

Contents lists available at ScienceDirect

## **Materials Letters**

journal homepage: www.elsevier.com/locate/mlblue



## On the intrusion-like co-zone twin-twin structure: An in situ observation



Duke Culbertson a, Qin Yu a,b,\*, Yanyao Jiang a,\*

- <sup>a</sup> Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV 89557, USA
- <sup>b</sup> Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

#### ARTICLE INFO

# Article history: Received 24 October 2020 Received in revised form 27 November 2020 Accepted 28 November 2020 Available online 19 December 2020

Keywords: Magnesium single crystal Twin-twin interaction In situ testing

#### ARSTRACT

An *in situ* optical microscopy combined with *ex situ* electron backscatter diffraction testing was applied to a pristine single-crystal magnesium specimen under monotonic tension along the *c*-axis. An intrusion-like co-zone twin-twin structure is observed for the first time at the micron scale. *In situ* observation reveals that the intrusion-like twin-twin structure consists of multiple twin-twin boundaries (TTBs) and incoherent twin boundaries (I-CTBs) following energetically favorable formation sequences. The initial interaction results in the impinging TTB<sub>1</sub> and the acute-angle TTB<sub>A</sub>. In the local junction region on the obtuse angle side, the impinging twinning dislocations (TDs) further deposit near TTB<sub>1</sub> due to the preferred local twinning shear stress, leading to the incoherent curve of the impinging twin boundary adjacent to TTB<sub>1</sub>. Shortly after, the barrier twin boundary on the obtuse angle side migrates and encompasses the incoherent impinging twin boundary. The combination of sequential TTB<sub>1</sub>, TTB<sub>A</sub>, and I-CTBs formed locally on the obtuse angle side shapes the final configuration of the intrusion-like twin-twin structure at the micron scale.

© 2020 Elsevier B.V. All rights reserved.

#### 1. Introduction

Magnesium (Mg) and its alloys are highly desired materials for engineering applications due to their low density. Extensive research on the deformation mechanism of Mg has been focused on {10–12} tension twinning [1–4] due to its low critical resolved shear stress (CRSS) and accommodation of *c*-axis extension. Of particular interest is the interaction of different tension twin variants [5–11]. The interaction of two variants results in three possible types: co-zone type I, non-cozone type II(a), and non-cozone type II(b) [6,7]. The co-zone type I interaction is of particular interest given how commonly it is observed under simple loading paths at low stress levels.

There are three possible twin-twin boundary (TTB) formations in type I interactions. The acute-angle twin-twin boundary (TTB<sub>A</sub>) is energetically favorable by the zipping of the two twins' twinning dislocations (TDs) at the junction [6,7]. The impinging twin-twin boundary (TTB<sub>I</sub>) can form by deposition of the impinging TDs on the barrier twin boundary. The obtuse-angle twin-twin boundary (TTB<sub>O</sub>) was suggested to develop by dissociation of TDs from one twin onto the other [7]. However, formation of TTB<sub>O</sub> is considered energetically unfavorable [6]. When both TTB<sub>A</sub> and TTB<sub>O</sub> form, a

E-mail addresses: qin.yu.unr@gmail.com (Q. Yu), yjiang@unr.edu (Y. Jiang).

shallow penetrating structure develops, as revealed by experiment [7] and atomic simulations [11]. In the case where only one TTB is formed, a transmission electron microscope (TEM) observation reveals a nano-scale twin-twin structure showing a knife-like deep penetration [10].

Almost all the experimentally observed intrusion-like twintwin structures were characterized by post-mortem methods. There is a lack of direct observation of the corresponding formation process. In particular, the formation of a deep intrusion-like structure is the least understood [11]. There is no experimental evidence at the micron scale. The current study provides the first-time experimental evidence of intrusion-like twin-twin structure at the micron scale using *in situ* optical microscopy (OM) and *ex situ* electron backscatter diffraction (EBSD) characterization on a pristine single-crystal magnesium under tension. Our experiments allow for the mechanistic understanding of the formation process for the intrusion-like twin-twin structure in Mg.

#### 2. Experimental

A small dog-bone shaped plate specimen with gage section dimensions of  $7 \times 2.85 \times 1.76 \text{ mm}^3$  was fabricated from a single-crystal magnesium rod by acid saw using 35% diluted nitric acid in water. The specimen was machined such that the loading direction is approximately parallel to the c-axis and the observation plane is approximately parallel to the  $(\overline{1210})$  a-axis (Fig. 1).

<sup>\*</sup> Corresponding authors at: Department of Mechanical Engineering, University of Nevada. Reno. Reno. NV 89557. USA.

D. Culbertson, Q. Yu and Y. Jiang

Materials Letters 286 (2021) 129140

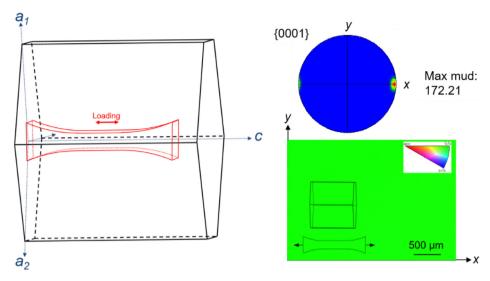
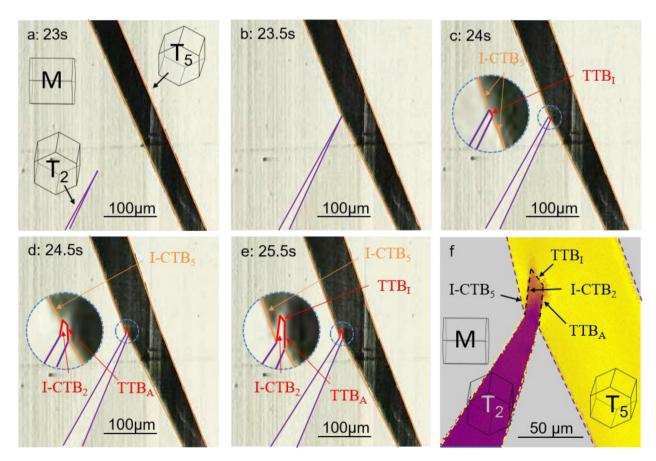




Fig. 1. Specimen orientation for a single-crystal magnesium dog-bone shaped specimen.



 $\textbf{Fig. 2.} \ \ \textbf{Optical micrographs highlighting the} \ \ \textbf{$T_2$} \leftrightarrow \textbf{$T_5$} \ \textbf{twin-twin interaction that results in an intrusion-like structure}.$ 

The actual orientation has a  $4^{\circ}$  misorientation between the c-axis and the loading axis. The observation surface was prepared by silicon carbide grinding down to 1200 grit, followed by 1- $\mu$ m diamond suspension polishing, and 50-nm alumina final polishing. Surface quality was confirmed with 10 s etching by 3% nital. Deformation twinning was absent in the undeformed state.

Mechanical tests were conducted using an in situ loading stage the same as described in [12], where the loading was

performed horizontally relative to the optical axis. The equipment used in this procedure is detailed in the Supplementary Information. Tension was performed to a pre-defined displacement at room temperature under displacement control at 0.1 mm/min and then unloaded to 0 N at the same speed. The specimen surface in the middle of the gage section was tracked *in situ* by optical microscope, covering an area of  $\sim$ 3. 1  $\times$  2.3 mm² with a pixel resolution of 2  $\mu$ m. A framerate

D. Culbertson, Q. Yu and Y. Jiang

Materials Letters 286 (2021) 129140

of 15 frames/second was used to capture deformation. After the test, EBSD scans were performed on the observation area with 4  $\mu m$  step size.

#### 3. Results and discussion

The development of a twin-twin structure is presented in Fig. 2 where one twin appears to penetrate its co-zone pair. Additionally, a schematic delineating the formation process is provided in Fig. 3. Twin variants will be identified with " $T_i$ " where the subscript "i" indicates the variant following the same convention in [6].  $T_i \leftrightarrow T_{i\pm 3}$  represents a co-zone interaction. The key interaction is observed 23 s after the test starts, where  $T_2$  is observed propagating toward  $T_5$  (Fig. 2a and Fig. 3a).

Initial contact is observed at 23.5 s (Fig. 2b), where the needle-like tip of  $T_2$  meets the  $T_5$  boundary.  $T_5$  boundary is noted to deviate from the coherent twin boundary (CTB) as it reaches out to contact  $T_2$  (Fig. 3b). This "reach out" phenomenon was explained by local variation of the twin resolved shear stress (TRSS) during twin-twin interaction [9]. At a critical distance between the two twins, the TRSS for  $T_2$  becomes negative, and  $T_2$  will stop propagating. Alternatively, the TRSS for  $T_5$  will increase sufficiently large near the tip of  $T_2$ , driving the local thickening of  $T_5$  by boundary migration. Therefore, instead of  $T_2$  growing toward  $T_5$ , it is  $T_5$  that locally thickens towards  $T_2$  (Fig. 3b). Because of the local deviation from the CTB, TTB<sub>1</sub> is also affected as seen in Fig. 2c where TTB<sub>1</sub> does not align with CTB<sub>5</sub>, but with the  $T_5$  local incoherent twin boundary (1-CTB<sub>5</sub>) (Fig. 3c).

With further growth of  $T_2$  and  $T_5$ ,  $TTB_A$  is formed as an energetically favorable zipping reaction of the TDs from  $T_2$  and  $T_5$  (Fig. 2d and Fig. 3d). The trace of  $TTB_A$  approximately bisects the coherent twin traces of  $T_2$  and  $T_5$ , which is consistent with previous observations [6,7], where the acute  $TTB_A$  plane bonds the two twins' prismatic planes (termed as PP boundary). On the obtuse angle side, instead of forming the energetically unfavorable  $TTB_0$  that bonds the basal planes of the two twins,  $T_2$  thickens locally and transitions  $TB_2$  into I-CTB $_2$  adjacent to the  $TTB_1$ . As inferred by large-scale molecular dynamics simulations (Fig. 7c in [9]), the local distribution of TRSS for  $T_2$  near the junction on the obtuse angle side is positive. This means that the local nucleation and glide of  $T_2$  TD are favorable, leading to the deviation of the  $TB_2$  on the obtuse side as evidenced in Fig. 2d and illustrated in Fig. 3d.

Shortly after, as indicated in Fig. 2e and 3e, T5 boundary migrates on the obtuse angle side and encompasses the prior deviated I-CTB $_2$ , shaping the intrusion-like twin-twin structure. With further loading, TTB $_A$  continues to grow while I-CTB $_5$  continues to migrate along the I-CTB $_2$  on the obtuse angle side, making a deeper intrusion-like twin-twin structure.

After unloading, the EBSD inverse pole figure map is characterized for the intrusion-like twin-twin structure (Fig. 2f). Given the small misorientation of the two variants, the color scale is modified where the matrix is gray whereas  $T_2$  and  $T_5$  are violet and yellow, respectively. The color gradient indicates local variation of crystal orientation due to the high local stress concentration. As shown in Fig. 2f,  $TTB_A$  has grown significantly, while I-CTB $_2$  and I-CTB $_3$  are more clearly observed on the obtuse angle side, forming a deep intrusion-like twin-twin structure.

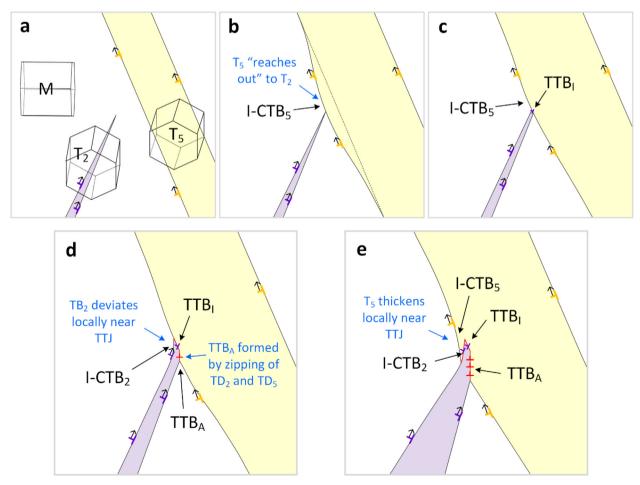



Fig. 3. Schematic showing the formation process for the intrusion-like co-zone twin-twin structure.

This intrusion-like twin-twin structure observed in the current study differs from the cases reported in literature. In Fig. 2d from [7], a shallow penetrating twin-twin structure with both TTB<sub>A</sub> and TTBO are formed. In the current study, only TTBA is formed. On the obtuse side, I-CTB2 rather than TTB0 is formed. This difference in geometry results in a narrower and deeper intrusion. At the nano-scale, a similar structure was reported where one twin appears to penetrate into its co-zone pair like a dagger (Fig. 2 in [10]). However, the intruded TTBs are also proposed to be BB and PP boundaries which are reconstructed from a single TTB formed earlier. Lastly, it is worth pointing out that previously reported intrusion structures were all characterized by post-mortem methods, where the mechanism may be controversial. Our current work provides the first-time characterization of the intrusion-like twintwin structure at the micron scale, where the sequential formation process is illuminated by the *in situ* observation.

#### 4. Conclusions

In summary, an intrusion-like co-zone twin-twin structure at the micron scale was characterized by *in situ* OM and *ex situ* EBSD in single-crystal magnesium subjected to monotonic tension along its c-axis for the first time. The intrusion-like co-zone twin-twin structure is composed of the sequentially-formed TTB<sub>1</sub>, TTB<sub>A</sub>, and I-CTBs located on the obtuse angle side. The formation processes of the multiple TTBs and I-CTBs in the intrusion-like structure are all energetically favorable.

### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgment

The research was supported by the U.S. National Science Foundation (CMMI-1762312).

#### Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/i.matlet.2020.129140.

#### References

- [1] M.R. Barnett, Twinning and the ductility of magnesium alloys, Mater. Sci. Eng., A 464 (1-2) (2007) 1-7, https://doi.org/10.1016/j.msea.2006.12.037.
- [2] S.H. Park, S.-G. Hong, C.S. Lee, Activation mode dependent {10-12} twinning characteristics in a polycrystalline magnesium alloy, Scr. Mater. 62 (4) (2010) 202-205, https://doi.org/10.1016/j.scriptamat.2009.10.027.
- [3] G. Kim, S. Yi, Y. Huang, E.T. Lilleodden, Twining and slip activity in magnesium <11-20> single crystal, Mater. Res. Soc. Symp. (2010).
- [4] A. Chapuis, J.H. Driver, Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater. 59 (5) (2011) 1986– 1994, https://doi.org/10.1016/j.actamat.2010.11.064.
- [5] H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector, S.R. Agnew, M. Cherkaoui, S.C. Vogel, The effect of twin-twin interactions on the nucleation and propagation of 1 0 1<sup>-2</sup> twinning in magnesium, Acta Mater. 61 (2013) 3549–3563, https://doi.org/10.1016/j.actamat.2013.02.030.
- [6] Q. Yu, J. Wang, Y. Jiang, R.J. McCabe, N. Li, C.N. Tomé, Twin-twin interactions in magnesium, Acta Mater. 77 (2014) 28–42, https://doi.org/10.1016/j. actamat.2014.05.030.
- [7] Q. Yu, J. Wang, Y. Jiang, R.J. McCabe, C.N. Tomé, Co-zone {1012} twin interaction in magnesium single crystal, Mater. Res. Lett. 2 (2) (2014) 82–88, https://doi.org/10.1080/21663831.2013.867291.
- [8] M. Gong, S. Xu, Y. Jiang, Y. Liu, J. Wang, Structural characteristics of 1012 noncozone twin-twin interactions in magnesium, Acta Mater. 159 (2018) 65–76, https://doi.org/10.1016/j.actamat.2018.08.004.
- [9] M. Arul Kumar, M. Gong, I.J. Beyerlein, J. Wang, C.N. Tomé, Role of local stresses on co-zone twin-twin junction formation in HCP magnesium, Acta Mater. 168 (2019) 353–361, https://doi.org/10.1016/j.actamat.2019.02.037.
- [10] Q. Sun, X.Y. Zhang, Y. Ren, L. Tan, J. Tu, Observations on the intersection between 1012 twin variants sharing the same zone axis in deformed magnesium alloy, Mater. Charact. 109 (2015) 160–163, https://doi.org/ 10.1016/j.matchar.2015.09.024.
- [11] Q.i. Sun, A. Ostapovets, X. Zhang, L.i. Tan, Q. Liu, Investigation of twin-twin interaction in deformed magnesium alloy, Phil. Mag. 98 (9) (2018) 741–751, https://doi.org/10.1080/14786435.2017.1417648.
- [12] D. Culbertson, Q. Yu, Y. Jiang, In situ observation of cross-grain twin pair formation in pure magnesium, Philos. Mag. Lett. 98 (2018), https://doi.org/ 10.1080/09500839.2018.1498599.