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Abstract

The Erd6s—Simonovits stability theorem states that for all € > 0 there exists o > 0
such that if G is a K, 1-free graph on n vertices with e(G) > ex(n, K, 1) — an?, then
one can remove en? edges from G to obtain an r-partite graph. Fiiredi gave a short
proof that one can choose o = €. We give a bound for the relationship of o and e
which is asymptotically sharp as € — 0.

1 Introduction

Erdos asked how many edges need to be removed in a triangle-free graph on n vertices
in order to make it bipartite. He conjectured that the balanced blow-up of C5 with
class sizes n/5 is the worst case, and hence n?/25 edges would always be sufficient.
Together with Faudree, Pach and Spencer [6], he proved that one can remove at most
n?/18 edges to make a triangle-free graph bipartite.

Further, Erdés, Gyéri and Simonovits [7] proved that for graphs with at least n?/5
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edges, an unbalanced C5 blow-up is the worst case. For r € N, denote D,(G) the
minimum number of edges which need to be removed to make G r-partite.

Theorem 1.1 (Erd8s, Gyéri and Simonovits [7]). Let G be a Ks-free graph on n
vertices with at least n?/5 edges. There exists an unbalanced Cs blow-up of H with

e(H) > e(G) such that
Dy (G) < Da(H).

This proved the Erdds conjecture for graphs with at least n?/5 edges. A simple
probabilistic argument (e.g. [7]) settles the conjecture for graphs with at most 2/25n2
edges.

A related question was studied by Sudakov; he determined the maximum number of
edges in a Ky-free graph which need to be removed in order to make it bipartite
[16]. This problem for Kg-free graphs was solved by Hu, Lidicky, Martins, Norin and
Volec [11].

We will study the question of how many edges in a K, 1-free graph need at most to
be removed to make it r-partite. For n € N and a graph H, ex(n, H) denote the Turdn
number, i.e. the maximum number of edges of an H-free graph. The Erdés—Simonovits
theorem [8] for cliques states that for every ¢ > 0 there exists > 0 such that if G is
a K, 1-free graph on n vertices with e(G) > ex(n, K,11) — an?, then D,.(G) < en?.

Firedi [9] gave a nice short proof of the statement that a K, ;-free graph G on
n vertices with at least ex(n, K,+1) — t edges satisfies D, (G) < t; thus providing a
quantitative version of the Erd6s—Simonovits theorem.

In [11] Fiiredi’s result was strengthened for some values of r. Roberts and Scott [15]
showed that D,(G) = O(t*?/n) when t < é6n?, and that this result is sharp up to a
constant factor. They even proved a more general results for H-free graphs where H is
an edge-critical graph. For small ¢, we will determine asymptotically how many edges
are needed. For very small ¢, it is already known [4] that G has to be r-partite, as the
following theorem shows.

Theorem 1.2 (Brouwer [4]). Let r > 2 and n > 2r + 1 be integers. Let G be a
K, 1-free graph on n vertices with e(G) > ex(n, Ky41) — | %] + 2. Then

D.(G) = 0.

This phenomenon was also studied in |1,/104/12,|18]. We will be studying K, i-free
graphs on fewer edges. For these, our main result is the following theorem.

Theorem 1.3. Let r > 2 be an integer. Then for all n > 3r? and for all 0 < a <
10~7r=12 the following holds. Let G be a K, 1-free graph on n vertices with

e(G) > ex(n, Kyy1) — an?,



then
2r

D@ < <3\/§

where 04(1) is a term going to 0 for a going to 0.

—i—oa(l)) a3/?n?,

Note that we did not try to optimize our bounds on n and « in the theorem. The
blow-up of a graph G is obtained by replacing every vertex v € V(G) with finitely
many copies so that the copies of two vertices are adjacent if and only if the originals
are.

For two graphs G and H, we define G® H to be the graph on the vertex set V(G)UV (H)
with g¢' € E(GeH) iff g¢' € E(G), hh' € E(GRH) ift hh' € E(H) and gh € E(GRH)
for all g € V(G), h € V(H).

We will prove that Theorem is asymptotically sharp by describing an unbalanced
blow-up of K,_s ® C5 that needs at least that many edges to be removed to make it
r-partite. Our extremal example appeared first (with different class sizes) in a paper
by Andréasfai, Erdés and Sés [2].

Theorem 1.4. Let r,n € N and 0 < a < 471,4. Then there exists a K,y1-free graph G
on n vertices with
4dr 2r(r —3
e(G) > ex(n, K1) — an? + —=a®/?n? — g042n2

3V3 9

el 372 2
D, (G) > 3 \/ga n.
In Kang-Pikhurko’s proof [12] of Theorem [1.2]the case e(G) = ex(n, Ky41)—|n/r]+1
is studied. In this case they constructed a family of K,,-free non-r-partite graphs,
which includes our extremal graph, for that number of edges.
We conjecture that our extremal example needs the most edges removed to make it
r-partite among all K, i-free graphs with many edges.

and

Conjecture 1.5. Let r > 2 be an integer and n sufficiently large. Then there exists
ag > 0 such that for all 0 < a < «q the following holds. For every K,.1-free graph
G on n wvertices there exists an unbalanced K,_o ® Cs blow-up H on n wvertices with

e(H) > e(G) such that
D,(G) < D,(H).

This conjecture can be seen as a generalization of Theorem [I.I} Note that Con-
jecture was recently proved by Korandi, Roberts and Scott |13]. We recommend
the interested reader to read the excellent survey [14] by Nikiforov. He gives a good
overview on further related stability results, for example on guaranteeing large induced
r-partite subgraphs of K, i-free graphs.

We organize the paper as follows. In Section [2] we prove Theorem [I.3]and in Section [3]
we give the sharpness example, i.e. we prove Theorem



2 Proof of Theorem 1.3

In this section we prove the following version of Theorem which gives a better
control over the error term.

Theorem 2.1. Let r > 2 be an integer. Then for all n > 3r2 and for all 0 < a <
10~77712 the following holds. Let G be a K, 1-free graph on n vertices with

e(G) > ex(n, K,y 1) — an?,

then

D, (G) < (32\;3 + 30r3a1/6) o322,
2

Let G be an n-vertex K,i-free graph with e(G) > ex(n, K,11) — t, where t = an”.
We will assume that n is sufficiently large. Furthermore, by Theorem [I.2]we can assume
that

n
2l —2
2-2_ 1

T

o>

n?2 T 2rn’

This also implies that ¢ > 7 because n > 3r2. During our proof we will make use of
Turén’s theorem and a version of Turan’s theorem for r-partite graphs multiple time.
Turdn’s theorem [17] determines the maximum number of edges in a K, 1-free graph.

Theorem 2.2 (Turén [17]). Let r > 2 and n € N. Then,

2 1 2 1
n<1_> —gg ex(n,Kr+1)§7;<1—).

2 T r
Denote K(nq,...,n,) the complete r-partite graph whose r color classes have sizes
ni,...,n,, respectively. Turans theorem for r-partite graphs states the following.

Theorem 2.3 (folklore). Let r > 2 and ny,...,n, € N satisfying ny < ... <n,. For
a K,-free subgraph H of K(nq,...,n,), we have

e(H) <e(K(ny,...,n,)) — nins.

For a proof of this folklore result see for example |3, Lemma 3.3].

We denote the maximum degree of G by A(G). For two disjoint subsets U, W of
V(G), write e(U, W) for the number of edges in G with one endpoint in U and the
other endpoint in W. We write e“(U, W) for the number of non-edges between U and
W, ie. e<(UW)=|U||W|—eU,W).

Fiiredi [9] used Erdds’ degree majorization algorithm [5] to find a vertex partition with
some useful properties. We include the proof for completeness.



Lemma 2.4 (Firedi [9]). Let t,r,n € N and G be an n-vertex K,11-free graph with
e(G) > ex(n, K,41) —t. Then there exists a vertex partition V(G) = Vi U... UV, such
that

SV <t AG =il and Y SViVp<o (1)

i=1 i=2 1<i<j<r

Proof. Let 1 € V(G) be a vertex of maximum degree. Define V; := V(G) \ N(z1)
and Vi© = N(z1). Iteratively, let z; be a vertex of maximum degree in G[V;",]. Let
V=V, \ N(z;) and V;" = V;*; N N(z;). Since G is K,11-free this process stops at
i<r and thus gives a vertex part1t1on V(G) =ViU...UV,. Summing up the degrees
of vertices in V7, we have

2¢(G[Vi]) +e(Vi, Vi) = ) deg(z) < [Vi[|V(]
zeVy

and similarly for the other classes

2(GVi]) + e(Vi, V') = 3 deggyyr 4(x) < [Vil[ViF].

zeVy
Adding up these inequalities we get
T T r—1
ex(n, Kri1) =t + ) _e(GIVi]) = e(G) + Y _e(G[Vi]) < D |VillViH] < ex(n, Krs),
i=1 i=1 i=1

implying

By construction,

SVl = V] = [N (a1)] = A(G).
1=2

Let H be the complete r-partite graph with vertex set V(G) and all edges between V;
and Vj for 1 <i < j <r. The graph H is r-partite and thus has at most ex(n, K,11)
edges. Finally, since G has at most ¢ edges not in H and at least ex(n, K,4+1) —t edges
total, at most 2t edges of H can be missing from G, giving us

SV, V) <2t

1<i<j<r
and proving the last inequality. O

For this vertex partition we can get bounds on the class sizes.



Lemma 2.5. For alli € [r], |V;| € {Z — 3\/an,2 + 3\/an} and thus also

.
r—1
T

A(G) < n+ g\/an

Proof. We know that

> Wil 2 @) - Set@i 2 (1- 1) 5~ Lo

1<i<j<r i=1

Also,
1 « n? 1,0
> WillVil =5 2o Willn = Vi) = 5 = 5 Do Vil
1<i<j<r i=1 i=1
Thus, we can conclude that

T

n2
Z|m|2§7+r+4t. (2)
=1

Now, let x = [V4| — n/r. Then,

r 2 r 2 7; ‘/z 2
> Vi (n—i-x) +Z\V222<n+x) 4+ iz Vil
=1 =2 r r—1

r

+£L’2.

v

r r—1

2
2 n(l—1)—= 2
Combining this with (2, we get |z| < v/r +4t < 2v/t = 3\/an, and thus

5 5
T 2Van<wil< 42 an,
ro 2 r 2
In a similar way we get the bounds on the sizes of the other classes. O

Lemma 2.6. The graph G contains r vertices 1 € Vi,...,x, € V. which form a K,
and for every i
deg(z;) > n — |Vi| — bran.

Proof. Let V¢ := V(G)\V;. We call a vertex v; € V; small if | N (v;) NV¢| < |V€|—bran
and big otherwise. For 1 < i < r, denote B; the set of big vertices inside class V;. There

are at most
4t 4

Sran 5771
small vertices in total as otherwise (|1)) is violated. Thus, in each class there are at least
n/10r big vertices, i.e. |B;| > n/10r. The number of missing edges between the sets
Bi,...,B, is at most 2t < ﬁn? Thus, using Theorem [2.3| we can find a K, with
one vertex from each B;. ]




Lemma 2.7. There exists a vertex partition V(G) = X3 U...U X, UX such that all
X;s are independent sets, | X| < 5r2an and

D 3yan < |Xi| <2+ 3rvan
T r

foralll <i<r.

Proof. By Lemmawe can find vertices z1, . . ., z, forming a K, and having deg(z;) >
n—|V;| —5ran. Define X; to be the common neighborhood of x1, ..., z;—1 ,Zit1,..., 2,
and X = V(G)\ (X1 U---UX,). Since G is K,;-free, the X;s are independent sets.
Now we bound the size of X; using the bounds on the V;s. Since every z; has at most
|V;| 4+ 5ran non-neighbors, we get

| Xi| > n — Z (IV;| + 5ran) > |V;| — 5r?an > ; —3van

1<j<r
i
and
-
Zdeg(xi) > n(r —1) — 5r2an. (3)
i=1
A vertex v € V(@) cannot be incident to all of the vertices 1, ..., x,, because G is

K, 11-free. Further, every vertex from X is not incident to at least two of the vertices
T1,...,2,. Thus,

3" de(es) < nlr — 1) — |X]. @)
=1

Combining with , we conclude that
|X| < 5rfan.

For the upper bound on the sizes of the sets X; we get

-1
1<j<r " "
i#i

We now bound the number of non-edges between Xj, ..., X,.

Lemma 2.8.

1
S (X X)) <t e(X, X+ X2 - (1 - ) n|X| + 7.
r

1<i<j<r



Proof.

2 1
n (1 _ ) @) =X XY (X)) e(Xi X))
2 r 2 1<i<j<r
X|? 1 —|X])?
Se(X,XC)+’2’+ (1—) <(n2]\)> - Z e“ (X4, Xj).
r 1<i<j<r
This gives the statement of the lemma. O

Let

A _

n + 3a1/3n} and X :=X\X.

X = {'U S X ‘ degxlumuxr(v) Z "

r

Let d € [0,1] such that |X| = d|X|. Further, let k € [0,5r] such that |X| = kan.
Now we shall further develop the upper bound from Lemma [2.8]

Lemma 2.9.

1
S ef(Xy, X;) < 20r%atAn? + (1 —(1- d)k;) an?.

1<i<j<r r

Proof. By Lemma [2.8]

1
Y (X0, Xp) <t e(X, X6) + |X]? - (1 - ) n|X|+r
T

1<i<j<r

<t +dX]AG) + (1 — d)|X| (Mn + 3a1/3n> X2 — (1 - 1) n|X|+r
T T

—1 -2
<t+dX]| (nr+;\/an) + (1 —d)| X]| (T n+3a1/3n)
T T

+|X* - <1—i)n\X|+r

< §d|xwan+ 3(1— d)| X]a!/*n + | X2 +t+"lX’$ r

< gkag/QnQ +3ka*?n? + | X > + (1 —(1- d)i’“) an® +r

< 2—257“2043/2712 + 15r2a*?n? 4 25rta®n® + (1 -(1- d)ik> an® + 7

1
< 2020302 + (1 —(1- d)k> an?.
T



Let

1
C :=20r%a*? + (1 —-(1- d)rk:> o.

For every vertex u € X there is no K, in Ny, (u)U---U Nx, (u). Thus, by applying
Theorem and Lemma we get

min [Nx, (u)||Nx, (w)] < Y e“(X;, X;) < Cn?. (5)
#J 1<i<j<r

Bound implies in particular that every vertex u € X has degree at most v/Cn to
one of the sets X1,...,X,, i.e.

min [Ny, (u)| < VCn. (6)

Therefore, we can partition X = A; U... U A, such that every vertex u € A; has at
most vCn neighbors in X;.

By the following calculation, for every vertex u € X the second smallest neighborhood
to the X;’s has size at least al/3n.

-2
H;éin |Nx, (u)] + |Nx, (u)| > L 433 — (r—2) <n + 3r\/an> > 2013,
17 T T

where we used the definition of X and Lemma Combining the lower bound on the
second smallest neighborhood with we can conclude that for every u € X

¢ . (7)

. ‘ < O
miln\NXl(u)| ST

Hence, we can partition X = B; U...U B, such that every vertex u € B; has at most
Ca~3n neighbors in X;. Consider the partition Ay U B UX;,A3UByUXo, ..., AU
B, U X,. By removing all edges inside the classes we end up with an r-partite graph.
We have to remove at most

e(X) +d|X| 75 n—l—( 1 —d)|X|VCn < 6r2a°3n? 4+ (1 — d)kv/Can?

< 6r2a°3n? + (1 — d)k <\/ 20r2a4/3 + \/<1 — a an?

1
< 6r2a®3n? + 5r2V20r2043an? 4 (1 — d)k\/<1 (1— )rk> aon?

§6r2a5/3 2 L 520305302 + 2r AT o3/2,2

BV

2r
<|—=+ 30r3a1/6> a3/2p?
(3\/5



edges. We have used @, and the fact that

(1—d)lﬂ/1—(1—d)§ < ;%

which can be seen by setting z = (1—d)k and finding the maximum of f(z) := 2z,/1 — 2
which is obtained at z = 2r/3.

3 Sharpness Example

In this section we will prove Theorem [I.4] i.e. that the leading term from Theorem [I.3]
is best possible.

Proof of Theorem[1.]]. Let G be the graph with vertex set V(G) = AUX UBUCU
DUX;---UX,_9, where all classes A, X, B,C, D, X1, ..., X,_2 form independent sets;
A, X, B,C,D form a complete blow-up of a C5, where the classes are named in cyclic
order; and for each 1 <17 < r — 2, every vertex from X; is incident to all vertices from
V(G)\ X;.

Figure 1: Graph G

The sizes of the classes are

2r o 1— 2y a — 2y
X == Al =|B|=,/= =|D| = 3 n—y/= X;| = 3 n.
X|=Fan, [Al=]Bl=\/gn, |C]=|D|=—=n—\/on, |Xi|=—3"n

The smallest class is X and the second smallest are A and B. By deleting all edges
between X and A (| X||A| = %oﬁ/znz) we get an r-partite graph. Since the classes A

10



and X are the two smallest class sizes, the smallest canonical cut is of size —2=a3/2n?.

3v3

A result by Erdds, Gyéri and Simonovits |7, Theorem 7] states that there is a canonicial
“edge deletion” archiving the minimum of D, (G). Hence

D,.(G) > ioz3/2n2.

2375

Let us now count the number of edges of G. The number of edges incident to X is

e(X,X¢) = (2;oz> (2 3) n? + (?a) ( —::,Z"a(r - 2)) n?
= (g(r —2)a+ ?j;ga?’/z — 47~(749_2)a2> n?.

Using that |A| + |C] = |B| + |D| = |X1|, we have that the number of edges inside
AUBUCUDUXjU---UX,_ois

1-Za \’ 1
) =1f (5) - e = (=50 (3) - fons
1(r\ o 4r1 (7 5 4 o5fr\ o 1
:r2<2>n —Bﬂa<2>n +§oz 9 n —gan
1\ n? 2 1 4
= (l>n(r1)om20m2+oz2 "n2,
r) 2 3 3 9 2

Thus, the number of edges of G is

1\ n? 4r 2r(r — 3)
— c = (12} 2, 3/2,2 <2T\F 7)) 2 2
e(G) = e(X°) +e(X, X°) ( 7“) 5 —an”+ 3\/305 n g

4 ™ (r —
> ex(n, Kpi1) — an? + —7 o322 Z 2T =3) 20

33 9

where we applied Turan’s theorem in the last step. ]
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