Sharp bounds for decomposing graphs into edges and triangles
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Abstract

For a real constant «, let 7$'(G) be the minimum of twice the number of K3’s plus «
times the number of K3’s over all edge decompositions of G into copies of K and K3, where
K, denotes the complete graph on r vertices. Let 7§ (n) be the maximum of 7§ (G) over all
graphs G with n vertices.

The extremal function m3(n) was first studied by Gyéri and Tuza [Decompositions of
graphs into complete subgraphs of given order, Studia Sci. Math. Hungar. 22 (1987), 315—
320]. In a recent progress on this problem, Kral’, Lidicky, Martins and Pehova [Decomposing
graphs into edges and triangles, Combin. Prob. Comput. 28 (2019) 465-472] proved via flag
algebras that 73 (n) < (1/2+0(1))n?. We extend their result by determining the exact value
of 7§(n) and the set of extremal graphs for all a and sufficiently large n. In particular, we
show for a = 3 that K,, and the complete bipartite graph K|, /2|, [n/2] are the only possible

extremal examples for large n.
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1 Introduction

In a recent progress on a problem of Gy6ri and Tuza [27], Kral’, Lidicky, Martins and Pehova [19]
proved via flag algebras that the edges of any n-vertex graph can be decomposed into copies
of K5 and K3 whose total number of vertices is at most (1/2 4 o(1))n?, where K, denotes the
clique on r vertices. The origins of this problem can be traced back to Erdos, Goodman and
Pésa [10] who considered the problem of minimising the total number of cliques in an edge

decomposition of an arbitrary n-vertex graph. They showed the following:

Theorem 1 (Erdds, Goodman, Pésa [10]). The edges of every n-vertex graph can be decomposed

into at most |n%/4| complete graphs.

The only extremal example for this bound is the (bipartite) Turdn graph To(n) := K 1n/2],[n/2]s
where K, ; denotes the complete bipartite graph with part sizes a and b. Moreover, this result
still holds if we restrict the sizes of the cliques used in the decomposition to 2 and 3 (that is,
single edges and triangles). In a series of papers published independently by Chung [4], Gyéri
and Kostochka [11], and Kahn [18], they proved that in fact something stronger than Theorem ]

is true, confirming a conjecture by Katona and Tarjan:

Theorem 2 (Chung [4], Gy6ri and Kostochka [11], Kahn [18]). Every n-vertex graph can be

edge decomposed into cliques whose total number of vertices is at most |n?/2].

For a given graph G on n vertices, let m;(G) be the minimum over all decompositions of the
edges of G into cliques C1, ..., Cy of size at most k of the sum |Cy| + |Ca| + - -+ + |Cy|, where
|G| := |V(G)| denotes the order of a graph G. Let m;(n) be the maximum of 7 (G) over
all graphs G' with n vertices. With this notation, the conclusion of the above theorem is that
mingen mx(n) < [n?/2]. Inlight of Theorem Tuza [27] conjectured that w3(n) < n?/2+o0(n?),
and in fact that w3(n) < n?/2+ O(1). Gyéri and Tuza |16] showed that m3(n) < 9n?/16. This
was the best known bound until recently, when using the celebrated flag algebra method of
Razborov [24], Kral’, Lidicky, Martins and Pehova [19] proved the asymptotic version of Tuza’s

conjecture:

Theorem 3 (Kral’, Lidicky, Martins and Pehova [19]). We have m3(n) < (1/2 + o(1))n? as

n — o0.

In this paper we show, by building upon the proof in [19], that for all large n it holds in fact
m3(n) < n?/2+1. Moreover, if a graph G of order n attains 73(n) then G is the complete graph
K, or the Turan graph T5(n).

Which of these two graphs is extremal is a matter of divisibility of n by 6. In the case of the
Turdn graph, we trivially have 73(Ts(n)) = 2|n/2][n/2], giving n?/2 for even n and (n? —1)/2



for odd n. In order to determine 7m3(K,,), we have to determine the maximum number of edge-
disjoint triangles in K,,. Clearly, the graph made of their edges is triangle-divisible, that is, each
vertex has even degree and the total number of edges is divisible by three. It is routine to see
that the minimum size of a graph H on n vertices whose complement H is triangle-divisible is
attained by taking at most one copy of the claw K3 and a perfect matching on the remaining
vertices for even n, and isolated vertices plus at most one copy of the 4-cycle K5 o for odd n.
(Note that () is never equal to 2 modulo 3.) In fact, this gives the value of m3(Ky,) for all large

n by the following general result (which we will use also inside our proof).

Theorem 4 (Barber, Kuhn, Lo and Osthus [2]). For every ¢ > 0, if G is a triangle-divisible
graph of large order n and minimum degree at least (0.9 + €)n, then G has a perfect triangle

decomposition.

The constant 0.9 in the minimum degree condition in Theorem [] comes from the result of
Dross [6] on fractional triangle decompostions, and it was conjectured by Nash-Williams [21]
that it can be replaced by 3/4. Very recently, Dukes and Horsley |7] and Delcourt and Postle [5]
improved the constant to 0.852 and (7 + 1/21)/14 = 0.8273..., respectively.

Let us list the values of 73 for the graphs K, and Tx(n) for large n.

nmod 6 | K's in an optimal decomposition of K, | m3(K,,) | m3(T2(n))
0 perfect matching %2 n?
1 none (721) n22—1
2 perfect matching %2 n;
3 none (%) w1
4 K13 + perfect matching 2 n
’ Cu () +4] 5

Table 1: Values of m3(K,,) and m3(72(n)) for large n.

Let us define

((Ty(n), K.}, ifn=0,2 (mod6),
En = {Ta(n)}, ifn=1,3,5 (mod 6),
\{Kn}, ifn=4 (mod 6),
and
n?/2, forn=0,2 (mod 6),
l(n):=¢ (n*—1)/2, forn=1,3,5 (mod 6),
n?/2 + 1, forn=4 (mod 6).

Thus, by the calculations of Table [I] we have for all large n that &, consists of those graphs in

{T>(n), K,,} which maximise 73 while ¢(n) is this maximum value.



Clearly, ¢(n) is a lower bound on m3(n) for large n. Our main result is that this is equality.

Theorem 5. There ezists ng € N such that for all n > ng, we have w3(n) = £(n) and the set

of m3(n)-extremal graphs up to isomorphism is exactly &,.

A simple corollary of Theorem 5| is an affirmative answer to a question of Pyber [23], see
also [27, Problem 45], for sufficiently large n. A covering of a graph G is a collection of
subgraphs of G such that every edge of G appears in at least one subgraph. (For comparison,

a decomposition requires that every edge appears in exactly one subgraph.)

Corollary 6. There exists ng € N such that for all n = ng, the edge set of every n-vertex graph

can be covered with triangles and edges so that the sum of their orders is at most |n?/2].

Proof. Theorem [5| directly implies the corollary unless n = 4 (mod 6) and the graph under
consideration is K. So assume that n = 4 (mod 6). Denote the vertices of K,, by v, ..., vp.
Recall that an optimal decomposition for K, is obtained by taking edges vive, vivs, vivg and
viv;41 for all odd ¢ with 5 < ¢ < n — 1. The rest of the graph becomes triangle-divisible
and Theorem [4| can be applied. This gives a decomposition of cost n?/2 + 1. A covering of
cost at most n2/2 can be obtained from this decomposition by replacing edges vive and vjvs
by a triangle vivovs. (Notice that the pair vovs is covered by two triangles in the resulting

covering.) O

We also study an extension of Theorem [5 where we consider decompositions into Ks’s and K3’s
but we modify the cost of K3’s to be o (with the cost of K still being 2). The minimum over all
costs of such decompositions of a graph G is denoted by 7§ (G). The maximum value of 7§(G)
over all n-vertex graphs G is denoted by 7$(n). Notice that 3 (G) = 73(G) and 73 (n) = m3(n).
Denote K, without one edge by K, and K,, without a matching of size two by K. Then the

following result holds.

Theorem 7. For every real o exists ng € N such that every mw$-extremal graph G with n > ng

vertices satisfies the following (up to isomorphism).

If a < 3, then G = Ta(n);

e if « = 3 then Theorem [ applies;

e if3<a<4andn=0,2,4,5 (mod 6), then G = K,;
e f3<a<4andn=1,3 (mod 6), then G =K ;

e ifa=4andn =1,3 (mod 6), then G € {K,,, K, , K.} and, moreover, the three listed

graphs are all 7§ -extremal;

e ifa=4andn=0,2,4,5 (mod 6), then G = K,,;



e ifd < q, then G = K,,.

This paper is organised as follows. In Section [2] we give an outline of the proof of Theorem
from [19] that we build on. Theorem [5|is proved in Section 3| Extension for other weights of

triangles is in Section [4l Some related results are mentioned in Section
Notation. We follow standard graph theory notation (see e.g. [3]).

For a graph G, we denote the set neighbours of x € V(G) by I'¢(x) (or just I'(x) when G is
understood) and the number of edges in a set B C F(G) incident with = by dg(z). We denote
by K[V1, V2] the complete bipartite graph with vertex partition (V7, V3). The term [X, Y]-edges
refers to edges xy € E(G) such that x € X and y € Y. We write [z, Y]-edges as a short-hand
for [{z}, Y]-edges.

Let ta2(n) := |E(T2(n))| be the number of edges in the Turdn graph 75(n). Recall that ta(n) =
|n?/4]. By a cherry we mean a path with 2 edges.

We consider graphs up to isomorphism; in particular, we write G = H to denote that G and H

are isomorphic graphs.

2 Outline of the proof of Theorem (3| from [19]

In this section we give a short outline of the proof of [19, Lemma 5], which was a key step in
proving m3(n) < n?/2 4+ o(n?) and is a starting point of our argument towards Theorem . For
an n-vertex graph G and each i € N, let K;(G) be the set of all i-cliques in G. Let 73 ¢(G) be

the minimum of
2 Z c(xy) +3 Z c(zyz)
zyeKo(G) zyz€K3(Q)

over fractional { K2, K3}-decompositions c of E(G), that is, over maps ¢ : Ko(G)UK3(G) — [0, 1]
such that for every edge zy € E(G) we have c(xy) + > ..,y .ckq(c) C(zyz) = 1. Of course,
73 +(G) < m3(G). By a result of Haxell and Rodl [17] or a more general version by Yuster 28],
it also holds that m3(G) < 73 (@) + o(n?). So, to show that m3(G) < n?/2 + o(n?), it suffices

to consider the fractional equivalent 73 ¢(G).

Lemma 8. Let G be an n-vertex graph. Then

-1
<?;> Y. ms(GV]) <21+0(1)

we(")

where the sum is taken over T-vertex subsets W of V(G).

Outline of proof. Let M be the following positive semi-definite matrix



1800000000 2444365956 640188285  —1524146769 1386815580  —732139362 —129387078
2444365956 4759879134 1177441152 —1783771230 2546923788  —1397639394 —143552208
640188285 1177441152 484273772  —317303211 1038156300  —591902130  —6783162

M = 12.109 —1524146769 —1783771230 —317303211 1558870290  —651906630 305728704 154602378 = 0
1386815580 2546923788 1038156300 —651906630 2285399634 —1283125950 —10755036
—732139362 —1397639394 —591902130 305728704  —1283125950 734039016 —1621938
—129387078  —143552208  —6783162 154602378 —10755036 —1621938 23860164

and let ? := (F1,..., Fr) be the following vector of rooted graphs, each having 4 vertices with
the root denoted by the white square:

(X X X XXX X))

Take any graph G of order n — oo. For w € V(G), let v, € RT denote the column vector

whose i-th component is p(F;, (G, w)), the density of the 1-flag F; in the rooted graph (G, w),
which is G with the vertex w designated as the root.
It was shown in [19] that
1 1
8] > m(GW]) + - > vhMuvgw <21+ o0(1), (1)
7 We(v(?G)) weV(G)

Namely, if we re-write the left-hand size as a linear combination ) _ ,; cyp(H, G), where H ranges
over all 7-vertex unlabelled graphs and p(H, G) is the density of H in G, then each coefficient
cy is at most 21. Since ), p(H,G) = 1, the claimed inequality follows.

In particular, since M is positive semi-definite, the quantity %Zwev(m vawM VG, is always
non-negative, yielding the result. O

The main result of [19] that m3(n) < n?/2 + o(n?) now follows directly from Lemma

Proof of Theorem[3. Let G be any graph of order n — oco. As mentioned before, m3(G) <
73,£(G) + o(n?). Also, we have

<Z>_1W3,f(G) < (;)_1@)_1 (Z( : w3 £ (GIW)),
we(ro

by averaging optimal fractional decompositions of all 7-vertex induced subgraphs. Combining
this inequality with Lemma [§| immediately gives that 73(G) < (1/2 + o(1))n?. O

3 Proof of Theorem [l

We use the so-called stability approach, where the first step is to describe the approximate
structure of all almost m3-extremal graphs of order n — oo within o(n?) adjacencies. Namely,
our Corollary [10] will show that every such graph is close to K,, or T»(n).



For this purpose, we start by showing that all almost m3-extremal graphs contain almost no
copies of the three graphs in Figure |1 (which are obtained by taking the unlabelled versions of
the corresponding graphs in F'). This is achieved by the following lemma that builds on the

results from [19].

Figure 1: Graphs Hy, Hs, and Hr.

Lemma 9. For every ¢ > 0 there existe > 0 and ng € N such that for alln = ng, if G is a graph
of order n with 73(G) > (1/2—¢)n?, then G has at most C(Z) copies of each of the graphs Hy :=
({a,b,c,d},{ab}), Hs := ({a,b,c,d},{ab,bc,ac,ad}) and H7 := ({a,b,c,d},{ab,bec,ac,bd,ad})
from Figure[]]

Proof. Given ¢ > 0, let € > 1/ng > 0 be sufficiently small. Let G be a graph as in the lemma.
Let M and ? be as in the proof of Lemma

First, the rank of the matrix M is 6 with v = (1,0, 3, 1,0, 3,0) being the only zero eigenvector.
(Thus all others eigenvalues of M are strictly positive by M = 0.)

Second, by the almost optimality of G and the fact that each term in the left-hand side of

is non-negative, we have that

> vhMuvgw = o(n). (2)
weV(G)

We now show that G must contain few copies of the graphs Hy, Hs and H;. Suppose, for
contradiction, that G contains at least C(Z) copies of Hy. Then, by a simple double-counting
argument we have that at least cn/4 vertices in G contain at least c(g) /4 copies of the rooted
flag F». In particular, the second coordinate of at least cn/4 of the vectors vg,, is at least
c¢/4. For each such vector u, let u' := u/||ul|2 be the scalar multiple of u of £2-norm 1. Since
|lu|2 < /7, we have that its second coordinate w is at least ¢/4y/7. The scalar product of
u' and the ¢2-normalised zero eigenvector v//20 (whose second coordinate is 0) is at most

1 — (¢/4y/7)2. Thus the projection of u on the orthogonal complement L = v of the zero
eigenspace of M has (?-norm at least ¢/4v/7. Thus u? Mu > A\a(c/4v/7)?, where Ay > 0 is the
smallest positive eigenvalue of M (in fact, one can check with computer that Ay = 0.0005228...).
Thus, we have that the left-hand side of in which each term is non-negative by M = 0 is at
least (cn/4) x Aa(c/4v/7)* = £2(n), a contradiction.

The analogous argument shows that the densities of Hs and Hr7 in G are also at most c. O



Let us say that two graphs G; and G of the same order are k-close in the edit distance (or
simply k-close) if there is a relabelling of the vertices of G so that |[E(G1)AE(G2)| < k. In

other words, we can make Gy and G2 isomorphic by changing at most k adjacencies.

Corollary 10. For every § > 0 there exists ny € N such that if G is a graph of order n > n;
with m3(G) > £(n) — n?/ny, then G is dn?-close in edit distance to K,, or to Ty(n).

Proof. Given any § > 0, choose sufficiently small constants § > ¢ > 1/n; > 0. Take any graph
G on n > ny vertices such that w3(G) > £(n) — n?/n;.

By Lemma[9|and the Induced Removal Lemma [1], G can be made { Hy, Hs, H7 }-free by changing
at most cn? adjacencies. Denote this new graph by G’ and note that 73(G’) > m3(G) — 2cn?.
By ¢ < 4, it is enough to show that G’ is 6n?/2-close to K, or Th(n).

Let us show that G’ is either triangle-free, or the disjoint union of at most two cliques. Indeed, if
some vertices a, b, ¢ span a triangle in G’ then, by the { H5, H7 }-freeness of G, all the remaining
vertices of G’ have either no or three neighbours among {a, b, c}. Let Ay be the set of vertices in
G'\{a, b, c} which see none of {a,b,c}, and let A3 be the set of vertices which see all of {a, b, c}.
Then Ajz is a clique because G’ is H7-free. The set Ag is also a clique because G’ is Ha-free.
Also, no pair zy in A3z x Ay can be an edge as otherwise e.g. the 4-set {a,b, z,y} spans a copy
of Hs in G. It follows that G is the disjoint union of the cliques on Ay and A3 U {a,b,c}, as

required.

Now, if G’ is triangle-free, then e(G’) = m3(G")/2 > £(n)/2 — n?/ny — 2cn? > ta(n) — 3en?.
Thus, by the stability result for Mantel’s theorem by Erdés [8] and Simonovits [26], the graph
G’ must indeed be dn?/2-close in edit distance to Ty (n).

Otherwise, G’ is the disjoint union of two cliques. Let us show that one of them has size at most
on/2. Indeed, otherwise G’ has a triangle packing covering all but at most n/2 + 2 edges by
Theorem |4, meaning that 73(G’) < e(G’) +n/2+ 2. Also, e(G’) is maximum when clique sizes
are as far apart as possible. Thus, by the lower bound on 73(G) < 73(G") + 2cn?, we conclude
that e.g. £(n) —3cn? < (5"2/2) + ((1752/2)"), leading to a contradiction to our choice of constants.

Therefore, G’ is at most n - on/2 adjacency edits away from K, as desired. O

The key steps in proving Theorem || are Lemmas

Lemma 11. There exist constants § > 0 and n1 € N such that, among all graphs on n > ny

vertices which are dn®-close to Ty(n), the mazimiser of w3 is To(n).

Proof. Choose sufficiently small € > 6 > 1/n1 > 0. Let G be an arbitrary graph with n > n;
vertices which is dn2-close to Th(n). We will show that 73(G) < 73(T2(n)) with equality if and
only if G = Ty(n). In fact, this claim can be directly derived from the result of Gyéri [12,
Theorem 1] that a graph with n vertices and t2(n) + k edges, where n — oo and k = o(n?), has
at least k — O(k?/n?) edge-disjoint triangles. More specifically, for each & > 0 there exists § > 0



and ng € N such that every graph with n > ng vertices and to(n) + k edges, where k < dn?, has
at least k — ek?/n? edge-disjoint triangles. (See also [13, Theorem 1] for a generalisation of this
to r-cliques for any fixed r > 3.) Since G is dn?-close to Th(n), it must have at most to(n) + dn>
edges. From this and 1/n < § < € < 1, we have that, for k := e(G) — t2(n),

73(Q) < 2(ta(n)) + k) — 3(k — ek?/n2) = 2ta(n) — k(1 — 3ck/n2) < 2ta(n).

Clearly, if equality is achieved then k = 0, that is, e(G) = ta(n); furthermore, G must be
triangle-free and thus G = T,(n), as required. O

Next, we need to analyse graphs that are close to K. If n = 1,3 (mod 6), then let £/ consist
of those graphs which are obtained from K, by removing a matching of size m = 2 (mod 3);
otherwise let &, := {K,}. Also, define

n/2, n=0,2 (mod 6),
2 =1,3 d6
w(n) := ’ " 3 (mod 6),
n/2+1, n=4 (mod 6),
4, n=>5 (mod 6).

Using Theorem [4] and the calculation for K, described in Table [I} one can show that 73(G) =
(g) + w(n) for all large n and every G € &/. We are going to show that these are exactly the
extremal graphs among those close to K,,. It is more convenient to do first the case when we

have some bound on the minimum degree of a graph and then derive the general case (in a
separate Lemma .

Lemma 12. There exist constants § > 0 and ng € N such that the following holds. Let G be a

graph on n > ng vertices with minimum degree at least n/8 such that G is én’-close to K,, and
m3(G) = () + w(n). Then G € &),.

Proof. Choose small constants in the following order: ¢ > § > 1/ny > 0. Suppose that G is a

graph of order n > ng as in the statement of the lemma. Let w := w(n).
Let U :={v € V(G) : dg(v) < (1 —¢)n}. Then

|U|cn

5 <e(@) <o,

and so |U| < Q—C‘Sn. Denote W := V(G) \ U, and let S := {v € W : dg(v) is odd}. Let M be a

set of edges forming a maximum matching in G[S], and denote X := S\ V(M). Then X is an
independent set and thus ('é( |) < dn?, which implies that rather roughly

| X| < en. (3)

Moreover, for every edge yz € M and any two distinct vertices 3/, 2’ € X, at most one of yy’ and

zz' can be an edge of G (otherwise y'yzz" is an augmenting path contradicting the maximality



of M). It follows that, if |X| # 1, then for every edge yz € M there are at least | X| edges
missing between yz and X. Let Yy denote the set of missing edges in G[W]. Thus

wirl > () + 13101 - 1px100), (@

where the indicator function 1jx|—; is 1 if |[X| =1 and is 0 otherwise. Moreover, the set Y, of

missing edges in G with at least one endpoint in U satisfies

il > ot - (19) (5)

by the definition of U. Note that e(G) = () — [Yw| — |Yu|. See Figure 2] for a sketch ot Yiy
and Yy .

We now build a decomposition D of G into edges and triangles, starting with D = (). If we
add edges/triangles to D, we regard them as removed from E(G). It is convenient to split our

argument into the following two cases.
Case 1: U #Dor S=0.

In this case, our procedure for constructing D is as follows.

Step 1: Add the following to D as Ks’s: the edges of the matching M and the edges of some
||X[/2] cherries with distinct endpoints in X such that their middle points are pairwise
distinct.

Step 2: Foreach u € U, one at a time, add to D a maximum set of edge-disjoint K3’s containing
u and two vertices from W. Add all remaining edges incident to vertices in U as Kj’s
to D.

Step 3: (a) Let 5" C V(G) be the set of vertices with odd degree after Step 2. Add to D the
edges of some |S’|/2 cherries with distinct endpoints in S’ such that their middle points
are pairwise distinct.

(b) If the number of remaining edges is not divisible by 3, then fix this by adding to D
(as single edges) the edge set of some cycle of length 4 or 5.

Step 4: Add a perfect triangle decomposition of the remaining edges to D.

For i € {1,2,3}, let Z; be the set of edges that are added to D in Step i as copies of Ka. See

Figure [2] for some illustrations of the above steps.

Claim. The above steps can be carried out as stated. Moreover, the obtained decomposition D
of G has at most | M|+ |X|+ (‘gl) +2|U| + 6 copies of K.

10



Figure 2: (a) Missing edges in Yy are colored blue and edges in Yy are red. (b) Edges in Z;
are colored blue, edges in Z3 are red and in Z3 green. The same vertices are on the right, where
dashed are some of the missing edges. Note that this is a sketch and vertices in W can incident
to both blue and red (dashed) edges.

Proof of Claim. In order to do Step 1 as stated, we can iteratively pick any two new vertices
z,y € X and then an arbitrary vertex z which is suitable as the middle point for a cherry
on xy. Note that the number of choices for z is at least n — 2 — 2cn, the number of common
neighbours of x,y € X C W, minus | X| — 1, the number of vertices previously used as middle
points. This is positive by and ¢ < 1, so we can always proceed. Note for future reference
that every vertex is incident to at most 3 edges removed in Step 1. Also, Step 1 adds |Z;| =
M|+ 2([|X|/2]) < |M|+ |X]| copies of K2 to D.

Clearly, Step 2 can always be processed. Consider the moment when we apply Step 2 to some
u € U. In the current graph, the induced subgraph G[I'(u) N W] has minimum degree at least
|I"(u) N W| — en — 3, which is at least |I'(u) N W|/2 since |I'(u)| > n/8 — 3. So by Dirac’s
theorem, this subgraph has a matching covering all but at most one vertex, that is, all edges
between v and W except at most one are decomposed as triangles in Step 2. Let U’ be the set
of those u € U for which an exceptional edge occurs. Thus we have |U’| < |U| copies of Ky
connecting U to W that are added to D in Step 2. There are trivially at most ('gl) edges with
both endpoints in U. So Step 2 adds |Z3| < ('g') + |U| copies of K3 to D. Note that all edges

incident to U are decomposed after Step 2.

Since all vertices of W but at most one had even degrees before Step 2, we have that S’ has
at most |U'| +1 < |U| + 1 vertices. Similarly as in Step 1, a simple greedy algorithm finds all

cherries as stated Step 3(a). (Note that S’, as the set of all odd-degree vertices, has even size.)

The minimum degree of G[W] after Step 3(a) is at least 0.99n, since each w € W has at most
2|U| + 6 incident edges removed (at most 2|U| from Step 2 and at most 3 in each of Steps 1
and 3(a)). Thus, we can find the required 4- or 5-cycle in Step 3(b).

Clearly, we add |Z3| < |S'| + 5 < |U| + 6 copies of K3 to D in Step 3.

Note that, at the end of Step 3, the graph G[W] has minimum degree at least, say, 0.98n while
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all its degrees are even. By Theorem [} all remaining edges can be decomposed using only

triangles, so Step 4 indeed removes all remaining edges.

Step 4 adds no additional K5’s, so the total number of Ks’s in D is
U
210+ 1zl + 120 < v+ 1]+ (1)) 210140
finishing the proof of the claim. O

Now we compute the cost of D. Using the notation from above, we have

n
w < m3(G) — <2> < —Yul = Yw| + |Z1] + | Z2| + | Z3]
U
<—|YU|—|YW|—|—|M|+|X|—|—(’2‘>—1—2|U|—|—6. (6)

Substituting the bounds from and and rearranging the terms, we get

w < <2<g|> +olU| - en|U| + 6) +(3—|X]) <|X2’ + |My> (e -2 ML (7)

First, suppose that |[U| > 0. Then, the estimate |U| < 2dn/c yields that

2<|[2]’> + 20U = en|U] + 6 < —en|U]/2 < —eny2.
Since w > 2, we must have that | X| < 1. Observe that n is odd as otherwise w > n/2 and,
by |M| < n/2, the cases |X| € {0,1} also contradict (7). So every vertex of degree n — 1
has even degree, meaning that every vertex of S is in some pair from Yy or Yy. Hence,
2|M| < 2|Yw| + [Yy|. Substituting this into the right-hand size of (6]) and using our bound on
Yy| from (), we obtain

Yol
2

U 3 /U U

w <

which again is negative for |[U| > 0 and large n, contradicting w > 2.

Thus U is empty and, by the assumption of Case 1, S is also empty (and so are X and M).
This gives that the initial graph G has minimum degree at least (1 — ¢)n, |Z1] = |Z2| = 0,
S" =1, and no K3’s are added to D in Step 3(a).

If n is even, then every vertex of G has at least one missing edge, e(G) < (g) — 5 and

m3(G) < (Z) —%+|Z3\ < <Z> —g+5,

which is strictly less than 73(K},), a contradiction.

Let n be odd and let r := (},) — e(G) be the number of missing edges in G. Suppose that r > 0,

as otherwise G = K, and we are done. The upper bound on 73(G) given by D is p, + (g) -7,
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where we define p, as the unique element of {0,4,5} with () — p, —r =0 (mod 3). Therefore,
r < 3 as otherwise 73(G) < (g) + 1 contradicting w > 2. On the other hand, all the degrees
of G are even so r = 3 and the only non-empty component of G is a triangle. However, this

contradicts w > 2 because

(Z)_l’ n=13 (m0d6)7

Case 2: U =0 and S # 0.

Some things simplify in this case (as we do not need to deal with U). On the other hand,
we have to be a bit more careful with calculations, as the new extremal graphs (K, minus a
matching) fall into this case. In particular, removing a 4- or 5-cycle may be too wasteful here.
So we construct a decomposition D of G as follows. Recall that M is a maximum matching in
G[S] and X is the set of vertices of S not matched by M.

Step 1: Make the graph triangle-disivible by removing the following as Ky’s. If X = (), then
remove all but one edge xy € M and a path of length p+ 1 € {1,2,3} whose endpoints
are x and y (thus, for p = 0, we remove just the matching M). If X is non-empty, then
remove M and the edge sets of some |X|/2 — 1 paths of length 2 and one path of length
p+2€{2,3,4} so that their degree-1 vertices partition X and their degree-2 vertices are

pairwise distinct.

Step 2: Decompose the rest perfectly into triangles.

Note that S, the set of all odd-degree vertices of G, has even size (and also | X| = |S| —2|M| is
even). Since the minimal degree of G is at least (1 — ¢)n, a simple greedy algorithm achieves
Step 1 (and Theorem 4] takes care of Step 2).

The decomposition D has exactly [M|+ |X| + p copies of Kj. Also, e(G) = (3) — [Yw|. Thus

n

w < m3(G) — <2

><—|YW\+]M\—HXH—p. (8)

Using and that |X| # 1 (since | X]| is even), we obtain that
RY

we @ 1x) (15 ) 21 4. )

Moreover, |X| < 2 as otherwise 2 < w < p — 2 — 3| M| contradicting p < 2. Thus X has either

0 or 2 elements.

Suppose that X = (). First, let n be even. Then every vertex not in S is incident to at least
one non-edge of G, Y| > (n — 2|M|)/2, and by (8),

n/2<w<2[M|+p—n/2.
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If 2|M| < n — 2, then all inequalities here become equalities and thus |[M| = 252, |Yiy| = 1,
5
(g) —1- ”772 — 2 edges, which is not divisible by 3, a contradiction. Thus 2|M| = n, the copies

p =2, w = and n = 0,2 (mod 6). However, then the graph after Step 1 has exactly
of K in the decomposition contains a perfect matching of G, and m3(G) < w3(K,,) with equality
only if G = K,,, giving the desired. So suppose that n is odd. Since every vertex of S has to
be incident to a missing edge of G, we have |Yy| > |S|/2 = |M| and the bound in (§8]) becomes
w < p. It follows that we have equality throughout, |Yy| = |[M|, w =p =2, n=1,3 (mod 6),
and () — |[M| — p =0 (mod 3); the last gives that [M| =2 (mod 3). Thus G is as required.

Finally, it remains to consider the case when | X| = 2. This time, @ yields that
2<w<p—|M[+1<3.

Therefore, |M| < 1, and n = 1,3 (mod 6) as otherwise w > 4. If |[M| = 1, then we have
equality everywhere, giving that w = p = 2, |S| = 4 and |Yy| = 3. However, then the graph
after Step 1 has () — |Yw| — |M| — |X| — p = () — 8 edges, which is not divisible by 3, a
contradiction. Thus M is empty, p € {1,2} and S = X. By (8), [Yw| < 2 and hence |Yiy| = 1.
In other words, G = K, . However, then the graph after Step 1 has (g) —1— (24 p) edges,
which is not divisible by 3. (Alternatively, Theorem {4| gives that 73(K,, ) — (}) < 2 = w.) This

contradiction finishes Case 2 and the proof of the lemma. O

Lemma 13. There exist constants § > 0 and ny € N such that the following holds. Let G be a

graph on n = ny vertices mazimizing 73(G) among all graphs that are én’-close to K,. Then
Gegl.

Proof. Let ng and 6 be the constants from Lemma We claim that, for example, ni := 2ng
is enough for the conclusion of Lemma [13|to hold. Indeed, take any extremal graph G of order
n > ni. If G satisfies the assumption on minimum degree of Lemma then we are done.
Hence assume that the minimum degree of G is less than n/8. Let G, := G, and iteratively
define a sequence of graphs G,,_1,Gn_2, ... as follows. Given a graph G; of order i, if it has a
vertex x of degree less than i/8, let G;_1 := G; — = be obtained from G; by removing the vertex
x; otherwise stop. Note that the process does not reach i < n/2 for otherwise G has roughly at

least (n/2) x (n/4) non-edges, which is a contradiction to G being dn?-close to K.

Let G5 with |G4| = s = n/2 > no be the graph for which the above process terminates. By
Lemma |12, we have that m3(Gs) < % + 1. By decomposing all edges in E(G) \ E(Gs) as Ka’s,

we obtain that )

7T3(Gn)<7T3(Gs)+2(n—s)-%<%—i—l—i—(n—s)-

This is a convex function in s so it is maximized on the boundary of § <
we get m3(Gp) < n?/4+2 < () < m3(Ky). If s=n— 1, we get

—1)2
773(Gn)<773(Gs)+2(ns)~g<(n2)+1+2< <Z> f%+2<7r3(Kn).

In both cases, we get a contradiction to G, being extremal. O

w =13

<n—1.Ifs=n/2,
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Proof of Theorem[5 Choose sufficiently small constants in this order 1 > § > 1/ng > 0. In
particular, ng is sufficiently large to satisfy Corollary [10|for this § as well as Lemmas [L1] and
Let G be an arbitrary graph of order n > ng with 73(G) > ¢(n). By Corollary G is dn>-close
to either Ta(n) or K.

If G is close to T3(n) then it must be T»(n) by Lemma If G is close to K,, then it must
be in &/, by Lemma By comparing the costs of optimal decompositions, we conclude that
G eé&y. O

4 Extension to an arbitrary cost «

The goal of this section is to prove Theorem [7| Everywhere in this section, let n be sufficiently

large.

First, note that the case a > 6 is trivial. Indeed, the cost of a triangle is not better than a cost
of three edges. Thus for every graph G an optimal decomposition is to decompose all edges of
G as Ks’s. The unique graph maximizing the number of edges is K, so it is also the unique

maximizer of 7§ for every a > 6.

Next, let us make some easy general observations which apply when a < 6. First,
5 (G) = av(G) + 2(e(G) — 3v(G)) = 2e(G) — (6 — a)v(G),

where v(G) denotes the maximum number of edge-disjoint triangles contained in G. Also, if
a1 < az <6, v(G1) = v(G2) and 75 (G1) > w3 (G2) for some graphs G and G, then

™3 (Gh) — 3% (Ga) = 3" (G1) — w5 (Ga) + (a2 — an)(v(G1) — v(G2)) > 0. (10)

In particular, if K, is the maximizer of 75", it is also a maximizer for 752.

4.1 The case a <3
Next, we discuss the case a < 3. Let n be large and let G be a 7§ (n)-extremal graphs. Since
™5(G) > 7§(G) > 7§ (Ta(n)) = m3(Ta(n)) = (1/2+ o(1))n?,

Corollarygives that G is o(n?)-close to K,, or Ta(n). Since a < 3, we have that 7§ (T2(n))
(14 £2(1))7g (K,,) and thus G is close to T5(n). Now, Lemmaimplies that 7$(G) < 73(Q)
73 (To(n)) = 7§(Ta(n)), with equality if and only if G = Ty(n), giving the desired.

V/ANA\Y

4.2 Thecase3 <a<4

This subsection proves Theorem [7]in case 3 < o < 4.
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First, let us show that every m§-maximiser G is in K, or K. Suppose for a contradiction that G
violates this. In particular, we have 7$/(G) > m§(K,). By (10), we have that 73(G) > 73 (Kp).
For n — oo, it holds by Table [1| that 7§ (K,) > (1 + 2(1)) 7§ (T>(n)). Hence G needs to be
close to K, and Lemma applies to G. In particular, this means that n = 1,3 (mod 6).
Lemma gives that all 73-extremal graphs are obtained from K, by removing a matching
of size congruent to 2 modulo 3. It follows from that, among these graphs, 7%’ is strictly

maximized by K since this graph has the largest v.

Theorem 4] gives that 3v(K;;) = () — 6. Since 7§(G) > n§(K;) and 73(G) < m3(K,;), this
implies by that v(G) > v(K,; ). Since also v(G) < v(K,) (otherwise 7§ (G) < 7§(Ky)), we
conclude that 3v(G) = (Z) — 3, that is, exactly three pairs of vertices of G' are not included into
some triangle from an optimal decomposition of G. This implies that GG is a complete graph
without one edge, or a path on three vertices, or a triangle. Among these three candidates (that
have the same v), K~ has the largest size and thus maximizes 7§. So K~ is the only possible
candidate for G. However, 7§ (K, ) > n§(K,, ) if @ < 4. This contradiction finishes the proof

in case 3 < o < 4.

Thus, every m§-maximiser is in { K, K, }. It remains to compare these two graphs. Calculations
based on Theorem M show that

0, n=0,2,4,5 (mod 6),

2, n=1,3 (mod 6).

n (K7) —n (Ko +4
6 —«

Thus 7§ (K,) > n§(K,,) ifn=0,2,4,5 (mod 6) and 7§ (K, ) > 7§ (K,) otherwise, as required.

4.3 Thecased<a<6

In this case we provide a direct proof, without using flag algebras or fractional decompositions.
Let n be large and let G be any graph of order n such that 7§ (G) = 7n§(n). Let D be a

decomposition of G with minimum weight consisting of ¢ triangles and ¢ edges.

If G is a complete graph, then we are done. Hence we assume there exists some pair of vertices
x,y € G such that zy ¢ E(G). Let G’ be obtained from G by adding the edge zy. Let D’ be an
optimal decomposition of G’ containing t’ triangles and ¢’ edges. Recall that finding an optimal

decomposition is equivalent to maximizing a triangle packing, that is, ¢ = v(G’). Hence t’ > t.

If zy is used as an edge in D', then removing xy from D’ gives a decomposition of G with
cost m§(G") — 2, contradicting the maximality of G. Therefore zy must appear in a triangle
zyz € D'. We now construct a decomposition D* of G by removing zyz from D’ and adding
the edges xz and yz. Since the total cost of D* is a(t' — 1) + 2(¢ 4 2) we have

7$(G) < cost(D*) = at' — 1) +2(0 +2) =at' + 20 —a+ 4 < ot’ + 20 = 7§(G),

which contradicts the maximality of 7§ (G) if at least one of the inequalities is strict. Hence

«a =4, zy must be in a triangle in D’ and 7§ (G’) = 7§ (n).
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This means that it is possible to keep adding edges to (G, which results in a sequence of graphs
G,G, ..., K, where an optimal decomposition of each of these graphs has cost 7§ (n), i.e. they
all are m§-extremal graphs. Note that we can add missing edges to G in any order, always

obtaining a sequence of extremal graphs.
This allows us to reverse the process and examine a sequence of edge removals from K,,.

Suppose that G is obtained from K, by removing the edge zy, i.e. G’ is K,,. Notice that if ¢ > 0,
i.e. the optimal decomposition of K, contains an edge, then there exist an option for D’ that
contains the edge xy, which was already ruled out. This means that K, is triangle-divisible,

which is the case if and only if n = 1,3 (mod 6).

Now assume that G is missing more than one edge. Hence K, must be also extremal. By
above, n = 1,3 (mod 6), K, is triangle-divisible, and 74 (n) = 4v(K,), where v(K,) = 1 (}).

Suppose that G is obtained from K, by removing two edges uv and zy. First, suppose that
u = x. Let D* be a decomposition of G into triangles and one edge vy. This gives

75(G) < cost(D*) = 4(v(K,) — 1) + 2 < 4v(K,) = 73(n),

contradicting the maximality of wg(G). Hence xy and wv form a matching. Notice that z, vy,
u, and v have odd degrees in GG, so £ > 2 for else we are unable to fix the parity of the vertices
z, Yy, u, and v. Now (Z) — ¢ — 2 needs to be divisible by 3, so £ > 4. There indeed exists a

decomposition with ¢ = 4 by taking edges xu, xv, yu, and yv and rest as triangles. This gives
73(G) = 4(v(K,) —2) +2-4 = m5(n).

Therefore, G is extremal.

Suppose that G is obtained from K, by removing three edges uv, xy, and zw. Since G’ must
be K, without a matching, uv, xy, and zw also form a matching. Let D* be a decomposition

of G into triangles and edges ux, yz, and vw. This gives
m5(G) < cost(D*) = 4(v(Ky,) — 2) + 6 < 4v(K,) = m5(n),

contradicting the maximality of m5(G). This implies that G' cannot be obtained from K, by
deleting three or more edges, thus finishing the proof of this case and of Theorem [7}

5 Related results

A related question of Erdés (see e.g., [9]) asks for the largest ¢ = ¢(n, m) such that every graph
with n vertices and t2(n) + m edges has at least ¢t edge-disjoint triangles. Of course, t < m.
Gyéri [12] (see [14] for a correction) showed, for large n, that t > m — O(m?/n?) if m = o(n?),
and t = m if n is odd and m < 2n — 10 or n is even and m < 3n/2 — 5. Moreover, the last two

bounds on m are sharp.
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More recently, Gy6ri and Keszegh [15] proved that every Ky-free graph with to(n) + m edges

has m edge-disjoint triangles.

Theorem [5| shows that the maximum of 73(G) is attained for G = T»(n) or G = K,,. However,
if we restrict the set of graphs under consideration to graphs of a particular edge density, the
decomposition is perhaps cheaper. Note that if the optimal decomposition of a graph G contains
t triangles and ¢ edges, then m3(G) = 2e(G) — 3t. That is, we have that 73(G) = 2¢(G) — 3v(G),
where as before v(G) denotes the maximum number of edge-disjoint triangles in G. Then
Theorem [3| implies an inequality between the edge density of G and its triangle packing density
which we denote by v4(G) := 3v(G)/(3):

Corollary 14 (of Theorem . Let G be a graph with d(g) edges. Then

va(G) =2 2d—1+o(1).

We also have that v4(G) < d, which is tight for all graphs which are the union of edge-disjoint

triangles.

A question reminiscent of the seminal result of Razborov on the minimal triangle density in
graphs [25] (see also [20122]) would be to determine the exact lower bound on v4(G) in terms

of d (answering asymptotically the question of Erdés stated above).

va(Q)

73(G) /n? L /

0.5 //

0.5 1

0.5 1

Figure 3: Asymptotic bounds on possible values of m3(G) and v4(G). The dashed line is simply
y = 2x — 1 for a better display of the shape.

Some flag algebra computations yield numerical asymptotic lower bounds on v4(G) with different
edge densities between 0.5 and 1. The result, depicted in Figure [3] suggests that the true
asymptotic shape of the region {(d,v4(G)) : 0 < d < 1,G graph} may indeed have a richer

structure.

18



6 Acknowledgement

Work on this project was started at Rocky Mountain Great Plains Graduate Research Work-
shops in Combinatorics 2018. The work is partially supported by NSF-DMS grants #1603823
and #1604458 ”Collaborative Research: Rocky Mountain Great Plains Graduate Research
Workshops in Combinatorics” and by NSA grant #H98230-18-1-0017, ”The 2018 and 2019
Rocky Mountain — Great Plains Graduate Research Workshops in Combinatorics.” We would
like to thank Ryan R. Martin for fruitful discussions during the early stages of this project, and
Ben Barber for suggesting the problem presented in Section

References

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large graphs, Combinatorica 20
(2000), 451-476.

[2] B. Barber, D. Kiihn, A. Lo, and D. Osthus, Edge-decompositions of graphs with high minimum degree, Adv.
Math. 288 (2016), 337-385.

[3] B. Bollobds, Modern graph theory, Springer-Verlag, Berlin, 1998.
[4] F. R. K. Chung, On the decomposition of graphs, SIAM J. Algebraic Discrete Methods 2 (1981), 1-12.

[5] M. Delcourt and L. Postle, Progress towards nash-williams’ conjecture on triangle decompositions, 2019.
E-print arxiv:1909.00514.

[6] F. Dross, Fractional triangle decompositions in graphs with large minimum degree, SIAM J. Discr. Math. 30
(2016), 36-42.

[7] P. Dukes and D. Horsley, On the minimum degree required for a triangle decomposition, SIAM J. Discr.
Math. 34 (2020), 597-610.

[8] P. Erdés, Some recent results on extremal problems in graph theory. Results, Theory of Graphs (Internat.
Sympos., Rome, 1966), 1967, pp. 117-123 (English); pp. 124-130 (French).

[9] P. Erdds, Some unsolved problems in graph theory and combinatorial analysis, Combinatorial Mathematics
and its Applications (Proc. Conf., Oxford, 1969), 1971, pp. 97-109.

[10] P. Erdds, A. W. Goodman, and L. Pésa, The representation of a graph by set intersections, Can. J. Math.
18 (1966), 106-112.

[11] E. Gydri and A. V. Kostochka, On a problem of G. O. H. Katona and T. Tarjdn, Acta Math. Acad. Sci.
Hungar. 34 (1979), 321-327 (1980).

[12] E. Gy6ri, On the number of edge-disjoint triangles in graphs of given size, Combinatorics (Eger, 1987), 1988,
pp. 267-276.

[13] E. Gyéri, On the number of edge disjoint cliques in graphs of given size, Combinatorica 11 (1991), 231-243.
[14] E. Gyéri, Edge disjoint cliques in graphs, Sets, graphs and numbers (Budapest, 1991), 1992, pp. 357-363.

[15] E. Gyéri and B. Keszegh, On the number of edge-disjoint triangles in Ka-free graphs, Combinatorica 37
(2017), 1113-1124.

[16] E. Gy6ri and Zs. Tuza, Decompositions of graphs into complete subgraphs of given order, Studia Sci. Math.
Hungar. 22 (1987), 315-320.

[17] P. E. Haxell and V. R6dl, Integer and fractional packings in dense graphs, Combinatorica 21 (2001), 13-38.
[18] J. Kahn, Proof of a conjecture of Katona and Tarjdn, Period. Math. Hungar. 12 (1981), 81-82.

19



[19]

[20]

[21]

[22]

D. Kral’, B. Lidicky, T. L. Martins, and Y. Pehova, Decomposing graphs into edges and triangles, Combin.
Probab. Comput. 28 (2019), 465-472.

H. Liu, O. Pikhurko, and K. Staden, The exact minimum number of triangles in graphs of given order and
size, Forum of Mathematics, Pi 8 (2020), e8.

C. S. J. Nash-Williams, An unsolved problem concerning decomposition of graphs intotriangles, Combinatorial
theory and its applications iii., 1970, pp. 1179-1183.

O. Pikhurko and A. Razborov, Asymptotic structure of graphs with the minimum number of triangles, Com-
bin. Probab. Computing 26 (2017), 138-160.

L. Pyber, Covering the edges of a graph by ..., Sets, graphs and numbers (Budapest, 1991), 1992, pp. 583~
610.

A. Razborov, Flag algebras, J. Symb. Logic 72 (2007), 1239-1282.

A. Razborov, On the minimal density of triangles in graphs, Combin. Probab. Computing 17 (2008), 603~
618.

M. Simonovits, A method for solving extremal problems in graph theory, stability problems, Theory of Graphs
(Proc. Collog., Tihany, 1966), 1968, pp. 279-319.

Zs. Tuza, Unsolved Combinatorial Problems, Part I, 2001.

R. Yuster, Integer and fractional packing of families of graphs, Random Struct. Algorithms 26 (2005), 110—
118.

20



	Introduction
	Outline of the proof of Theorem 3 from KralLidickyMartinsPehova19
	Proof of Theorem 5
	Extension to an arbitrary cost 
	The case < 3
	The case 3 < < 4
	The case 4 < 6

	Related results
	Acknowledgement

