
ar
X

iv
:2

10
6.

09
66

5v
3

 [c
s.I

R
]

29
 Ju

n
20

21

Understanding the Effectiveness of Reviews in E-commerce
Top-N Recommendation

Zhichao Xu
zhichao.xu@utah.edu

University of Utah

Hansi Zeng
hanszeng@cs.utah.edu

University of Utah

Qingyao Ai
aiqy@cs.utah.edu

University of Utah

Abstract

Modern E-commerce websites contain heterogeneous sources of

information, such as numerical ratings, textual reviews and im-

ages. These information can be utilized to assist recommendation.

Through textual reviews, a user explicitly express her affinity to-

wards the item. Previous researchers found that by using the in-

formation extracted from these reviews, we can better profile the

users’ explicit preferences as well as the item features, leading to

the improvement of recommendation performance. However, most

of the previous algorithms were only utilizing the review informa-

tion for explicit-feedback problem i.e. rating prediction, and when

it comes to implicit-feedback ranking problem such as top-N rec-

ommendation, the usage of review information has not been fully

explored. Seeing this gap, in this work, we investigate the effective-

ness of textual review information for top-N recommendation un-

der E-commerce settings. We adapt several SOTA review-based rat-

ing prediction models for top-N recommendation tasks and com-

pare them to existing top-N recommendation models from both

performance and efficiency. We find that models utilizing only re-

view information can not achieve better performances than vanilla

implicit-feedback matrix factorization method. When utilizing re-

view information as a regularizer or auxiliary information, the per-

formance of implicit-feedback matrix factorization method can be

further improved. However, the optimal model structure to utilize

textual reviews for E-commerce top-N recommendation is yet to

be determined.

Keywords

Recommender System, Top-NRecommendation, Implicit Feedback,

Reproducibility

ACM Reference Format:

Zhichao Xu, Hansi Zeng, and Qingyao Ai. 2021. Understanding the Effec-

tiveness of Reviews in E-commerce Top-N Recommendation. In Proceedings

of the 2021 ACM SIGIR International Conference on the Theory of Information

Retrieval (ICTIR ’21), July 11, 2021, Virtual Event, Canada. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3471158.3472258

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICTIR ’21, July 11, 2021, Virtual Event, Canada

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8611-1/21/07. . . $15.00
https://doi.org/10.1145/3471158.3472258

1 Introduction

There are two major lines of work in the study of recommender

systems, rating prediction and top-N recommendation. In several

recommendation applications, a user will give a numerical rating

to the item after the interaction, such as 1-10 star ratings at the

movie rating website IMDB. Through the numerical rating score,

the user’s level of affinity is expressed explicitly, so it is often for-

mulated as an explicitly feedback problem. The task of rating pre-

diction aims to accurately predict this numerical rating. Top-N rec-

ommendation problem, on the other hand, focus on predictingwhat

items the user is likely to interact with. The user implicitly ex-

press her affinity towards the item by making the interact-or-not

decision, so it is often formulated as an implicit feedback problem.

Different from some rating applications, i.e. IMDB, in modern E-

commerce websites, the user needs to purchase the item before

leaving a rating accompanied with textual reviews or images. This

first-purchase-then-review nature makes E-commerce top-N rec-

ommendation challenging since many other factors i.e. the price of

the item, are taken into consideration when making the purchase

decision.

A good news is that modern E-commerce websites contain het-

erogeneous sources of information, i.e. numerical ratings, textual

reviews, images, which can be utilized to help with recommenda-

tion. Through textual reviews, a user explicitly express her affin-

ity towards the item. In both rating prediction and top-N recom-

mendation, review data has been widely identified to be useful in

improving recommendation performance. Ganu et al. [10] found

that text information can be used to assist the recommendation

procedure. Later, researchers [2, 3, 5, 6, 8, 11, 12, 19, 24, 33–37]

kept making progress in effectively incorporating review informa-

tion into the task of recommendation. However, as pointed out by

Peña et al. [25], the exploration to utilize textual reviews for recom-

mendation are limited to rating prediction, and the effectiveness

of review-based models for top-N recommendation is still under-

explored. This gap serves as our motivation for our work.

In this work, we focus on the discussion of the better model de-

signs to utilize textual reviews for E-commerce top-N recommen-

dation. We replicate several state-of-the-art review-based rating

prediction algorithms to make them suitable for top-N recommen-

dation. Furthermore, we also include existing top-N recommenda-

tion models and draw comparison from both performance and in-

ference speed. Our experiment results show that while reviews can

be effective in the rating prediction task where users explicitly ex-

press their preferences, algorithms purely relying on features ex-

tracted from review data are outperformed by vanilla implicit feed-

back matrix factorizationmethod. On the other hand, using review

information as an additional regularizer or as auxiliary informa-

tion can further improve matrix factorization’s performance. Also,

http://arxiv.org/abs/2106.09665v3
https://doi.org/10.1145/3471158.3472258
https://doi.org/10.1145/3471158.3472258

review-based models with complex neural structures are of high

time complexity and are not suitable for online top-N recommen-

dation in practice. The optimal model structure to utilize textual

reviews for E-commerce top-N recommendation is yet to be deter-

mined.

2 Related Work

In both item-rating applications i.e. IMDB and E-commerce web-

sites i.e. Amazon, users explicitly express their affinities towards

items by giving numerical scores and leaving textual reviews. Ex-

isting exploration in utilizing textual reviews for recommendation

can be roughly classified into two categories: (1) text-as-feature:

this line of research focused on utilizing textual information as the

an information source to build user/item representations and con-

duct recommendations. Ganu [10] et al. propose to extract aspects

from textual reviews to assist with rating prediction. Wang et al.

[32] trained a topic model from content of scientific articles and

combine it with the rating matrix to recommend. EFM [37] con-

ducted aspect-level sentiment analysis to extract user’s preference

and product’s quality on specific product features, then incorpo-

rate the results into matrix factorization framework to recommend.

TriRank [12] modeled the user-aspect-item relations through a tri-

partite graph and cast the recommendation task to vertex ranking.

DeepCoNN [39] first utilizes a deep neural network to learn user

and item representations separately and calculate the recommen-

dation score using a similarity function. Later, researchers [4, 5, 11,

34, 35] applied more complex neural architectures to learn infor-

mation from textual reviews and further improve the recommen-

dation performances. (2) text-as-regularizers: this line of research

focused on utilizing textual information to regularize the user-item

interactions and conduct recommendations. fLDA [1], extended

from matrix factorization, regularizes both user and item factors

in a supervised manner through explicit user features and the bag

of words associated with each item. HFT [20] trains a topic model

to regularize the latent factormodel learned from the ratingmatrix.

JRL utilizes the paragraph vector model [18] trained from textual

reviews to regularizes the latent factor model trained from interac-

tion matrix. To the best of our knowledge, it is the only model in

this category that is originally designed for top-N recommendation

task.

In this work, we focus on investigating the existing review-based

text-as-featuremodels’ performance in top-N recommendation. The

closest work to ours is from Pena et al. [25]. They pointed out the

exploration to utilize textual reviews for top-N recommendation is

limited. Instead of proposing a newmodel to utilize textual reviews,

we focus on studying existing works from both performance and

efficiency. We hope to get insights from the results and inspire the

community.

3 Methodology

3.1 Problem Formulation

We give a summary of notations used in this section in Table 1. Let

|U| and |I| denote the number of users and items, respectively.

We define the user-item rating matrix from users’ explicit feedback

as R |U |× |I | where each interaction tuple (�푢, �푖) is associated with

an numerical rating �푟 �푖�푢 and a piece of textual review �훾�푖�푢 explaining

Table 1: A summary of notations

�푢 ,U user, user set

�푖 , I item, item set

�푟 �푖�푢 ground-truth rating score of user-item pair (�푢, �푖)

�푟 �푖�푢 predicted rating score of user-item pair (�푢, �푖)

�훾�푖�푢 textual review �훾 given by �푢 to �푖

Γ�푢 reviews set given by user �푢

Γ�푖 reviews set given to item �푖

�훽�푖 item bias
−→�푢 user latent factor
−→
�푖 item latent factor

Y positive user-item pairs set

Y− negative user-item pairs set

~�푖�푢 predicted ranking score of user-item pair (�푢, �푖)

why the user �푢 gave such rating �푟 �푖�푢 to item �푖 . Rating prediction task

aims to minimize the pointwise MSE loss between �푟 �푖�푢 and �푟 �푖�푢 :

1

Y

∑

(�푢,�푖) ∈Y

| |�푟 �푖�푢 − �푟 �푖�푢 | |
2 (1)

where Y is the set of (�푢, �푖) pairs that user �푢 has rated item �푖 .

In contrast, Top-N recommendation task aims to provide each

user with a set of N items from a large set of items. Rendle et al.

[26] proposed pairwise loss function (BPR) and has been widely

used in top-N Recommendation from implicit feedback. LetY− be

the set of negative (�푢, �푖) pairs (e.g., if we consider user purchase

as ground truth, then Y− is the unpurchased (�푢, �푖) pairs). Given

Y and Y−, the pairwise binary cross-entropy loss of BPR can be

formulated as:

L =

∑

(�푢,�푖) ∈Y,(�푢,�푗)∼Y−

�푃�푢 (�푖 > �푗) log(�푃�푢 (�푖 > �푗))+(1−�푃�푢 (�푖 > �푗))log(1−�푃�푢 (�푖 > �푗))

(2)

where (�푢, �푗) is randomly sampled from Y− based on (�푢, �푖), and

�푃�푢 (�푖 > �푗) is defined as

�푃�푢 (�푖 > �푗) =
1

1 + exp(~�푖�푢 − ~
�푗
�푢)

In our work, we modify the original algorithms designed for rating

prediction by changing their loss functions from pointwise loss to

pairwise loss for top-N recommendation. We also implement the

corresponding negative sampling strategy for efficient training.

3.2 Recommendation Models

To investigate the effectiveness of explicit review information in

the task of top-N recommendation, we include a variety of state-

of-the-art review-based models. We also consider to compare the

review-based models with some classical implicit-feedbackmodels

for better evaluation. The models are classified into three different

categories: the implicit-feedback interaction-based models, models

using text information as feature, and models using text informa-

tion as regularizer. We make necessary adjustments to adapt these

models for top-N recommendation. The list of models we used in

experiments is as follows:

3.2.1 Interaction-based Models Interaction-based models simply

model the historical interactions between users and items. They

utilize a latent factor model, where each dimension of the latent

factor is designed to represent a specific feature of the users and the

items. Then a similarity function (mostly inner product) is applied

to calculate the similarity between the user latent factor and the

item latent factor and get the affinity score.

BayesianPersonalizedRankingMatrix Factorization (BPR-

MF) [16, 26]BPR-MF follows the vanillamatrix factorization setup

where each user & item is represented by a latent factor. We use

the pairwise loss from implicit feedback to train themodel, and the

final affinity score given by user �푢 to item �푖 is predicted as

~�푖�푢 = �훽�푖 +
−→�푢 ·

−→
�푖 (3)

and we optimize the parameters by maximize Equation 2.

BPRGeneralizedMatrix Factorization (BPR-GMF) [13]BPR-

GMF adds a generalized function to model the complex interac-

tions between user and item latent factors. Specifically, the affinity

score is

~�푖�푢 = �훽�푖 + F(−→�푢 ·
−→
�푖) (4)

where �퐹 is a deep neural network structure. In our implementation,

we use a multi-layer densely-connected neural network (MLP) and

we tune the number of MLP layers for best performance.

3.2.2 Text-as-regularizer Models

Text-as-regularizer models follows a traditional matrix factoriza-

tion setup, and apply an additional objective function utilizing the

representations learned from textual information to regularize the

latent factors. The model can be trained offline and in the infer-

ence stage, the affinity score is computed by a simple inner prod-

uct function. Thus they are considered an effective way for online

recommendation.

Hidden Factors and Topics (BPR-HFT) [20] In addition to

the BPR loss, BPR-HFT utilizes textual reviews to train an latent

dirichlet allocation topicmodel andminimize the corpus likelihood

to regularize the latent factors used in matrix factorization.

Joint Representation Learning (JRL) [36] Motivated by the

paragraph vector model [18], JRL utilizes an additional generative

loss built from textual reviews to regularize the latent vectors learned

from implicit-feedback interaction matrix.

3.2.3 Text-as-feature Models Text-as-feature models utilize repre-

sentations learned from textual reviews to build user/item feature

vectors. A similarity function is then applied to calculate the affin-

ity scores.

BERT-Rep [23]: For each user, all her reviews are aggregated

to form a long document and input to BERT [7] to encode, and the

output layer’s [CLS] token vector is used as the user representation.

The same procedure is applied to get the item representation. Then

we apply dot product over the user/item representation to predict

the corresponding affinity score as

�퐵�퐸�푅�푇 (�푅�푒�푝)(�푢, �푖) = −→�푢 �푙�푎�푠�푡
�푐�푙�푠

∗
−→
�푖 �푙�푎�푠�푡
�푐�푙�푠

(5)

where ∗ denotes inner product and �푙�푎�푠�푡 denotes the last layer of

BERT’s Transformer network.

Deep Co-operative Neural Network (DeepCoNN) [39]: Dif-

ferent from previous algorithms [3, 8, 20], DeepCoNN utilizes a

CNN-based neural architecture to extract information from tex-

tual reviews. Specifically, all the reviews in Γ�푢 are concatenated

as a document, then a TextCNN architecture [38] is applied to ex-

tract the latent feature factors from review documents to form the

user feature factor. The same procedure is applied to get the item

feature factor.

NeuralAttentiveRatingRegression (NARRE) [5]: Also based

on TextCNN, NARRE additionaly learns a review-level attention

weights distribution of each single piece of review in user/item

document and it achieves better performance than DeepCoNN in

terms of rating prediction.

Multi-Pointer Co-Attention Network (MPCN) [31]: MPCN

selects informative reviews from Γ�푢 & Γ�푖 by review-level pointers

using co-attention technique, and selects informative word-level

representations by applying word-level pointers over selected re-

views.

Asymmetrical Hierarchical Networks with Attentive In-

teractions (AHN) [9]: AHN treats user and item asymmetrically

and builds representations hierarchically from sentence level and

review level. It also dynamically models the interaction using co-

attention mechanism.

Interpretable Convolutional Neural Networks with Dual

Local and Global Attention (Dual-ATT) [30]: Dual-ATT ap-

plies a local and a global attentions to encode the user(item) doc-

uments separately. The final representation is learned by concate-

nating representations learned from both local and global attention

modules.

A Zero-Attentional Relevance Matching Network for Re-

viewModeling (ZARM) [35]: ZARM combines the concept of rel-

evancematching and semanticmatching, and uses an zero-attention

schema to dynamically model user & item representations.

Attentive Aspect Modeling for Review-aware Recommen-

dation (AARM) [11]: AARM is the state-of-the-art review-based

model for top-N recommendation. It utilizes a Phrase-level Senti-

ment Analysis toolkit [37] to first extract aspect-opinion-sentiment

triples from textual reviews. Then these triples are put into an at-

tentive aspect-interaction module to learn the aspect-level inter-

actions. The learned aspect-interaction vectors are concatenated

with global-interaction latent factors learned from the implicit-feedback

interaction matrix to compute the final affinity score. Note that

AARM is intrinsically different from other text-as-feature models

because it extracts information from review text only as additional

features to be combined with a interaction-based model (e.g., a MF

model).

4 Experiments

4.1 Dataset Description

Weuse three categories of data fromAmazonProduct Review Dataset

[20]1. Specifically, wewant to investigate how text-based represen-

tation learning models perform in the cold-start scenario, so we

include both 5-core and 0-core datasets. Here k-core means each

user/item has at least k interactions in the dataset. A detailed sta-

tistics of the dataset is showed at Table 2. We use a randomized

1Amazon Product Review: http://jmcauley.ucsd.edu/data/amazon/links.html

http://jmcauley.ucsd.edu/data/amazon/links.html

user-level 7:3 split, namely, for each user, 70% of her total transac-

tions are used for training and the rest for testing. We don’t have a

separate validation set since the interaction matrix is already very

sparse in these datasets. To avoid the review information leaking

problemmentioned by Catherine et al. [4], all the reviews in testset

are not used in the training of the models.

Table 2: The basic statistics of the datasets

Dataset #users #items #interactions #density

Beauty-0core 1,210,271 249,274 2,023,070 6.71e-6

Beauty-5core 22,363 12,191 198,502 7.82e-4

Tools & Home-0core 1,212,047 260,657 1,926,047 6.09e-6

Tools & Home-5core 16,638 10,217 134,476 7.92e-4

Electronics-0core 4,201,696 476,001 7,824,482 6.91e-6

Electronics-5core 192,403 63,001 1,689,188 1.39e-4

4.2 Evaluation

We evaluate the ranking performances of all models using Hit Rate

(HR) and normalized Discounted Cumulative Gain (nDCG). HR intu-

itively measures whether the test item is in the recommendation

list and nDCG accounts for the position of the hit by assigning

higher scores to hits at the top of the recommendation list. We re-

port the HR@10 and nDCG@10 on both 0-core and 5-core datasets.

Previous implementations [13, 15, 22, 33] rank the ground truth

items along with k randomly sampled negative items; According

to Krichene and Rendle [17], this may lead to inconsistent results

and may not be a fair comparison between algorithms. Yet, rank-

ing all the items in the candidate items pool will lead to prohibi-

tive computation cost for some review-based models. To reach a

balance between consistency and efficiency, we use a two-stage re-

trieval & reranking strategy. In the retrieval stage, we use MF to

retrieve top 1,000 items for each user, and in the reranking stage,

for each user, we rerank these items along with the ground truth

items. Through this two-stage strategy, we reduce the overall time

complexity to ranking all items using complex text-based models.

We also avoid the extreme case that randomly sampled negative

test items are very irrelevant and leads to inconsistent recommen-

dation performance in evaluation.

4.3 Implementation Details

4.3.1 Text Processing

We remove stopwords from the reviews and maintain a vocabu-

lary of 50K most frequent words from the training corpus. To bet-

ter catch the semantic information from textual reviews, we use

Google’s Word2Vec2 300-dimensional embeddings pretrained on

100 billion words from Google News [21]. For BERT-Rep method,

top 512 tokens of each user & item document are used, and for

other review-based methods except for AARM, top 1,000 tokens

are used. For AARM, we use the Phrase-level Sentiment Analysis

toolkit Sentires 3 to extract the aspect-opinion-sentiment triples

from textual reviews. Specifically, we use theWord2Vec to convert

the aspects into word/phrase embeddings.

2https://code.google.com/archive/p/word2vec/
3Sentires: https://github.com/evison/Sentires

4.3.2 Implementation

We implemented MF, GMF, DeepCoNN, MPCN, AHN, Dual-ATT,

NARRE, ZARM using PyTorch 4. For BPR-HFT and JRL, we used

the implementation from the JRL Repo 5 and modified accordingly.

For AARM, we used the implementation from AARM Repo 6 and

modified accordingly. Our implementationswill be available at https://github.com/zhichaoxu-shufe/understanding-reviews.

4.3.3 Parameters & Hyperparameters

We train our models using Adam [14] and SGD [28]. We search the

learning rate between 1e-1 and 1e-4, L2-regularization between 1e-

1 and 1e-4, number of negative samples between 2 and 10, CNN

window size between 3 and 10, dropout rate between 0.1 and 0.8,

latent factor size between 16 and 128. In all the models we set the

default latent factor size to 64 unless mentioned specifically.

5 Result & Analysis

5.1 Top-N Recommendation Performance

We show the ranking results in Table 3. We do not include the

result of BERT model on 0-core dataset as the encoding takes too

much time; performance-wise, we find:

Among interaction-based models, BPR-GMF achieves about the

same performances as BPR-MF in all datasets; this is the same as

whatwas reported by Rendle [27].We argue that on sparse datasets

like Amazon Product Reviews, BPR-GMF does not achieve signif-

icant improvement over BPR-MF because the deep MLP structure

in equation 4 can not perfectly catch the complex interaction sig-

nals due to the lack of historical interactions for training.

Among text-as-feature models, we notice that AARM consis-

tently outperform other models. For example, in 5-core Beauty

dataset, AARM achieves 28.9% and 16.1% improvement in HR and

nDCG respectively, compared with ZARM. We consider this per-

formance boost is given by the global-interaction latent factors

trained from the implicit-feedback interaction matrix. Aside from

AARM, the performance difference between NARRE and ZARM

is not statistically significant, so we consider they deliver about

the same performance. Compared to complex structures such as

attention mechanism used in MPCN, AHN and Dual-ATT, NARRE

utilizes a simple review-level attention and proves to be both effec-

tive and computationally efficient.

In 5-core datasets, we notice AARM consistently outperforms

interaction-basedmodels. For example, in Electronics dataset, AARM

achieves 5.1% and 9.1% improvement in HR and nDCG respectively,

comparedwith BPR-GMF. This observation shows the aspect-interaction

module can effectively capture the aspect-level features of the users

and the items. Other text-as-feature models fail to deliver as good

performance as interaction-based models. We also notice that text-

as-regularizer models achieve the best performances overall com-

pared with text-as-feature models and interaction-based models.

For example, in Electronics dataset, JRL is 5.6% better in HR and

22.4% better in nDCG compared with AARM. Our findings are

in accordance with Sachedeva’s [29] argument that reviews are

more effective as regularizer rather than as feature. Note that in

4PyTorch: https://pytorch.org/
5https://github.com/evison/JRL
6https://github.com/XinyuGuan01/Attentive-Aspect-based-Recommendation-Model

https://github.com/evison/Sentires
https://github.com/zhichaoxu-shufe/understanding-reviews
https://pytorch.org/

Table 3: The ranking performance (Hit Rate, nDCG)measured in %;We highlight themodel with best performance. ♣ indicates

its improvement over models in other two categories is statistically significant at 0.01 level with Paired t-test

Dataset Tools & Home Beauty Electronics

0-core 5-core 0-core 5-core 0-core 5-core

Metrics Hit nDCG Hit nDCG Hit nDCG Hit nDCG Hit nDCG Hit nDCG

interaction-based BPR-MF 1.72 0.83 7.12 2.35 2.05 0.93 11.33 4.21 2.02 0.51 4.56 1.43

BPR-GMF 1.74 0.89 7.04 2.38 2.01 0.94 11.01 4.37 2.00 0.52 4.71 1.49

text-as-regularizer BPR-HFT 1.82 0.88 8.42 2.84 2.06 0.97 11.54 4.65 2.08 0.58 4.89 1.62

JRL 1.93 0.97 8.84♣ 3.01♣ 2.22 1.04 12.04♣ 5.03♣ 2.15 0.60♣ 5.23♣ 1.91♣

text-as-feature BERT - - 5.35 1.69 - - 8.87 4.05 - - 3.67 1.05

DeepCoNN 1.45 0.69 4.82 1.64 1.80 0.81 7.96 3.79 1.78 0.42 3.58 1.17

MPCN 1.39 0.71 6.18 1.95 1.84 0.86 8.78 3.99 1.81 0.39 4.15 1.22

AHN 1.45 0.73 6.13 1.92 1.86 0.86 8.92 4.05 1.79 0.41 4.21 1.25

Dual-ATT 1.51 0.71 6.47 2.12 1.84 0.85 9.01 4.02 1.81 0.41 4.20 1.24

NARRE 1.59 0.78 6.80 2.25 1.94 0.84 8.94 4.01 1.85 0.45 4.29 1.29

ZARM 1.60 0.81 6.84 2.28 1.99 0.91 8.99 4.10 1.87 0.44 4.32 1.33

AARM 2.05♣ 1.01 7.94 2.68 2.31 1.09 11.59 4.76 2.12 0.54 4.95 1.56

Table 4: The statistics of the reranking inference speed,mea-

sured in seconds per entry, with batch size 512

Model\Dataset Tools & Home-5core Beauty-5core Electronics-5core

BPR-MF 0.004 0.004 0.004

BPR-GMF 0.012 0.012 0.012

BPR-HFT - - -

JRL 0.005 0.005 0.005

DeepCoNN 0.079 0.082 0.081

AARM 0.203 0.162 0.312

NARRE 0.170 0.173 0.170

MPCN 0.255 0.257 0.255

AHN 0.330 0.332 0.330

Dual-ATT 0.276 0.278 0.275

ZARM 0.383 0.385 0.383

Sachdeva’s experiments, NARRE outperforms interaction-basedmod-

els in rating prediction while in our experiment, NARRE fails to

outperform two interaction-basedmodels.We argue this is because

of the intrinsic difference between rating prediction and top-N rec-

ommendation. We further discuss this intrinsic difference in sec-

tion 5.3.1.

Profiling cold-start users & items is a challenging task for E-

commerce recommendation. Complex models suffer from overfit-

ting problem and often don’t perform well in cold-start scenario.

We notice that in all three 0-core datasets, JRL achieves about the

same performance as AARM, and significantly outperforms other

text-as-feature models and interaction-based models. We consider

AARM’s good performance is mainly from pre-extracted aspects

which are much more effective in cold-start scenario. Furthermore,

we notice that other text-as-feature models don’t deliver as good

performance as interaction-based models. This indicates that with-

out sufficient training data, complex text-as-feature models are not

able to model the user preferences as well as item features. Among

other text-as-feature models, we find DeepCoNN performs rela-

tively better in 0-core datasets than in 5-core datasets. For example,

DeepCoNN outperforms MPCN & AHN in Tools & Home 0-core

dataset, and achieves about the same performance as MPCN, AHN

&D-ATT in Electronics 0-core dataset.We argue that DeepCoNN’s

TextCNN structure gives it an edge over complex attention-based

models and suffer less from overfitting.

5.2 Inference Speed

Real-time response is also necessary for online E-commerce recom-

mendation. We report the comparison of inference speed at Table

4. We leave out the BPR-HFT here as its implementation is in C++

while all other models are implemented in Python. We find the

inference speed of interaction-based and text-as-regularizer mod-

els are fast; and the inference speed of text-as-only-feature mod-

els are significantly slower. Such phenomenon can be expected

since in the inference stage, text-as-regularizer models only need

to find the corresponding user and item latent factors and compute

the affinity score through a similarity function, and text-as-feature

models are slow since complicated neural network structures such

as TextCNN, attention are used. We also notice that AARM’s infer-

ence speed will increase significantly when there are more aspects

in the dataset. For example, there are in total 1,987 aspects in Tools

& Home dataset and 690 aspects in Beauty dataset, and AARM’s

inference speed in Tools & Home is 25%more than in Beauty. Com-

pared with the performance reported at Table 3, we conclude that

AARM reaches the better balance between performance and com-

putational complexity among all text-as-feature models. Overall,

text-as-regularizer models are more computationally efficient.

5.3 Analysis

5.3.1 Rating prediction and top-N recommendation are intrinsically

different tasks

We formulate the structure of text-as-feature model for rating pre-

diction as:

�푅�푒�푝�푢 = �푓�푢 (Γ�푢), �푅�푒�푝�푖 = �푓�푖 (Γ�푖), �푟�푢,�푖 = �퐹 (�푅�푒�푝�푢, �푅�푒�푝�푖) (6)

Each dimension of the latent factor can be regarded as an aspect of

the user/item profile, and the final function �퐹 (·, ·) can be regarded

as calculating the similarity between the user factor and the item

factor; it varies from a simple inner product to a complicated deep

neural network structure.

Explicit feedback problem i.e. problem aims to predict the level

of affinity usually assume that the interaction has already hap-

pened, e.g. the user has watched the movie or has purchased the

item. On the other hand, implicit feedback problem aims to predict

whether the interactionwill happen. Specifically, top-N recommen-

dation aims to generate a short ranklist of items that the user may

interact with to cover as many ground-truth items as possible. In

modern E-commerce applications, this is more important as bet-

ter top-N recommendation performance will increase the profit.

Instead of fitting the absolute value of user-item ratings, user’s

preferences among different items are more important. We argue

the intrinsic difference between two different types of tasks makes

text-as-feature models designed specifically for explicit feedback

problem e.g. rating prediction not suitable for implicit feedback

problem, e.g. top-N recommendation, and existing model designs

can not be migrated directly.

5.3.2 User/item latent representations built purely from textual re-

views do not deliver good top-N recommendation performance

We observe that all text-as-feature models except for AARM fail

to outperform vanilla matrix factorization model. We argue there

may be four reasons that lead to text-as-feature models’ underper-

formances: (1) the reviews are of low quality and do not include

much useful information; (2) existing model structures are limited

thus can not extract useful information from reviews; (3) in implicit

feedback problem, there is a gap between user leaving a piece of

textual review and her actual interaction decision, which means re-

views do not necessarily reflect the user’s actual preference. BERT

is a state-of-the-art pretrained contextualized language model and

is supposed to catch useful semantic information from texts, but

our BERT-Rep baseline is still outperformed by both interaction-

based and text-as-regularizer models by a large margin; (4) fol-

lowing previous points, we regard rating prediction as an explicit-

feedback task and top-N recommendation as an implicit-feedback

task. In textual reviews, users explicitly express their affinities to

the items, so we argue that textual reviews are intrinsically more

suitable to be used in rating prediction than in top-N recommen-

dation. Many other factors such as the price of the item, the avail-

ability, etc need to be taken into consideration when making the

interact-or-not decision.

So far we come to conclusion that purely relying on features

extracted from textual reviews to build user/item representations

is not a good approach for top-N recommendation task. JRL and

AARMcombines textual reviews with interactions data and achieves

the best performance among all the models. This observation indi-

cates that the combination of these two sources of information can

deliver better performance. However, the optimum model struc-

ture is yet to be determined.

6 Conclusion & Future Work

In this work, we focus on the discussion of the better model struc-

tures to utilize textual reviews for E-commerce top-N recommen-

dation. We adapt some existing text-as-features rating prediction

models for top-N recommendation task. We also include existing

top-N recommendation models and draw comparison from both

performance and inference speed. We find that due to the intrin-

sic difference between two different tasks, existing text-as-feature

rating prediction model designs are not suitable for E-commerce

top-N recommendation.We further discuss the possible reasons be-

hind text-as-feature models’ underperformances. We come to con-

clusion that among existing review-based models, those only using

textual reviews as features fail to outperform vanilla interaction-

based models, and combining textual reviews with historical in-

teractions data can deliver better performances. Overall, text-as-

regularizer models seem to be better at utilizing textual review

information, giving better performances without increasing infer-

ence time complexity. We also provide our implementation of mul-

tiple strong baselines, hoping to shed light to the reproducibility

issue in current recommender system research community.

Our futureworkwill be designing better andmore efficient mod-

els to utilize textual reviews for implicit feedback top-N recommen-

dation task.

7 Acknowledgement

This work was supported in part by the School of Computing, Uni-

versity of Utah and in part by NSF IIS-2007398. Any opinions, find-

ings and conclusions or recommendations expressed in this mate-

rial are those of the authors and do not necessarily reflect those of

the sponsor.

References

[1] Deepak Agarwal and Bee-Chung Chen. 2010. fLDA: matrix factorization
through latent dirichlet allocation. In Proceedings of the third ACM international
conference on Web search and data mining. 91–100.

[2] Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. 2018. Learning het-
erogeneous knowledge base embeddings for explainable recommendation. Al-
gorithms 11, 9 (2018), 137.

[3] Yang Bao, Hui Fang, and Jie Zhang. 2014. Topicmf: simultaneously exploiting
ratings and reviews for recommendation.. In Aaai, Vol. 14. Citeseer, 2–8.

[4] Rose Catherine and William Cohen. 2017. Transnets: Learning to transform for
recommendation. In Proceedings of the eleventh ACM conference on recommender
systems. 288–296.

[5] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural atten-
tional rating regressionwith review-level explanations. In Proceedings of the 2018
World Wide Web Conference. 1583–1592.

[6] Xu Chen, Zheng Qin, Yongfeng Zhang, and Tao Xu. 2016. Learning to rank
features for recommendation over multiple categories. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. 305–314.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[8] Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J Smola, Jing Jiang, and
Chong Wang. 2014. Jointly modeling aspects, ratings and sentiments for movie
recommendation (JMARS). In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 193–202.

[9] Xin Dong, Jingchao Ni, Wei Cheng, Zhengzhang Chen, Bo Zong, Dongjin Song,
Yanchi Liu, Haifeng Chen, and Gerard de Melo. 2020. Asymmetrical hierarchical
networks with attentive interactions for interpretable review-based recommen-
dation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
7667–7674.

[10] Gayatree Ganu, Noemie Elhadad, and Amélie Marian. 2009. Beyond the stars:
improving rating predictions using review text content.. In WebDB, Vol. 9. Cite-
seer, 1–6.

[11] Xinyu Guan, Zhiyong Cheng, Xiangnan He, Yongfeng Zhang, Zhibo Zhu, Qinke
Peng, and Tat-Seng Chua. 2019. Attentive aspect modeling for review-aware
recommendation. ACM Transactions on Information Systems (TOIS) 37, 3 (2019),
1–27.

[12] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. Trirank: Review-
aware explainable recommendation by modeling aspects. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Manage-
ment. 1661–1670.

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[15] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted col-
laborative filtering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. 426–434.

[16] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[17] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recom-
mendation. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1748–1757.

[18] Quoc Le and TomasMikolov. 2014. Distributed representations of sentences and
documents. In International conference on machine learning. 1188–1196.

[19] Guang Ling, Michael R Lyu, and Irwin King. 2014. Ratings meet reviews, a
combined approach to recommend. In Proceedings of the 8th ACM Conference
on Recommender systems. 105–112.

[20] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: un-
derstanding rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems. 165–172.

[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
arXiv preprint arXiv:1310.4546 (2013).

[22] Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n rec-
ommender systems. In 2011 IEEE 11th International Conference on Data Mining.
IEEE, 497–506.

[23] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
CoRR abs/1901.04085 (2019). arXiv:1901.04085 http://arxiv.org/abs/1901.04085

[24] Zhimeng Pan, Wenzheng Tao, and Qingyao Ai. 2020. ReviewRegularizedNeural
Collaborative Filtering. arXiv preprint arXiv:2008.13527 (2020).

[25] Francisco J Peña, Diarmuid O’Reilly-Morgan, Elias Z Tragos, Neil Hurley, Erika
Duriakova, Barry Smyth, and Aonghus Lawlor. 2020. Combining Rating and
Review Data by Initializing Latent Factor Models with Topic Models for Top-N
Recommendation. In Fourteenth ACMConference on Recommender Systems. 438–
443.

[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618 (2012).

[27] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural
collaborative filtering vs. matrix factorization revisited. In Fourteenth ACM Con-
ference on Recommender Systems. 240–248.

[28] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.
The annals of mathematical statistics (1951), 400–407.

[29] Noveen Sachdeva and Julian McAuley. 2020. How Useful are Reviews for Rec-
ommendation? A Critical Review and Potential Improvements. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1845–1848.

[30] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable convo-
lutional neural networks with dual local and global attention for review rating
prediction. In Proceedings of the eleventh ACM conference on recommender sys-
tems. 297–305.

[31] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018. Multi-pointer co-attention
networks for recommendation. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2309–2318.

[32] Chong Wang and David M Blei. 2011. Collaborative topic modeling for recom-
mending scientific articles. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. 448–456.

[33] Zhichao Xu, Yi Han, Yongfeng Zhang, and Qingyao Ai. 2020. E-commerce Rec-
ommendation with Weighted Expected Utility. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management. 1695–1704.

[34] Hansi Zeng and Qingyao Ai. 2020. A Hierarchical Self-attentive Convolution
Network for Review Modeling in Recommendation Systems. arXiv preprint
arXiv:2011.13436 (2020).

[35] Hansi Zeng, Zhichao Xu, and Qingyao Ai. 2021. A Zero Attentive Relevance
Matching Networkfor Review Modeling in Recommendation System. arXiv
preprint arXiv:2101.06387 (2021).

[36] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Bruce Croft. 2017. Joint repre-
sentation learning for top-n recommendation with heterogeneous information
sources. In Proceedings of the 2017 ACM on Conference on Information and Knowl-
edge Management. 1449–1458.

[37] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval. 83–92.

[38] Ye Zhang and Byron Wallace. 2015. A sensitivity analysis of (and practition-
ers’ guide to) convolutional neural networks for sentence classification. arXiv
preprint arXiv:1510.03820 (2015).

[39] Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint deep modeling of users
and items using reviews for recommendation. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining. 425–434.

https://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 Recommendation Models

	4 Experiments
	4.1 Dataset Description
	4.2 Evaluation
	4.3 Implementation Details

	5 Result & Analysis
	5.1 Top-N Recommendation Performance
	5.2 Inference Speed
	5.3 Analysis

	6 Conclusion & Future Work
	7 Acknowledgement
	References

