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Abstract 12 
 13 
Main-group metalated heterocycles have broad applications in synthesis, drug development, and 14 
materials science. In this Review, we highlight recent progress in synthesizing isolable main-group 15 
heterocycles of boron, indium, silicon, tin, selenium, and tellurium via Lewis acid cyclization 16 
pathways, together with a discussion of mechanistic insights. Different from traditional two-step 17 
synthetic routes in which heterocycles are constructed first followed by metalation, the herein-18 
described Lewis acid cyclization reactions construct the heterocyclic core and install the metal in 19 
one synthetic step. These cyclization reactions proceed with predictable regioselectivity and with 20 
high functional group tolerance. While all the described reactions are Lewis acid cyclization 21 

reactions onto carbon–carbon  bonds, mechanistic studies show different metals/reagents can 22 
proceed through different intermediates. 23 
 24 
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Introduction to synthetic methods to generate metalated heterocycles: past and present 37 

Heterocyclic scaffolds (see glossary) are present in greater than 85% of biologically active 38 

compounds [1]. Metalated heterocycles are of interest because they enable the synthesis of 39 

diversely functionalized heterocycles, through the cross-coupling [2–4], conjugate addition [5,6], 40 

and oxidation [7,8] reactivity of their metal–carbon bonds. Therefore, development of synthetic 41 

methods for the generation of metalated heterocycles has garnered significant attention. 42 

Traditionally, metalated heterocycles are constructed by synthesis of the heterocyclic core first, 43 

followed by metalation of this core second (Figure 1A). Such a two-step strategy results in 44 

elongated synthetic routes, and often poor regioselectivity and/or limited functional group 45 

compatibility due to heavy reliance on lithiation [9] or C–H activation [10,11] methods in the 46 

second step. Conversely, the development of the Lewis acid cyclization routes to metalated 47 

heterocycles, described herein, enables the construction of the heterocyclic core and installation 48 

of the metal in one synthetic step (Figure 1B). These cyclization reactions proceed with 49 

predictable regioselectivity and with high functional group tolerance. In light of the 50 

aforementioned merits, this synthetic strategy has evolved rapidly in the past few years and 51 

accompanying mechanistic studies have resulted in better understanding of their reaction 52 

mechanisms. This recent extensive development of Lewis acid cyclization reactions has a 53 

threefold impact: 1) it expands the synthetic tools available for natural product, drug 54 

development, and materials synthesis; 2) it provides access to new metalated heterocycles that 55 

could not be accessed through prior two-step synthetic pathways, and 3) the divergence of 56 

mechanisms of the different Lewis acid cyclization reactions opens additional research avenues 57 

and provides inspiration for forthcoming methods development.   58 

 59 

In this Review, we highlight the recent progress in synthetic methods development for isolable 60 

main-group heterocycles via Lewis acid cyclization pathways and survey the mechanistic insights 61 

of each newly developed synthetic method. Furthermore, we highlight how the accompanying 62 

advance in mechanistic understanding inspired the design and development of newer synthetic 63 

strategies (Figure 1C). As part of the treatment of metalated heterocycles, this review includes 64 

heterocycles containing main group metalloids because they provide access to valuable organic 65 
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scaffolds via downstream functionalization reactions through mechanistically similar cyclization 66 

reactions as their neighboring metals. 67 

 68 

Main-group metals and their recent reactivity as Lewis acids for heterocyclization reactions 69 

Boron 70 

Organoboron reagents, especially heterocycle-derived ones, are commonly used in synthetic [12] 71 

and medicinal chemistry [13,14] as building blocks because of their low toxicity [15] and broad 72 

downstream reaction types [16]. Moreover, organoboron reagents are also used for making 73 

boron containing polymers, which have attracted significant attention in material science due to 74 

the special physical and chemical properties of boron [17]. Organoboron compounds also have 75 

direct usage as catalysts [18], delivery agents for neutron capture therapy of cancer [19], and 76 

molecular imaging probes [20,15].  77 

 78 

One way to access borylated heterocycles through the Lewis acid cyclization approach is to 79 

synthetize B–X bond-containing substrate 1 first, followed by in situ cyclative addition of the B–80 

X bond across alkynes to afford the desired borylated heterocyclic products 2 (Figure 2A). Since 81 

the B–X bond is added across the alkyne, we find it helpful to call this type of reaction direct 82 

boron–element addition [21]. Typically, direct addition requires Lewis acidic catalysis (e.g., Au, 83 

Cu, or B(C5F6)3), and products 2 are air-unstable Bcat or 9-BBN derivatives. Therefore, in situ 84 

transformation to more stable boron compounds (i.e., Bpin, Bdan) is typically required. 85 

 86 

In 2014, Blum developed this B–X direct addition concept via the first direct oxyboration reaction, 87 

generating isolable borylated benzofurans (2a) [22,23]; this reaction proceeds through gold Lewis 88 

acid activation of the alkyne and a subsequent nucleophilic cyclization by oxygen of the 89 

preformed B–O bond. Since then, this group has expanded the Au-catalyzed direct borylation 90 

methodology to access a variety of borylated heterocycles (2a–2e) [24–26]. In 2019, a 91 

conceptually similar Cu-catalyzed aminoboration for making borylated pyrazoles (2f) was 92 

reported [27]. Interestingly, cyclization for 2b also proceed without a catalyst, albeit higher 93 

reaction temperature and elongated reaction times were required [24]. 94 
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Along with method development, Blum conducted a series of mechanistic studies and the generic 95 

reaction mechanism of Au/Cu-catalyzed direct borylation as proposed is shown in Figure 2B. In 96 

the catalytic cycle, the alkyne is activated by the carbophilic Au/Cu catalyst first via coordination. 97 

Second, the nucleophilic heteroatom attacks the activated alkyne to afford intermediates 4a and 98 

4b. After gold-to-boron transmetalation [28], the desired borylated heterocyclic compound 2-99 

Bcat is formed and the catalyst is regenerated [21]. Early reports proposed that the Lewis basic 100 

ligand Y also coordinates to the boron in a “double activation” mode (3b). However, later 101 

mechanistic studies suggested that this double activation mode might not be necessary (3a) [29]. 102 

 103 

In 2017, Wang published a B(C5F6)3 (BCF)-catalyzed direct aminoboration reaction (Figure 2A, 104 

compound 2g) [30]. Substrates containing 9-BBN were reactive in this reaction, complimentary 105 

to previous reports with Bcat. There are two proposed plausible mechanisms, as summarized in 106 

Figure 2C. The first option is similar to the Au/Cu-catalyzed counterparts in which the alkyne of 107 

substrate 1g is activated by BCF forming a possible activation structure, 5, [31] followed by 108 

nucleophilic attack to the activated alkyne to form intermediate 6. After a borenium exchange 109 

(analogous to transmelatation), the desired product 2g is produced together with BCF 110 

regeneration. In option 2, the borenium containing intermediate 6 is used to activate the alkyne 111 

of another substrate 1g, followed by cyclization to form 7a and counter ion 7b. The intermediate 112 

7a also contained a borenium ion that could activate the alkyne of the third substrate 1g to both 113 

generate the desired product 2g and “regenerate” 7a; although 7a is generated in each catalytic 114 

cycle, it is a new/different molecule of 7a each time around the cycle. In option 2, BCF acts as an 115 

initiator and the compound 7a is the active catalytic species. 116 

 117 

We find it helpful to refer to another type of reaction as formal boron/element addition. In this 118 

type of reaction, the formation of a X–B bond is not a prerequisite, nor is such a bond along the 119 

productive reaction pathway. Instead, separate reagents are employed, resulting in a net formal 120 

addition of B/X equivalents [21]. The source of the element X for the addition is from the 121 

substrate and the source of boron is from an external reagent. 122 

 123 
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These types of reactions were initially developed by Melen and Stephen, wherein BCF was used 124 

to induce formal oxyborations [32,33]. A recent example by Melen with BCF is presented in Figure 125 

3A. When substrate 8 is treated with BCF, nucleophilic attack to the BCF-activated alkyne 9 yields 126 

zwitterionic product 10 with up to 65% yield. An advantage of employing this reagent is that the 127 

high Lewis acidity of BCF leads to low temperature (−40–25 ˚C) reactions. [32] A drawback is that 128 

the BCF-zwitterionic products are generally inert to the well-known classes of further 129 

downstream functionalization reactions (e.g., conjugate addition and Suzuki cross-coupling 130 

reactions) [21,34]. 131 

 132 

Starting in 2016, Blum developed ClBcat induced formal borylation–dealkylation/deacylation 133 

reactions to synthesize borylated isocoumarins and thiophenes (12a–12d) [35–37]. These 134 

reactions require elevated temperatures but produce borylated heterocyclic building blocks 135 

primed for use in established boron downstream functionalization reactions through the known 136 

reactivity of Bcat, Bpin, BMIDA, and B(OH)2 groups [38]. In some cases, the Bcat products from 137 

these reactions could be isolated directly without needing air-free techniques, and without boron 138 

group swaps to increase their stability [39].  139 

 140 

In 2017, Fu expanded this methodology to make borylated indoles with up to 73% yield, in a case 141 

where DFT calculation inspired new methodology (Figure 3B) [40]. Similarly, Ingleson [34] and Shi 142 

[41] reported BCl3-induced formal borylation reactions in 2016 and 2018, respectively (Figure 3C). 143 

Plausibly due to the stronger Lewis acidity of BCl3 over ClBcat, ethers and amides could be 144 

dealkylated to synthesize benzofurans (14a, X = O) and benzolactams (14c), a process not 145 

previously reported with the ClBcat reagent. Multiple reports of formal BCl3-induced borylative 146 

heterocyclizations have been reported by Li, C. Yang, and Z. Yang since 2015 with good yields; 147 

these reactions are notable because they result in cyclization onto alkenes and allenes instead of 148 

alkynes (Figure 3C) [42–44]. 149 

 150 

Based on experimental and theoretical studies, a general mechanism of cyclative formal 151 

boron/element addition is proposed (Figure 3D). Nucleophilic attack on the activated alkyne 15 152 
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by the heteroatom generates zwitteronic intermediate 16. Dealkylation, deacylation, or 153 

deprotonation by chloride generates the product [45]. Blum originally proposed that free 154 

chloride was the dealkylation agent [45], however, subsequent density functional theory (DFT) 155 

calculations by Fu [40] and Yasuda [46] suggested that [Cl2Bcat]– is more likely. Regarding the 156 

mechanism of BCl3-induced alkene formal borylation, the original report proposed the 157 

generation of X–BCl2 as the first step instead of the alkene activation [42]; however, newer 158 

computational studies suggest that the alkene is directly activated by BCl3 followed by cyclization 159 

(the same pathway as the alkyne counterparts shown in Figure 3D) [47]. 160 

 161 

Criteria for choosing ClBcat-induced direct boron–element addition or formal boron/element 162 

addition as a synthetic strategy: Based on experimental observations, Blum suggested a pKa 163 

approach: When pKa of the corresponding X–H is less than 10, ClBcat-induced formal 164 

boron/element addition is the better choice because the X will be both sufficiently nucleophilic 165 

for cyclization and a sufficiently good leaving group for dealkylation/deacylation [21]. Based on 166 

DFT calculations, Fu suggested a conceptually similar consideration that included balance of 167 

nucleophilicity and leaving group ability [40].  168 

 169 

Indium 170 

Organoindium compounds were not widely appreciated in organic synthesis until the 1980s [48]. 171 

In recent years, increasing attention has been paid to organoindium reagents due to their unique 172 

chemical properties and their relatively low toxicity. Advantages of organoindium reagents 173 

include: 1) low basicity and mild nucleophilicity, resulting in broad functional group tolerance in 174 

cross-coupling reactions (including for useful hydroxyl groups); 2) tolerance of protic solvents; 3) 175 

minimization of side reactions, such as β-hydride elimination and homocoupling; and, 4) 176 

improved or complementary regio- and stereoslectivity compared to other organometallics [48–177 

50]. 178 

 179 

Harnessing the aforementioned complementary regioselectivity of indium, Yasuda developed a 180 

formal oxyindation reaction of alkynyl esters with high isolated yields in 2018 and 2019 (Figure 181 
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4A) [46,51]. In this reaction, InI2-lactone derivatives could be synthesized by treating alkynyl 182 

esters 17 with InI3. The resulting metalated heterocycles were either directly isolated as the 183 

organoindium compounds, or transformed in situ into the corresponding organoiodides. This 184 

reactivity is attractive because both the nucleophilic (organometallic) and electrophilic 185 

(alkenyliodide) cross-coupling partners could be synthesized using this method.  Notably, this 186 

method provides complementary regioselectivity in that it accesses 6-membered ring products 187 

on terminal alkyne substrates: both ClBcat formal oxyboration [35] and Larock halocyclization 188 

direct-to-the-iodide [52] reactions are selective for the 5-membered ring products instead (e.g., 189 

22 and 23 in Figure 4B). 190 

 191 

The indium cyclization reaction mechanism is similar to that for formal boron/element cyclization. 192 

As shown in Figure 4A, nucleophilic cyclization onto the indium-activated alkyne and subsequent 193 

dealkylation yields the final product 19. DFT calculations suggest that the regioselectivity 194 

difference between boron and indium arises from the large polarizability of indium and iodine, 195 

which makes the cyclization step of oxyindation reversible. The dealkylation step is thus the rate-196 

determining, and the 6-membered ring products are formed. In contrast, for oxyboration, the 197 

low polarizability of boron and chlorine makes the initial cyclization step the rate-determining 198 

step, so the 5-membered product is favored [46]. 199 

 200 

Silicon 201 

Organosilicon reagents feature prominently in synthetically useful reactions, such as the Hiyama 202 

coupling [53,54], Tamao oxidation [8], and Hosomi-Sakurai [55] reactions [56]. They possess the 203 

advantages of high stability, nontoxicity, and ease of handling [53,54]. These advantages 204 

particularly stand out in comparison to their organoboron alternatives, especially after 205 

toxicological issues regarding some organoboron reagents were suggested in 2011 [53]. Because 206 

sila-substitution of drug molecules can increase lipophilicity, improve potency, and alter 207 

metabolism rate, organosilicon compounds, especially ones derived from heterocycles, have also 208 

found direct applications in medicinal chemistry and drug development [57]. Furthermore, 209 
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organosilicon compounds are useful for biological imaging, drug release technology, and 210 

mapping inhibitor binding [58]. 211 

 212 

Although silanes are typically not π Lewis acidic enough to promote cyclization reactions, Yan 213 

recently develop a BCF-catalyzed formal silylative cyclization (Figure 5A) [59]. In this intriguing 214 

reaction, 3-silylated benzothiophenes (24a), benzofurans (24b), and indoles (24c) were 215 

successfully obtained in good yields. Yan proposed that the hydrosilane is activated by BCF via a 216 

B–H interaction (25). Generation of cationic silylium ion 26 and [H–BCF]– (27) follows. The silylium 217 

ion, 26, activates the alkyne, and ring closure forms 29. Finally, 29 undergoes demethylation by 218 

hydride donor 27 to generate the desired product and regenerate the BCF catalyst. We find this 219 

mechanism inspiring because it suggests that other metal or metalloid hydrides could also be 220 

potentially converted into sufficiently π Lewis acidic species with a secondary Lewis acid catalyst, 221 

enabling the synthesis of their corresponding metalated heterocycles that are otherwise hard to 222 

access. 223 

 224 

Tin 225 

Organotin (organostanne) reagents are particularly well known for their applications in C–C bond 226 

formation (i.e., Stille cross-coupling reactions) [60]. Due to their high toxicity, however, their 227 

popularity in medicinal chemistry has faded [61]. Yet, organostanne reagents still hold 228 

irreplaceable merits, such as their higher reliability in synthesis of complicated molecules and 229 

their tolerance of harsh reaction conditions [60]. These merits were highlighted by Pfizer in a 230 

comparative study on large-scale preparation of an imidazole-thienopyridine based VEGFR kinase 231 

inhibitor [62].  232 

 233 

Probably due to this high toxicity, there are limited cyclizative stannaylation reactions reported 234 

in recent years. One notable example is of a Ag-catalyzed cascade formal aminostannylation 235 

reaction, reported by Liu in 2013 (Figure 6A) [63]. This reaction affords 3-stannylated indoles with 236 

good yields and good functional group tolerance, with relatively mild reaction conditions. 237 
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The plausible reaction mechanism is composed of two independent catalytic cycles: a 238 

heterocyclization cycle and a stannyl cation generation cycle (Figure 6B). The reaction is initiated 239 

by formation of 32 via Ag–alkyne coordination. Then, the subsequent attack of the activated 240 

alkyne by the nitrogen forms 3-silverindole intermediate 33. Separately, another silver generates 241 

stannylium ion 36 and organosilver 35 by transmetalation with 2-stannylfuran 34. Finally, 242 

transmetalation of 33 with 36 forms the desired product and regenerates one of the silver 243 

catalysts. The other silver catalyst is regenerated by protodemetalation of 35. 244 

 245 

Selenium 246 

Organoselenium compounds often show different reactivity than other organometallic 247 

compounds: Once formed, the resulting Se and Se–C bonds in the metalated heterocycles display 248 

both electrophilc and nucleophilc behavior [64,65]. For example, in cross-coupling reactions, the 249 

typical organohalide electrophilic partner can be replaced by an organoselenium partner [66], 250 

whereas most other organometallic reagents serve exclusively as nucleophilic partners in cross-251 

coupling reactions. Further, many heterocyclic orgnoselenium compounds show biological 252 

activity [67]. 253 

 254 

A canonical method to make organoselenium heterocycles is the classic “Larock-type” 255 

electrophilic selenocyclization reaction [68]. A recent example of this type of reaction was 256 

reported by Perin and Roehrs in 2017, whereby treatment of alkynyl selenoether 37 with 257 

electrophilic PhSeBr formed 3-selanylbenzoselenophenes 39 in high yields (Figure 7A) [69]. The 258 

proposed reaction mechanism involves formation of key seleniranium ion intermediate 38 and 259 

its subsequent dealkylation with bromide (Figures 7A,E). A general drawback of using 260 

phenylselenyl halide reagents for selenocyclization, however, is that the halide ions generated in 261 

the reaction may give undesirable incorporation of halide into other locations in the products. To 262 

avoid this, electrophilic selenium reagents with less nucleophilic counter ions may be used [68]. 263 

 264 

Recent approaches for making selanylheterocycles through Lewis acid cyclization have focused 265 

on diselenide reagents (Figures 7B–F).  Because diselenides are not electrophilic enough on their 266 
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own to enable cyclization, additives are required for generation of a sufficiently electrophilic 267 

selenium species. We find it helpful to divide these additives into two conceptual classes on the 268 

basis of their reactivity (Figure 7E): The type 1 additive (i.e., NFSI or Oxone®) converts diselenides 269 

into the analogs of “classic” phenylselenyl halide reagents [67,70]. Other recent examples of type 270 

1 additives include CuI and SelectFluor® (Figure 7F) [71,72]. The type 2 additive (i.e., FeCl3) is a 271 

secondary Lewis acid that coordinates to the diselenide. Control mechanistic studies showed that 272 

FeCl3 is not the Lewis acid responsible for the cyclization step directly [73], but rather that it 273 

activates the diselenide, plausibly by forming electrophilic iron–diselenide complex 48′. Then, 48′ 274 

induces electrophilic cyclization (Figure 7E).  275 

 276 

In 2020, Shao, Li and Chen reported the first formal aminoselenation using alkenyl anilines to 277 

generate selanylindoles (Figure 7B) [67]. By using NFSI as the activator under basic conditions, 278 

the indoline products could be oxidized in a basic oxidation/elimination sequence in situ to form 279 

indole products. This discovery was unique since indoles are typically generated from alkynyl 280 

substrates. This reactivity suggests that when developing new Lewis acid cyclization reactions of 281 

other metal types, the potential may exist to employ readily available alkene substrates if in situ 282 

oxidation can be induced on demand.  283 

 284 

Oxone® was another effective activation reagent, as demonstrated by Perin (Figure 7C). Various 285 

selenated heterocycles (43a–43c) were afforded with high yields [74–76]. Additionally, 286 

ultrasound afforded 43d–43g with high yields [70], [77–79]. 287 

 288 

If alkyldiselenides are used in combination of diyne (or triyne) substrates, formal tandem 289 

heteroselenation reactions can be achieved, resulting in a sequence of two or more cyclization 290 

reactions within the same substrate (Figure 7D). In 2016, Zeni reported an Fe-induced formal 291 

heteroselenation for the synthesis of fused selenylheterocycles 46a [80]. Later, Zeni expanded 292 

this reaction with a range of heteroatom nucleophile substrates (46b) [73]. Recently, Koketsu 293 

reported an Fe-mediated heteroselenation to make selenated heteroacenes (46c) [81]. Although 294 

the mechanism “on paper” suggested that FeCl3 could be used as a catalyst to activate selenium, 295 
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excess FeCl3 was required in practice. Since 2019, Perin has been expanding Oxone®-promoted 296 

methods for tandem reactions, for example to generate 46d [82]. In some cases, identical 297 

substrates have been reported by Zeni for FeCl3-promoted and by Perin for Oxone®-promoted 298 

reactions, enabling a “head-to-head” comparison of activating agents; both result in high yields 299 

e.g., of 46a [80,83]. The key idea that enabled these tandem reactions was the use of 300 

alkyldiselenide reagents. Because the intermediate 45 contained an SN2-reactive alkyl group on 301 

the nucleophilic selenium, the second and third formal selenoselenation reactions were possible. 302 

 303 

Tellurium 304 

Similar to organoselenium reagents, organotellurium reagents also possess “two faces” in their 305 

amphiphilic chemical properties.  The nucleophilic character is accessed upon transmetalation or 306 

formation of “ate” complexes with other metals, including lithium and copper [84,85]. For 307 

example, organotellurium-derived cuprates are suitable nucleophiles to open epoxides [86] or to 308 

cross couple with alkynyl halides [87,88]. Conversely, organotellurium reagents used directly 309 

serve in the electrophile role in place of organohalides in cross-coupling reactions [84,65]. 310 

 311 

In a series of publications from 2016 to 2018, Onysko reported formal thiotelluration reactions 312 

of both cyclic and acyclic thiourea derivatives with aryltellurium trichloride as the Lewis acidic 313 

telluration reagent (Figure 8A) [89–91]. Being a co-member of chalcogen elements, the proposed 314 

mechanism of thiotelluration shares similar features to that of the previously discussed formal 315 

heteroselenation reaction (Figure 7E) (e.g., three-membered ring telluronium cation 316 

intermediate 54; Figure 8A). However, different from the heteroselenation mechanism, the 317 

telluronium ion is proposed to be opened by a dissociated chloride ion, forming 55. Subsequent 318 

nucleophilic attack of the sulfur on the alkylchloride yields isolable tellurium(IV) HCl salt 56 in up 319 

to 75% yield. The HCl salt 56 could be reduced to tellurium(II) product 57 upon treatment with 320 

Na2SO3. Evidence for the generation of an apparent chlorotelluration intermediate was obtained 321 

by studies on acyclic thiourea substrates, through which isolable chlorotelluration products 59 322 

were obtained (Figure 8B) [91]. 323 

 324 
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Recently, Zeni, Perin, Schumacher and Silva demonstrated iron-, Oxone®-, or SelectFluor®-325 

promoted formal (tandem)heterotelluration reactions using ditelluride reagents to generate 326 

62a–62e [70,72,73,76]. Although detailed mechanistic studies of these reactions have not been 327 

reported, the mechanisms plausibly share features with the corresponding formal 328 

heteroselenation reactions using diselenides (vide supra). 329 

 330 

Concluding remarks 331 

In this Review, we highlighted recent developments of synthetic methods for the generation of 332 

isolable main-group metalated heterocycles via Lewis acid heterocyclization reactions. 333 

Mechanistic features of different cyclization reactions were also summarized. Despite 334 

tremendous progress made in this field, there are still many unanswered questions (See 335 

Outstanding Questions). For example, studies showed that the stability of boron groups is highly 336 

heterocycle dependent [39], and the trends are not fully understood. If fully understood, a 337 

general isolation guide for borolative heterocyclization reactions could be established. 338 

Furthermore, only Bcat and 9-BBN groups have shown reactivity in direct borylative 339 

heterocyclizaiton reactions, but what strategies there are for expanding the toolkit (e.g., to Bpin) 340 

remain undefined. 341 

 342 

Unexplored areas also remain in broadening heteroindation reactions. To date, only cyclative 343 

oxyindation of alkynes has been reported. Can other nucleophiles, such as amines, and other 344 

electrophiles, such as alkenes and allenes, be developed for cyclative heteroindation? 345 

Furthermore, if heteroindation of alkenes is possible, will it exhibit the unique regioselectivity of 346 

its alkyne counterparts? Regarding group 4 elements, can the seminal BCF-catalyzed formal 347 

heterosilylation reaction [59] been expanded to other group 4 metals, e.g., to develop a BCF-348 

catalyzed formal heterostannelation reaction? Or is it possible to even expand the BCF-catalyzed 349 

reaction to metal hydrides in different groups? 350 

 351 

As for the pairs of electrophiles and cyclization substrates, alkene (and allene) cyclizations are 352 

underdeveloped compared to alkynes. Currently, there are only a few examples of alkene and 353 
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allene cyclizations, focusing on BCl3 [42–44]. For these limited reports on alkenes, only exo 354 

cyclization has been observed. On the contrary, most of the reported cyclization reactions on 355 

alkynes, with various metals, are endo cyclizations. Therefore, it is natural to ask if it might be 356 

possible to design reactions to control the selectivity. 357 

 358 

One can also wonder if some of the reaction intermediates can be intercepted without isolation 359 

for relay or dual-catalytic transformations. For example, because it has been demonstrated that 360 

the indium-containing products of oxyindation are reactive towards in situ cross-coupling 361 

reactions [46,51], can systems catalytic in indium or other main group metals be developed as 362 

part of dual-catalytic cross-coupling reactions? With such intriguing questions yet unanswered, 363 

the next coming years may hold as many developments as the recent past. 364 
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 574 

Glossary 575 

Activation structure: an intermediate or transition state along the reaction pathway that shows 576 

the Lewis acid activation of the  system. 577 
 578 
Heterocyclic scaffolds: cyclic compounds having at least one ring-member atom of an element 579 
other than carbon. Also known as heterocyclic compounds and heterocycles. 580 
 581 
Intermediate: a species that exists between reactants and products in a stage corresponding to 582 
local energy minimum on the reaction’s potential energy surface. Some reaction intermediates 583 
are isolable, but most are not; others can be detected spectroscopically. 584 
 585 
Ligand: a group that binds to a metal center in a complex. 586 
 587 
Mechanism: the processes over time in which the chemical steps necessary for one molecule to 588 
be transformed into another occur through intermediates and transition states. Also known as a 589 
reaction mechanism. 590 
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 591 
Protodemetalation: a reaction in which the metal of a metal–carbon bond in an organometallic 592 
compound is replaced with a proton, yielding a hydrogen–carbon bond. 593 
 594 
Regioselectivity: the preference of formation (or breaking) of chemical bonds at one site in a 595 
molecule over others. Regioselective reactions yield only one (or predominately one) 596 
constitutional isomer when multiple constitutional isomers are possible products. 597 
 598 
Transmetalation (alt spelling: transmetallation): a type of organometallic reaction in which two 599 
(typically different) metals swap their X type ligands.  600 
 601 
Zwitterion: a molecule that contains an equal number of positively and negatively charged 602 
functional groups. Also known as inner salt. 603 
 604 

 605 

 606 

 607 

 608 

Figure Captions. 609 

Figure 1. Introduction to this manuscript. (A) Traditionally, metalated heterocycles are 610 
synthesized by constructing the heterocycle first, followed by metalation. (B) This review 611 
describes Lewis acid induced main-group metalative heterocyclization, which can access 612 
metalated heterocycles in one step. (C) Schematic of interplay of progress in methods 613 
development and its relationship to mechanistic studies and applications in synthesis. 614 
 615 
Figure 2. Borylative heterocyclizations by direct addition. (A) Generic reaction scheme of direct 616 
cyclative boron–element addition reactions and classes of accessible borylated heterocycles. (B) 617 
Proposed mechanism of Au/Cu-catalyzed direct cyclative boron–element addition. (C) Proposed 618 
mechanisms of BCF-catalyzed direct aminoboration. 619 
 620 
Figure 3. Borylative heterocyclizations by formal addition. (A) BCF-induced oxyboration showing 621 
possible activation structure. (B) Generic reaction scheme of ClBcat induced formal borylation–622 
dealkylation/deacylation and classes of accessible borylated heterocycles. (C) Generic reaction 623 
scheme of BCl3 induced formal borylation–dealkylation/deprotonation and classes of accessible 624 
borylated heterocycles. (D) Proposed reaction mechanism of ClBcat and BCl3 induced formal 625 
cyclative boron/element addition. 626 
 627 
Figure 4. Indium heterocyclizations. (A) Reaction scheme of 6-membered ring selective 628 
oxyindation with key proposed activation structure and isolation methods. (B) Contrasting 629 
regioselectivity of other methods, showing complementary regioselectivity of indium in part A. 630 
 631 
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Figure 5. Silylative heterocyclizations. (A) Generic reaction scheme of BCF-catalyzed formal 632 
silylative cyclization and classes of accessible silylated heterocycles. (B) Proposed mechanism of 633 
BCF-catalyzed cyclative formal silicon/element addition. 634 
 635 
Figure 6. Stannylative heterocyclizations. (A) Reaction scheme of Ag-catalyzed cascade formal 636 
aminostannylation. (B). Proposed reaction mechanism of Ag-double-catalytic cascade formal 637 
aminostannylation. 638 
 639 
Figure 7. Selenium heterocyclizations. (A) Example of “classic Larock-type” PhSeBr-induced 640 
selenocyclization with key activation intermediate. (B) NFSI-induced formal aminoselenation 641 
using alkene as substrates. The benzoindoline products could be autoxided into benzoindole 642 
products. (C) Oxone®-induced formal heteroselenation and classes of accessible selenated 643 
heterocycles. Products could not be autoxided in this type of reactions when alkene substrates 644 
used. (D) Formal tandem heteroselenation and classes of accessible selenated fused heterocycles. 645 
The SN2-reactive alkyl selenium reagent enables the second and third cyclizations. (E) Plausible 646 
key mechanistic steps of formal cyclizative heteroselenation and generation of sufficiently Lewis 647 
acidic selenium species from inert diselenide reagents. (F) Generation of activated selenium 648 
reagents from other activation agents for diselenides. 649 
 650 
Figure 8. Tellurium heterocyclizations. (A) Generic reaction scheme of formal thiotelluration of 651 
cyclic thiourea substrates with proposed key intermediates. (B) Mechanistic insight through 652 
isolable related compounds. (C) Fe(III)- and Oxone®-induced formal heterotelluration and classes 653 
of accessible tellurated heterocycles. 654 
 655 
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Figure 7.  716 
 717 
 718 

(B) Recent examples activate selenium reagents. Activation by NFSI in formal 
aminoselenation, alkene substrate to alkene product (Shao, Li, & Chen, 2020)
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