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Abstract

For a real constant α, let πα3 (G) be the minimum of twice the number of K2’s plus α

times the number of K3’s over all edge decompositions of G into copies of K2 and K3, where

Kr denotes the complete graph on r vertices. Let πα3 (n) be the maximum of πα3 (G) over all

graphs G with n vertices.

The extremal function π3
3(n) was first studied by Győri and Tuza [Decompositions of

graphs into complete subgraphs of given order, Studia Sci. Math. Hungar. 22 (1987), 315–

320]. In a recent progress on this problem, Král’, Lidický, Martins and Pehova [Decomposing

graphs into edges and triangles, Combin. Prob. Comput. 28 (2019) 465–472] proved via flag

algebras that π3
3(n) 6 (1/2+o(1))n2. We extend their result by determining the exact value

of πα3 (n) and the set of extremal graphs for all α and sufficiently large n. In particular, we

show for α = 3 that Kn and the complete bipartite graph Kbn/2c,dn/2e are the only possible

extremal examples for large n.
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1 Introduction

In a recent progress on a problem of Győri and Tuza [27], Král’, Lidický, Martins and Pehova [19]

proved via flag algebras that the edges of any n-vertex graph can be decomposed into copies

of K2 and K3 whose total number of vertices is at most (1/2 + o(1))n2, where Kr denotes the

clique on r vertices. The origins of this problem can be traced back to Erdős, Goodman and

Pósa [10] who considered the problem of minimising the total number of cliques in an edge

decomposition of an arbitrary n-vertex graph. They showed the following:

Theorem 1 (Erdős, Goodman, Pósa [10]). The edges of every n-vertex graph can be decomposed

into at most bn2/4c complete graphs.

The only extremal example for this bound is the (bipartite) Turán graph T2(n) := Kbn/2c,dn/2e,

where Ka,b denotes the complete bipartite graph with part sizes a and b. Moreover, this result

still holds if we restrict the sizes of the cliques used in the decomposition to 2 and 3 (that is,

single edges and triangles). In a series of papers published independently by Chung [4], Győri

and Kostochka [11], and Kahn [18], they proved that in fact something stronger than Theorem 1

is true, confirming a conjecture by Katona and Tarján:

Theorem 2 (Chung [4], Győri and Kostochka [11], Kahn [18]). Every n-vertex graph can be

edge decomposed into cliques whose total number of vertices is at most bn2/2c.

For a given graph G on n vertices, let πk(G) be the minimum over all decompositions of the

edges of G into cliques C1, ... , C` of size at most k of the sum |C1| + |C2| + · · · + |C`|, where

|G| := |V (G)| denotes the order of a graph G. Let πk(n) be the maximum of πk(G) over

all graphs G with n vertices. With this notation, the conclusion of the above theorem is that

mink∈N πk(n) 6 bn2/2c. In light of Theorem 2, Tuza [27] conjectured that π3(n) 6 n2/2+o(n2),

and in fact that π3(n) 6 n2/2 +O(1). Győri and Tuza [16] showed that π3(n) 6 9n2/16. This

was the best known bound until recently, when using the celebrated flag algebra method of

Razborov [24], Král’, Lidický, Martins and Pehova [19] proved the asymptotic version of Tuza’s

conjecture:

Theorem 3 (Král’, Lidický, Martins and Pehova [19]). We have π3(n) 6 (1/2 + o(1))n2 as

n→∞.

In this paper we show, by building upon the proof in [19], that for all large n it holds in fact

π3(n) 6 n2/2+1. Moreover, if a graph G of order n attains π3(n) then G is the complete graph

Kn or the Turán graph T2(n).

Which of these two graphs is extremal is a matter of divisibility of n by 6. In the case of the

Turán graph, we trivially have π3(T2(n)) = 2bn/2cdn/2e, giving n2/2 for even n and (n2− 1)/2
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for odd n. In order to determine π3(Kn), we have to determine the maximum number of edge-

disjoint triangles in Kn. Clearly, the graph made of their edges is triangle-divisible, that is, each

vertex has even degree and the total number of edges is divisible by three. It is routine to see

that the minimum size of a graph H on n vertices whose complement H is triangle-divisible is

attained by taking at most one copy of the claw K1,3 and a perfect matching on the remaining

vertices for even n, and isolated vertices plus at most one copy of the 4-cycle K2,2 for odd n.

(Note that
(
n
2

)
is never equal to 2 modulo 3.) In fact, this gives the value of π3(Kn) for all large

n by the following general result (which we will use also inside our proof).

Theorem 4 (Barber, Kuhn, Lo and Osthus [2]). For every ε > 0, if G is a triangle-divisible

graph of large order n and minimum degree at least (0.9 + ε)n, then G has a perfect triangle

decomposition.

The constant 0.9 in the minimum degree condition in Theorem 4 comes from the result of

Dross [6] on fractional triangle decompostions, and it was conjectured by Nash-Williams [21]

that it can be replaced by 3/4. Very recently, Dukes and Horsley [7] and Delcourt and Postle [5]

improved the constant to 0.852 and (7 +
√

21)/14 = 0.8273..., respectively.

Let us list the values of π3 for the graphs Kn and T2(n) for large n.

n mod 6 K2’s in an optimal decomposition of Kn π3(Kn) π3(T2(n))

0 perfect matching n2

2
n2

2

1 none
(
n
2

)
n2−1
2

2 perfect matching n2

2
n2

2

3 none
(
n
2

)
n2−1
2

4 K1,3 + perfect matching n2

2 + 1 n2

2

5 C4

(
n
2

)
+ 4 n2−1

2

Table 1: Values of π3(Kn) and π3(T2(n)) for large n.

Let us define

En :=


{T2(n),Kn}, if n ≡ 0, 2 (mod 6),

{T2(n)}, if n ≡ 1, 3, 5 (mod 6),

{Kn}, if n ≡ 4 (mod 6),

and

`(n) :=


n2/2, for n ≡ 0, 2 (mod 6),

(n2 − 1)/2, for n ≡ 1, 3, 5 (mod 6),

n2/2 + 1, for n ≡ 4 (mod 6).

Thus, by the calculations of Table 1, we have for all large n that En consists of those graphs in

{T2(n),Kn} which maximise π3 while `(n) is this maximum value.
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Clearly, `(n) is a lower bound on π3(n) for large n. Our main result is that this is equality.

Theorem 5. There exists n0 ∈ N such that for all n > n0, we have π3(n) = `(n) and the set

of π3(n)-extremal graphs up to isomorphism is exactly En.

A simple corollary of Theorem 5 is an affirmative answer to a question of Pyber [23], see

also [27, Problem 45], for sufficiently large n. A covering of a graph G is a collection of

subgraphs of G such that every edge of G appears in at least one subgraph. (For comparison,

a decomposition requires that every edge appears in exactly one subgraph.)

Corollary 6. There exists n0 ∈ N such that for all n > n0, the edge set of every n-vertex graph

can be covered with triangles and edges so that the sum of their orders is at most bn2/2c.

Proof. Theorem 5 directly implies the corollary unless n ≡ 4 (mod 6) and the graph under

consideration is Kn. So assume that n ≡ 4 (mod 6). Denote the vertices of Kn by v1, ... , vn.

Recall that an optimal decomposition for Kn is obtained by taking edges v1v2, v1v3, v1v4 and

vivi+1 for all odd i with 5 6 i 6 n − 1. The rest of the graph becomes triangle-divisible

and Theorem 4 can be applied. This gives a decomposition of cost n2/2 + 1. A covering of

cost at most n2/2 can be obtained from this decomposition by replacing edges v1v2 and v1v3

by a triangle v1v2v3. (Notice that the pair v2v3 is covered by two triangles in the resulting

covering.)

We also study an extension of Theorem 5, where we consider decompositions into K2’s and K3’s

but we modify the cost of K3’s to be α (with the cost of K2 still being 2). The minimum over all

costs of such decompositions of a graph G is denoted by πα3 (G). The maximum value of πα3 (G)

over all n-vertex graphs G is denoted by πα3 (n). Notice that π33(G) = π3(G) and π33(n) = π3(n).

Denote Kn without one edge by K−n and Kn without a matching of size two by K=
n . Then the

following result holds.

Theorem 7. For every real α exists n0 ∈ N such that every πα3 -extremal graph G with n > n0

vertices satisfies the following (up to isomorphism).

• If α < 3, then G = T2(n);

• if α = 3 then Theorem 5 applies;

• if 3 < α < 4 and n ≡ 0, 2, 4, 5 (mod 6), then G = Kn;

• if 3 < α < 4 and n ≡ 1, 3 (mod 6), then G = K=
n ;

• if α = 4 and n ≡ 1, 3 (mod 6), then G ∈ {Kn,K
−
n ,K

=
n } and, moreover, the three listed

graphs are all πα3 -extremal;

• if α = 4 and n ≡ 0, 2, 4, 5 (mod 6), then G = Kn;
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• if 4 < α, then G = Kn.

This paper is organised as follows. In Section 2 we give an outline of the proof of Theorem 3

from [19] that we build on. Theorem 5 is proved in Section 3. Extension for other weights of

triangles is in Section 4. Some related results are mentioned in Section 5.

Notation. We follow standard graph theory notation (see e.g. [3]).

For a graph G, we denote the set neighbours of x ∈ V (G) by ΓG(x) (or just Γ (x) when G is

understood) and the number of edges in a set B ⊆ E(G) incident with x by dB(x). We denote

by K[V1, V2] the complete bipartite graph with vertex partition (V1, V2). The term [X,Y ]-edges

refers to edges xy ∈ E(G) such that x ∈ X and y ∈ Y . We write [x, Y ]-edges as a short-hand

for [{x}, Y ]-edges.

Let t2(n) := |E(T2(n))| be the number of edges in the Turán graph T2(n). Recall that t2(n) =

bn2/4c. By a cherry we mean a path with 2 edges.

We consider graphs up to isomorphism; in particular, we write G = H to denote that G and H

are isomorphic graphs.

2 Outline of the proof of Theorem 3 from [19]

In this section we give a short outline of the proof of [19, Lemma 5], which was a key step in

proving π3(n) 6 n2/2 + o(n2) and is a starting point of our argument towards Theorem 5. For

an n-vertex graph G and each i ∈ N, let Ki(G) be the set of all i-cliques in G. Let π3,f (G) be

the minimum of

2
∑

xy∈K2(G)

c(xy) + 3
∑

xyz∈K3(G)

c(xyz)

over fractional {K2,K3}-decompositions c of E(G), that is, over maps c : K2(G)∪K3(G)→ [0, 1]

such that for every edge xy ∈ E(G) we have c(xy) +
∑

z:xyz∈K3(G) c(xyz) > 1. Of course,

π3,f (G) 6 π3(G). By a result of Haxell and Rödl [17] or a more general version by Yuster [28],

it also holds that π3(G) 6 π3,f (G) + o(n2). So, to show that π3(G) 6 n2/2 + o(n2), it suffices

to consider the fractional equivalent π3,f (G).

Lemma 8. Let G be an n-vertex graph. Then(
n

7

)−1 ∑
W∈(V (G)

7 )

π3,f (G[W ]) 6 21 + o(1)

where the sum is taken over 7-vertex subsets W of V (G).

Outline of proof. Let M be the following positive semi-definite matrix
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M := 1
12·109



1800000000 2444365956 640188285 −1524146769 1386815580 −732139362 −129387078

2444365956 4759879134 1177441152 −1783771230 2546923788 −1397639394 −143552208

640188285 1177441152 484273772 −317303211 1038156300 −591902130 −6783162

−1524146769 −1783771230 −317303211 1558870290 −651906630 305728704 154602378

1386815580 2546923788 1038156300 −651906630 2285399634 −1283125950 −10755036

−732139362 −1397639394 −591902130 305728704 −1283125950 734039016 −1621938

−129387078 −143552208 −6783162 154602378 −10755036 −1621938 23860164


< 0

and let
−→
F := (F1, . . . , F7) be the following vector of rooted graphs, each having 4 vertices with

the root denoted by the white square:

~F =

(
, , , , , ,

)
.

Take any graph G of order n → ∞. For w ∈ V (G), let vG,w ∈ R7 denote the column vector

whose i-th component is p(Fi, (G,w)), the density of the 1-flag Fi in the rooted graph (G,w),

which is G with the vertex w designated as the root.

It was shown in [19] that

1(
n
7

) ∑
W∈(V (G)

7 )

π3,f (G[W ]) +
1

n

∑
w∈V (G)

vTG,wMvG,w 6 21 + o(1). (1)

Namely, if we re-write the left-hand size as a linear combination
∑

H cHp(H,G), where H ranges

over all 7-vertex unlabelled graphs and p(H,G) is the density of H in G, then each coefficient

cH is at most 21. Since
∑

H p(H,G) = 1, the claimed inequality (1) follows.

In particular, since M is positive semi-definite, the quantity 1
n

∑
w∈V (G) v

T
G,wMvG,w is always

non-negative, yielding the result.

The main result of [19] that π3(n) 6 n2/2 + o(n2) now follows directly from Lemma 8.

Proof of Theorem 3. Let G be any graph of order n → ∞. As mentioned before, π3(G) 6

π3,f (G) + o(n2). Also, we have(
n

2

)−1
π3,f (G) 6

(
7

2

)−1(n
7

)−1 ∑
W∈(V (G)

7 )

π3,f (G[W ]),

by averaging optimal fractional decompositions of all 7-vertex induced subgraphs. Combining

this inequality with Lemma 8 immediately gives that π3(G) 6 (1/2 + o(1))n2.

3 Proof of Theorem 5

We use the so-called stability approach, where the first step is to describe the approximate

structure of all almost π3-extremal graphs of order n → ∞ within o(n2) adjacencies. Namely,

our Corollary 10 will show that every such graph is close to Kn or T2(n).
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For this purpose, we start by showing that all almost π3-extremal graphs contain almost no

copies of the three graphs in Figure 1 (which are obtained by taking the unlabelled versions of

the corresponding graphs in
−→
F ). This is achieved by the following lemma that builds on the

results from [19].

H2 H5 H7

Figure 1: Graphs H2, H5, and H7.

Lemma 9. For every c > 0 there exist ε > 0 and n0 ∈ N such that for all n > n0, if G is a graph

of order n with π3(G) > (1/2−ε)n2, then G has at most c
(
n
4

)
copies of each of the graphs H2 :=

({a, b, c, d}, {ab}), H5 := ({a, b, c, d}, {ab, bc, ac, ad}) and H7 := ({a, b, c, d}, {ab, bc, ac, bd, ad})
from Figure 1.

Proof. Given c > 0, let ε� 1/n0 > 0 be sufficiently small. Let G be a graph as in the lemma.

Let M and
−→
F be as in the proof of Lemma 8.

First, the rank of the matrix M is 6 with v = (1, 0, 3, 1, 0, 3, 0) being the only zero eigenvector.

(Thus all others eigenvalues of M are strictly positive by M < 0.)

Second, by the almost optimality of G and the fact that each term in the left-hand side of (1)

is non-negative, we have that ∑
w∈V (G)

vTG,wMvG,w = oε(n). (2)

We now show that G must contain few copies of the graphs H2, H5 and H7. Suppose, for

contradiction, that G contains at least c
(
n
4

)
copies of H2. Then, by a simple double-counting

argument we have that at least cn/4 vertices in G contain at least c
(
n
3

)
/4 copies of the rooted

flag F2. In particular, the second coordinate of at least cn/4 of the vectors vG,w is at least

c/4. For each such vector u, let u′ := u/‖u‖2 be the scalar multiple of u of `2-norm 1. Since

‖u‖2 6
√

7, we have that its second coordinate u′2 is at least c/4
√

7. The scalar product of

u′ and the `2-normalised zero eigenvector v/
√

20 (whose second coordinate is 0) is at most√
1− (c/4

√
7)2. Thus the projection of u on the orthogonal complement L = v⊥ of the zero

eigenspace of M has `2-norm at least c/4
√

7. Thus uTMu > λ2(c/4
√

7)2, where λ2 > 0 is the

smallest positive eigenvalue of M (in fact, one can check with computer that λ2 = 0.0005228...).

Thus, we have that the left-hand side of (2) in which each term is non-negative by M < 0 is at

least (cn/4)× λ2(c/4
√

7)2 = Ω(n), a contradiction.

The analogous argument shows that the densities of H5 and H7 in G are also at most c.
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Let us say that two graphs G1 and G2 of the same order are k-close in the edit distance (or

simply k-close) if there is a relabelling of the vertices of G2 so that |E(G1)4E(G2)| 6 k. In

other words, we can make G1 and G2 isomorphic by changing at most k adjacencies.

Corollary 10. For every δ > 0 there exists n1 ∈ N such that if G is a graph of order n > n1

with π3(G) > `(n)− n2/n1, then G is δn2-close in edit distance to Kn or to T2(n).

Proof. Given any δ > 0, choose sufficiently small constants δ � c� 1/n1 > 0. Take any graph

G on n > n1 vertices such that π3(G) > `(n)− n2/n1.

By Lemma 9 and the Induced Removal Lemma [1], G can be made {H2, H5, H7}-free by changing

at most cn2 adjacencies. Denote this new graph by G′ and note that π3(G
′) > π3(G) − 2cn2.

By c� δ, it is enough to show that G′ is δn2/2-close to Kn or T2(n).

Let us show that G′ is either triangle-free, or the disjoint union of at most two cliques. Indeed, if

some vertices a, b, c span a triangle in G′ then, by the {H5, H7}-freeness of G, all the remaining

vertices of G′ have either no or three neighbours among {a, b, c}. Let A0 be the set of vertices in

G′\{a, b, c} which see none of {a, b, c}, and let A3 be the set of vertices which see all of {a, b, c}.
Then A3 is a clique because G′ is H7-free. The set A0 is also a clique because G′ is H2-free.

Also, no pair xy in A3 ×A0 can be an edge as otherwise e.g. the 4-set {a, b, x, y} spans a copy

of H5 in G. It follows that G is the disjoint union of the cliques on A0 and A3 ∪ {a, b, c}, as

required.

Now, if G′ is triangle-free, then e(G′) = π3(G
′)/2 > `(n)/2 − n2/n1 − 2cn2 > t2(n) − 3cn2.

Thus, by the stability result for Mantel’s theorem by Erdős [8] and Simonovits [26], the graph

G′ must indeed be δn2/2-close in edit distance to T2(n).

Otherwise, G′ is the disjoint union of two cliques. Let us show that one of them has size at most

δn/2. Indeed, otherwise G′ has a triangle packing covering all but at most n/2 + 2 edges by

Theorem 4, meaning that π3(G
′) 6 e(G′) + n/2 + 2. Also, e(G′) is maximum when clique sizes

are as far apart as possible. Thus, by the lower bound on π3(G) 6 π3(G
′) + 2cn2, we conclude

that e.g. `(n)− 3cn2 6
(
δn/2
2

)
+
(
(1−δ/2)n

2

)
, leading to a contradiction to our choice of constants.

Therefore, G′ is at most n · δn/2 adjacency edits away from Kn, as desired.

The key steps in proving Theorem 5 are Lemmas 11–13.

Lemma 11. There exist constants δ > 0 and n1 ∈ N such that, among all graphs on n > n1

vertices which are δn2-close to T2(n), the maximiser of π3 is T2(n).

Proof. Choose sufficiently small ε � δ � 1/n1 > 0. Let G be an arbitrary graph with n > n1

vertices which is δn2-close to T2(n). We will show that π3(G) 6 π3(T2(n)) with equality if and

only if G = T2(n). In fact, this claim can be directly derived from the result of Győri [12,

Theorem 1] that a graph with n vertices and t2(n) + k edges, where n→∞ and k = o(n2), has

at least k−O(k2/n2) edge-disjoint triangles. More specifically, for each ε > 0 there exists δ > 0
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and n0 ∈ N such that every graph with n > n0 vertices and t2(n) + k edges, where k 6 δn2, has

at least k− εk2/n2 edge-disjoint triangles. (See also [13, Theorem 1] for a generalisation of this

to r-cliques for any fixed r > 3.) Since G is δn2-close to T2(n), it must have at most t2(n) + δn2

edges. From this and 1/n� δ � ε� 1, we have that, for k := e(G)− t2(n),

π3(G) 6 2(t2(n)) + k)− 3(k − εk2/n2) = 2t2(n)− k(1− 3εk/n2) 6 2t2(n).

Clearly, if equality is achieved then k = 0, that is, e(G) = t2(n); furthermore, G must be

triangle-free and thus G = T2(n), as required.

Next, we need to analyse graphs that are close to Kn. If n ≡ 1, 3 (mod 6), then let E ′n consist

of those graphs which are obtained from Kn by removing a matching of size m ≡ 2 (mod 3);

otherwise let E ′n := {Kn}. Also, define

w(n) :=


n/2, n ≡ 0, 2 (mod 6),

2, n ≡ 1, 3 (mod 6),

n/2 + 1, n ≡ 4 (mod 6),

4, n ≡ 5 (mod 6).

Using Theorem 4 and the calculation for Kn described in Table 1, one can show that π3(G) =(
n
2

)
+ w(n) for all large n and every G ∈ E ′n. We are going to show that these are exactly the

extremal graphs among those close to Kn. It is more convenient to do first the case when we

have some bound on the minimum degree of a graph and then derive the general case (in a

separate Lemma 13).

Lemma 12. There exist constants δ > 0 and n0 ∈ N such that the following holds. Let G be a

graph on n > n0 vertices with minimum degree at least n/8 such that G is δn2-close to Kn and

π3(G) >
(
n
2

)
+ w(n). Then G ∈ E ′n.

Proof. Choose small constants in the following order: c� δ � 1/n0 > 0. Suppose that G is a

graph of order n > n0 as in the statement of the lemma. Let w := w(n).

Let U := {v ∈ V (G) : dG(v) 6 (1− c)n}. Then

|U |cn
2

6 e(G ) 6 δn2,

and so |U | 6 2δ
c n. Denote W := V (G) \ U , and let S := {v ∈ W : dG(v) is odd}. Let M be a

set of edges forming a maximum matching in G[S], and denote X := S \ V (M). Then X is an

independent set and thus
(|X|

2

)
6 δn2, which implies that rather roughly

|X| < cn. (3)

Moreover, for every edge yz ∈M and any two distinct vertices y′, z′ ∈ X, at most one of yy′ and

zz′ can be an edge of G (otherwise y′yzz′ is an augmenting path contradicting the maximality
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of M). It follows that, if |X| 6= 1, then for every edge yz ∈ M there are at least |X| edges

missing between yz and X. Let YW denote the set of missing edges in G[W ]. Thus

|YW | >
(
|X|
2

)
+ |M |(|X| − 1|X|=1), (4)

where the indicator function 1|X|=1 is 1 if |X| = 1 and is 0 otherwise. Moreover, the set YU of

missing edges in G with at least one endpoint in U satisfies

|YU | > cn|U | −
(
|U |
2

)
(5)

by the definition of U . Note that e(G) =
(
n
2

)
− |YW | − |YU |. See Figure 2 for a sketch ot YW

and YU .

We now build a decomposition D of G into edges and triangles, starting with D = ∅. If we

add edges/triangles to D, we regard them as removed from E(G). It is convenient to split our

argument into the following two cases.

Case 1: U 6= ∅ or S = ∅.

In this case, our procedure for constructing D is as follows.

Step 1: Add the following to D as K2’s: the edges of the matching M and the edges of some

b|X|/2c cherries with distinct endpoints in X such that their middle points are pairwise

distinct.

Step 2: For each u ∈ U , one at a time, add to D a maximum set of edge-disjoint K3’s containing

u and two vertices from W . Add all remaining edges incident to vertices in U as K2’s

to D.

Step 3: (a) Let S′ ⊆ V (G) be the set of vertices with odd degree after Step 2. Add to D the

edges of some |S′|/2 cherries with distinct endpoints in S′ such that their middle points

are pairwise distinct.

(b) If the number of remaining edges is not divisible by 3, then fix this by adding to D
(as single edges) the edge set of some cycle of length 4 or 5.

Step 4: Add a perfect triangle decomposition of the remaining edges to D.

For i ∈ {1, 2, 3}, let Zi be the set of edges that are added to D in Step i as copies of K2. See

Figure 2 for some illustrations of the above steps.

Claim. The above steps can be carried out as stated. Moreover, the obtained decomposition D
of G has at most |M |+ |X|+

(|U |
2

)
+ 2|U |+ 6 copies of K2.

10



WU

YW

YU

(a)

X

WU

M

Z1Z2 Z3

(b)

Figure 2: (a) Missing edges in YW are colored blue and edges in YU are red. (b) Edges in Z1

are colored blue, edges in Z2 are red and in Z3 green. The same vertices are on the right, where

dashed are some of the missing edges. Note that this is a sketch and vertices in W can incident

to both blue and red (dashed) edges.

Proof of Claim. In order to do Step 1 as stated, we can iteratively pick any two new vertices

x, y ∈ X and then an arbitrary vertex z which is suitable as the middle point for a cherry

on xy. Note that the number of choices for z is at least n − 2 − 2cn, the number of common

neighbours of x, y ∈ X ⊆ W , minus |X| − 1, the number of vertices previously used as middle

points. This is positive by (3) and c� 1, so we can always proceed. Note for future reference

that every vertex is incident to at most 3 edges removed in Step 1. Also, Step 1 adds |Z1| =

|M |+ 2(b|X|/2c) 6 |M |+ |X| copies of K2 to D.

Clearly, Step 2 can always be processed. Consider the moment when we apply Step 2 to some

u ∈ U . In the current graph, the induced subgraph G[Γ (u) ∩W ] has minimum degree at least

|Γ (u) ∩W | − cn − 3, which is at least |Γ (u) ∩W |/2 since |Γ (u)| > n/8 − 3. So by Dirac’s

theorem, this subgraph has a matching covering all but at most one vertex, that is, all edges

between u and W except at most one are decomposed as triangles in Step 2. Let U ′ be the set

of those u ∈ U for which an exceptional edge occurs. Thus we have |U ′| 6 |U | copies of K2

connecting U to W that are added to D in Step 2. There are trivially at most
(|U |

2

)
edges with

both endpoints in U . So Step 2 adds |Z2| 6
(|U |

2

)
+ |U | copies of K2 to D. Note that all edges

incident to U are decomposed after Step 2.

Since all vertices of W but at most one had even degrees before Step 2, we have that S′ has

at most |U ′| + 1 6 |U | + 1 vertices. Similarly as in Step 1, a simple greedy algorithm finds all

cherries as stated Step 3(a). (Note that S′, as the set of all odd-degree vertices, has even size.)

The minimum degree of G[W ] after Step 3(a) is at least 0.99n, since each w ∈ W has at most

2|U | + 6 incident edges removed (at most 2|U | from Step 2 and at most 3 in each of Steps 1

and 3(a)). Thus, we can find the required 4- or 5-cycle in Step 3(b).

Clearly, we add |Z3| 6 |S′|+ 5 6 |U |+ 6 copies of K2 to D in Step 3.

Note that, at the end of Step 3, the graph G[W ] has minimum degree at least, say, 0.98n while
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all its degrees are even. By Theorem 4, all remaining edges can be decomposed using only

triangles, so Step 4 indeed removes all remaining edges.

Step 4 adds no additional K2’s, so the total number of K2’s in D is

|Z1|+ |Z2|+ |Z3| 6 |M |+ |X|+
(
|U |
2

)
+ 2|U |+ 6,

finishing the proof of the claim.

Now we compute the cost of D. Using the notation from above, we have

w 6 π3(G)−
(
n

2

)
6 −|YU | − |YW |+ |Z1|+ |Z2|+ |Z3|

6 −|YU | − |YW |+ |M |+ |X|+
(
|U |
2

)
+ 2|U |+ 6. (6)

Substituting the bounds from (4) and (5) and rearranging the terms, we get

w 6

(
2

(
|U |
2

)
+ 2|U | − cn|U |+ 6

)
+ (3− |X|)

(
|X|
2

+ |M |
)

+
(
1|X|=1 − 2

)
|M |. (7)

First, suppose that |U | > 0. Then, the estimate |U | 6 2δn/c yields that

2

(
|U |
2

)
+ 2|U | − cn|U |+ 6 6 −cn|U |/2 6 −cn/2.

Since w > 2, we must have that |X| 6 1. Observe that n is odd as otherwise w > n/2 and,

by |M | 6 n/2, the cases |X| ∈ {0, 1} also contradict (7). So every vertex of degree n − 1

has even degree, meaning that every vertex of S is in some pair from YW or YU . Hence,

2|M | 6 2|YW |+ |YU |. Substituting this into the right-hand size of (6) and using our bound on

|YU | from (5), we obtain

w 6 −|YU |
2

+ |X|+
(
|U |
2

)
+ 2|U |+ 6 6

3

2

(
|U |
2

)
+ 2|U | − cn|U |

2
+ 7,

which again is negative for |U | > 0 and large n, contradicting w > 2.

Thus U is empty and, by the assumption of Case 1, S is also empty (and so are X and M).

This gives that the initial graph G has minimum degree at least (1 − c)n, |Z1| = |Z2| = 0,

S′ = ∅, and no K2’s are added to D in Step 3(a).

If n is even, then every vertex of G has at least one missing edge, e(G) 6
(
n
2

)
− n

2 and

π3(G) 6

(
n

2

)
− n

2
+ |Z3| 6

(
n

2

)
− n

2
+ 5,

which is strictly less than π3(Kn), a contradiction.

Let n be odd and let r :=
(
n
2

)
− e(G) be the number of missing edges in G. Suppose that r > 0,

as otherwise G = Kn and we are done. The upper bound on π3(G) given by D is ρr +
(
n
2

)
− r,
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where we define ρr as the unique element of {0, 4, 5} with
(
n
2

)
− ρr − r ≡ 0 (mod 3). Therefore,

r 6 3 as otherwise π3(G) 6
(
n
2

)
+ 1 contradicting w > 2. On the other hand, all the degrees

of G are even so r = 3 and the only non-empty component of G is a triangle. However, this

contradicts w > 2 because

π3(G) =

{ (
n
2

)
− 1, n ≡ 1, 3 (mod 6),(

n
2

)
+ 1, n ≡ 5 (mod 6).

Case 2: U = ∅ and S 6= ∅.

Some things simplify in this case (as we do not need to deal with U). On the other hand,

we have to be a bit more careful with calculations, as the new extremal graphs (Kn minus a

matching) fall into this case. In particular, removing a 4- or 5-cycle may be too wasteful here.

So we construct a decomposition D of G as follows. Recall that M is a maximum matching in

G[S] and X is the set of vertices of S not matched by M .

Step 1: Make the graph triangle-disivible by removing the following as K2’s. If X = ∅, then

remove all but one edge xy ∈ M and a path of length ρ + 1 ∈ {1, 2, 3} whose endpoints

are x and y (thus, for ρ = 0, we remove just the matching M). If X is non-empty, then

remove M and the edge sets of some |X|/2− 1 paths of length 2 and one path of length

ρ+ 2 ∈ {2, 3, 4} so that their degree-1 vertices partition X and their degree-2 vertices are

pairwise distinct.

Step 2: Decompose the rest perfectly into triangles.

Note that S, the set of all odd-degree vertices of G, has even size (and also |X| = |S| − 2|M | is

even). Since the minimal degree of G is at least (1 − c)n, a simple greedy algorithm achieves

Step 1 (and Theorem 4 takes care of Step 2).

The decomposition D has exactly |M |+ |X|+ ρ copies of K2. Also, e(G) =
(
n
2

)
− |YW |. Thus

w 6 π3(G)−
(
n

2

)
6 −|YW |+ |M |+ |X|+ ρ. (8)

Using (4) and that |X| 6= 1 (since |X| is even), we obtain that

w 6 (3− |X|)
(
|X|
2

+ |M |
)
− 2|M |+ ρ. (9)

Moreover, |X| 6 2 as otherwise 2 6 w 6 ρ− 2− 3|M | contradicting ρ 6 2. Thus X has either

0 or 2 elements.

Suppose that X = ∅. First, let n be even. Then every vertex not in S is incident to at least

one non-edge of G, |YW | > (n− 2|M |)/2, and by (8),

n/2 6 w 6 2|M |+ ρ− n/2.
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If 2|M | 6 n − 2, then all inequalities here become equalities and thus |M | = n−2
2 , |YW | = 1,

ρ = 2, w = n
2 , and n ≡ 0, 2 (mod 6). However, then the graph after Step 1 has exactly(

n
2

)
− 1− n−2

2 − 2 edges, which is not divisible by 3, a contradiction. Thus 2|M | = n, the copies

of K2 in the decomposition contains a perfect matching of G, and π3(G) 6 π3(Kn) with equality

only if G = Kn, giving the desired. So suppose that n is odd. Since every vertex of S has to

be incident to a missing edge of G, we have |YW | > |S|/2 = |M | and the bound in (8) becomes

w 6 ρ. It follows that we have equality throughout, |YW | = |M |, w = ρ = 2, n ≡ 1, 3 (mod 6),

and
(
n
2

)
− |M | − ρ ≡ 0 (mod 3); the last gives that |M | ≡ 2 (mod 3). Thus G is as required.

Finally, it remains to consider the case when |X| = 2. This time, (9) yields that

2 6 w 6 ρ− |M |+ 1 6 3.

Therefore, |M | 6 1, and n ≡ 1, 3 (mod 6) as otherwise w > 4. If |M | = 1, then we have

equality everywhere, giving that w = ρ = 2, |S| = 4 and |YW | = 3. However, then the graph

after Step 1 has
(
n
2

)
− |YW | − |M | − |X| − ρ =

(
n
2

)
− 8 edges, which is not divisible by 3, a

contradiction. Thus M is empty, ρ ∈ {1, 2} and S = X. By (8), |YW | 6 2 and hence |YW | = 1.

In other words, G = K−n . However, then the graph after Step 1 has
(
n
2

)
− 1 − (2 + ρ) edges,

which is not divisible by 3. (Alternatively, Theorem 4 gives that π3(K
−
n )−

(
n
2

)
< 2 = w.) This

contradiction finishes Case 2 and the proof of the lemma.

Lemma 13. There exist constants δ > 0 and n1 ∈ N such that the following holds. Let G be a

graph on n > n1 vertices maximizing π3(G) among all graphs that are δn2-close to Kn. Then

G ∈ E ′n.

Proof. Let n0 and δ be the constants from Lemma 12. We claim that, for example, n1 := 2n0

is enough for the conclusion of Lemma 13 to hold. Indeed, take any extremal graph G of order

n > n1. If G satisfies the assumption on minimum degree of Lemma 12, then we are done.

Hence assume that the minimum degree of G is less than n/8. Let Gn := G, and iteratively

define a sequence of graphs Gn−1, Gn−2, ... as follows. Given a graph Gi of order i, if it has a

vertex x of degree less than i/8, let Gi−1 := Gi−x be obtained from Gi by removing the vertex

x; otherwise stop. Note that the process does not reach i < n/2 for otherwise G has roughly at

least (n/2)× (n/4) non-edges, which is a contradiction to G being δn2-close to Kn.

Let Gs with |Gs| = s > n/2 > n0 be the graph for which the above process terminates. By

Lemma 12, we have that π3(Gs) 6 s2

2 + 1. By decomposing all edges in E(G) \E(Gs) as K2’s,

we obtain that

π3(Gn) 6 π3(Gs) + 2(n− s) · n
8
6
s2

2
+ 1 + (n− s) · n

4
.

This is a convex function in s so it is maximized on the boundary of n
2 6 s 6 n− 1. If s = n/2,

we get π3(Gn) 6 n2/4 + 2 <
(
n
2

)
6 π3(Kn). If s = n− 1, we get

π3(Gn) 6 π3(Gs) + 2(n− s) · n
8
6

(n− 1)2

2
+ 1 +

n

4
6

(
n

2

)
− n

4
+ 2 < π3(Kn).

In both cases, we get a contradiction to Gn being extremal.
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Proof of Theorem 5. Choose sufficiently small constants in this order 1 � δ � 1/n0 > 0. In

particular, n0 is sufficiently large to satisfy Corollary 10 for this δ as well as Lemmas 11 and 13.

Let G be an arbitrary graph of order n > n0 with π3(G) > `(n). By Corollary 10, G is δn2-close

to either T2(n) or Kn.

If G is close to T2(n) then it must be T2(n) by Lemma 11. If G is close to Kn then it must

be in E ′n by Lemma 13. By comparing the costs of optimal decompositions, we conclude that

G ∈ En.

4 Extension to an arbitrary cost α

The goal of this section is to prove Theorem 7. Everywhere in this section, let n be sufficiently

large.

First, note that the case α > 6 is trivial. Indeed, the cost of a triangle is not better than a cost

of three edges. Thus for every graph G an optimal decomposition is to decompose all edges of

G as K2’s. The unique graph maximizing the number of edges is Kn, so it is also the unique

maximizer of πα3 for every α > 6.

Next, let us make some easy general observations which apply when α < 6. First,

πα3 (G) = αν(G) + 2(e(G)− 3ν(G)) = 2e(G)− (6− α)ν(G),

where ν(G) denotes the maximum number of edge-disjoint triangles contained in G. Also, if

α1 6 α2 < 6, ν(G1) > ν(G2) and πα1
3 (G1) > πα1

3 (G2) for some graphs G1 and G2, then

πα2
3 (G1)− πα2

3 (G2) = πα1
3 (G1)− πα1

3 (G2) + (α2 − α1)(ν(G1)− ν(G2)) > 0. (10)

In particular, if Kn is the maximizer of πα1
3 , it is also a maximizer for πα2

3 .

4.1 The case α < 3

Next, we discuss the case α < 3. Let n be large and let G be a πα3 (n)-extremal graphs. Since

π33(G) > πα3 (G) > πα3 (T2(n)) = π33(T2(n)) = (1/2 + o(1))n2,

Corollary 10 gives that G is o(n2)-close to Kn or T2(n). Since α < 3, we have that πα3 (T2(n)) >

(1 +Ω(1))πα3 (Kn) and thus G is close to T2(n). Now, Lemma 11 implies that πα3 (G) 6 π33(G) 6

π33(T2(n)) = πα3 (T2(n)), with equality if and only if G = T2(n), giving the desired.

4.2 The case 3 < α < 4

This subsection proves Theorem 7 in case 3 < α < 4.
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First, let us show that every πα3 -maximiser G is in Kn or K=
n . Suppose for a contradiction that G

violates this. In particular, we have πα3 (G) > πα3 (Kn). By (10), we have that π33(G) > π33(Kn).

For n → ∞, it holds by Table 1 that πα3 (Kn) > (1 + Ω(1))πα3 (T2(n)). Hence G needs to be

close to Kn and Lemma 13 applies to G. In particular, this means that n ≡ 1, 3 (mod 6).

Lemma 13 gives that all π33-extremal graphs are obtained from Kn by removing a matching

of size congruent to 2 modulo 3. It follows from (10) that, among these graphs, πα3 is strictly

maximized by K=
n since this graph has the largest ν.

Theorem 4 gives that 3ν(K=
n ) =

(
n
2

)
− 6. Since πα3 (G) > πα3 (K=

n ) and π33(G) < π33(K=
n ), this

implies by (10) that ν(G) > ν(K=
n ). Since also ν(G) < ν(Kn) (otherwise πα3 (G) < πα3 (Kn)), we

conclude that 3ν(G) =
(
n
2

)
−3, that is, exactly three pairs of vertices of G are not included into

some triangle from an optimal decomposition of G. This implies that G is a complete graph

without one edge, or a path on three vertices, or a triangle. Among these three candidates (that

have the same ν), K− has the largest size and thus maximizes πα3 . So K− is the only possible

candidate for G. However, πα3 (K=
n ) > πα3 (K−n ) if α < 4. This contradiction finishes the proof

in case 3 < α < 4.

Thus, every πα3 -maximiser is in {Kn,K
=
n }. It remains to compare these two graphs. Calculations

based on Theorem 4 show that

πα3 (K=
n )− πα3 (Kn) + 4

6− α
= ν(Kn)− ν(K=

n ) =

{
0, n ≡ 0, 2, 4, 5 (mod 6),

2, n ≡ 1, 3 (mod 6).

Thus πα3 (Kn) > πα3 (K=
n ) if n ≡ 0, 2, 4, 5 (mod 6) and πα3 (K=

n ) > πα3 (Kn) otherwise, as required.

4.3 The case 4 6 α < 6

In this case we provide a direct proof, without using flag algebras or fractional decompositions.

Let n be large and let G be any graph of order n such that πα3 (G) = πα3 (n). Let D be a

decomposition of G with minimum weight consisting of t triangles and ` edges.

If G is a complete graph, then we are done. Hence we assume there exists some pair of vertices

x, y ∈ G such that xy /∈ E(G). Let G′ be obtained from G by adding the edge xy. Let D′ be an

optimal decomposition of G′ containing t′ triangles and `′ edges. Recall that finding an optimal

decomposition is equivalent to maximizing a triangle packing, that is, t′ = ν(G′). Hence t′ > t.

If xy is used as an edge in D′, then removing xy from D′ gives a decomposition of G with

cost πα3 (G′) − 2, contradicting the maximality of G. Therefore xy must appear in a triangle

xyz ∈ D′. We now construct a decomposition D∗ of G by removing xyz from D′ and adding

the edges xz and yz. Since the total cost of D∗ is α(t′ − 1) + 2(`′ + 2) we have

πα3 (G) 6 cost(D∗) = α(t′ − 1) + 2(`′ + 2) = αt′ + 2`′ − α+ 4 6 αt′ + 2`′ = πα3 (G′),

which contradicts the maximality of πα3 (G) if at least one of the inequalities is strict. Hence

α = 4, xy must be in a triangle in D′ and πα3 (G′) = πα3 (n).
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This means that it is possible to keep adding edges to G, which results in a sequence of graphs

G,G′, ... ,Kn where an optimal decomposition of each of these graphs has cost πα3 (n), i.e. they

all are πα3 -extremal graphs. Note that we can add missing edges to G in any order, always

obtaining a sequence of extremal graphs.

This allows us to reverse the process and examine a sequence of edge removals from Kn.

Suppose that G is obtained from Kn by removing the edge xy, i.e. G′ is Kn. Notice that if `′ > 0,

i.e. the optimal decomposition of Kn contains an edge, then there exist an option for D′ that

contains the edge xy, which was already ruled out. This means that Kn is triangle-divisible,

which is the case if and only if n ≡ 1, 3 (mod 6).

Now assume that G is missing more than one edge. Hence K−n must be also extremal. By

above, n ≡ 1, 3 (mod 6), Kn is triangle-divisible, and π43(n) = 4ν(Kn), where ν(Kn) = 1
3

(
n
2

)
.

Suppose that G is obtained from Kn by removing two edges uv and xy. First, suppose that

u = x. Let D? be a decomposition of G into triangles and one edge vy. This gives

π43(G) 6 cost(D?) = 4(ν(Kn)− 1) + 2 < 4ν(Kn) = π43(n),

contradicting the maximality of π43(G). Hence xy and uv form a matching. Notice that x, y,

u, and v have odd degrees in G, so ` > 2 for else we are unable to fix the parity of the vertices

x, y, u, and v. Now
(
n
2

)
− ` − 2 needs to be divisible by 3, so ` > 4. There indeed exists a

decomposition with ` = 4 by taking edges xu, xv, yu, and yv and rest as triangles. This gives

π43(G) = 4(ν(Kn)− 2) + 2 · 4 = π43(n).

Therefore, G is extremal.

Suppose that G is obtained from Kn by removing three edges uv, xy, and zw. Since G′ must

be Kn without a matching, uv, xy, and zw also form a matching. Let D? be a decomposition

of G into triangles and edges ux, yz, and vw. This gives

π43(G) 6 cost(D?) = 4(ν(Kn)− 2) + 6 < 4ν(Kn) = π43(n),

contradicting the maximality of π43(G). This implies that G cannot be obtained from Kn by

deleting three or more edges, thus finishing the proof of this case and of Theorem 7.

5 Related results

A related question of Erdős (see e.g., [9]) asks for the largest t = t(n,m) such that every graph

with n vertices and t2(n) + m edges has at least t edge-disjoint triangles. Of course, t 6 m.

Győri [12] (see [14] for a correction) showed, for large n, that t > m−O(m2/n2) if m = o(n2),

and t = m if n is odd and m 6 2n− 10 or n is even and m 6 3n/2− 5. Moreover, the last two

bounds on m are sharp.
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More recently, Győri and Keszegh [15] proved that every K4-free graph with t2(n) + m edges

has m edge-disjoint triangles.

Theorem 5 shows that the maximum of π3(G) is attained for G = T2(n) or G = Kn. However,

if we restrict the set of graphs under consideration to graphs of a particular edge density, the

decomposition is perhaps cheaper. Note that if the optimal decomposition of a graph G contains

t triangles and ` edges, then π3(G) = 2e(G)−3t. That is, we have that π3(G) = 2e(G)−3ν(G),

where as before ν(G) denotes the maximum number of edge-disjoint triangles in G. Then

Theorem 3 implies an inequality between the edge density of G and its triangle packing density

which we denote by νd(G) := 3ν(G)/
(
n
2

)
:

Corollary 14 (of Theorem 3). Let G be a graph with d
(
n
2

)
edges. Then

νd(G) > 2d− 1 + o(1).

We also have that νd(G) 6 d, which is tight for all graphs which are the union of edge-disjoint

triangles.

A question reminiscent of the seminal result of Razborov on the minimal triangle density in

graphs [25] (see also [20, 22]) would be to determine the exact lower bound on νd(G) in terms

of d (answering asymptotically the question of Erdős stated above).

e(G)/
(
n
2

)

π3(G)/n2

0.5 1

0.5

e(G)/
(
n
2

)

νd(G)

0.5 1

1

Figure 3: Asymptotic bounds on possible values of π3(G) and νd(G). The dashed line is simply

y = 2x− 1 for a better display of the shape.

Some flag algebra computations yield numerical asymptotic lower bounds on νd(G) with different

edge densities between 0.5 and 1. The result, depicted in Figure 3, suggests that the true

asymptotic shape of the region {(d, νd(G)) : 0 6 d 6 1, G graph} may indeed have a richer

structure.
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[11] E. Győri and A. V. Kostochka, On a problem of G. O. H. Katona and T. Tarján, Acta Math. Acad. Sci.

Hungar. 34 (1979), 321–327 (1980).
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[13] E. Győri, On the number of edge disjoint cliques in graphs of given size, Combinatorica 11 (1991), 231–243.
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