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Abstract

Main-group metalated heterocycles have broad applications in synthesis, drug development, and
materials science. In this Review, we highlight recent progress in synthesizing isolable main-group
heterocycles of boron, indium, silicon, tin, selenium, and tellurium via Lewis acid cyclization
pathways, together with a discussion of mechanistic insights. Different from traditional two-step
synthetic routes in which heterocycles are constructed first followed by metalation, the herein-
described Lewis acid cyclization reactions construct the heterocyclic core and install the metal in
one synthetic step. These cyclization reactions proceed with predictable regioselectivity and with
high functional group tolerance. While all the described reactions are Lewis acid cyclization
reactions onto carbon—carbon t bonds, mechanistic studies show different metals/reagents can
proceed through different intermediates.
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Introduction to synthetic methods to generate metalated heterocycles: past and present

Heterocyclic scaffolds (see glossary) are present in greater than 85% of biologically active
compounds [1]. Metalated heterocycles are of interest because they enable the synthesis of
diversely functionalized heterocycles, through the cross-coupling [2—4], conjugate addition [5,6],
and oxidation [7,8] reactivity of their metal—carbon bonds. Therefore, development of synthetic
methods for the generation of metalated heterocycles has garnered significant attention.
Traditionally, metalated heterocycles are constructed by synthesis of the heterocyclic core first,
followed by metalation of this core second (Figure 1A). Such a two-step strategy results in
elongated synthetic routes, and often poor regioselectivity and/or limited functional group
compatibility due to heavy reliance on lithiation [9] or C—H activation [10,11] methods in the
second step. Conversely, the development of the Lewis acid cyclization routes to metalated
heterocycles, described herein, enables the construction of the heterocyclic core and installation
of the metal in one synthetic step (Figure 1B). These cyclization reactions proceed with
predictable regioselectivity and with high functional group tolerance. In light of the
aforementioned merits, this synthetic strategy has evolved rapidly in the past few years and
accompanying mechanistic studies have resulted in better understanding of their reaction
mechanisms. This recent extensive development of Lewis acid cyclization reactions has a
threefold impact: 1) it expands the synthetic tools available for natural product, drug
development, and materials synthesis; 2) it provides access to new metalated heterocycles that
could not be accessed through prior two-step synthetic pathways, and 3) the divergence of
mechanisms of the different Lewis acid cyclization reactions opens additional research avenues

and provides inspiration for forthcoming methods development.

In this Review, we highlight the recent progress in synthetic methods development for isolable
main-group heterocycles via Lewis acid cyclization pathways and survey the mechanistic insights
of each newly developed synthetic method. Furthermore, we highlight how the accompanying
advance in mechanistic understanding inspired the design and development of newer synthetic
strategies (Figure 1C). As part of the treatment of metalated heterocycles, this review includes

heterocycles containing main group metalloids because they provide access to valuable organic
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scaffolds via downstream functionalization reactions through mechanistically similar cyclization

reactions as their neighboring metals.

Main-group metals and their recent reactivity as Lewis acids for heterocyclization reactions
Boron

Organoboron reagents, especially heterocycle-derived ones, are commonly used in synthetic [12]
and medicinal chemistry [13,14] as building blocks because of their low toxicity [15] and broad
downstream reaction types [16]. Moreover, organoboron reagents are also used for making
boron containing polymers, which have attracted significant attention in material science due to
the special physical and chemical properties of boron [17]. Organoboron compounds also have
direct usage as catalysts [18], delivery agents for neutron capture therapy of cancer [19], and

molecular imaging probes [20,15].

One way to access borylated heterocycles through the Lewis acid cyclization approach is to
synthetize B—-X bond-containing substrate 1 first, followed by in situ cyclative addition of the B—
X bond across alkynes to afford the desired borylated heterocyclic products 2 (Figure 2A). Since
the B—X bond is added across the alkyne, we find it helpful to call this type of reaction direct
boron—element addition [21]. Typically, direct addition requires Lewis acidic catalysis (e.g., Au,
Cu, or B(CsFe)s3), and products 2 are air-unstable Bcat or 9-BBN derivatives. Therefore, in situ

transformation to more stable boron compounds (i.e., Bpin, Bdan) is typically required.

In 2014, Blum developed this B—X direct addition concept via the first direct oxyboration reaction,
generating isolable borylated benzofurans (2a) [22,23]; this reaction proceeds through gold Lewis
acid activation of the alkyne and a subsequent nucleophilic cyclization by oxygen of the
preformed B—O bond. Since then, this group has expanded the Au-catalyzed direct borylation
methodology to access a variety of borylated heterocycles (2a-2e) [24-26]. In 2019, a
conceptually similar Cu-catalyzed aminoboration for making borylated pyrazoles (2f) was
reported [27]. Interestingly, cyclization for 2b also proceed without a catalyst, albeit higher

reaction temperature and elongated reaction times were required [24].
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Along with method development, Blum conducted a series of mechanistic studies and the generic
reaction mechanism of Au/Cu-catalyzed direct borylation as proposed is shown in Figure 2B. In
the catalytic cycle, the alkyne is activated by the carbophilic Au/Cu catalyst first via coordination.
Second, the nucleophilic heteroatom attacks the activated alkyne to afford intermediates 4a and
4b. After gold-to-boron transmetalation [28], the desired borylated heterocyclic compound 2-
Bcat is formed and the catalyst is regenerated [21]. Early reports proposed that the Lewis basic
ligand Y also coordinates to the boron in a “double activation” mode (3b). However, later

mechanistic studies suggested that this double activation mode might not be necessary (3a) [29].

In 2017, Wang published a B(CsFs)s (BCF)-catalyzed direct aminoboration reaction (Figure 2A,
compound 2g) [30]. Substrates containing 9-BBN were reactive in this reaction, complimentary
to previous reports with Bcat. There are two proposed plausible mechanisms, as summarized in
Figure 2C. The first option is similar to the Au/Cu-catalyzed counterparts in which the alkyne of
substrate 1g is activated by BCF forming a possible activation structure, 5, [31] followed by
nucleophilic attack to the activated alkyne to form intermediate 6. After a borenium exchange
(analogous to transmelatation), the desired product 2g is produced together with BCF
regeneration. In option 2, the borenium containing intermediate 6 is used to activate the alkyne
of another substrate 1g, followed by cyclization to form 7a and counter ion 7b. The intermediate
7a also contained a borenium ion that could activate the alkyne of the third substrate 1g to both
generate the desired product 2g and “regenerate” 7a; although 7a is generated in each catalytic
cycle, it is a new/different molecule of 7a each time around the cycle. In option 2, BCF acts as an

initiator and the compound 7a is the active catalytic species.

We find it helpful to refer to another type of reaction as formal boron/element addition. In this
type of reaction, the formation of a X—B bond is not a prerequisite, nor is such a bond along the
productive reaction pathway. Instead, separate reagents are employed, resulting in a net formal
addition of B/X equivalents [21]. The source of the element X for the addition is from the

substrate and the source of boron is from an external reagent.
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These types of reactions were initially developed by Melen and Stephen, wherein BCF was used
to induce formal oxyborations [32,33]. A recent example by Melen with BCF is presented in Figure
3A. When substrate 8 is treated with BCF, nucleophilic attack to the BCF-activated alkyne 9 yields
zwitterionic product 10 with up to 65% yield. An advantage of employing this reagent is that the
high Lewis acidity of BCF leads to low temperature (-40-25 °C) reactions. [32] A drawback is that
the BCF-zwitterionic products are generally inert to the well-known classes of further
downstream functionalization reactions (e.g., conjugate addition and Suzuki cross-coupling

reactions) [21,34].

Starting in 2016, Blum developed ClBcat induced formal borylation—dealkylation/deacylation
reactions to synthesize borylated isocoumarins and thiophenes (12a—12d) [35-37]. These
reactions require elevated temperatures but produce borylated heterocyclic building blocks
primed for use in established boron downstream functionalization reactions through the known
reactivity of Bcat, Bpin, BMIDA, and B(OH), groups [38]. In some cases, the Bcat products from
these reactions could be isolated directly without needing air-free techniques, and without boron

group swaps to increase their stability [39].

In 2017, Fu expanded this methodology to make borylated indoles with up to 73% yield, in a case
where DFT calculation inspired new methodology (Figure 3B) [40]. Similarly, Ingleson [34] and Shi
[41] reported BCls-induced formal borylation reactions in 2016 and 2018, respectively (Figure 3C).
Plausibly due to the stronger Lewis acidity of BCls over ClBcat, ethers and amides could be
dealkylated to synthesize benzofurans (14a, X = O) and benzolactams (14c), a process not
previously reported with the CIBcat reagent. Multiple reports of formal BCls-induced borylative
heterocyclizations have been reported by Li, C. Yang, and Z. Yang since 2015 with good yields;
these reactions are notable because they result in cyclization onto alkenes and allenes instead of

alkynes (Figure 3C) [42—-44].

Based on experimental and theoretical studies, a general mechanism of cyclative formal

boron/element addition is proposed (Figure 3D). Nucleophilic attack on the activated alkyne 15
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by the heteroatom generates zwitteronic intermediate 16. Dealkylation, deacylation, or
deprotonation by chloride generates the product [45]. Blum originally proposed that free
chloride was the dealkylation agent [45], however, subsequent density functional theory (DFT)
calculations by Fu [40] and Yasuda [46] suggested that [Cl.Bcat]” is more likely. Regarding the
mechanism of BCls-induced alkene formal borylation, the original report proposed the
generation of X—BCl, as the first step instead of the alkene activation [42]; however, newer
computational studies suggest that the alkene is directly activated by BCls followed by cyclization

(the same pathway as the alkyne counterparts shown in Figure 3D) [47].

Criteria for choosing ClBcat-induced direct boron—-element addition or formal boron/element
addition as a synthetic strategy: Based on experimental observations, Blum suggested a pK,
approach: When pK, of the corresponding X—H is less than 10, CIBcat-induced formal
boron/element addition is the better choice because the X will be both sufficiently nucleophilic
for cyclization and a sufficiently good leaving group for dealkylation/deacylation [21]. Based on
DFT calculations, Fu suggested a conceptually similar consideration that included balance of

nucleophilicity and leaving group ability [40].

Indium

Organoindium compounds were not widely appreciated in organic synthesis until the 1980s [48].
In recent years, increasing attention has been paid to organoindium reagents due to their unique
chemical properties and their relatively low toxicity. Advantages of organoindium reagents
include: 1) low basicity and mild nucleophilicity, resulting in broad functional group tolerance in
cross-coupling reactions (including for useful hydroxyl groups); 2) tolerance of protic solvents; 3)
minimization of side reactions, such as B-hydride elimination and homocoupling; and, 4)
improved or complementary regio- and stereoslectivity compared to other organometallics [48—

50].

Harnessing the aforementioned complementary regioselectivity of indium, Yasuda developed a

formal oxyindation reaction of alkynyl esters with high isolated yields in 2018 and 2019 (Figure
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4A) [46,51]. In this reaction, Inly-lactone derivatives could be synthesized by treating alkynyl
esters 17 with Inls. The resulting metalated heterocycles were either directly isolated as the
organoindium compounds, or transformed in situ into the corresponding organoiodides. This
reactivity is attractive because both the nucleophilic (organometallic) and electrophilic
(alkenyliodide) cross-coupling partners could be synthesized using this method. Notably, this
method provides complementary regioselectivity in that it accesses 6-membered ring products
on terminal alkyne substrates: both CIBcat formal oxyboration [35] and Larock halocyclization
direct-to-the-iodide [52] reactions are selective for the 5-membered ring products instead (e.g.,

22 and 23 in Figure 4B).

The indium cyclization reaction mechanism is similar to that for formal boron/element cyclization.
As shown in Figure 4A, nucleophilic cyclization onto the indium-activated alkyne and subsequent
dealkylation vyields the final product 19. DFT calculations suggest that the regioselectivity
difference between boron and indium arises from the large polarizability of indium and iodine,
which makes the cyclization step of oxyindation reversible. The dealkylation step is thus the rate-
determining, and the 6-membered ring products are formed. In contrast, for oxyboration, the
low polarizability of boron and chlorine makes the initial cyclization step the rate-determining

step, so the 5-membered product is favored [46].

Silicon

Organosilicon reagents feature prominently in synthetically useful reactions, such as the Hiyama
coupling [53,54], Tamao oxidation [8], and Hosomi-Sakurai [55] reactions [56]. They possess the
advantages of high stability, nontoxicity, and ease of handling [53,54]. These advantages
particularly stand out in comparison to their organoboron alternatives, especially after
toxicological issues regarding some organoboron reagents were suggested in 2011 [53]. Because
sila-substitution of drug molecules can increase lipophilicity, improve potency, and alter
metabolism rate, organosilicon compounds, especially ones derived from heterocycles, have also

found direct applications in medicinal chemistry and drug development [57]. Furthermore,
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organosilicon compounds are useful for biological imaging, drug release technology, and

mapping inhibitor binding [58].

Although silanes are typically not it Lewis acidic enough to promote cyclization reactions, Yan
recently develop a BCF-catalyzed formal silylative cyclization (Figure 5A) [59]. In this intriguing
reaction, 3-silylated benzothiophenes (24a), benzofurans (24b), and indoles (24c) were
successfully obtained in good yields. Yan proposed that the hydrosilane is activated by BCF via a
B—H interaction (25). Generation of cationic silylium ion 26 and [H-BCF]~(27) follows. The silylium
ion, 26, activates the alkyne, and ring closure forms 29. Finally, 29 undergoes demethylation by
hydride donor 27 to generate the desired product and regenerate the BCF catalyst. We find this
mechanism inspiring because it suggests that other metal or metalloid hydrides could also be
potentially converted into sufficiently it Lewis acidic species with a secondary Lewis acid catalyst,
enabling the synthesis of their corresponding metalated heterocycles that are otherwise hard to

access.

Tin

Organotin (organostanne) reagents are particularly well known for their applications in C—C bond
formation (i.e., Stille cross-coupling reactions) [60]. Due to their high toxicity, however, their
popularity in medicinal chemistry has faded [61]. Yet, organostanne reagents still hold
irreplaceable merits, such as their higher reliability in synthesis of complicated molecules and
their tolerance of harsh reaction conditions [60]. These merits were highlighted by Pfizer in a
comparative study on large-scale preparation of an imidazole-thienopyridine based VEGFR kinase

inhibitor [62].

Probably due to this high toxicity, there are limited cyclizative stannaylation reactions reported
in recent years. One notable example is of a Ag-catalyzed cascade formal aminostannylation
reaction, reported by Liu in 2013 (Figure 6A) [63]. This reaction affords 3-stannylated indoles with

good yields and good functional group tolerance, with relatively mild reaction conditions.
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The plausible reaction mechanism is composed of two independent catalytic cycles: a
heterocyclization cycle and a stannyl cation generation cycle (Figure 6B). The reaction is initiated
by formation of 32 via Ag—alkyne coordination. Then, the subsequent attack of the activated
alkyne by the nitrogen forms 3-silverindole intermediate 33. Separately, another silver generates
stannylium ion 36 and organosilver 35 by transmetalation with 2-stannylfuran 34. Finally,
transmetalation of 33 with 36 forms the desired product and regenerates one of the silver

catalysts. The other silver catalyst is regenerated by protodemetalation of 35.

Selenium

Organoselenium compounds often show different reactivity than other organometallic
compounds: Once formed, the resulting Se and Se—C bonds in the metalated heterocycles display
both electrophilc and nucleophilc behavior [64,65]. For example, in cross-coupling reactions, the
typical organohalide electrophilic partner can be replaced by an organoselenium partner [66],
whereas most other organometallic reagents serve exclusively as nucleophilic partners in cross-
coupling reactions. Further, many heterocyclic orgnoselenium compounds show biological

activity [67].

A canonical method to make organoselenium heterocycles is the classic “Larock-type”
electrophilic selenocyclization reaction [68]. A recent example of this type of reaction was
reported by Perin and Roehrs in 2017, whereby treatment of alkynyl selenoether 37 with
electrophilic PhSeBr formed 3-selanylbenzoselenophenes 39 in high yields (Figure 7A) [69]. The
proposed reaction mechanism involves formation of key seleniranium ion intermediate 38 and
its subsequent dealkylation with bromide (Figures 7A,E). A general drawback of using
phenylselenyl halide reagents for selenocyclization, however, is that the halide ions generated in
the reaction may give undesirable incorporation of halide into other locations in the products. To

avoid this, electrophilic selenium reagents with less nucleophilic counter ions may be used [68].

Recent approaches for making selanylheterocycles through Lewis acid cyclization have focused

on diselenide reagents (Figures 7B—F). Because diselenides are not electrophilic enough on their
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own to enable cyclization, additives are required for generation of a sufficiently electrophilic
selenium species. We find it helpful to divide these additives into two conceptual classes on the
basis of their reactivity (Figure 7E): The type 1 additive (i.e., NFSI or Oxone®) converts diselenides
into the analogs of “classic” phenylselenyl halide reagents [67,70]. Other recent examples of type
1 additives include Cul and SelectFluor® (Figure 7F) [71,72]. The type 2 additive (i.e., FeCls) is a
secondary Lewis acid that coordinates to the diselenide. Control mechanistic studies showed that
FeCls is not the Lewis acid responsible for the cyclization step directly [73], but rather that it
activates the diselenide, plausibly by forming electrophilic iron—diselenide complex 48'. Then, 48’

induces electrophilic cyclization (Figure 7E).

In 2020, Shao, Li and Chen reported the first formal aminoselenation using alkenyl anilines to
generate selanylindoles (Figure 7B) [67]. By using NFSI as the activator under basic conditions,
the indoline products could be oxidized in a basic oxidation/elimination sequence in situ to form
indole products. This discovery was unique since indoles are typically generated from alkyny/
substrates. This reactivity suggests that when developing new Lewis acid cyclization reactions of
other metal types, the potential may exist to employ readily available alkene substrates if in situ

oxidation can be induced on demand.

Oxone® was another effective activation reagent, as demonstrated by Perin (Figure 7C). Various
selenated heterocycles (43a—43c) were afforded with high yields [74-76]. Additionally,
ultrasound afforded 43d-43g with high yields [70], [77-79].

If alkyldiselenides are used in combination of diyne (or triyne) substrates, formal tandem
heteroselenation reactions can be achieved, resulting in a sequence of two or more cyclization
reactions within the same substrate (Figure 7D). In 2016, Zeni reported an Fe-induced formal
heteroselenation for the synthesis of fused selenylheterocycles 46a [80]. Later, Zeni expanded
this reaction with a range of heteroatom nucleophile substrates (46b) [73]. Recently, Koketsu
reported an Fe-mediated heteroselenation to make selenated heteroacenes (46c¢) [81]. Although

the mechanism “on paper” suggested that FeCls; could be used as a catalyst to activate selenium,

10
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excess FeCls was required in practice. Since 2019, Perin has been expanding Oxone®-promoted
methods for tandem reactions, for example to generate 46d [82]. In some cases, identical
substrates have been reported by Zeni for FeCls-promoted and by Perin for Oxone®-promoted
reactions, enabling a “head-to-head” comparison of activating agents; both result in high yields
e.g., of 46a [80,83]. The key idea that enabled these tandem reactions was the use of
alkyldiselenide reagents. Because the intermediate 45 contained an Sn2-reactive alky! group on

the nucleophilic selenium, the second and third formal selenoselenation reactions were possible.

Tellurium

Similar to organoselenium reagents, organotellurium reagents also possess “two faces” in their
amphiphilic chemical properties. The nucleophilic character is accessed upon transmetalation or
formation of “ate” complexes with other metals, including lithium and copper [84,85]. For
example, organotellurium-derived cuprates are suitable nucleophiles to open epoxides [86] or to
cross couple with alkynyl halides [87,88]. Conversely, organotellurium reagents used directly

serve in the electrophile role in place of organohalides in cross-coupling reactions [84,65].

In a series of publications from 2016 to 2018, Onysko reported formal thiotelluration reactions
of both cyclic and acyclic thiourea derivatives with aryltellurium trichloride as the Lewis acidic
telluration reagent (Figure 8A) [89—91]. Being a co-member of chalcogen elements, the proposed
mechanism of thiotelluration shares similar features to that of the previously discussed formal
heteroselenation reaction (Figure 7E) (e.g., three-membered ring telluronium cation
intermediate 54; Figure 8A). However, different from the heteroselenation mechanism, the
telluronium ion is proposed to be opened by a dissociated chloride ion, forming 55. Subsequent
nucleophilic attack of the sulfur on the alkylchloride yields isolable tellurium(1V) HCl salt 56 in up
to 75% yield. The HCI salt 56 could be reduced to tellurium(ll) product 57 upon treatment with
Na,S0s. Evidence for the generation of an apparent chlorotelluration intermediate was obtained
by studies on acyclic thiourea substrates, through which isolable chlorotelluration products 59

were obtained (Figure 8B) [91].

11
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Recently, Zeni, Perin, Schumacher and Silva demonstrated iron-, Oxone®-, or SelectFluor®-
promoted formal (tandem)heterotelluration reactions using ditelluride reagents to generate
62a-62e [70,72,73,76]. Although detailed mechanistic studies of these reactions have not been
reported, the mechanisms plausibly share features with the corresponding formal

heteroselenation reactions using diselenides (vide supra).

Concluding remarks

In this Review, we highlighted recent developments of synthetic methods for the generation of
isolable main-group metalated heterocycles via Lewis acid heterocyclization reactions.
Mechanistic features of different cyclization reactions were also summarized. Despite
tremendous progress made in this field, there are still many unanswered questions (See
Outstanding Questions). For example, studies showed that the stability of boron groups is highly
heterocycle dependent [39], and the trends are not fully understood. If fully understood, a
general isolation guide for borolative heterocyclization reactions could be established.
Furthermore, only Bcat and 9-BBN groups have shown reactivity in direct borylative
heterocyclizaiton reactions, but what strategies there are for expanding the toolkit (e.g., to Bpin)

remain undefined.

Unexplored areas also remain in broadening heteroindation reactions. To date, only cyclative
oxyindation of alkynes has been reported. Can other nucleophiles, such as amines, and other
electrophiles, such as alkenes and allenes, be developed for cyclative heteroindation?
Furthermore, if heteroindation of alkenes is possible, will it exhibit the unique regioselectivity of
its alkyne counterparts? Regarding group 4 elements, can the seminal BCF-catalyzed formal
heterosilylation reaction [59] been expanded to other group 4 metals, e.g., to develop a BCF-
catalyzed formal heterostannelation reaction? Or is it possible to even expand the BCF-catalyzed

reaction to metal hydrides in different groups?

As for the pairs of electrophiles and cyclization substrates, alkene (and allene) cyclizations are

underdeveloped compared to alkynes. Currently, there are only a few examples of alkene and

12
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allene cyclizations, focusing on BCls [42—-44]. For these limited reports on alkenes, only exo
cyclization has been observed. On the contrary, most of the reported cyclization reactions on
alkynes, with various metals, are endo cyclizations. Therefore, it is natural to ask if it might be

possible to design reactions to control the selectivity.

One can also wonder if some of the reaction intermediates can be intercepted without isolation
for relay or dual-catalytic transformations. For example, because it has been demonstrated that
the indium-containing products of oxyindation are reactive towards in situ cross-coupling
reactions [46,51], can systems catalytic in indium or other main group metals be developed as
part of dual-catalytic cross-coupling reactions? With such intriguing questions yet unanswered,

the next coming years may hold as many developments as the recent past.
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Glossary
Activation structure: an intermediate or transition state along the reaction pathway that shows

the Lewis acid activation of the & system.

Heterocyclic scaffolds: cyclic compounds having at least one ring-member atom of an element
other than carbon. Also known as heterocyclic compounds and heterocycles.

Intermediate: a species that exists between reactants and products in a stage corresponding to
local energy minimum on the reaction’s potential energy surface. Some reaction intermediates
are isolable, but most are not; others can be detected spectroscopically.

Ligand: a group that binds to a metal center in a complex.

Mechanism: the processes over time in which the chemical steps necessary for one molecule to

be transformed into another occur through intermediates and transition states. Also known as a
reaction mechanism.
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Protodemetalation: a reaction in which the metal of a metal—carbon bond in an organometallic
compound is replaced with a proton, yielding a hydrogen—carbon bond.

Regioselectivity: the preference of formation (or breaking) of chemical bonds at one site in a
molecule over others. Regioselective reactions vyield only one (or predominately one)
constitutional isomer when multiple constitutional isomers are possible products.

Transmetalation (alt spelling: transmetallation): a type of organometallic reaction in which two
(typically different) metals swap their X type ligands.

Zwitterion: a molecule that contains an equal number of positively and negatively charged
functional groups. Also known as inner salt.

Figure Captions.

Figure 1. Introduction to this manuscript. (A) Traditionally, metalated heterocycles are
synthesized by constructing the heterocycle first, followed by metalation. (B) This review
describes Lewis acid induced main-group metalative heterocyclization, which can access
metalated heterocycles in one step. (C) Schematic of interplay of progress in methods
development and its relationship to mechanistic studies and applications in synthesis.

Figure 2. Borylative heterocyclizations by direct addition. (A) Generic reaction scheme of direct
cyclative boron—element addition reactions and classes of accessible borylated heterocycles. (B)
Proposed mechanism of Au/Cu-catalyzed direct cyclative boron—element addition. (C) Proposed
mechanisms of BCF-catalyzed direct aminoboration.

Figure 3. Borylative heterocyclizations by formal addition. (A) BCF-induced oxyboration showing
possible activation structure. (B) Generic reaction scheme of CIBcat induced formal borylation—
dealkylation/deacylation and classes of accessible borylated heterocycles. (C) Generic reaction
scheme of BClz induced formal borylation—dealkylation/deprotonation and classes of accessible
borylated heterocycles. (D) Proposed reaction mechanism of CIBcat and BCl; induced formal
cyclative boron/element addition.

Figure 4. Indium heterocyclizations. (A) Reaction scheme of 6-membered ring selective

oxyindation with key proposed activation structure and isolation methods. (B) Contrasting
regioselectivity of other methods, showing complementary regioselectivity of indium in part A.
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Figure 5. Silylative heterocyclizations. (A) Generic reaction scheme of BCF-catalyzed formal
silylative cyclization and classes of accessible silylated heterocycles. (B) Proposed mechanism of
BCF-catalyzed cyclative formal silicon/element addition.

Figure 6. Stannylative heterocyclizations. (A) Reaction scheme of Ag-catalyzed cascade formal
aminostannylation. (B). Proposed reaction mechanism of Ag-double-catalytic cascade formal
aminostannylation.

Figure 7. Selenium heterocyclizations. (A) Example of “classic Larock-type” PhSeBr-induced
selenocyclization with key activation intermediate. (B) NFSI-induced formal aminoselenation
using alkene as substrates. The benzoindoline products could be autoxided into benzoindole
products. (C) Oxone®-induced formal heteroselenation and classes of accessible selenated
heterocycles. Products could not be autoxided in this type of reactions when alkene substrates
used. (D) Formal tandem heteroselenation and classes of accessible selenated fused heterocycles.
The Sn2-reactive alkyl selenium reagent enables the second and third cyclizations. (E) Plausible
key mechanistic steps of formal cyclizative heteroselenation and generation of sufficiently Lewis
acidic selenium species from inert diselenide reagents. (F) Generation of activated selenium
reagents from other activation agents for diselenides.

Figure 8. Tellurium heterocyclizations. (A) Generic reaction scheme of formal thiotelluration of
cyclic thiourea substrates with proposed key intermediates. (B) Mechanistic insight through
isolable related compounds. (C) Fe(lll)- and Oxone®-induced formal heterotelluration and classes
of accessible tellurated heterocycles.
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(A) Additon of B-X bonds across alkynes (“Direct borylation”)
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(A) BCF induced formal oxyboration yields zwitterion (Melen, 2016)

(C) BCl; (stronger Lewis acid) induced formal borylation—dealkylation/protonation
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(A) 6-membered ring selective oxyindation (Yasuda, 2018-2019)
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o) DCM OMe 2) H,0 o)
halocyclization oxyboration
Y X Dn
| H (HO),B
23 17-H 22

694
695  Figure 4.
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(A) BCF-catalyzed formal silylative cyclization (Yan, 2020)
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X‘Me B(C6F5)3° X
PhCI, 120 °C /R
N
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X =8, 0, NMe 24
23
s 0 Me
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Y / DR
SiPh,H SiPhyH L iPhoH
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24a 24b 24c
(B) Plausible mechanism
X
)R + I\I/Ie
SiPh,H H
24
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< /> — _ 26 _
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Figure 5.
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(A) Silver-catalyzed cascade formal aminostannylation (Liu, 2013)

AgSbFg cat.
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N SnBu |
“H | Y/ 3 N
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30 up to 95%
31
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31
Figure 6.
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(A) Current example of classic “Larock-type” selenocyclization (Perin & Roehrs, 2017)

(D) Design of selenium reagent with Sy2-reactive alkyl enables formal tandem heteroselenation
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(A) Formal thiotelluration of cyclic thiourea derivatives (Onysko, 2016-2018)

R
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(B) Mechanistic insight from acyclic examples: plausible chlorotelluration intermediates are isolable
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(C) Activation of tellurium reagents by Fe(lll), oxone, or SelectFluor® in formal heterotelluration
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Figure 8.
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