K> uniformly in |k| < ko and 0 < ¢ < 1 for some
K; = K;j(A) > 0for j =1, 2; note that Y,(0, k, 0) = O represents the location of
the homoclinic orbit y, for € = 0.. In the following, it will also be useful to invert this
relation, i.e., represent W"(M?7') as a graph B = By(Y, k, ¢) for |Y| < 8y, where

Bp(0,k,e) =0, dyBn(0,k,e) =1/K(k, &, A). (3.37)

The primary result of this section is the following proposition, the proof of which
is given in Sect.3.9.

Proposition 3.8 Consider the backward flow of (3.32). For each sufficiently small
A > 0, there exists C, 8y, ko, g9 > 0 such the following holds. For each (k,¢) €
(—ko, ko) % (0, &9), consider a one-dimensional manifold T* C Eh which transversely
intersects YW"(MY') in the section Eh at some Y € (—dy, C£| log ¢|). Then, there
exists N(g) = O(1/¢) such that under the backward flow of (3.32), T* traces out a
two-dimensional manifold T which returns to the section Eh a total of N times, each
time transversely intersecting the manifold YW* (M'). Fi urthermore the transversality
is uniform in ¢ > 0 sufficiently small.

Remark 3.9 The uniformity of the transversality with respect to ¢ means that this
intersection does not approach tangency as ¢ — 0. This is important as the manifold
7 is tracked over N = O(1/¢) excursions.

Remark 3.10 We also remark briefly on the ¢|log ¢|-bound for the Y-coordinate of
intersection with W"(M?7"). For larger values of Y, it is not possible to guarantee that
7 will intersect W" (M) again on its subsequent returns to E% under the backward
flow of (3.32), unless additional transversality conditions are satisfied. However, we
will show that these conditions will be satisfied after an (1) number of returns to
Z%; see Lemmas 3.13 and 3.14.

3.9 Proof of Proposition 3.8

The proof of Proposition 3.8 involves understanding both the flow near the saddle
homoclinic point py, and how solutions leave a neighborhood of the saddle homoclinic
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orbit y, and interact with the periodic manifold P.. We begin by analyzing the flow
near y4 in Sect. 3.9.1, followed by the flow in a neighborhood of P, in Sect.3.9.2. The
proof of Proposition 3.8 is briefly concluded in Sect.3.9.3.

3.9.1 Analysis Near the Saddle Homoclinic Point

The estimates on the flow near the saddle homoclinic orbit 3}, necessary in the proof
of Proposition 3.8 are outlined in the following four lemmas. The first two lemmas
give estimates on the local map 2% — 22 under the backward flow of (3.32), and
the global map 22 — E% in backward time, respectively. The third then combines
these to give a precise return estimate E% — Eg under the backward flow of (3.32)
in the case when Z* satisfies additional assumptions. The final lemma then shows that
any choice of Z* from Proposition 3.8 will satisfy these extra assumptions after only
an O(1) number of these excursions.

It is essential that the estimates are uniform with respect to the small parameters
involved in the analysis, as the two-dimensional manifold Z, traced out by the one-
dimensional manifold Z* under the backward flow of (3.32), must be tracked over
an asymptotically large number of excursions. To this end, we introduce the notation
a ~ bfora, b > 0if there exists C = C(A) > 0 independent of all sufficiently small
dy, €o such that

<a=<Cbh. (3.38)

Al s

Here, A is the small constant from (3.34). Similarly, we use the notation a < b for
a, b > 0 if there exists C = C(A) > 0such thata < C(A)b. Furthermore, any terms
designated by O notation which do not contain explicit A-dependence are understood
to be taken up to a constant which may depend on A.

We begin with the following Shilnikov-type estimate (Deng 1990; Krupa et al.
1997; Schecter 2008a), the proof of which is given in Appendix A.

Lemma 3.11 For each sufficiently small A > 0, consider the local map T\ : Z% —
Eg under the backward flow of (3.32). There exists 8y, § > 0 such that the following
holds. Consider (A, A, Y™) € 2% satisfying |A| < §. Then, for all sufficiently small
e > 0, we have

A A
e | A = | Bioc(R, Y*) (3.39)
Y* Yioc (R, Y*)a

where ARP = A and

o(R, Y ;k, &) =a/B+ O(A)
Bioc(R, Y*; k, &) = AR(1 + O(A))
ey log(R)

B

(3.40)

Yioc(R, Y™k, 8) = Y* — (1+0)),
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and the derivatives of these functions with respect to R, Y™ satisfy

A
8 = 8* = 1
RP O<RlogR), y+p = O(1)

drBioc = A(1 + O(A)),  dy+Bioc = O(R1og R) (3.4D)
O Yioe = —ﬁiRa +OA).  dyYiee = (1 + O(A)),

where the estimates are uniform for all sufficiently small dy, §, ¢ > 0.

The next lemma concerns the nature of the global map Iy : Eg — E% under the
backward flow of (3.32).

Lemma 3.12 For each sufficiently small A > 0, consider the global map Iy : Eg —
E% under the backward flow of (3.32). There exists Cg, 8y, 8 > 0 such that the
following holds. For all sufficiently small ¢ > 0, consider a solution (A, B,Y) € Eg
satisfying |B| < § and |Y| < 8y. Then,

A Ag(B,Y)
My [ B | = A , (3.42)
Y Ya(B,Y)

where
Ag(B,Y) = Ca(B = By(Y . k,©))
+O(IY11B = Bu(Y k. o)), 6| B = Ba(Y k. o), 1B = Ba(Y k. o))
Ya(B,Y) =Y + O(s).
(3.43)

The estimates will in general depend on A but are uniform with respect to all sufficiently
small §, 8y > 0 provided ¢ > 0 is taken sufficiently small.

Proof For fixed A, the map Iy : Eg — Eg for solutions with initial conditions
sufficiently close to W*(M}") N E%] can be determined by a finite time integration.
In particular, the set YW (M) N X will map onto the set Eg N {A = 0}, and the
estimates follow from the smoothness of this map. O

The next lemma combines the estimates in Lemmas 3.11 and 3.12 to determine the
effect of the return map

Mg o Mige : T — = (3.44)
under the backward flow of (3.32). In particular, for a manifold which satisfies certain
transversality estimates with respect to the manifold W*" (M") in the section »h these

estimates are preserved (in an appropriate sense) under the backward flow of (3.32)
(Fig. 16).
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Fig. 16 Depicted is the setup within the sections E}I‘; (left) and Eg (right) as in Lemma 3.13; see also Fig. 15.
Note that in the right panel, the B-coordinate increases to the left in order to preserve the orientation of
Fig. 15. The curve Z*, which s given by the graph Y = Y (4, k, ¢), transversely intersects W" (M2') within
the section Z% atY = Yj . Under the reverse flow of (3.32), Z* is mapped via ITj, to 22, and the image
Mjoc (Z*) again transversely intersects WY (M2') within Eg at a point (B, Y) = (Bioc(Rh), Yoc (Rh))s
where R, is as in (3.55). Further, in backward time, ITjoc (Z*) returns to E% via the global map g}, and the
image Iy o Mjoc (Z*) corresponds to the graph of ¥ = Y2(A, k, ¢), intersecting W' (M) transversely
atY =Y

Lemma3.13 Fix A > O sufficiently small. For each C; > 0 and each sufficiently
small Cy > 0, there exists C, Sy, ko, €0 > 0 such that for (k, €) € (—ko, ko) x (0, &),
the following holds. Suppose that the one-dimensional manifold T* C Eg can be
represented as a graph Y = Y1 (A, k, €) which satisfies

eglog|Y
Cielloge| < Yo <8y, sup  [0a%1(A. ko)) < | 2g 10l
[A|<C2|Y1,0]

,  (3.45)

Yio

where Y10 = Y1(0,k, ¢). _Then, under the reverse flow of (3.32), T* traces out a
two-dimensional manifold I, which again intersects E% in a curve which can be
represented as a graph Y = Y2 (A, k, €) satisfying

elog|Y2 ol
Y20

s

Y20 > Y10+ Ce, sup  |0aY2(Ak, &) <
[A|<C3|Y20]

, (3.46)

where Y5 o := Y2(0, k, €).

Proof The strategy of the proof is to combine the results of Lemma 3.11 and
Lemma 3.12. Care must be taken to ensure that for fixed A, the estimates hold
independently of Y1 o € (C1¢|loge], y) for sufficiently small choice of 8y, g9 with
e € (0, ¢&0).

We first use Lemma 3.11 to determine the image of Z* under the local map ITjy :
Zlhg — Eg. Under the map ITjoc, Z* is mapped to a curve in Zg parameterized by
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R = (A/A)YP as

A A
Mioc A = BlOC(R) ) (347)
Y1(A,k, ) Y1oc(R)

where the functions

Bioc(R) := Bioc(R, Y1(ARP  k, €))

(3.48)
Yioc(R) := Yioc(R, Y1 (AR”, k, ¢)).
defined as in Lemma 3.11 satisfy
p(R) =a/B+O(A)
Yioe(R) = Y1 (AR k&) - M%R(l +0(8))

and

IR(R?) = pRP~'(1 4+ O(A))
0RrBioc(R) = A(1 + O(A)) (3.50)
ORrY1oc(R) = ARpflaAYl(ARp, k,e)(1 +O(A)) — ;—)I;(l + O(A))

by implicitly differentiating the functions Biec, Yioc in (3.48) and using esti-
mates (3.41).

We first claim that the curve (B,Y) = (Bloc, Yioc)(R) transversely intersects
WH (M) within E%. The intersection of the manifold W" (M) with Z% is given
asacurve Y = Yy, (B, k, ). We therefore need to solve the following equation.

Yh(Bioc(R), k, €) = Yioc(R)

v

ey logR
= Y| (AR, k, &) — —p (1+0@) (3.51)
14

log R
— Y10+ OR?) %(1 +0(A)),

where we used (3.49). At first, we ignore the last term on the right-hand side and
consider the simpler equation

Yn(Bioc(R), k, &) = Y10 + O(R"). (3.52)
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Using (3.36) and (3.50), this equation can be solved for R = Ry = %(1 + O(A)).

We set R = Ro(1 + Rj) and return to the full equation, which becomes

ey log R
KAmmu+om»+omm&=—17§£u+om»+0@&x
(3.53)
where v := min{p, 2} > 1. It is now possible to solve for
e log Ro -
Ri=——10+0O(A,R . 3.54
1 ﬁKARo( + O( ) (3.54)
From this, we obtain the solution R = Ry (k, €) = Ro(1 + Rp) given by
Y10 ey Y10
Rink,e) = —(1+0A) — ——1 —— ) (1 + O(A)). 3.55
m(k, &) KA(+ (A)) ﬁKAOg(KA>(+ (A)) (3.55)

Provided 8y, g¢ are sufficiently small and since Ce|loge| < Y10 < 8y by (3.45), we
have that Ry ~ |Y],0|. Note that the lower bound on Y| g is crucial in order to obtain
that Ry, ~ |Y1,0].

We now focus on the global map Ig : EL‘,‘ — Eg. Using Lemma 3.12, we have
that

A Agl(Bloc(R)’ Yoc (R))
Hgl Bloc(R) = A (3.56)
Yioc(R) Ygl(Bloc(R)’ Yioc(R))

where

Agl(R) = Cyg1(Bioc(R) — Bp(Yioc(R), k, €))

+ O ((1Yioc(R)| + € + |Bioc(R)

—Bn(Yioc(R), k, €))|Bioc(R) — Ba(Yioc(R), k, €)1)
Ygl(R) = Yioc(R) + O(e),

(3.57)

where we have simplified the notation by writing Ag(R) = Ag(Bloc(R), Yioc(R))
and Yg(R) = Yg(Bioc(R), Yoc(R)). The goal is to express Yy as a graph Yy =
Y2(Agl, k, €) over Ag and verify estimates (3.46) are satisfied. We first determine

Y20 = Ya(Rm)

3.58
SVIOTng(l Loy 4o, Y

using (3.49). Using the fact that Ry, ~ |Y7,0[, for all sufficiently small §y, 9 and
Cielloge| < Yi,0 < 8y, we have that

=Y (AR" k,&) —

RE < Y10l (3.59)
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so that
0 < (Ya,0 — Y1,0) ~ e |log Y1 0| + OCe). (3.60)
From this, we obtain
Yo0> Y10+ Ce, (3.61)

for some C = C(A), and further we note that Y2 o] ~ |Y1,0].

In order to prove estimate (3.46) regarding the derivative of Y2(A, k, ¢) on the
interval |A| < C2|Y2 [, we first determine the endpoints of this interval in terms of
R, which we denote by Rgart, Rend- To find these endpoints, we must solve for when

Ag(R) = £(CoYa 0 (3.62)

in terms of R. By the implicit function theorem, after some manipulations using (3.50)
and (3.57), and using the relations (3.51), and (3.58) satisfied by R, we find that we
can solve for

CrK
Ryart = (1 - 2—) Riy(1 4 O(A))
Cl

CrK

(3.63)
Rend = (1 + C

) R (14 O(A)),
gl
provided C> is sufficiently small, and in particular, we have Rgtart, Rend ~ Riy. There-

fore, also Rgtart, Rend ~ |Y1,0] and hence for all sufficiently small dy, &9 and any
Cielloge| < Y10 < 8y, we have

RD 4 < CalY10l. (3.64)

We now compute

dy,
T = PARTIOAYIAR? k) (1 4+ O(8) = 2 (14 O(A) + O)
(3.65)
whereby
dY, 1 Y
arg < pAR™! elog|¥i,o0 (1+O(A)) + 24 (14 0(A))
dR 1,0 ,BRstart
1 g Vs (3.66)
B elog|Ya 0
< 120”7t + ) 1.
(' 20 g o) | 2o
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) e

We can then compute the slope % as the ratio of (3.66) and (3.67)

We now use (3.57) and compute the derivative

dA ay,
—ngCgl<1+O<A R, |2

dR dR

dYg
‘ dYg _ ‘d_R
dAal cy(1+0(a R |5H])) (3.68)
< elog|Y2 o

Y20

independently of the initial Y7 o € (Ci¢|loge], Sy) by choosing dy, &g sufficiently
small. It follows that the manifold 7 intersects -, 5 in a curve which can be represented
as a graph ¥ = Y>2(A, k, ¢) for values of [A| < C2|Y2,0l, satisfying estimates (3.46).

]

The final technical lemma ensures that a manifold Z* which intersects W" (M7")
transversely in the section 2 as in Proposition 3.8 satisfies the assumptions of
Lemma 3.13 after finitely many returns to Eh

Lemma 3.14 Consider the backward flow of (3.32). For each sufficiently small A > 0
there exist C1, Co and dy, &g, ko > 0 such that for each (k, &) € (—ko, ko) x (0, &p),
the following holds. Consider a one-dimensional manifold T* C E% which can be
represented as a graphY = Y (B, k, e) withY1(0, k, ¢) =: Y1 o € (=8y, C1¢|loge]),
and which transversely intersects YW (M') in the section Z%. Then, under the back-
ward flow of (3.32), T* traces out a two-dimensional manifold T which, after finitely
many excursions, transversely intersects E}é in a curve which can be represented as
agraphY = Y2(A, k, ¢) satisfying

elog|Y2 ol (3.69)

Cielloge| < Yz 0 < 4y, sup  |04Y2(A, k, &)] <
[A|=C2| Y20l

where Y2 o := Y2(0, k, ¢).

Proof We proceed as in the proof of Lemma 3.13, and we begin by determining the
image of Z* under the local map I, : Z — =0 Under the map ITjoc, Z* is mapped
to a curve in Eg parameterized by R = (A /AP a

A A
Tjoc A = Bloc(R) s (3-70)
Yi(A,k, ¢) Yioc(R)

where the functions Bjoc(R), Yioc (R) satisfy (3.49) and (3.50). We search for the loca-
tion of a transverse intersection of the curve (B, Y) = (Bioc, Yioc) (R) with WH (M)
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within 1, where WY (M) is given by the graph ¥ = Yy (B, k, €). As in the proof
of Lemma 3.13, we therefore need to solve an equation of the form

ey logR

Yh(Bioc(R), k, &) = Y10 + O(R") — (I +0(A)), (3.71)

where Y10 € (—dy, C1¢|log €]). We first focus on the region | Y1 9| < C1¢|loge|, and
we consider the simpler equation

loe R
Yi(Bioc(R). k. £) = —%(1 +O(A) + ORP). (3.72)

Proceeding in a similar fashion as in the proof of Lemma 3.13, we set

_yellogel

5K (14 Ro), (3.73)

which results in the equation

(3.74)

Ro(1+O(8)) + O(e] log e)" ' Ro) = O (A, logtloge) &> ,

loge ’loge
which can be solved for

Ro = O(A) (3.75)
for all sufficiently small ¢ > 0. This gives a solution to (3.72) defined by (3.73), which

we denote by R;. We now return to the full equation (3.71) and set R = R (1 + R»),
which results in the equation

Ra(1 + O(A) + O((e] log e]) "' Ry) = —10 +O(A log(loge) R°)

AKR; loge loge
_ _Bho ola log(log 8)’ Ro 7
ye|loge| loge log e
(3.76)
which can be solved in the region |Y o] < C;é€]log €| for
Y
N L EOTINY (3.77)
ye|loge|

resulting in a solution R = Ry := R (1 + R») of Eq.(3.71) given by

yelloge| B0
= (14 — A) . 3.78
"= TBAK <+ye|loge|+0( )) G-79)
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We now focus on the global map Iy : Eg — E?r Using Lemma 3.12, we have that

A Agl(Bloc(R)s Yioc (R))
[Ig | Bioc(R) | = A , (3.79)
Yioc(R) Ygl(Bloc(R)v Yioc(R))

where

Agl(R) = Cyg1(Bioc(R) — Bp(Yioc(R), k, €))

+ O ((1Yioc(R)| + € + |Bioc (R)

—Bn(Yioc(R), k, €)])|Bioc(R) — Bu(Yioc(R), k, €)1)
Ygl(R) = Yioc(R) + O(e).

(3.80)

We now show that Yy can be written as a graph Yg = Y2(Agl, k, €) over Ag and
verify estimates (3.69) are satisfied. We first determine

Y2,0 = Ya(Ra)

=Y (AR? k. ¢) — M’Tng(l + O(A)) + OCe), (381)
and using (3.78), we have that
Yoo = Tio— L1 4 0(a) + 0Ce), (3.82)
so that
Y20 > Cielloge| (3.83)

provided C1 = C1(A) is sufficiently small and |Y7 0| < Ci¢|log¢], for all sufficiently
small ¢ > 0. Estimates (3.69) which concern the derivative of Y>(A, k, €) proceed as
in the proof of Lemma 3.13, noting that Rt ~ €| loge|.

Finally, it remains to consider the region Y1 o € (—d8y, —C;¢|log ). The strategy
is to show that in this case Z* returns to E% under the backward flow of (3.32), this
time intersecting YW"(M?Y') at a value of ¥ > —Cje|loge|, in which case the above
argument can be repeated to complete the proof. We therefore return to Eq.(3.71),
which we now aim to solve assuming Yj o € (—d8y, —Ci¢|loge]).

We set R = RoR; for some Ry € (0, 1) and obtain the equation

KARoR (1 + O(A, (RyR)"™ 1)

‘gyl‘;fg[“(l +0)) - Wl‘;%RO(l +OA)).

(3.84)
=Yi0—
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We first solve for Ry in terms of Ry, Y1 o by solving

log R
KARoR (1 + O(A, (RyR)"™ 1)) = —87/;#(1 +OA)). (3.85)

For C3 = C3(A) sufficiently large so that
Cy > MLK, (3.86)

we separate two cases: R; > C3¢ and R| < 2Cz¢. If Ry > Cze, proceeding similarly
as above, we can solve (3.85) by setting

ey gy
Ry = — | 14+ Ry), 3.87
0 BAKR, Og(ﬂAKR1>( + R2) (3.87)

substituting into (3.85), and solving for R, = O(A) for all sufficiently small R;
satisfying Ry > Cae.
Substituting back into (3.84), we now determine R; by solving

log R
0="Y0— %(1 +0(A)), (3.88)
whereby we obtain
Y
Ri = exp (/38;0 (1 + O(A))) , (3.89)

and therefore, the full solution R = Ry := RoR; of (3.71) is given by

___fr ey Y10
R = =gk o8 (ﬂAK) (1+0A) + = (1 +0(A)). (3.90)

On the other hand, returning to (3.85), in the region R; < 2C3ze, after some rear-
ranging we obtain the equation

R,

KA
Ry = exp (—’3 Ro(1 4 O(A, (RoRl)v_l))) : (3.91)

For0 < R; < 2C3e¢,thisrelation defines Ry as a strictly positive, monotone decreasing
function of Ry, and in this region, Rp is confined to the interval (C4, 1) for some
0 < C4(A) < 1, which is independent of 8y, . In particular, this relation can be
solved for

Ro = W[Z]’ 7 = w(l +0O(A)), (3.92)
Z &gy
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where W[-] denotes the principal branch of the Lambert W-function. Proceeding
as above, we substitute back into (3.84), solve for R, and obtain the full solution
R = R4 := RoR; of (3.71), given by

BY1,0
&y

R+ = Ropexp ( 1+ O(A))) . (3.93)

We now determine

Y2,0 = Yo (R)
= Yoc(R) + O(e)
= Yh(Bioc(Rh)) + O(e)
= KARH(1 +O(A, Ry)) + O(e).

(3.94)

Using (3.84), we have that

Yoo = —81/1’(%&)(1 +O(A)) + O(e, RY). (3.95)

In the region Ry > C3e, Ry is given by (3.87) so that
Y20 > —Cie|loge| (3.96)

for all sufficiently small ¢ > 0. In the region R; < 2Cze, we have that Ry is given
by (3.92) so that

Y20 =0(e) (3.97)

for all sufficiently small ¢ > 0. Estimates (3.69) which concern the derivative of
Y2(A, k, €) are similar as in the proof of Lemma 3.13, though with minor differences
outlined below.

Using expressions (3.80), we now compute

dYgl _

2 = pART 0 YI(ARY k. 6)(1+ O(8)) = ;—7;(1 L O(A) + O),

(3.98)
whereby

SO (3.99)
dR

for all sufficiently small ¢ > 0. We now use (3.57) and compute the derivative

dy,
=Cy <1 L O(A,R) — %d—;l 1+ O(A, R))) . (3.100)

dAg
dR
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We can then compute the slope g%ﬂ as the ratio of (3.99) and (3.100)

dYg
‘dYgl _ ‘W
dAgal ¢, (1 +O(A, R — L8 (14 0(a, R))) (3.101)

< Cs(A)
for some Cs5(A) independent of the initial Y1 ¢ € (—8y, —C;¢|loge|), by choosing
dy, &o sufficiently small. O

3.9.2 The Flow Near the Periodic Manifold P,

We now consider the dynamics near the periodic manifold and the interaction with the
analysis near the saddle homoclinic point outlined in Sect.3.9.1.

We consider a compact portion of the periodic manifold PoN{yn+d8y/2 <y < yp—
3y}, outside a small neighborhood of the saddle homoclinic point. By Hypothesis 4,
we note that in this region for ¢ = 0, the cylindrical singular periodic manifold
Py is a two-dimensional normally attracting invariant manifold. By Fenichel theory
(Fenichel 1971, Theorem 3), this manifold therefore persists for small € > 0 as
a two-dimensional normally attracting locally invariant manifold P, in the region
y € (bn +8y/2, ¥p — 8y), which again takes the form of a cylinder which is C"-close
to Po.

In particular, this cylindrical manifold extends into a small neighborhood of the
saddle homoclinic point. As the periodic orbits contained in Py bifurcate from the
saddle homoclinic orbit y4, in its region of definition the perturbed manifold P lies
near the stable/unstable manifolds W5"(MZ?"). We now determine the proximity of
Pe and WY (M) within the section E%, which is given in the next lemma.

Lemma 3.15 Fix A > 0. For all sufficiently small §y and each sufficiently small ¢ > 0,
the following holds. The periodic manifold P, intersects the section Z% in a curve

PN Eh ={(A, By(y; k,6),Y) 1 Y € (8y/2,87)}, (3.102)
where By(Y'; k, €) is a smooth positive function of (Y, k, ) which satisfies
By(Y;k,e) = O(Y*/F ¢). (3.103)

Proof This estimate is derived from two simpler estimates: first the nature of the
bifurcation of the periodic orbits from the saddle homoclinic orbit for ¢ = 0, and
second from the proximity of the perturbed manifold P to its & = 0 counterpart Py.

We first consider the layer problem (2.3) to determine the proximity of Py and
WHME) for & = 0. The periodic orbits are obtained by bifurcating from the saddle
homoclinic orbit y4, for values of y > yy. Here, y acts as the bifurcation parameter
which, as outlined in Hypothesis 4, we assume unfolds this bifurcation in a transverse
fashion. It then follows from homoclinic bifurcation theory (Homburg and Sandstede
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2010) that the periodic orbits which bifurcate from yy, for y € (yn, yn + dy) for
sufficiently small 8y lie at an O(|y — y,|*/#) distance from W" (M) in the section
Zh In particular, we have that the manifold Py intersects the section Z in a graph
B = By(Y; k,0), where By(Y: k, 0) is a smooth positive function of (Y k) which
satisﬁes

By(Y; k,0) = O(Y*/P). (3.104)

To obtain the full estimate (3.103), we now use the fact that away from the saddle
homoclinic point, i.e., for Y > 8§y /2, the periodic manifold P, persists as a Cl-0(e)
perturbation of its ¢ = 0 counterpart Py. O

We now determine the local dynamics in a tubular neighborhood of P, away from
the saddle homoclinic point. See Fig. 17 for a visualization. We have the following.

Lemma 3.16 For sufficiently small § > 0 and g9 > 0, there exists a smooth change
of coordinates S' x [—8, 8] x (3n + 8y /2, Vp — 8y) — R3 in a neighborhood of P
which transforms (2.1) to the system

21

( - = h ) £

X Tp( ) + he(xe, y, €) 108

Xs = —(up(y) + hs(xc, X5, ¥, €))%s '

)} = ggp('xC’ yv 8)7
where he, hs, gp are smooth functions of (x¢, Xs, ¥, €) which satisfy
hC(xC’ y, S) = 0(8)
h(xe, X, v, €)= O(xs, €) (3.106)

f gp(xe, y,8) <0,
Sl

uniformly (xc, x5, y, €) € ' x [=8,8] x (Jn + 8y /2, 3p — 8y) x [0, €o).

Proof We consider the variational equation about the periodic orbit y,(t;y) =
(vp(t; ¥), wp(t; y)) in the layer problem (2.1), given by

® = Dy, F(vp(t; ¥), wp(t; ¥), v, k, 0)D. (3.107)

By Hypothesis 4 and standard Floquet theory, there exists a nontrivial solution ® () =
e p(1: y) to (3.107), where p(t; y) = (pv, pw)(t;y) € R%isa T]p(y)-periodic
function of 7. At the linear level, for small § > 0, the transformation S* x [—4§, §] X
(Fn + 8y /2, p — 8y) — R given by

X, vp P()’)xD y) + x5 py ( (y)xc’ y)
20 Radll IR (ng;v) ) 1 x5 P ( p(})xu y) (3.108)
y

y
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maps (-, 0, y) onto y;,(-; ), while x; parameterizes the tangent space of the stable
fiber W*(yp (s ¥)) of ¥, (-; ¥). In other words, in a plane of fixed y, x. parameterizes
the direction tangent to y;(-; ¥), while x; parameterizes the normal direction.

In particular, the manifold Py is given by the set x; = 0; this manifold persists
for small ¢ > 0 as a locally invariant manifold P, which can be given as a graph
X = xsp (xc, y, €). Setting Xs = x5 — xsp (x¢, v, €), we arrive at the equations

. 2z -
Xe = o + he(xe, X5, p, €)
T (¥) (3.109)
Xy = _(MP(Y) + hs(xe, X, ¥, €))Xs .
y = egp(xc, Xs, y, &),
where he, hg, gp are C" functions which satisfy
hc(xL'? ix, y’ 8) = O(js’ 8)
hs(xmfm yag) = O(i.h 8) (3 110)

/ gp(xc,0,y,0)dx. <0,
s1

where the estimate on g, is due to Hypothesis 6. To obtain the form of Eq. (3.105), we
apply a final coordinate transformation to straighten the strong stable fibers (see, e.g.,
(Fenichel 1979, §X)), and abusing notation, we drop the tildes for X, and continue to
denote the (slightly modified) functions on the right-hand side by &, ks, gp. O

The flow in a neighborhood of P, is shown in Fig. 17. The manifold P, is given by
the set {x; = 0}, and we define the section

P = {x, = 8} (3.111)

Solutions in this neighborhood are quickly attracted to P, and follow the flow of
basepoint solutions on P,. These solutions wind around P, in forward time, slowly
drifting downward, in the shape of a helix. Since the y-drift is of O(g), and away
from y ~ yy the periods {7},(y)} are bounded from above, given an orbit which starts
at y(0) = yg for some yp > yn + 8y/2, we can compute the change in y after one
rotation around P, from x, = 0 to x, = 27 to leading order as

2w d eT 2
f Y g, = 100 / gp(xcs 0, 0)dxc + O(e), (3.112)
0 dxc 2 0

where the quantity

2
/ gp(xe, y0, 0)dxe <0 (3.113)
0

is independent of ¢ and is bounded away from zero uniformly in yo > yn + §y /2 due
to Hypothesis 6. That is, after each successive “lap” around P, the y-coordinate of a
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Fig.17 The left panel depicts the flow near the periodic manifold 7, for sufficiently small & > 0. Solutions
on Pg wind around in forward time, with the y-coordinate decreasing by an O(e) amount after each loop;
a sample basepoint solution y; on P is depicted in blue. The strong stable fibers of such a trajectory form
a two-dimensional locally invariant manifold Ws(yp) on which solutions are contracted in forward time
toward yp. The right panel depicts the two-dimensional section XP which is placed transverse to the flow
at a small fixed distance from the manifold P¢. Note that £P in fact forms a cylinder which extends all the
way around P, though only a portion is shown in the left panel for clarity. The manifold W*(yp) as well
as the unstable manifold W' (M") of the slow manifold M" intersect £P in smooth curves

given solution decreases by an O(g) amount. Equivalently, under the backward flow
of (3.105), solutions on the manifold P, wind around P, slowly drifting upward.

We now recall the existence of the heteroclinic orbits ¢P(y) for y € (yn, yp) for
e = 0 which form connections between M and Py. These orbits form part of
WHME) in the region y € (3h, ¥p). Therefore, W" (M) enters a neighborhood of
Pe; in particular, W (M) transversely intersects the section XP in a smooth curve
which can be represented as a graph x. = x.(y) for y € (yn + dy/2, yp — dy). For
sufficiently small ¢ > 0, the perturbed manifold YW"(M?") therefore also transversely
intersects %P in a curve graph x. = x.(y, ¢) for y € (yn + 8y/2, yp — 8y).

We now consider the behavior under the backward flow of (3.105) of a basepoint
solution ¥, on P,. We refer to Fig. 17 for the relevant geometry. This solution admits a
two-dimensional stable manifold )/ (y;,), which forms a surface that winds around P.
Along each “lap” around Pg, W*(y,) is aligned C 1.O(e)-close to a planes y =const.
Hence, W*(y,) repeatedly intersects JV*(MY') in a transverse fashion on each lap
around P;.

3.9.3 Conclusion of the Proof of Proposition 3.8

Combining the results of Sects.3.9.1 and 3.9.2, we have the following.

Proof of Proposition 3.8 Using Lemma 3.14 and applying Lemma 3.13, the manifold
7 returns repeatedly to the section S, each time transversely intersecting WHMT)
and satisfying estimates (3.46).

Eventually Z will transversely intersect WY (M) within E% at some value of
Y > 8y, whereby Lemma 3.13 is no longer applicable. However, this intersection
point now occurs an O(8y) distance from the saddle homoclinic bifurcation point,
in a region where the periodic manifold P, is known to persist. Using Lemma 3.15
in combination with Lemma 3.13, we deduce that Z transversely intersects P in the
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section E}l}. Further, in backward time Z quickly aligns along the strong stable fibers
of Pg, tracking a solution which winds repeatedly around P;. The results of Sect. 3.9.2
imply that 7 continues to repeatedly transversely intersect WW" (M) after each time
around P, until nearing y = y,. The total number of intersections is of O(1/¢) as the
y coordinate changes by an O(g) amount on each lap around P. O

3.10 Upper and Lower N-Spike Orbits

Using the results of the previous section, it is possible to construct N-spike bursting
orbits for any N < N for some N (g) = O(1/¢). With the help of Proposition 3.8, the
construction is nearly identical to the construction of lower 0-spike orbits and upper
1-spike orbits in Sects. 3.5 and 3.6.

The N-spike orbits are still characterized by a long canard trajectory, which consists
of first following M?, then M™. The orbit then completes N spikes, or excursions,
around the upper branch M before returning to M, then finally returning to M?
via one of the heteroclinic connections, either ¢*(y) in the case of an upper N-spike
orbit, or ¢’ (y) for a lower N-spike orbit.

Again, these orbits are most naturally parameterized by which heteroclinic con-
nection ¢* or ¢” is followed, in addition to the minimum y-value achieved along the
orbit, i.e., the y-value of ¢“(y) or ¢b(y). Hence, for each s € [y, + A, yh — A] we
search for an N-spike periodic orbit which achieves a minimum y-value of y = s, and
passes near ¢/ (s), for j = u, b.

Following the general strategy in Sect. 3.4, in order to construct a periodic orbit,
it is necessary to find a one-dimensional manifold of initial conditions Z which lies
in WS(M};), and which in backward time traces out a two-dimensional manifold Z
which transversely intersects W"(M7'). Whenever these conditions hold, then using
the exchange lemma, it is possible to set up and solve matching conditions near the
fold F” for a periodic orbit as in Sect. 3.5. Hence, to construct an N -spike orbit, we aim
to find a manifold which satisfies these conditions which also completes N excursions
around the upper branch, which we will accomplish through the use of Proposition 3.8.

For lower N-spike orbits, we therefore follow the strategy of Sect. 3.5 by choosing
an appropriate one-dimensional curve of candidate initial conditions. As before, we
denote by w? the w-coordinate at which the heteroclinic orbit ¢ (s) intersects the set
{v = ©,}. For sufficiently small § > 0, we then define Z?(s) to be an interval of width
6 which lies in the plane {y = s} and is transverse to the fast layer dynamics, and
which intersects ¢b (s)atw = wb.

In particular, Z?(s) transversely intersects WH(M"), and therefore in backward

time Z?(s) traces out a two-dimensional manifold ?(s) which, by the exchange
lemma, quickly aligns C'-O(e~"/¢)-close to WS(MI).

In particular, now transitioning to the local coordinates of Sect. 3.8, we have fh (s)
reaches the section Z'/} aligned C'-O(e™"/%)-close to WS (M) and therefore trans-
versely intersects W' (M7') within 21;‘ at a value of ¥ = O(e~"/#). Using the global

map Iy, this transverse intersection persists as fh(s) completes an excursion fol-

@ Springer



Journal of Nonlinear Science (2020) 30:2613-2669 2657

lowing the singular homoclinic orbit yy, and therefore fb (s) transversely intersects
WH (M) within E% at a value of Y = O(e).

We now use the results of Proposition 3.8, which guarantee that fb(s) completes
N(g) = O(1/¢) excursions around the upper branch in backward time, transversely
intersecting W' (M") after each such excursion. Therefore, for each fixed N, by
construction the set of initial conditions Z?(s) lies in the stable manifold W$ (Mé’ ),

and by the above argument Z? (s) traces out a two-dimensional manifold Tb(s) which
completes N excursions around the upper branch in backward time before transversely
intersecting W"(M").

Hence, Z%(s) completes N excursions around MY and satisfies the conditions
outlined in Sect.3.4. We may therefore proceed identically as in Sect.3.5 to set up
matching conditions in order to construct the periodic orbit, which occurs for

k= K21V (s, £) = k™ (V) + O(e%). (3.114)

For upper N-spike orbits, we follow the strategy of Sect.3.6, again choosing an
appropriate one-dimensional curve of candidate initial conditions. As before, we
denote by w" the w-coordinate at which the heteroclinic orbit ¢*(s) intersects the
set {v = vg}. For sufficiently small § > 0, we define 7" (s) to be an interval of width &
which lies in the plane {y = s} and is transverse to the fast layer dynamics, and which
intersects ¢"(s) at w = w". The remainder of the analysis is identical to the above
construction of lower N-spike orbits, and we obtain a solution for

k= ky (s, £) = k™(VE) + O(e ). (3.115)

Finally, for N-spike orbits which pass near the upper left fold F¢, the analysis is
identical to that in Sect. 3.7, in combination with the application of Proposition 3.8 as
above. Additionally, arguing similarly as with the overlap of lower O-spike orbits and
upper 1-spike orbits, this guarantees the overlap of lower N spike orbits and upper
(N + 1)-spike orbits as one continuous family.

3.11 Orbits Which Pass Near the Saddle Homoclinic Point

In Sect.3.10, we constructed upper and lower N spike orbits, and we argued that
the branch of lower N-spike orbits and the branch of upper (N + 1)-spike orbits are
connected via orbits which pass near the upper left fold F¢. However, in order to
show that all of these bursting solutions (i.e., N-spike solutions for any N) lie on the
same branch, it remains to show that the branches of lower N-spike orbits and upper
N-spike orbits are connected. These two families are constructed in different ways,
based on either following ¢*(y) or ¢”(y) for values of y € [y¢ + A, yn — A]; we
must show that these two separate constructions can be extended in such a way that
they have an overlapping description for values of y & yy, that is, near the saddle
homoclinic point.
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3.11.1 Upper and Lower Families of N-Spike Orbits Near the Saddle Homoclinic Point

We use the coordinate system from Sect. 3.8, and Taking § > O sufficiently small and
Y* € [-A, —8y /2], we consider the set

TE(Y*) = {(A, A, Y¥) 1 |A] < 8) (3.116)

within the section {B = A}. It is clear that 7% (Y*) transversely intersects WW" (M}")
within this section nearby one of the singular orbits ¢*(y) for some value of y <
Yh — 8y /2. In particular, if § is sufficiently small, then every solution which crosses
7 (Y*) also lies in the stable manifold WS(Mg). Following a similar construction
in 3.10, we see that for each N and each Y* € [—A, —§y /2], the manifold Ij(Y*)
can be used as the basis for constructing an upper N-spike orbit, and in particular,
this construction forms an overlapping family with the construction of upper N-spike
orbits from 3.10.

On the other hand, if we likewise consider the section { B = —A}, we can perform
an analogous procedure. Taking § > 0 sufficiently small and Y* € [—A, —8y /2], we
consider the set

TH(Y*) = [(A, —A, Y*) : |A] < 8) (3.117)

within the section {B = —A}. Again it is clear that Z7* (Y*) transversely intersects
WH (M) within this section. However, this now occurs nearby one of the singular
orbits ¢ (y) for some value of y < y, — 8y /2. We again see that every solution on
Z* (Y*) also lies in the stable manifold WS (M’g ), and for each N, the manifold Z* (Y*)
can be used as the basis for constructing a lower N-spike orbit, and this construction
similarly forms an overlapping family with the construction of lower N-spike orbits
from 3.10.

3.11.2 Extending the Upper and Lower Families of Orbits

We now work to extend the two families of N-spike solutions defined through the
above constructions involving either Z* (the lower family) or Z7 (the upper family)
in such a way that they form a single overlapping family of N-spike orbits.

We begin with the upper family. We recall from §3.8 the definition of the sections

h={A=A,|B| <A, |Y| <8y}

e (3.118)
Sp={B=A|A| <A,|Y]| <y},

and we consider the intersection of WY(MY') with the section Eg. We recall
from Sect. 3.8 that this intersection is given by a curve which can be represented
asa graph Y = Y, (B, k, ¢) for | B| < & which satisfies (3.36). We consider the set of
curves

Ji =2 (BY): BT € (=5, =)} (3.119)
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Fig. 18 Depicted is the setup within the sections E (left) and Eh (right) as in Lemma 3.17. Note
that in the left (resp. right) panel, the B-coordinate (resp A- coordlnate) increases to the left in order to

preserve the orientation of Fig. 15. The two-dimensional set j |, shaded orange in the left panel, consists
of the union of the one-dimensional curves II_(BT) for BT € (=8, —&*). Likewise, the two-dimensional
set Jj, shaded green in the right panel, consists of the union of the one-dimensional curves Ii(Y*) for

vte (—=8y, —Ce|logel). The image of the set Jj under the map ITjo¢, —, as in Lemma 3.17, is also shown
in the left panel

parameterized by BT € (=8, —¢), for some k = «k(A) > 0, where each curve
T (B") within X! is defined by

TLBYY = (A, B, Y) 1 Y = Ya(BT, k, &)| < 8y/2). (3.120)

We refer to Fig. 18 for an illustration. For each fixed BT € (=8, —&), the curve I, i (BT
clearly intersects W" (M) transversely within the section Eh Using the global map
[Ty for the backward flow of (3.32), Ii(BT) is mapped to a curve in E}é which also
transversely intersects YW"(M?"). Hence, using Proposition 3.8, under the backward
flow of (2.1), Ijr(BT) traces out a two-dimensional manifold fi(BT) in backward
time which completes N = (O(1/¢) excursions around the upper branch, transversely
intersecting W"(M?7') after each such excursion. The construction therefore proceeds
as in the case of upper N-spike orbits as in Sect.3.10 provided it can be shown that
Ijr(BT) is also contained in the stable manifold WS(Mé’ ) of the lower branch Mf,
which will be shown below. We first note that orbits constructed in this manner form
an overlapping family with those constructed via the sets Z7 .
We now define the section

h_=(B=—A Al <A, Y| <5y} (3.121)

To show 7 i (BT c W“(.Mb ), we consider the forward evolution of 7! (BT) from
Zh to Eh under the flow of (3.32). This induces a map Zh — Eh under which
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points on Ijr(B*) € 22 are mapped as

A (BNHPA=P(1 + O(A))
BT | — A . (3.122)
Y Y + O(elog B)

Every point on Il(BT) is therefore mapped O((BT)”) close to WHMI), ar}d the Y
coordinate of each point changes by no more than O(e log¢), provided |B"| is not
too small. Since W"(M?') is contained in WS(MIE’), we must also have II(BT) -
4% (Mé’ ), for sufficiently small choice of the constants 8y, § > 0, and all sufficiently
small ¢ > 0.

Since II(BT) - WS(M{Z), we can now proceed as in the case of upper N-spike
orbits from Sect. 3.10 and construct N-spike orbits passing through Ij_(B ) for each
Bt € (=8, —&¥), for a constant k = x (A) > 0.

We now work to extend the lower family, i.e., those orbits constructed via the sets
T*(Y*). For each YT e (=8y, —Ce|logel), we consider the curve Ii(Y*) within
22’_ defined by

Pt = (A, —A, Y 1A < 8). (3.123)

We first note that W' (M) C WS(Mé’ ), and in the section EII}’_, WH(MP) is given
by the set {A = 0}; hence, for § sufficiently small, we have that Ii(Y N c WS(MIE’).

We now aim to show that the backward evolution of Z" (Y1) under the flow of (3.32)
transversely intersects YW"(M") within the section Eg, in which case N-spike orbits

can be constructed similarly to those constructed via the sets Ii above. We also show
that these two constructions have an overlapping region of definition, forming a single
continuous family. (We note that it is clear that orbits constructed via the sets Ii )
have an overlapping region of definition with the lower family constructed via the sets
Tx(Y*).)

We have the following, regarding the local map ITjoc — : Eg’_ — Eg induced by
the backward flow of (3.32), when applied to IE(YT) (Fig. 18).

Lemma 3.17 For each sufficiently small A > O there exist C, 8y, k > O such that the
following holds. Consider the set of curves I c E%ﬁ defined by

Jh=1T (), YT e (=8y, —Celloge))). (3.124)

This set is mapped by Tjoc,— onto a set {fi(BT), BT € (=&, O(e7 %))} c =h,
where T' (BT) is a curve which transversely intersects YW" (M7)at B = BT.
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Proof For a point (A, —A, YT) € Z' (¥Y7), we have

A A
Me— | A | = | AR+ 0(A) |, (3.125)
el YT 4+ O(elog R)

where A = ARP.
We proceed similarly as in the proof of Lemma 3.13, solving for when this curve
intersects VW' (M?') within the section Eg. This results in an equation of the form

_KAR(1+O(A.R) =Y — #(1 +O(A)). (3.126)

We use a similar strategy as in the proof of Lemma 3.14 and set R = RoR; for
some Ry > 1 and obtain the equation

ey log Ry ey log Ry

— KARoRi{(1+ O(A, RyRy) = YT — (1+0(A) — (14 O(A)).
(3.127)
We first solve for Ry in terms of Ry, YT by solving
ey log Ry
—KARoR1(1+ O(A, RoRy)) = —T(l + O(A)). (3.128)
After some rearranging, we obtain the equation
BK AR,
Ro=exp| ————Ro(1+ O(A, RoR1)) ). (3.129)
ey

It suffices to solve in the region 0 < R; < O(g), where this relation defines Ry as a
strictly positive, monotone increasing function of Rjy; in this region, Ry is confined to
the interval (1, @(A)) for some C (A) > 1. We substitute back into (3.127), solve for
Ry, and obtain the full solution R = R" := RgR; of (3.126), given by

R' =R 28

= Rpexp <?(1 + O(A))) . (3.130)

Over the interval of YT e (=8y, —C¢| loge|) for sufficiently large C = C(A),
the locations R' of intersection span an interval RT € (g<, O(e™"/¢)) for some
k = k(A) > 1. Using (3.125) to determine the corresponding B-coordinate of this
intersection, and possibly taking « slightly larger, we obtain the result. O

Since the choice of k = x(A) > 0 in (3.119) was arbitrary, it follows from
Lemma 3.17 that N-spike solutions constructed via the sets il (Y™) have an overlap-

ping region of definition with those constructed via Ii(BT) and thus can be taken to
form a single continuous family.
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3.12 Proof of Theorem 2.2

In this section, we briefly conclude the proof of the main theorem.

Proof of Theorem 2.2 The transition from the singular Hopf bifurcation and local
canard explosion to 1-spike bursting solutions was constructed in Sects. 3.3-3.7.

In Sects.3.10 and 3.11, upper and lower N-spike bursting solutions were con-
structed for each N < N, where N = O(1/¢). It was also shown that the upper/lower
families of N-spike orbits form a continuous family and further that the branch of
N-spike orbits is connected to the branch of (N + 1)-spike orbits via orbits which
pass near the upper fold F*. Hence, we inductively obtain a single continuous family
of orbits beginning with the local canard explosion which contains all of the bursting
solutions up to those with N spikes.

In order to parameterize the sequence of solutions, by Theorem 3.2, the Hopf
bifurcation and local canard explosion occur for k = k% (s, \/¢) for s € (0, p], and
hence, for 6 € (0, p] we set k2(0, /2) := k*°(0, /¢), and we define B(0, \/¢) to be
the corresponding orbit ['*(s, \/¢). Next, we recall from Sects. 3.5 that the 0-spike
solutions were parameterized by the minimum y-value achieved given by y = s for
s €[ye+ A,y — Al and

k51 (5, V/E) — K™ (V)] = Oe ™), (3.131)

We therefore set

20, V) = ko G+ 0Gr — 30, VE) (3.132)

for® € [A/(Fr—Y¢), 1—A /(3 —y¢)] and we define B(6, 4/¢) to be the corresponding
bursting orbit. Provided A is sufficiently small, there will be overlap with the small-
amplitude canard orbits from the Hopf bifurcation, in the sense that some orbits could
have been constructed as both O-spike bursting and small-amplitude canard orbits.
Since each of these families was constructed using the implicit function theorem, they
are locally unique and hence form one continuous family. As these two families were
parameterized slightly differently in s, solutions on the overlapping region can be
reparameterized if necessary.

For N > 1, there are two families of N-spike orbits, namely the upper and lower
families constructed in Sect.3.10, which occur for &k = k;?’uPper(s, J€) and k =

k]sf,"lower (s, A/€), respectively, where s € [y; + A, 3, — A] denotes the y-layer of the
fast jump ¢*(s) or #? (s) which is followed.
We therefore set
K0, Ve)

Ky G420 — MG =50, vB), 0 € [N+ 3l N+ 4 - a5y ]

K G+ 20N + 1= )G = 50, VB, 0 € [N+ 4+ o N+ 1 - o]
(3.133)
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and we define B(0, \/¢) to be the corresponding bursting orbit. In Sect.3.10, it is
shown that there exists a family of solutions which pass near the fold F¢ which form
a bridge between the lower N-spike solutions and upper (N + 1)-spike solutions.
Further, in Sect. 3.11 it is shown that there exists a family of solutions which pass near
the saddle homoclinic bifurcation which form a bridge between the upper and lower
N-spike solutions, which are not naturally parameterized by the y-jump which was
followed, and hence, we may reparameterize k% (0, 4/¢) on the intervals

ee[zv+1 LN+1+L]U[N I }
27 2Gh 30" 2 2Gh 30 260 30" 2Gn— 30
(3.134)

for each N to account for this. We therefore obtain N spike bursting solutions for
N < N(g), corresponding to 6 € (0, ®(e)), where O(g) := N(g) = O(1/e).
Finally, the estimate

K0, V&) — k™ (Ve)| = Oe ™) (3.135)

for & > p follows from estimates (3.21) and analogous estimates for the solutions
with additional spikes. O

4 Discussion

In this paper, we considered a class of three-dimensional singularly perturbed ODEs
under general assumptions which guarantee the existence of a one-parameter family
of periodic bursting orbits, encompassing the spike-adding transition from a local
canard explosion to large-amplitude bursting oscillations with an O(1/&)-number
of spikes. Among the geometric features necessary for this construction is a cubic
critical manifold, where the middle branch is of saddle type and one of the folds
is a canard point (Krupa and Szmolyan 2001a), which allows for a local canard
explosion as well as long canard trajectories along the middle branch. The other
crucial feature is a saddle homoclinic bifurcation on the middle branch in the fast
subsystem, from which bifurcates a family of periodic orbits in the layer prob-
lem.

The construction of the spike-adding sequence was obtained by considering the
global aspects of the flow via geometric singular perturbation theory as well as call-
ing on prior results for local analyses of the fold points (Carter and Sandstede 2015;
Krupa and Szmolyan 2001a). New to this work is a detailed analysis of slow passage
through the saddle homoclinic bifurcation, which was essential for guaranteeing the
transverse construction of the bursting solutions as well as ensuring that the branches
of N-spike and (N + 1)-spike bursting solutions are in fact connected, so that the
entire sequence forms a single uninterrupted branch. The analysis of this bifurcation
is based on well known homoclinic bifurcation theory (Homburg and Sandstede 2010)
combined with Shilnikov-type estimates (Deng 1990; Krupa et al. 1997; Schecter
2008a). Of particular difficulty is tracking solutions in this region for O(1/¢) time,
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for which new analysis involving geometric singular perturbation methods is neces-
sary.

We remark on the relation of the bursting solutions constructed here to the classical
square-wave-type bursting solutions studied in detail in prior works (Terman 1991,
1992), in which solutions were constructed using similar geometric ideas. However,
ultimately the geometry of the classical bursting solutions differs in that they are
constructed outside the canard regime and involve trajectories which “fall off” the
fold point F” onto the periodic manifold P, (Fig.6), rather than continue up the
middle branch M?%' along a canard trajectory before doing so. In particular, for such
solutions to exist, one must have that the periodic manifold P, extends to some value
of yp > ¥,. Associated with these solutions are rich dynamics and chaotic behavior
(Terman 1992), and without further detailed analysis, it is not immediately obvious that
these solutions lie on the same branch as those constructed in Theorem 2.2, or whether
acontinuous spike-adding process persists into this region, though numerical evidence
suggests this is the case (Fig.2). Under additional technical assumptions, we expect
that the solutions constructed in Theorem 2.2 should indeed lie on the same branch
as the classical solutions, with the spike-adding process continuing upon varying k.
While the focus of the current work is on the onset of the spike-adding process as
a canard-induced phenomenon, we expect that similar methods will be applicable
in this regime. This is beyond the scope of this paper and is the subject of ongoing
work.

While the assumptions for system (2.1) are fairly general, in a broader sense the
geometric setup is still rather specific. Systems such as the Morris—Lecar—Terman
model (1.1) fit directly into such a framework, and other three-dimensional square-
wave bursting models, such as the Hindmarsh—Rose model, which admits Hopf
bifurcations and an additional saddle homoclinic bifurcation in the layer problem
(Desroches et al. 2013), could be analyzed via the same analysis, with some addi-
tional steps, to obtain a result analogous to Theorem 2.2. However, systems with
more complicated geometry would require the analysis of canard phenomena not
treated in this work; for instance, the role of folded saddle canards on a two-
dimensional slow manifold has been emphasized in some four-dimensional parabolic
bursting oscillation models (Desroches et al. 2016b). Additionally, slow passage
through a spike-adding bifurcation has been used to explain the phenomenon of
mixed-mode bursting oscillations (Desroches et al. 2013). We note that canards
and saddle homoclinic bifurcations are still identified in these contexts as being
important for the spike-adding phenomenon, and we emphasize that the techniques
used in this current work are general; the fundamental idea involves combining
local and global analyses, geometric singular perturbation methods, blow-up, and
homoclinic bifurcation theory in such a way that global transitions between dif-
ferent solutions can be captured. These techniques likely have wide applicability
into these more complicated bifurcation scenarios, and this will be the subject of
future work. Furthermore, we remark that these methods are not limited to the
study of bursting solutions or periodic orbits in ODEs; for example, similar meth-
ods were used with success in constructing transitions between single and double
traveling pulse solutions in the FitzHugh—Nagumo system (Carter and Sandstede
2018).
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A Estimates Near the Saddle Homoclinic Point

In this section, we present a proof of Lemma 3.11. We first quote the following result
regarding the nature of solutions to the boundary value problem with entry/exit con-
ditions in the sections E};\, Eg.

Proposition A.1 (Schecter 2008a, Theorem 2.1) Fix A > 0small. There exists Ko, n >
0 such that the following holds. For any sufficiently small ¢ > 0, any T > 0 and any
|Y*| < 8y, there exists a solution (A, B, Y)(&;Y*, T) to (3.32) with (A, B,Y)(0) €
2t and (A, B, Y)(T) € T8 with Y(T; Y*, T) = Y*. Furthermore,

|A(E; Y*, T)| < Koe™™
|BE: Y*,T)| < Koe"&™ 1) (A1)
|Y(&;Y*, T) — @, Y*, T)| < Koge ",

where ® (£, Y*, T) denotes the solution of Y = ¢G (Y, k, €) satisfying Y (T) = Y*.
The partial derivatives of (A, B, Y)(&; Y*, T) with respect to &, Y*, T up to order r
satisfy the same estimates.

Remark A.2 We remark on the appearance of the factor of & appearing in esti-
mates (A.1) for the solution Y (¢; Y™, T') which is not present in Schecter (2008a,
Theorem 2.1). This is due to the fact that the ¥Y-dynamics are of O(¢), in contrast
to the more general case in Schecter (2008a), where there is no small parameter and
hence the center dynamics are O(1).

Proof of Lemma 3.11 We use the formulation of Proposition A.1 to prove the estimates
on the local map ITj,.. We fix A > 0 and assume 0 < §y, § < A are taken sufficiently
small.

For a solution (A, B,Y)(&; Y™, T) of Proposition A.1, we set A(Y*, T) =
A(T; Y*, T)and B(Y*, T) := B(0; Y*, T) = O(e~"T). The map ITjec is then deter-
mined by

Bioc(R, Y*) = B(Y*, T)

(A2)
Yioc(R, Y*) =Y (0; Y*, T).

where R is defined via the relation AR? = A~(Y *, T), and the exponent p is as yet to
be determined.

Let ®(&, Y*, T) denote the solution of Y = eG (Y, k, ¢) satisfying Y(T) = Y™,
in particular, ® (&, Y*, T') satisfies the integral equation

3
(&, Y*,T)=Y*+/ eG(PE, Y, T), k, e)dg, (A.3)
T
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and we have the estimates

0,Y" T)=Y"+eyT(1+ O(A))
Wy« @E, Y5, T)=1+0(A) (A.4)
ar®(E, Y, T) = O(e).

‘We now define the functions
T
Go(Y*.T) = / Fi(0,0, (5, Y™, T). k, £)dé
0

T
:/ a+ O, g)dé
0

. (A.5)
Bo(Y*, T) := / F>(0,0, ®(,Y*, T), k, e)d&
0
T
=/ B+ O(®, g)dé,
0
where
dy=ao(Y*, T) = O(T)
Irao(Y*, T) =a + O(A)
I (A.6)
y=Po(Y", T) = O(T)
IrPo(Y*, T) = B+ O(A).
We further define the functions
T
a(Y*, T) := / Fi(AG Y, T),B(&;Y", T), Y& Y, T) k, &)d&
0 (A7)

T
B(Y*, T) = /0 P (A& Y*,T), B(E;Y*, T), Y (& Y", T), k, &) d&.

We use the estimates in Proposition A.1 combined with directly integrating Eq. (3.32)
in reverse time and obtain

A= Aexp(—a(Y*, 1)

- ~ (A.8)
B=Aexp (—,S(Y*, T)) .
Using these expressions along with estimates (A.1), we have that
G(Y*, T) —ao(Y", T)| = O(A)
(A.9)

BOY*,.T) = Bo(Y*, T)| = O(A)
and the partial derivatives of these expressions with respect to Y*, T are also O(A).
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The ultimate goal is to express the quantities B and Y (0; Y*, T) in terms of the
quantities R, Y™, where we define

~\ Bo/ao
R— (é) , (A.10)
A

To achieve this, we recall (A.8) combined with (A.9)

A= Aexp (=@ (Y*, T) + O(A))

Al
= Aexp (—ao(Y*, 7)) (1 + O(A)), A1D

where the derivatives of the O(A) remainder terms with respect to Y*, T are also

O(A). Hence,
A’ BO/&O
R=[2
A (A.12)

= exp (—Bo (Y™, 1)) (1 + O(a)M/an,
This relation can be used to solve for T = T (R, Y*), obtaining

T(R,Y*) = —I()%R(l + O(A)). (A.13)

Note, due to the exponent fBy/d&y appearing in the remainder term of (A.12), the
derivatives of the remainder terms in (A.13) with respect to R, Y* no longer satisfy the
same estimates. However, we are still able to estimate the first order partial derivatives

. 1
ORT(RY") = =0 (14 O(A)

(A.14)
y+T(R,Y*) = O(log R),
by implicitly differentiating (A.12).
We set Bioc (R, Y*) := B and determine
B =Aex (—” Y*,T) 1+0(A
p (—Bo( ))( (A)) (AL5)

= AR(1 + O(4)),

where the derivatives of the O(A) remainder terms with respect to Y*, T are also
O(A), and using the expressions (A.14), we obtain

IR Bioc(R, Y™) = A(1 + O(A))

« (A.16)
dy+ Bioc (R, Y™) = O(Rlog R).
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Next, using (A.1), (A.4), and (A.14), and setting Yjoc (R, Y*) := Y (0), we have that

Yioe(R, ¥™) = ¥ — SVI%R (1+0(8))
0RYioe(R, Y*) = —;—)I; (1+0(a)) (A17)

dy+Yioc (R, Y*) =1+ O(A)
Finally, we define p(R, Y*) := 5!0//50, and using (A.5) and (A.14), we have

P(R,Y") =a/B+ O(A)

A
IRp(R, Y =0 ——— A.18
rP( ) ( Rlog R) (A.18)
dy=p(R,Y*) = O(1),
which completes the proof of estimates (3.41). O
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