Making K_{r+1} -Free Graphs r-partite

József Balogh * Felix Christian Clemen † Mikhail Lavrov ‡ Bernard Lidický § Florian Pfender ¶

Abstract

The Erdős–Simonovits stability theorem states that for all $\varepsilon > 0$ there exists $\alpha > 0$ such that if G is a K_{r+1} -free graph on n vertices with $e(G) > \operatorname{ex}(n, K_{r+1}) - \alpha n^2$, then one can remove εn^2 edges from G to obtain an r-partite graph. Füredi gave a short proof that one can choose $\alpha = \varepsilon$. We give a bound for the relationship of α and ε which is asymptotically sharp as $\varepsilon \to 0$.

1 Introduction

Erdős asked how many edges need to be removed in a triangle-free graph on n vertices in order to make it bipartite. He conjectured that the balanced blow-up of C_5 with class sizes n/5 is the worst case, and hence $n^2/25$ edges would always be sufficient. Together with Faudree, Pach and Spencer [6], he proved that one can remove at most $n^2/18$ edges to make a triangle-free graph bipartite.

Further, Erdős, Győri and Simonovits 7 proved that for graphs with at least $n^2/5$

^{*}Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, and Moscow Institute of Physics and Technology, Russian Federation. E-mail: jobal@illinois.edu. Research is partially supported by NSF Grant DMS-1764123, Arnold O. Beckman Research Award (UIUC Campus Research Board RB 18132) and the Langan Scholar Fund (UIUC).

[†]Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, E-mail: fclemen2@illinois.edu.

[‡]Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, E-mail: mlavrov@illinois.edu

[§]Iowa State University, Department of Mathematics, Iowa State University, Ames, IA.,E-mail: lidicky@iastate.edu. Research of this author is partially supported by NSF grant DMS-1855653.

Department of Mathematical and Statistical Sciences, University of Colorado Denver, E-mail: Florian.Pfender@ucdenver.edu. Research of this author is partially supported by NSF grant DMS-1855622.

edges, an unbalanced C_5 blow-up is the worst case. For $r \in \mathbb{N}$, denote $D_r(G)$ the minimum number of edges which need to be removed to make G r-partite.

Theorem 1.1 (Erdős, Győri and Simonovits $\boxed{7}$). Let G be a K_3 -free graph on n vertices with at least $n^2/5$ edges. There exists an unbalanced C_5 blow-up of H with $e(H) \geq e(G)$ such that

$$D_2(G) \le D_2(H).$$

This proved the Erdős conjecture for graphs with at least $n^2/5$ edges. A simple probabilistic argument (e.g. 7) settles the conjecture for graphs with at most $2/25n^2$ edges.

A related question was studied by Sudakov; he determined the maximum number of edges in a K_4 -free graph which need to be removed in order to make it bipartite 16. This problem for K_6 -free graphs was solved by Hu, Lidický, Martins, Norin and Volec 11.

We will study the question of how many edges in a K_{r+1} -free graph need at most to be removed to make it r-partite. For $n \in \mathbb{N}$ and a graph H, $\operatorname{ex}(n, H)$ denote the Turán number, i.e. the maximum number of edges of an H-free graph. The Erdős–Simonovits theorem \mathfrak{g} for cliques states that for every $\varepsilon > 0$ there exists $\alpha > 0$ such that if G is a K_{r+1} -free graph on n vertices with $e(G) > \operatorname{ex}(n, K_{r+1}) - \alpha n^2$, then $D_r(G) \leq \varepsilon n^2$.

Füredi [9] gave a nice short proof of the statement that a K_{r+1} -free graph G on n vertices with at least $\operatorname{ex}(n, K_{r+1}) - t$ edges satisfies $D_r(G) \leq t$; thus providing a quantitative version of the Erdős–Simonovits theorem.

In 11 Füredi's result was strengthened for some values of r. Roberts and Scott 15 showed that $D_r(G) = O(t^{3/2}/n)$ when $t \leq \delta n^2$, and that this result is sharp up to a constant factor. They even proved a more general results for H-free graphs where H is an edge-critical graph. For small t, we will determine asymptotically how many edges are needed. For very small t, it is already known 4 that G has to be r-partite, as the following theorem shows.

Theorem 1.2 (Brouwer \P). Let $r \geq 2$ and $n \geq 2r+1$ be integers. Let G be a K_{r+1} -free graph on n vertices with $e(G) \geq \operatorname{ex}(n, K_{r+1}) - \left\lfloor \frac{n}{r} \right\rfloor + 2$. Then

$$D_r(G) = 0.$$

This phenomenon was also studied in [1,10,12,18]. We will be studying K_{r+1} -free graphs on fewer edges. For these, our main result is the following theorem.

Theorem 1.3. Let $r \geq 2$ be an integer. Then for all $n \geq 3r^2$ and for all $0 \leq \alpha \leq 10^{-7}r^{-12}$ the following holds. Let G be a K_{r+1} -free graph on n vertices with

$$e(G) \ge \exp(n, K_{r+1}) - \alpha n^2,$$

then

$$D_r(G) \le \left(\frac{2r}{3\sqrt{3}} + o_\alpha(1)\right) \alpha^{3/2} n^2,$$

where $o_{\alpha}(1)$ is a term going to 0 for α going to 0.

Note that we did not try to optimize our bounds on n and α in the theorem. The blow-up of a graph G is obtained by replacing every vertex $v \in V(G)$ with finitely many copies so that the copies of two vertices are adjacent if and only if the originals are.

For two graphs G and H, we define $G \otimes H$ to be the graph on the vertex set $V(G) \cup V(H)$ with $gg' \in E(G \otimes H)$ iff $gg' \in E(G)$, $hh' \in E(G \otimes H)$ iff $hh' \in E(H)$ and $gh \in E(G \otimes H)$ for all $g \in V(G)$, $h \in V(H)$.

We will prove that Theorem $\boxed{1.3}$ is asymptotically sharp by describing an unbalanced blow-up of $K_{r-2} \otimes C_5$ that needs at least that many edges to be removed to make it r-partite. Our extremal example appeared first (with different class sizes) in a paper by Andrásfai, Erdős and Sós $\boxed{2}$.

Theorem 1.4. Let $r, n \in \mathbb{N}$ and $0 < \alpha < \frac{1}{4r^4}$. Then there exists a K_{r+1} -free graph G on n vertices with

$$e(G) \ge \exp(n, K_{r+1}) - \alpha n^2 + \frac{4r}{3\sqrt{3}} \alpha^{3/2} n^2 - \frac{2r(r-3)}{9} \alpha^2 n^2$$

and

$$D_r(G) \ge \frac{2r}{3\sqrt{3}}\alpha^{3/2}n^2.$$

In Kang-Pikhurko's proof 12 of Theorem 1.2 the case $e(G) = ex(n, K_{r+1}) - \lfloor n/r \rfloor + 1$ is studied. In this case they constructed a family of K_{r+1} -free non-r-partite graphs, which includes our extremal graph, for that number of edges.

We conjecture that our extremal example needs the most edges removed to make it r-partite among all K_{r+1} -free graphs with many edges.

Conjecture 1.5. Let $r \geq 2$ be an integer and n sufficiently large. Then there exists $\alpha_0 > 0$ such that for all $0 \leq \alpha \leq \alpha_0$ the following holds. For every K_{r+1} -free graph G on n vertices there exists an unbalanced $K_{r-2} \otimes C_5$ blow-up H on n vertices with $e(H) \geq e(G)$ such that

$$D_r(G) < D_r(H)$$
.

This conjecture can be seen as a generalization of Theorem $\boxed{1.1}$. Note that Conjecture $\boxed{1.5}$ was recently proved by Korándi, Roberts and Scott $\boxed{13}$. We recommend the interested reader to read the excellent survey $\boxed{14}$ by Nikiforov. He gives a good overview on further related stability results, for example on guaranteeing large induced r-partite subgraphs of K_{r+1} -free graphs.

We organize the paper as follows. In Section 2 we prove Theorem 1.3 and in Section 3 we give the sharpness example, i.e. we prove Theorem 1.4.

2 Proof of Theorem 1.3

In this section we prove the following version of Theorem [1.3] which gives a better control over the error term.

Theorem 2.1. Let $r \geq 2$ be an integer. Then for all $n \geq 3r^2$ and for all $0 \leq \alpha \leq 10^{-7}r^{-12}$ the following holds. Let G be a K_{r+1} -free graph on n vertices with

$$e(G) \ge \exp(n, K_{r+1}) - \alpha n^2$$
,

then

$$D_r(G) \le \left(\frac{2r}{3\sqrt{3}} + 30r^3\alpha^{1/6}\right)\alpha^{3/2}n^2.$$

Let G be an n-vertex K_{r+1} -free graph with $e(G) \ge \operatorname{ex}(n, K_{r+1}) - t$, where $t = \alpha n^2$. We will assume that n is sufficiently large. Furthermore, by Theorem 1.2 we can assume that

$$\alpha \ge \frac{\left\lfloor \frac{n}{r} \right\rfloor - 2}{n^2} \ge \frac{1}{2rn}.$$

This also implies that $t \geq r$ because $n \geq 3r^2$. During our proof we will make use of Turán's theorem and a version of Turán's theorem for r-partite graphs multiple time. Turán's theorem [17] determines the maximum number of edges in a K_{r+1} -free graph.

Theorem 2.2 (Turán [17]). Let $r \geq 2$ and $n \in \mathbb{N}$. Then,

$$\frac{n^2}{2}\left(1 - \frac{1}{r}\right) - \frac{r}{2} \le ex(n, K_{r+1}) \le \frac{n^2}{2}\left(1 - \frac{1}{r}\right).$$

Denote $K(n_1, \ldots, n_r)$ the complete r-partite graph whose r color classes have sizes n_1, \ldots, n_r , respectively. Turan's theorem for r-partite graphs states the following.

Theorem 2.3 (folklore). Let $r \geq 2$ and $n_1, \ldots, n_r \in \mathbb{N}$ satisfying $n_1 \leq \ldots \leq n_r$. For a K_r -free subgraph H of $K(n_1, \ldots, n_r)$, we have

$$e(H) \le e(K(n_1, ..., n_r)) - n_1 n_2.$$

For a proof of this folklore result see for example [3, Lemma 3.3].

We denote the maximum degree of G by $\Delta(G)$. For two disjoint subsets U, W of V(G), write e(U, W) for the number of edges in G with one endpoint in U and the other endpoint in W. We write $e^c(U, W)$ for the number of non-edges between U and W, i.e. $e^c(U, W) = |U||W| - e(U, W)$.

Füredi 9 used Erdős' degree majorization algorithm 5 to find a vertex partition with some useful properties. We include the proof for completeness.

Lemma 2.4 (Füredi [9]). Let $t, r, n \in \mathbb{N}$ and G be an n-vertex K_{r+1} -free graph with $e(G) \ge \operatorname{ex}(n, K_{r+1}) - t$. Then there exists a vertex partition $V(G) = V_1 \cup \ldots \cup V_r$ such that

$$\sum_{i=1}^{r} e(G[V_i]) \le t, \quad \Delta(G) = \sum_{i=2}^{r} |V_i| \quad and \quad \sum_{1 \le i < j \le r} e^c(V_i, V_j) \le 2t.$$
 (1)

Proof. Let $x_1 \in V(G)$ be a vertex of maximum degree. Define $V_1 := V(G) \setminus N(x_1)$ and $V_1^+ = N(x_1)$. Iteratively, let x_i be a vertex of maximum degree in $G[V_{i-1}^+]$. Let $V_i := V_{i-1}^+ \setminus N(x_i)$ and $V_i^+ = V_{i-1}^+ \cap N(x_i)$. Since G is K_{r+1} -free this process stops at $i \le r$ and thus gives a vertex partition $V(G) = V_1 \cup \ldots \cup V_r$. Summing up the degrees of vertices in V_1 , we have

$$2e(G[V_1]) + e(V_1, V_1^+) = \sum_{x \in V_1} \deg(x) \le |V_1| |V_1^+|$$

and similarly for the other classes

$$2e(G[V_i]) + e(V_i, V_i^+) = \sum_{x \in V_i} \deg_{G[V_{i-1}^+]}(x) \le |V_i||V_i^+|.$$

Adding up these inequalities we get

$$ex(n, K_{r+1}) - t + \sum_{i=1}^{r} e(G[V_i]) = e(G) + \sum_{i=1}^{r} e(G[V_i]) \le \sum_{i=1}^{r-1} |V_i| |V_i^+| \le ex(n, K_{r+1}),$$

implying

$$\sum_{i=1}^{r} e(G[V_i]) \le t.$$

By construction,

$$\sum_{i=2}^{r} |V_i| = |V_1^+| = |N(x_1)| = \Delta(G).$$

Let H be the complete r-partite graph with vertex set V(G) and all edges between V_i and V_j for $1 \le i < j \le r$. The graph H is r-partite and thus has at most $\operatorname{ex}(n, K_{r+1})$ edges. Finally, since G has at most t edges not in H and at least $\operatorname{ex}(n, K_{r+1}) - t$ edges total, at most 2t edges of H can be missing from G, giving us

$$\sum_{1 \le i < j \le r} e^c(V_i, V_j) \le 2t$$

and proving the last inequality.

For this vertex partition we can get bounds on the class sizes.

Lemma 2.5. For all $i \in [r]$, $|V_i| \in \{\frac{n}{r} - \frac{5}{2}\sqrt{\alpha}n, \frac{n}{r} + \frac{5}{2}\sqrt{\alpha}n\}$ and thus also

$$\Delta(G) \le \frac{r-1}{r}n + \frac{5}{2}\sqrt{\alpha}n.$$

Proof. We know that

$$\sum_{1 \le i \le j \le r} |V_i||V_j| \ge e(G) - \sum_{i=1}^r e(G[V_i]) \ge \left(1 - \frac{1}{r}\right) \frac{n^2}{2} - \frac{r}{2} - 2t.$$

Also,

$$\sum_{1 \le i < j \le r} |V_i| |V_j| = \frac{1}{2} \sum_{i=1}^r |V_i| (n - |V_i|) = \frac{n^2}{2} - \frac{1}{2} \sum_{i=1}^r |V_i|^2.$$

Thus, we can conclude that

$$\sum_{i=1}^{r} |V_i|^2 \le \frac{n^2}{r} + r + 4t. \tag{2}$$

Now, let $x = |V_1| - n/r$. Then,

$$\sum_{i=1}^{r} |V_i|^2 = \left(\frac{n}{r} + x\right)^2 + \sum_{i=2}^{r} |V_i|^2 \ge \left(\frac{n}{r} + x\right)^2 + \frac{\left(\sum_{i=2}^{r} |V_i|\right)^2}{r - 1}$$
$$\ge \left(\frac{n}{r} + x\right)^2 + \frac{\left(n\left(1 - \frac{1}{r}\right) - x\right)^2}{r - 1} \ge \frac{n^2}{r} + x^2.$$

Combining this with (2), we get $|x| \leq \sqrt{r+4t} \leq \frac{5}{2}\sqrt{t} = \frac{5}{2}\sqrt{\alpha}n$, and thus

$$\frac{n}{r} - \frac{5}{2}\sqrt{\alpha}n \le |V_1| \le \frac{n}{r} + \frac{5}{2}\sqrt{\alpha}n.$$

In a similar way we get the bounds on the sizes of the other classes.

Lemma 2.6. The graph G contains r vertices $x_1 \in V_1, \ldots, x_r \in V_r$ which form a K_r and for every i

$$\deg(x_i) \ge n - |V_i| - 5r\alpha n.$$

Proof. Let $V_i^c := V(G) \setminus V_i$. We call a vertex $v_i \in V_i$ small if $|N(v_i) \cap V_i^c| < |V_i^c| - 5r\alpha n$ and big otherwise. For $1 \le i \le r$, denote B_i the set of big vertices inside class V_i . There are at most

$$\frac{4t}{5r\alpha n} = \frac{4}{5r}n$$

small vertices in total as otherwise (1) is violated. Thus, in each class there are at least n/10r big vertices, i.e. $|B_i| \ge n/10r$. The number of missing edges between the sets B_1, \ldots, B_r is at most $2t < \frac{1}{100r^2}n^2$. Thus, using Theorem 2.3 we can find a K_r with one vertex from each B_i .

Lemma 2.7. There exists a vertex partition $V(G) = X_1 \cup ... \cup X_r \cup X$ such that all X_i s are independent sets, $|X| \leq 5r^2 \alpha n$ and

$$\frac{n}{r} - 3\sqrt{\alpha}n \le |X_i| \le \frac{n}{r} + 3r\sqrt{\alpha}n$$

for all $1 \le i \le r$.

Proof. By Lemma 2.6 we can find vertices x_1, \ldots, x_r forming a K_r and having $\deg(x_i) \ge n - |V_i| - 5r\alpha n$. Define X_i to be the common neighborhood of $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_r$ and $X = V(G) \setminus (X_1 \cup \cdots \cup X_r)$. Since G is K_{r+1} -free, the X_i s are independent sets. Now we bound the size of X_i using the bounds on the V_i s. Since every x_j has at most $|V_j| + 5r\alpha n$ non-neighbors, we get

$$|X_i| \ge n - \sum_{\substack{1 \le j \le r \\ j \ne i}} (|V_j| + 5r\alpha n) \ge |V_i| - 5r^2 \alpha n \ge \frac{n}{r} - 3\sqrt{\alpha}n$$

and

$$\sum_{i=1}^{r} \deg(x_i) \ge n(r-1) - 5r^2 \alpha n. \tag{3}$$

A vertex $v \in V(G)$ cannot be incident to all of the vertices x_1, \ldots, x_r , because G is K_{r+1} -free. Further, every vertex from X is not incident to at least two of the vertices x_1, \ldots, x_r . Thus,

$$\sum_{i=1}^{r} \deg(x_i) \le n(r-1) - |X|. \tag{4}$$

Combining (3) with (4), we conclude that

$$|X| \le 5r^2 \alpha n.$$

For the upper bound on the sizes of the sets X_i we get

$$|X_i| \le n - \sum_{\substack{1 \le j \le r \\ j \ne i}} |X_j| \le n - \frac{r-1}{r}n + 3r\sqrt{\alpha}n = \frac{n}{r} + 3r\sqrt{\alpha}n.$$

We now bound the number of non-edges between X_1, \ldots, X_r .

Lemma 2.8.

 $\sum_{1 \le i < j \le r} e^c(X_i, X_j) \le t + e(X, X^c) + |X|^2 - \left(1 - \frac{1}{r}\right) n|X| + r.$

Proof.

$$\begin{split} &\frac{n^2}{2} \left(1 - \frac{1}{r} \right) - \frac{r}{2} - t \le e(G) = e(X, X^c) + e(X) + \sum_{1 \le i < j \le r} e(X_i, X_j) \\ & \le e(X, X^c) + \frac{|X|^2}{2} + \left(1 - \frac{1}{r} \right) \left(\frac{(n - |X|)^2}{2} \right) - \sum_{1 \le i < j \le r} e^c(X_i, X_j). \end{split}$$

This gives the statement of the lemma.

Let

$$\bar{X} = \left\{ v \in X \middle| \deg_{X_1 \cup \dots \cup X_r}(v) \ge \frac{r-2}{r} n + 3\alpha^{1/3} n \right\} \quad \text{and} \quad \hat{X} := X \setminus \bar{X}.$$

Let $d \in [0,1]$ such that $|\bar{X}| = d|X|$. Further, let $k \in [0,5r^2]$ such that $|X| = k\alpha n$. Now we shall further develop the upper bound from Lemma [2.8]

Lemma 2.9.

$$\sum_{1 \le i < j \le r} e^c(X_i, X_j) \le 20r^2 \alpha^{4/3} n^2 + \left(1 - (1 - d)\frac{1}{r}k\right) \alpha n^2.$$

Proof. By Lemma 2.8

$$\begin{split} \sum_{1 \leq i < j \leq r} e^c(X_i, X_j) &\leq t + e(X, X^c) + |X|^2 - \left(1 - \frac{1}{r}\right) n|X| + r \\ &\leq t + d|X|\Delta(G) + (1 - d)|X| \left(\frac{r - 2}{r}n + 3\alpha^{1/3}n\right) + |X|^2 - \left(1 - \frac{1}{r}\right) n|X| + r \\ &\leq t + d|X| \left(n\frac{r - 1}{r} + \frac{5}{2}\sqrt{\alpha}n\right) + (1 - d)|X| \left(\frac{r - 2}{r}n + 3\alpha^{1/3}n\right) \\ &+ |X|^2 - \left(1 - \frac{1}{r}\right) n|X| + r \\ &\leq \frac{5}{2} d|X|\sqrt{\alpha}n + 3(1 - d)|X|\alpha^{1/3}n + |X|^2 + t + n|X|\frac{d - 1}{r} + r \\ &\leq \frac{5}{2} k\alpha^{3/2}n^2 + 3k\alpha^{4/3}n^2 + |X|^2 + \left(1 - (1 - d)\frac{1}{r}k\right)\alpha n^2 + r \\ &\leq \frac{25}{2} r^2\alpha^{3/2}n^2 + 15r^2\alpha^{4/3}n^2 + 25r^4\alpha^2n^2 + \left(1 - (1 - d)\frac{1}{r}k\right)\alpha n^2 + r \\ &\leq 20r^2\alpha^{4/3}n^2 + \left(1 - (1 - d)\frac{1}{r}k\right)\alpha n^2. \end{split}$$

Let

$$C := 20r^2\alpha^{4/3} + \left(1 - (1-d)\frac{1}{r}k\right)\alpha.$$

For every vertex $u \in X$ there is no K_r in $N_{X_1}(u) \cup \cdots \cup N_{X_r}(u)$. Thus, by applying Theorem 2.3 and Lemma 2.9, we get

$$\min_{i \neq j} |N_{X_i}(u)| |N_{X_j}(u)| \le \sum_{1 \le i \le j \le r} e^c(X_i, X_j) \le Cn^2.$$
 (5)

Bound (5) implies in particular that every vertex $u \in X$ has degree at most $\sqrt{C}n$ to one of the sets X_1, \ldots, X_r , i.e.

$$\min_{i} |N_{X_i}(u)| \le \sqrt{C}n. \tag{6}$$

Therefore, we can partition $\hat{X} = A_1 \cup ... \cup A_r$ such that every vertex $u \in A_i$ has at most $\sqrt{C}n$ neighbors in X_i .

By the following calculation, for every vertex $u \in \bar{X}$ the second smallest neighborhood to the X_i 's has size at least $\alpha^{1/3}n$.

$$\min_{i \neq j} |N_{X_i}(u)| + |N_{X_j}(u)| \ge \frac{r-2}{r} n + 3\alpha^{1/3} n - (r-2) \left(\frac{n}{r} + 3r\sqrt{\alpha}n\right) \ge 2\alpha^{1/3} n,$$

where we used the definition of \bar{X} and Lemma 2.7. Combining the lower bound on the second smallest neighborhood with (5) we can conclude that for every $u \in \bar{X}$

$$\min_{i} |N_{X_i}(u)| \le \frac{C}{\alpha^{1/3}} n. \tag{7}$$

Hence, we can partition $\bar{X} = B_1 \cup \ldots \cup B_r$ such that every vertex $u \in B_i$ has at most $C\alpha^{-1/3}n$ neighbors in X_i . Consider the partition $A_1 \cup B_1 \cup X_1, A_2 \cup B_2 \cup X_2, \ldots, A_r \cup B_r \cup X_r$. By removing all edges inside the classes we end up with an r-partite graph. We have to remove at most

$$\begin{split} &e(X) + d|X| \frac{C}{\alpha^{1/3}} n + (1-d)|X| \sqrt{C} n \leq 6r^2 \alpha^{5/3} n^2 + (1-d)k \sqrt{C} \alpha n^2 \\ &\leq 6r^2 \alpha^{5/3} n^2 + (1-d)k \left(\sqrt{20r^2 \alpha^{4/3}} + \sqrt{\left(1 - (1-d)\frac{1}{r}k\right)\alpha}\right) \alpha n^2 \\ &\leq 6r^2 \alpha^{5/3} n^2 + 5r^2 \sqrt{20r^2 \alpha^{4/3}} \alpha n^2 + (1-d)k \sqrt{\left(1 - (1-d)\frac{1}{r}k\right)\alpha} \alpha n^2 \\ &\leq 6r^2 \alpha^{5/3} n^2 + 5\sqrt{20}r^3 \alpha^{5/3} n^2 + \frac{2r}{3\sqrt{3}} \alpha^{3/2} n^2 \\ &\leq \left(\frac{2r}{3\sqrt{3}} + 30r^3 \alpha^{1/6}\right) \alpha^{3/2} n^2 \end{split}$$

edges. We have used (6), (7) and the fact that

$$(1-d)k\sqrt{1-(1-d)\frac{k}{r}} \le \frac{2r}{3\sqrt{3}},$$

which can be seen by setting z = (1-d)k and finding the maximum of $f(z) := z\sqrt{1-\frac{z}{r}}$ which is obtained at z = 2r/3.

3 Sharpness Example

In this section we will prove Theorem 1.4, i.e. that the leading term from Theorem 1.3 is best possible.

Proof of Theorem [1.4]. Let G be the graph with vertex set $V(G) = A \cup X \cup B \cup C \cup D \cup X_1 \cdots \cup X_{r-2}$, where all classes $A, X, B, C, D, X_1, \ldots, X_{r-2}$ form independent sets; A, X, B, C, D form a complete blow-up of a C_5 , where the classes are named in cyclic order; and for each $1 \leq i \leq r-2$, every vertex from X_i is incident to all vertices from $V(G) \setminus X_i$.

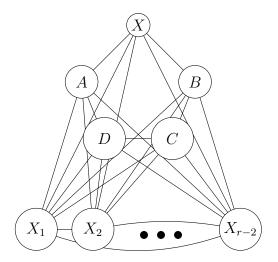


Figure 1: Graph G

The sizes of the classes are

$$|X| = \frac{2r}{3}\alpha n, \quad |A| = |B| = \sqrt{\frac{\alpha}{3}}n, \quad |C| = |D| = \frac{1 - \frac{2r}{3}\alpha}{r}n - \sqrt{\frac{\alpha}{3}}n, \quad |X_i| = \frac{1 - \frac{2r}{3}\alpha}{r}n.$$

The smallest class is X and the second smallest are A and B. By deleting all edges between X and A $(|X||A| = \frac{2r}{3\sqrt{3}}\alpha^{3/2}n^2)$ we get an r-partite graph. Since the classes A

and X are the two smallest class sizes, the smallest canonical cut is of size $\frac{2r}{3\sqrt{3}}\alpha^{3/2}n^2$. A result by Erdős, Győri and Simonovits [7], Theorem 7] states that there is a canonicial "edge deletion" archiving the minimum of $D_r(G)$. Hence

$$D_r(G) \ge \frac{2r}{3\sqrt{3}}\alpha^{3/2}n^2.$$

Let us now count the number of edges of G. The number of edges incident to X is

$$e(X, X^c) = \left(\frac{2r}{3}\alpha\right) \left(2\sqrt{\frac{\alpha}{3}}\right) n^2 + \left(\frac{2r}{3}\alpha\right) \left(\frac{1 - \frac{2r}{3}\alpha}{r}(r-2)\right) n^2$$
$$= \left(\frac{2}{3}(r-2)\alpha + \frac{4r}{3\sqrt{3}}\alpha^{3/2} - \frac{4r(r-2)}{9}\alpha^2\right) n^2.$$

Using that $|A| + |C| = |B| + |D| = |X_1|$, we have that the number of edges inside $A \cup B \cup C \cup D \cup X_1 \cup \cdots \cup X_{r-2}$ is

$$e(X^{c}) = |X_{1}|^{2} {r \choose 2} - |A||B| = \left(\frac{1 - \frac{2r}{3}\alpha}{r}n\right)^{2} {r \choose 2} - \frac{1}{3}\alpha n^{2}$$

$$= \frac{1}{r^{2}} {r \choose 2} n^{2} - \frac{4r}{3} \frac{1}{r^{2}} \alpha {r \choose 2} n^{2} + \frac{4}{9}\alpha^{2} {r \choose 2} n^{2} - \frac{1}{3}\alpha n^{2}$$

$$= \left(1 - \frac{1}{r}\right) \frac{n^{2}}{2} - \frac{2}{3}(r - 1)\alpha n^{2} - \frac{1}{3}\alpha n^{2} + \frac{4}{9}\alpha^{2} {r \choose 2} n^{2}.$$

Thus, the number of edges of G is

$$e(G) = e(X^{c}) + e(X, X^{c}) = \left(1 - \frac{1}{r}\right) \frac{n^{2}}{2} - \alpha n^{2} + \frac{4r}{3\sqrt{3}} \alpha^{3/2} n^{2} - \frac{2r(r-3)}{9} \alpha^{2} n^{2}$$

$$\geq \exp(n, K_{r+1}) - \alpha n^{2} + \frac{4r}{3\sqrt{3}} \alpha^{3/2} n^{2} - \frac{2r(r-3)}{9} \alpha^{2} n^{2},$$

where we applied Turán's theorem in the last step.

Acknowledgments

We would like to thank an anonymous referee for useful comments.

4 References

[1] K. Amin, J. Faudree, R. J. Gould, and E. Sidorowicz. On the non-(p-1)-partite K_p -free graphs. Discuss. Math. Graph Theory, 33(1):9–23, 2013.

- [2] B. Andrásfai, P. Erdős, and V. T. Sós. On the connection between chromatic number, maximal clique and minimal degree of a graph. *Discrete Math.*, 8:205– 218, 1974.
- [3] J. Balogh, R. Morris, W. Samotij, and L. Warnke. The typical structure of sparse K_{r+1} -free graphs. Trans. Amer. Math. Soc., 368(9):6439–6485, 2016.
- [4] A. E. Brouwer. Some lotto numbers from an extension of Turán's theorem, volume 152 of Afdeling Zuivere Wiskunde [Department of Pure Mathematics]. Mathematisch Centrum, Amsterdam, 1981.
- [5] P. Erdős. On the graph theorem of Turán. Mat. Lapok, 21:249–251, 1970.
- [6] P. Erdős, R. Faudree, J. Pach, and J. Spencer. How to make a graph bipartite. *J. Combin. Theory Ser. B*, 45(1):86–98, 1988.
- [7] P. Erdős, E. Győri, and M. Simonovits. How many edges should be deleted to make a triangle-free graph bipartite? In Sets, graphs and numbers (Budapest, 1991), volume 60 of Colloq. Math. Soc. János Bolyai, pages 239–263. North-Holland, Amsterdam, 1992.
- [8] P. Erdős and M. Simonovits. A limit theorem in graph theory. *Studia Sci. Math. Hungar*, 1:51–57, 1966.
- [9] Z. Füredi. A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity. J. Combin. Theory Ser. B, 115:66–71, 2015.
- [10] D. Hanson and B. Toft. k-saturated graphs of chromatic number at least k. Ars Combin., 31:159–164, 1991.
- [11] P. Hu, B. Lidický, T. Martins, S. Norin, and J. Volec. Large multipartite subgraphs in *H*-free graphs. manuscript.
- [12] M. Kang and O. Pikhurko. Maximum K_{r+1} -free graphs which are not r-partite. Mat. Stud., 24(1):12–20, 2005.
- [13] D. Korándi, A. Roberts, and A. Scott. Exact stability for Turán's theorem. arXiv preprint arXiv:2004.10685, 2020.
- [14] V. Nikiforov. Some new results in extremal graph theory. In *Surveys in combinatorics 2011*, volume 392 of *London Math. Soc. Lecture Note Ser.*, pages 141–181. Cambridge Univ. Press, Cambridge, 2011.
- [15] A. Roberts and A. Scott. Stability results for graphs with a critical edge. arXiv preprint arXiv:1610.08389, 2018.
- [16] B. Sudakov. Making a K_4 -free graph bipartite. Combinatorica, 27(4):509–518, 2007.
- [17] P. Turán. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok, 48:436–452, 1941.
- [18] M. Tyomkyn and A. J. Uzzell. Strong Turán stability. *Electron. J. Combin.*, 22(3):Paper 3.9, 24, 2015.