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Highlights 

• Consumer data on EV charging behavior are unstructured and remain largely dormant 

• We provide proof of concept for automated topic classification with transformer models 

• We achieve 91% accuracy (F1 0.83), outperforming previously leading algorithms 

• Applications for local and regional policy analysis of EV behavior are described 
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IN BRIEF 

Government analysts and policy makers have failed to fully utilize consumer behavior data in 

decisions related to EV charging infrastructure. This is because a large share of EV data is 

unstructured text, which presents challenges for data discovery. In this article, we deploy advances 

in transformer-based deep learning to discover issues in a nationally representative sample of EV 

user reviews. We describe applications for public policy analysis and find evidence that less 

populated areas could be underserved in station availability. 

 

THE BIGGER PICTURE  

Transformer neural networks have emerged as the preeminent models for natural language 

processing, seeing production-level use with Google search and translation algorithms. These 

models have had a major impact on context learning from text in many fields, e.g., health care, 

finance, manufacturing; however, there have been no empirical advances to date in electric 

mobility. Given the digital transformations in energy and transportation, there are growing 

opportunities for real-time analysis of critical energy infrastructure. A large, untapped source of 

EV mobility data is unstructured text generated by mobile app users reviewing charging stations. 

Using transformer-based deep learning, we present multilabel classification of charging station 

reviews with performance exceeding human experts in some cases. This paves the way for 

automatic discovery and real-time tracking of EV user experiences, which can inform local and 

regional policies to address climate change. 
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SUMMARY 

The transportation sector is a major contributor to greenhouse gas (GHG) emissions and is a driver 

of adverse health effects globally. Increasingly, government policies have promoted the adoption 

of electric vehicles (EVs) as a solution to mitigate GHG emissions. However, government analysts 

have failed to fully utilize consumer data in decisions related to charging infrastructure. This is 

because a large share of EV data is unstructured text, which presents challenges for data discovery. 

In this article, we deploy advances in transformer-based deep learning to discover topics of 

attention in a nationally representative sample of user reviews. We report classification accuracies 

greater than 91% (F1 scores of 0.83), outperforming previously leading algorithms in this domain. 

We describe applications of these deep learning models for public policy analysis and large-scale 

implementation. This capability can boost intelligence for the EV charging market, which is 

expected to grow to $27.6 billion USD by 2027. 
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INTRODUCTION 

In recent years, there has been a growing emphasis on vehicle electrification as a means to mitigate 

the effects of greenhouse gas emissions1 and related health impacts from the transportation sector.2 

For example, typical calculations suggest that electric vehicles reduce emissions from 244 to 

98g/km, and this number could further decrease to 10g/km with renewable energy integration.3 

The environmental benefits range by fuel type with reported carbon intensities of 8,887 grams CO2 

per gallon of gasoline, and 10,180 grams CO2 per gallon of diesel.4 Government-driven incentives 

for switching to electric vehicles, including utility rebates, tax credits, exemptions and other 

policies, have been rolled out in many U.S. states.5-7 In this effort, public charging infrastructure 

remains a critical complementary asset to consumers in building range confidence for trip planning 

and in EV purchase decisions.8-10 Prior behavioral research has shown that policies designed to 

enhance EV adoption have largely focused on increasing the quantity of cars and connected 

infrastructure as opposed to the quality of the charging experience.11 However, a fundamental 

challenge to deploying large-scale EV infrastructure is regular assessments of quality. 

Private digital platforms such as mobility apps for locating charging stations and other services 

have become increasingly popular. Reports by third party platform owners suggest there are 

already over 3 million user reviews of EV charging stations in the public domain.12-15 In this paper, 

we evaluate whether transformer-based deep learning models can automatically discover 

experiences about EV charging behavior from unstructured data and whether supervised deep 

learning models perform better than human benchmarks, particularly in complex technology areas. 

Because mobile apps facilitate exchanges of user texts on the platform, multiple topics of 

discussion exist in EV charging reviews. For example, a review states: “Fast charger working fine. 

Don’t mind the $7 to charge, do mind the over-the-phone 10 minute credit card transaction.” A 

multi-label classification algorithm may be able to discover that the station is functional, that a 
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user reports an acceptable cost, and that a user reports issues with customer service. Therefore, 

text classification algorithms that can automatically perform multi-label classification are needed 

to interpret the data. Being able to do multi-label classification on these reviews is important for 

three principal reasons. First, these algorithms can enable analysis of massive digital data. This is 

important because behavioral evidence about charging experiences has primarily been inferred 

through data from government surveys or simulations. These survey-based approaches have major 

limitations as they are often slow and costly to collect, are limited to regional sampling, and are 

often subject to self-report or recency bias. Second, multi-label algorithms with digital data can 

characterize phenomena across different EV networks and regions. Some industry analysts have 

criticized EV mobility data for poor network interoperability, which prevents data from easily 

being accessed, shared and collected.16 This type of multi-labeled output is also important for 

application programming interface (API) standardization across the industry such as with 

emerging but not yet widely accepted technology standards including the Open Charge Point 

Protocol17 that would help with real-time data sharing across regions. Third, this capability may 

be critical for standardizing software and mobile app development in future stages of data science 

maturity (see https://www.cell.com/patterns/dsml) to detect behavioral failures in near real-time 

from user generated data. 

Modern computational algorithms from natural language processing (NLP) could uniquely 

address the need for fast, real-time consumer intelligence related to electric mobility, but these 

algorithms need to be appropriately tailored to domains to be useful. Large-scale analysis of 

unstructured EV user data remains difficult to carry out, especially when there are multiple topics 

discussed in each review, and the datasets are imbalanced. Unbalanced data creates challenges for 

models to learn important but less frequently occurring labels often lead to algorithmic bias. In 
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this paper, we demonstrate the use of deep neural networks to automatically discover insights for 

topic analysis. We use supervised learning to overcome prior challenges with unsupervised 

methods that could produce clusters with very little theoretical or social meaning. We provide a 

proof of concept to the complex task of multi-label topic classification in this domain, which builds 

on an earlier demonstration of binary sentiment classification with NLP.11 We apply transformer 

neural networks, a recent class of pre-trained contextual language models, to accurately detect 

long-tail discussion topics with imbalanced data—a capability that has been elusive with prior 

approaches. 

Prior research demonstrated the efficacy of convolutional neural networks (CNNs)18-21 and long 

short-term memory (LSTM), a commonly used variant of recurrent neural networks (RNNs)21,22 

for NLP. These models have been recently applied to sentiment classification and single-label 

topic classification tasks in this domain. As a result, this has increased our understanding of 

potential EV charging infrastructure issues such as the prevalence of negative consumer 

experiences in urban locations as compared to non-urban locations.11,23,24 While these models 

showed promise for binary classification of short texts, generalizing these models to reliably 

identify multiple discussion topics automatically from text presents researchers with an unsolved 

challenge of under-detection, particularly in corpora with wide-ranging topics and possible 

imbalances in the training data. Prior research using sentiment analysis indicates negative user 

experiences in EV charging station reviews, but it has not been able to extract the specific causes.11 

As a result, multi-label topic classification is needed to understand behavioral foundations of user 

interactions in electric mobility. 

In this paper, we achieve state-of-the-art multi-label topic classification in this domain using 

transformer-based25 deep neural networks BERT, which stands for bidirectional encoder 
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representations26 and XLNet, which integrates ideas from Transformer-XL27architectures. We 

benchmark the performance of these transformer models against classification results obtained 

from adapted CNNs and LSTMs. We also evaluate the potential for super-human performance of 

the classifiers by comparing human benchmarks from crowd annotated training data, versus expert 

annotated training data and transformer models. The extent of this improvement could 

significantly accelerate automated research evaluation using large-scale consumer data for 

performance assessment and regional policy analysis. We discuss implications for scalable 

deployment, real-time detection of failures, and management of infrastructure in sustainable 

transportation systems. 

RESULTS & DISCUSSION  

Discovering Topics 

Charging station reviews can be considered asynchronous social interactions within a community 

of EV drivers. To characterize user experiences, we introduce 8 main topics and 32 sub-topics that 

make up a typology of charging behavior. This typology allows for easier identification of 

behavioral issues with the charging process (Table 1). The definitions we use for supervised 

learning are as follows: Functionality refers to comments describing whether particular features 

or services are working properly at a charging station. Range Anxiety refers to comments regarding 

EV drivers’ fear of running out of fuel mid-trip and to comments concerning tactics to avoid 

running out of fuel. Availability refers to comments concerning whether charging stations are 

available for use at a given location. Cost refers to comments about the amount of money required 

to park and/or charge at particular locations. User Interaction refers to comments in which users 

are directly interacting with other EV drivers in the community. Location refers to comments about 

various features or amenities specific to a charging station location. The Service Time topic refers 
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to comments reporting charging rates (e.g. 10 miles of range per hour charged) experienced in a 

charging session. The Dealerships topic refers to comments concerning specific dealerships and 

user’s associated charging experiences. Reviews that do not fall into the previous 8 topics refer to 

the Other topic, which are relatively rare. For more information on the robustness of typology, see 

Supplemental Experimental Procedures and Table S5-S7 in Supplemental Information. 

In preliminary experiments, we investigated several unsupervised topic modeling techniques 

that did not provide theoretically meaningful clusters. By contrast, our empirically driven typology 

is ideally suited for hypothesis testing, spatial analysis, benchmarking with other corpora in this 

domain, and real-time tracking of station failures, all of which are not identifiable with current 

information systems. For additional details on how the typology and coding scheme were 

developed from prior work and theory, see Developing the Coding Scheme for Supervised 

Learning section. 

 

Transformers Beat Other Deep Neural Networks 

Overall Performance. We evaluated the accuracy of BERT and XLNet transformer models 

against other leading models, CNN and LSTM, which were previously dominant architectures in 

this domain.11,24 Given that we have imbalanced data for machine classification, we also report the 

F1 score, which is the harmonic average of precision and recall, and is considered a measure of 

detection efficiency. As shown in Table 2, we achieved high overall accuracy scores for BERT 

and XLNet of 91.6% (0.13 s.d.) and 91.6% (0.07 s.d.), and F1 scores of 0.83 (0.0037 s.d.) and 0.84 

(0.0015 s.d.), respectively. The standard deviations were generated from 10 cross-validation runs. 

While CNN and LSTM models had slightly lower accuracy, we find that both transformer models 

outperform the CNN and LSTM models considering both accuracy and F1 score. We report 2 to 
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4 percentage point improvements in the F1 scores for both transformer models. For 

implementation details, see Supplemental Experimental Procedures, and Figure S1 in the 

Supplemental Information. For reference, we provide the hyper-parameters used for the 

transformer models in Table S1. We also open sourced the model weights (see Resource 

Availability). 

   The F1 scores for the transformer models are also a substantial 40 percentage points higher 

compared with the majority classifier (Table 2). This means the models learned to detect minority 

classes effectively. Briefly, the majority classifier provides a measure of the level of imbalance. 

For a given category, the majority classifier simply predicts the most prevalent label. For example, 

if 90% of training data has not been selected for a topic, then the classifier predicts all data as not 

selected, giving a high accuracy of 90%. Thus, for highly imbalanced data, a majority classifier 

can provide arbitrarily high accuracy without significant learning.28 Because it is possible that mis-

classification errors may not distribute equally across the topics, in the next section, we also 

evaluated the performance by topics. 

 

Increasing Detection of Imbalanced Labels. A key challenge was to evaluate whether we 

could improve multi-label classifications even in the presence of imbalanced data. Figure 1A 

shows a large percentage point increase in accuracy for all the deep learning models tested, as 

compared with the majority classifier. This evidence of learning is especially notable for the most 

balanced topics (e.g. Functionality, Location and Availability). As shown in Figure 1B, we report 

improvements in the F1 scores for BERT and XLNet across most topics versus the benchmark 

models. In particular, this result holds for the relatively imbalanced topics (e.g. Range Anxiety, 

Service Time, and Cost), which have presented technical hurdles in prior implementations.24 In 
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comparison with the previously leading CNN algorithm, BERT and XLNet produce F1 score 

increases of 1-3 percentage points on Functionality, Availability, Cost, Location, and Dealership 

topics, 5-7 percentage points on User Interaction, and Service Time topics. For Range Anxiety, 

BERT is within the statistical uncertainty of the CNN performance, while XLNet produces an 

increase in the F1 score of 4 percentage points. These numbers represent considerable 

improvements in topic level detection. For detailed point estimates, see Table S2 and S3 in the 

Supplemental Information. 

Given these promising results, next we consider some requirements for possible large-scale 

implementation related to computation time and scalability related to the sourcing of the training 

data. 

Computation Time 

An important metric to consider while running deep learning models for large-scale deployment is 

the computation time. Deep neural networks have been criticized for the large amount of resources 

needed such as graphics processing units (GPUs) and distributed computing clusters, frequently 

leading to higher costs of deployment.29 Further, NLP researchers have also considered the 

environmental costs of the power consumption and CO2 emissions for computing,30 which 

necessarily involve trade-offs. In our application, we report the training times per epoch for BERT 

and XLNet as 196 and 346 seconds, respectively. These results were generated using 4 widely 

available NVIDIA Tesla P100 GPUs with 16 GB of memory.  

We find that the training and testing times are considerably longer for the transformer models 

compared with CNN and LSTM. For transformers, total computing times vary from 1 to 4 hours 

and for CNN and LSTM, computing times vary from 1 to 90 minutes, depending on the number 

of GPUs (see Table S4 for details). We argue that the model performance improvements in the 
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transformer models may be justified for large-scale deployment. This is because the increase in 

computational cost is offset by substantial gains in accuracy and F1 score. When comparing BERT 

and XLNet within the class of transformers, we also show BERT to be considerably faster in total 

computing time for a comparable level of performance. Therefore, we note that as further 

enhancements to BERT and its optimized variants are rapidly advancing in the literature,31-33 we 

argue that BERT could be a preferred text classification algorithm for this domain. In the next 

section, we consider scalability of the models by evaluating potential sources of training data. 

Trained Experts Beat the Crowd 

In Table 3, we compare the machine classification results based on training data from a crowd of 

non-experts versus a group of trained expert annotators. For performance comparison of models 

trained with expert and crowd annotated data, we created a ground truth dataset by conducting 

researcher audits to ensure 100% agreement on the ground truth labels. See Human Annotation of 

Training Data section for further details. Not surprisingly, we find that human experts are closer 

to the ground truth (random holdout sample; n = 100) in both accuracy and F1 score as shown in 

Table 3. This is consistent with related literature on limitations to wise crowds.34 In fact, prior 

research has found gaps in general public knowledge about EVs and consumer misperceptions.35-

38 In the next section, we quantify the performance of crowd-trained versus expert-trained 

transformer models, using the two experimentally curated sources of training data. 

Crowd-Trained Models Perform Poorly. The transformer models trained with crowd-

annotated data produced accuracies of 73.2% (3.85 s.d.) and 74.2% (4.15 s.d.) and F1 scores of 

0.53 (0.06 s.d.) and 0.54 (0.07 s.d.) for BERT and XLNet, respectively (see Table 3). By contrast, 

we see a remarkable improvement in these results with the expert-trained BERT and XLNet 

models, which produced model accuracies of 89.1% (4.09 s.d.) and 91.0% (4.70 s.d.) and F1 scores 
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of 0.82 (0.06 s.d.) and 0.85 (0.06 s.d.), respectively. We discovered that the enhancement in the 

F1 score is largely due to gains in the inter-rater reliability, which is the result of improvements in 

the quality of the training data between crowds and experts (see Fleiss’ 𝜅𝜅 score increase from 0.007 

to 0.538 in Table 3). We argue that inter-rater agreement is critical when working with annotated 

data from complex domains such as EV mobility. For reference, at the sub-topic level, values for 

Fleiss’ 𝜅𝜅 range from -0.001 to 0.019 for the crowd, and 0.30 to 0.72 for the experts, which indicate 

considerable disagreement on the labeling task within a sample of 18+ adults representative of the 

U.S. population. See Experimental Procedures for details on human annotation experiments. 

While sourcing strategies with online labor pools may be inexpensive, we find that the cost 

advantage does not justify the poor performance (F1 score 0.61, 0.09 s.d.). These results indicate 

that the use of low-cost crowd-sourcing approaches to build massive training sets are likely not 

feasible for large-scale implementation in this domain. This is in stark contrast to other deep 

learning domains, such as computer vision, where cheap, crowd-sourced training data can be easily 

acquired. For example, identifying sections of a road or public bus in an image is an easy task for 

the average person, but the average person cannot easily categorize the topics of EV user reviews. 

To provide an example of this, in our experiments, the review: “...What an inconvenience when I 

need to drive to Glendale and I have a very low charge...”, was cognitively difficult for general 

crowd annotators to correctly classify as Range Anxiety, even when annotators had unrestricted 

access to definitions and related examples. This was not the case for most experts. As a result, for 

these complex domains, expert-curated training data will be required for large-scale 

implementations. In the next section, we compared the performance of our best classifiers using 

artificial intelligence versus human intelligence. 
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Possibility of Super-Human Classification 

During hand validations of the transformers-based experiments, we noticed that some test data that 

were not correctly labeled by the human experts were being correctly labeled by the transformer 

models. This caught our attention as it indicated the possibility that BERT and XLNet could in 

some cases exceed the human experts in multi-label classification. In Table 3, we see that expert-

trained transformer models performed about 3-5 percentage points higher in accuracy and 0.03-

0.06 points higher in the F1 score as compared to our human experts. In Table 4, we provide 6 

specific examples of this phenomenon where the expert-trained transformers do better than human 

experts. For example, exceeding human expert benchmarks could happen in multiple ways. It 

could be that the algorithm correctly detects a topic that the human experts did not detect (i.e. 

reviews 1 and 2 in Table 4); or that it does not detect a topic that has been incorrectly labeled by 

an expert (i.e. reviews 4-6 in Table 4); or that the sum of misclassification errors is smaller than 

that of human experts (i.e. reviews 3-6 in Table 4). We also provide quantitative measures in 

accuracy for these examples in Table 4. 

Although a full investigation of superhuman performance for these transformer neural networks 

is outside the scope of the current study, we suggest this as an important future work. Evidence 

that artificial intelligence can outperform human benchmarks on multi-label classification tasks 

can benefit station managers and investors to be able to accurately predict system problems or 

examine customer needs at high-resolution in ways not previously possible. 

Applications for Local and Regional Policy 

As EV consumer reviews data expands, we comment on the possibility to apply this computational 

approach widely to local and regional policy analysis. We note that previously, this type of 

extracted consumer intelligence has not been easily accessible to policy makers or governments 
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due to the nature of unstructured data and issues with data access. For example, the U.S. 

Department of Energy’s (DOE) Alternative Fuels Data Center maintains a list of all publicly 

accessible stations in the U.S. and Canada. This includes location information, such as station 

name, address, phone number, charging level (e.g. L1, L2 or L3), number of connectors, and 

operating hours with a developer-friendly API. However, these aggregated data sources do not 

typically include real-time usage or station availability, due to challenges with network 

interoperability.16 This means that due to the presence of different charging standards by 

manufacturers and regional EV networks, there remain structural issues with sharing and receiving 

EV usage data between regions. 

Recently, there has been a movement by a global consortium of public and private EV 

infrastructure leaders to promote open standards such as the Open Charge Point Protocol (OCPP)17 

and the Open Smart Charging Protocol (OSCP).39 As these technology standards become more 

widely adopted, there will be a rapid increase in the amount of real-time data that can be shared 

with researchers and analysts. For instance, a growing number of digital platform providers have 

begun moving towards open data. These include platforms such as Open Charge Map, Recharge 

and Google Maps. In the future, it should be possible to easily merge consumer reviews data with 

other spatial features and information. This could provide a wealth of commonly used features for 

analysis such as socio-economic indicators including population, income levels, educational 

attainment, age, poverty rates, unemployment, and affordability of nearby housing. Other 

important features could include transportation economic indicators, air pollution, health data, 

mobile phone tracking data, point of interest information, and local and regional incentives. 

To provide an example of possible data insights for urban policy, we conducted a spatial analysis 

of metropolitan and micropolitan statistical areas (MSAs and μSAs). One of the dominant topics 
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is Availability, which is predicted when a user reports whether a given charging station is available 

for use. In Figure 2, we visualize the spatial distribution of predicted station availability by U.S. 

census regions. To create this map, we merged the predicted review topics with counties based on 

shape files from the Office of Management and Budget’s (OMB) 2013 specification of MSAs and 

μSAs. In the United States, there are 1,167 MSAs (population larger than 50,000) and 641 μSAs 

(population greater than 10,000), and 1,335 non-core-based statistical areas (population less than 

10,000). To visualize model predictions, we standardized the predicted frequency of Availability 

topic into quantiles for each census region (West, Midwest, Northeast, and South), where 0-44%: 

Rarely, 45-69%: Sometimes, 70-90%: A Moderate amount, and over 90%: A great deal (see Figure 

2). The map reveals areas with high and low predicted Availability consumer discussions in all 

core-based statistical areas. 

Using this approach, we find that predicted station availability issues are not necessarily 

concentrated in the large central metro counties (MSAs over 1 million population), but rather away 

from the city centers such as smaller μSAs of population less than 50,000. This is particularly true 

in the West (e.g. Oregon, Utah, Colorado, Wyoming, New Mexico) and Midwest (e.g. South 

Dakota and Nebraska) and Hawaii. By contrast, for the South (e.g. Texas, Alabama, Florida, North 

Carolina, South Carolina, Tennessee) and Northeast regions (e.g. New York, New Jersey, 

Massachusetts, Maryland, Pennsylvania), we find the highest frequency of availability issues in 

the major MSAs for the period of analysis. One primary insight from this analysis is that μSAs 

could be under-served with regard to station availability. In additional analyses, we also used our 

methodology to detect whether a specific station is functioning. Based on the rate of consumers 

leaving reviews at charging stations across the U.S., we find that the deep learning algorithms can 

detect functioning of a certain station, daily. For further details of these estimates, see 
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Supplemental Experimental Procedures. This type of detection could also be done with any of our 

introduced topics and with expanded sample datasets from network providers. 

Given the proliferation of EV policies worldwide, this spatial analysis could be expanded 

globally. For example, in the European Union, policies such as Alternative Fuels Infrastructure 

Directives, or AFID (previously known as the Directive on Alternative Fuels Infrastructure, or 

DAFI).40 In addition, the European Commission has supported implementation of fast charging 

infrastructure through the Trans-European Network for Transport (TEN-T) and Connecting 

Europe Facility Transport (CEF-T) programs.40,41 This type of national scale infrastructure 

expansion in the EU is part of an overall strategy by The European Union to reduce CO2 emissions 

from the transportation sector by 60% by 2050.42 

This capability to deploy accurate and more efficient deep learning models can be applied to 

evaluate other charging infrastructure roll-out policies that aim to increase the number of charge 

points, reduce charging congestion, promote vehicle-to-grid and overnight charging, as well as 

solar adoption.43 For recent reviews on how charging behavior can guide charging infrastructure 

implementation policy, see van der Kam et al.43 and McCollum et al.44 Other applications that use 

artificial intelligence and NLP to discover hard-to-reveal patterns in unstructured data, especially 

those that merge spatial information, should generate fruitful areas of future inquiry. 

 

Concluding Remarks 

In this study, we report state-of-the-art results for multi-label topic classification of consumer 

reviews in EV infrastructure. This represents a potential step change in our ability to aggregate 

data and insights for EV business model development and public policy advisory. Implementing 

automated topic modeling solutions has been challenging because of the technical nature of the 
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corpus and training data imbalances. Our experimental protocols highlight the importance of the 

quality of training data annotations in the data processing pipeline. First, human expert annotators 

outperform the general crowd both in accuracy and F1 score metrics. This is due to improvements 

in the inter-rater reliability that is critical while working with data from complex domains. Second, 

improvements in training data quality also produce more accurate and reliable detection. This is 

seen in the approximate increase of 15 percentage points in accuracy and 50% improvement in the 

F1 score in the expert-trained transformer models as compared to the crowd-trained models (Table 

3). Third, when the models are trained on top of high-quality expert curated training data, 

surprisingly the transformer neural networks can outperform even human experts. This indicates 

evidence of super-human classification on imbalanced corpora. As deep learning models have 

been often been criticized for their black-box nature, we suggest technical enhancements that focus 

on model interpretability as future work such as through the use of rationales,45 influence 

functions,46 or sequence tagging approaches47 that can offer deeper insights on the models and the 

reasons for their predictions. This is an area of active research. 

Further applications of methods that we propose particularly those that integrate artificial 

intelligence with real-time data and spatial analysis can greatly enhance new ways of thinking 

about infrastructure management as well as economic and policy analysis. Other opportunities 

abound. 

EXPERIMENTAL PROCEDURES  

Resource Availability 

Lead Contact. Further information and requests for resources and materials should be 

directed to and will be fulfilled by the Lead Contact, Dr. Omar I. Asensio (asensio@gatech.edu) 
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Materials Availability. The trained model weights for BERT and XLNet generated in this 

study have been deposited to Figshare DOI:  https://doi.org/10.6084/m9.figshare.12612092.v1. 

Data and Code Availability. The anonymized datasets and code generated during this study 

have been deposited to the Zenodo repository at: https://doi.org/10.5281/zenodo.4276350. The raw 

data may not be posted publicly due to privacy restrictions. 

 

Data 

We reanalyze data derived from a nationally representative collection of unstructured consumer 

reviews from 12,720 charging station locations across the United States. It comprises 127,257 

reviews all written in English by 29,532 registered and unregistered EV drivers across a 4-year 

duration from 2011 to 2015.11,23,48 

The spatial coverage of the dataset includes reviews from 750 metropolitan statistical areas (309 

large MSAs of population 1 million or more; 228 medium MSAs population of 250,000-999,999; 

213 small MSAs population of 50,000-249,999). This also includes 294 micropolitan statistical 

areas (e.g. μSA population 10,000-49,999), and 232 non-core-based statistical areas (e.g. 

population less than 10,000). This spatial coverage is based on the 2013 OMB delineation of 

metropolitan statistical areas (MSA) and micropolitan statistical areas. 

The data is statistically representative of the entire U.S. EV market, which includes all major 

EV networks, and a mix of both public and private stations, urban and rural stations, and both low 

and highly rated stations. The data includes the text of consumer reviews and contains other useful 

indicators such as the timestamp of the reviews, the car make and model. We also geo-coded the 

station location and related points of interest using the Google Places API. However, the dataset 
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does not contain EV transactions data, such has how many kWh were transferred. The data is also 

only observable conditional on a user checking-in and posting a review. 

This type of data is expanding globally and we estimate that there are already over 3.2 million 

reviews through 2020 across more than 15 charge station locator apps.12-16 This includes English-

language reviews as well as reviews in over 42 languages in all continents, such as Ukrainian, 

Russian, Spanish, French, German, Finnish, Italian, Croatian, Icelandic, Haitian-creole, Ganda, 

Sudanese, Kinyarwanda, Afrikaans, Nyanja, Korean, Mandarin, Japanese, Indonesian and 

Cebuano. 

 

Developing the Coding Scheme for Supervised Learning 

We developed the coding scheme for our typology from prior work and theory using three 

strategies. First, we reviewed the extant literature to capture the most important potential 

behavioral issues for EV drivers. This led to identification of Range Anxiety,6,49-52 Dealership 

practices,53-55 Cost,6,52,56-58 Service Time,6,52,56,58 Availability issues,59,60 User Interaction,61-63 

station Functionality,11,58,64 and Location.11 Second, to find evidence of the importance of these 

topics from the data, we hand-coded 8,953 randomly selected reviews to validate the 8 topics from 

prior literature and used these to generate 34 sub-topics for classification. We found that only 1% 

of the reviews were unclassifiable according to our 8 main categories (e.g. Other). Third, to 

validate the coding scheme, we also interviewed industry experts and practitioners, which allowed 

us to further refine our main topics and sub-topics shown in Table 1. This included representatives 

from firms such as General Motors, Chargepoint, Recharge Technologies, Electrada, Electrify 

America, and charging station managers (e.g. representatives from Ford and Georgia Tech Parking 

and Transportation Services). 
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Human Annotation of Training Data 

A common criticism with deep neural networks is the high cost and annotator skill requirements 

for implementations in specialized corpora. We evaluated possible methods to lower 

implementation costs, such as crowd sourcing by using online labor pools for human annotation. 

This led us to conduct human annotator experiments with two training sets each labeled by a crowd 

of non-experts and a small group of trained experts. Given the known possible biases with 

historical data, we investigated whether protocols related to the labeling of the training data could 

have an impact on performance.65,66 

The crowd and expert annotators each labeled a random sample of 10,652 reviews. We used an 

80:10:10 split for training, validation, and testing, which met our objective of having an equal 

number of training data for both annotator groups. We conducted statistical tests to determine 

whether the sampled training dataset is representative of the full dataset in key observable station 

characteristics. We confirmed that the training dataset is statistically representative in the mix of 

urban and non-urban stations (t-test p-value 0.426), public and private stations (t-test p-value 

0.709), as well as by station points of interest (t-test p-value 0.802), e.g. retail, shopping, workplace, 

and transit centers, etc.). We also found that the training data was not statistically different in topic 

distribution from the predictions of the full dataset (Kolmogorov-Smirnov test p-value 0.9801). 

Crowd Annotators. For the crowd-sourced training data sample, 1,000 U.S. adults (age 18+) 

were pre-recruited via a Qualtrics online panel using their popular online survey platform. The 

crowd was statistically sampled on the basis of age, income, education, and sex, representative of 

the U.S. population. This is important to mitigate possible human rater biases that could arise when 

discussing environmental topics. To enhance understanding of the domain-specific terminology 

for the general crowd, definitions and examples for the topics and sub-topic as shown in Table 1 
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were provided for annotation along with a supporting diagram containing typical components of 

an EV charging station (See Figure S2 and Figure S3 in the Supplemental Information). We report 

the Fleiss’ Kappa for crowd annotators as 0.007. 

Expert Annotators. For the expert-sourced training data sample, five student annotators 

with technical backgrounds were recruited and trained in a facilitated focus group. They were 

instructed to recognize the domain-specific topics using a detailed training manual for the 

annotation. To support scientific replication and to document the protocols, we have open sourced 

this training manual.67 These protocols were developed in consultation with EV industry experts 

who have been in contact with the researchers. Although our expert annotators have been trained 

to recognize domain-specific terminology, we acknowledge that we are not able to compare the 

performance of our expert annotators to EV industry professionals due to cost reasons. Despite 

this limitation however, we find that our human experts are two orders of magnitude more reliable 

in the annotation (76-fold increase in our reliability measure) versus the crowd annotators (𝜅𝜅= 

0.538 and 𝜅𝜅= 0.007, respectively). See the Model Metrics section under Performance Measures  

for additional details on computing Fleiss’ Kappa. 

To provide a greater control over the labeling task, we developed a custom web application used 

by the expert annotators as shown in Figure S3. The web app provides efficient database support 

for random sampling from a large dataset and overcomes latency and scaling challenges that we 

encountered during crowd annotation in popular survey software. 

Ground Truth Labels. To generate the ground truth labels, we followed the same training 

protocols used by the expert annotators. Then, we randomly sampled 100 overlapping reviews that 

were annotated by both annotator groups to enable performance comparisons. On this sample, we 

conducted an additional round of researcher audits that validated 100% agreement on the 
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annotations. Given that the human experts exhibited some level of disagreement (Fleiss’ kappa = 

0.538, Table 3), this sample was used to benchmark the performance of the U.S. crowd and the 

human experts. The results of these comparisons as well as their statistical uncertainty are reported 

in Table 3. To generate the uncertainty, we performed a cross validation using block randomization 

with 10 equal-sized blocks of ground truth data. 

Performance Measures 

Model Metrics. In order to assess model performance, we report the micro-averaging F1 

score, which is a standard metric for classifier performance on detection of false positives and false 

negatives. We use standard measures for multi-label accuracy, where annotators could choose 

multiple labels per review. Our overall accuracy metric accounts for partially correct matches. By 

convention, this is equivalent to 1 - Hamming Loss, where the Hamming Loss is an 𝑥𝑥𝑥𝑥𝑥𝑥 calculation 

of the dissimilarity (i.e. a fraction of wrong labels compared to the total number of labels). For 𝐿𝐿 

categories classified on a sample of size 𝑁𝑁, the accuracy can be calculated as: 

        Overall Accuracy =  1 −  Hamming Loss 

= 1 −
1

|𝑁𝑁| ⋅  |𝐿𝐿|
��𝑥𝑥𝑥𝑥𝑥𝑥�𝑦𝑦𝑖𝑖,𝑗𝑗, 𝑧𝑧𝑖𝑖,𝑗𝑗�

|𝐿𝐿|

𝑗𝑗=1

|𝑁𝑁|

𝑖𝑖 = 1

 

(1) 

For example, if a multi-label prediction [1, 1, 1, 0] had a true label [1, 1, 1, 1], the accuracy is 3/4 

or 75%. 

Inter-Rater Reliability. To measure the inter-rater agreement level among the annotators, 

we used Fleiss’ Kappa (𝜅𝜅), which allows for the measurement of agreement between multiple 

annotators (e.g., more than 2). It is calculated as below: 
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𝜅𝜅 =
𝑃𝑃�  −  𝑃𝑃𝑒𝑒�
1− 𝑃𝑃𝑒𝑒�

, (2) 

where 𝑃𝑃� is the average number of agreements on all annotations between rater pairs for the reviews, 

and 𝑃𝑃𝑒𝑒�  is the sum of squares of the probability share for the assignment to a topic. As 𝜅𝜅 is bounded 

between -1 and 1, when 𝜅𝜅 is less than 0, agreement between raters is occurring below what would 

be expected at random, while a 𝜅𝜅 above 0 means that agreement between raters is occurring more 

than what would be expected by random chance.68 For more information, see Fleiss.69 
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FIGURE TITLES AND LEGENDS 

Figure 1. Topic level classification performance. 
(A) For the baseline model, we use the majority classifier, which predicts the simple majority for 
a given topic. For higher values in accuracy, the majority classifier reflects more imbalance in the 
training and testing data. We find that the deep learning models outperform the majority classifier 
in model accuracy, particularly for more frequently occurring labels, Functionality, Location, and 
Availability topics. (B) We also compare the relative performance of the transformer models with 
CNN and LSTM classifiers. High F1 scores for imbalanced topics indicate strong detection of true 
positives. Our results indicate that transformer models, BERT and XLNet, which achieve similar 
performance, improve upon the CNN and LSTM benchmarks in the F1 score across all topics. The 
error bars represent upper and lower 95% confidence intervals. See also Table S2 and S3. 
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Figure 2. Predicted discussion frequency of station availability for U.S. metropolitan and 
micropolitan statistical areas. 
The map reveals areas with high and low predicted Availability consumer discussions in all 
metropolitan statistical areas (e.g. population greater than 50,000). Micropolitan statistical areas 
(e.g. population 10,000 - 49,999) have higher Availability discussions in some states in the West 
and Midwest regions. Thus, algorithms predict that many micropolitan statistical areas could be 
under-served with regards to station availability.  
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Tables 

Table 1. EV mobile app typology of user reviews 

Topic Sub-topic examples 
Functionality general Functionality, charger, screen, power level, connector type, 

card, reader, connection, time, error message, station, mobile 
application, customer service  

Range Anxiety trip, range, location accessibility 
Availability number of stations available, ICE, general congestion 
Cost parking, charging, payment 
User Interactions charger etiquette, anticipated time available, user tips 
Location general location, directions, staff, amenities, points of interest, user 

activity, signage 
Service Time charging rate 
Dealership dealership charging experience, competing brand quality, relationship 

with dealers  
Other general experiences 

 

Table 2. Overall model performance 

 Accuracy % (s.d.) F1 score (s.d.) 
BERT 91.6 (0.13) 0.83 (0.0037) 
XLNet 91.6 (0.07) 0.84 (0.0015) 
Majority Classifier 81.1 (0.00) 0.45 (0.0000) 
LSTM 90.3 (0.17) 0.80 (0.0036) 
CNN 90.9 (0.12) 0.81 (0.0032) 
Note: Models are trained and tested on expert annotated data 

 

Table 3. Ground truth evaluation of human performance versus transformer models 
 
Classifier Training set Accuracy % (s.d.) F1 score (s.d.) 
BERT Expert-annotated 89.1 (4.09) 0.82 (0.06) 
BERT Crowd-annotated 73.2 (3.85) 0.53 (0.06) 
XLNet Expert-annotated 91.0 (4.70) 0.85 (0.06) 
XLNet Crowd annotated 74.2 (4.15) 0.54 (0.07) 
Crowd (𝜅𝜅 = 0.007) - 73.9 (6.06) 0.61 (0.09) 
Human Experts (𝜅𝜅 = 0.538) - 86.0 (4.40) 0.79 (0.07) 
Note: Cross validation = 10 runs 
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Table 4. Examples where expert-trained transformers exceed human benchmarks  
   

   Expert-trained Transformers  
Ground Truth Human Expert BERT XLNet 

  Labels Labels Acc. 
(%) Labels Acc. 

(%) Labels Acc. 
(%) 

1. “... unit says decommissioned but it will still release 
the charger after a long pause.” 

Functionality User 
Interaction 

75 Functionality 100 Functionality 100 

2. “Thanks very busy dealership but happy to allow use 
of qcdc” 

Functionality, 
Availability, 
Dealership 

Functionality, 
Dealership 

87.5 Functionality, 
Availability, 
Dealership 

100 Functionality, 
Availability, 
Dealership 

100 

3. “Charging on the quick charger - will be done by 
12:15” 

Functionality, 
User 
Interaction 

Functionality, 
Location 

75 User 
Interaction 

87.5 User 
Interaction 

87.5 

4. “Went from 18-82% in 27 minutes! First time DC 
charging and met another nice Leaf owner who showed 
me how to use the machine. Thanks for the charge!” 

Functionality, 
Service Time 

Functionality, 
Availability, 
Location, 
User 
Interaction, 
Dealership 

62.5 Service Time 87.5 Functionality, 
Service 
Time, 
Dealership 

87.5 

5. “The CHAdeMO charger does work. ... Nissan Hill 
had to move an ICE for me to gain access, but did so 
quickly. The CHAdeMO did not cost me any $ Charged 
quick! Don’t hesitate to use.” 

Functionality, 
Availability, 
Cost, 
Dealership 

Functionality, 
Availability, 
Cost, 
User 
Interaction, 
Location, 
Service Time, 
Dealership 

62.5 Functionality, 
Cost, 
Dealership 

87.5 Functionality, 
Cost, 
Service 
Time, 
Dealership 

75 

6. “So the dealer had all of their cars being serviced 
parked in every spot including the quick charger. I called 
and asked them for at least access to the quick charger 
and they agreed but never did anything so I left and drove 
to Larry h nissan. I was willing to pay because I was in a 
hurry and obviously the Toyota dealer doesn’t want my 
business.” 

Availability, 
Cost, 
Dealership 

Functionality, 
Availability, 
User 
Interaction, 
Location, 
Dealership 

50 Availability, 
Dealership 

87.5 Availability, 
Location, 
Dealership 

75 
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Supplemental Figures

T1 T2 TN

“Took 90 minutes $5 per charge.”

…

…

…

Functionality Range 
Anxiety Availability Cost User 

Interaction Location Service 
Time Dealership

0 0 0 1 0 0 1 0

TN-1TN-2

Ecls E1 E2 EN… EN-1EN-2

T3 TN-3

E3 EN-3

CLS Token1 Token2 Token3 TokenN-3 TokenN-2 TokenN-1 TokenN

OK.…

…

Scores

BERT

Figure S1. BERT model architecture Representation of the BERT model architecture across the 8 topics of interest as a set
of binary prediction outputs. For example, for the sample review shown “Took 90 minutes . . . Ok. 5$ per charge”, the model
outputs 1 for Cost, Service Time topics, and 0 for the other topics.
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Connector 
Type

Screen

Charging Station

PlugCharger Cord

Connection

Mobile 
Application

Card 
Reader

Charger Power Levels
Level 1 (L1): 110V
Level 2 (L2): 240V 
Level 3 (L3): DC Fast Charge

Figure S2. Diagram of EV charging station. Illustration of major EV charging components shown to the human annotators
to help understand frequently occurring terms.

Figure S3. Web App for training data collection A screenshot of the online interface for the human annotation.
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Supplemental Tables

Table S1. Hyper-parameters for BERT and XLNet

Hyper-parameter Value

Number of Epochs 20
Batch Size 8
Learning Rate 1e-4
Max Sequence Length 8
Weight Decay 0.01
Adam Epsilon 1e-8
Max Grad Norm 1
Warmup Steps 500
Train:Valid:Test 80:10:10

Table S2. Topic level accuracy

Functionality Range
Anxiety Availability Cost User

Interaction Location Service
Time Dealership

Acc. s.d. Acc. s.d. Acc. s.d. Acc. s.d. Acc. s.d. Acc. s.d. Acc. s.d. Acc. s.d.
BERT 86.0 0.445 96.7 0.259 91.5 0.414 96.8 0.260 89.4 0.460 85.2 0.448 97.1 0.334 91.2 0.341
XLNET 86.1 0.515 97.0 0.171 91.4 0.397 97.3 0.196 89.4 0.284 84.7 0.536 96.4 0.303 90.8 0.378

Majority Classifier 53.1 96.2 78.3 90.0 85.4 68.1 90.8 86.9
LSTM 83.2 0.483 96.6 0.247 89.8 0.752 96.2 0.249 87.4 0.378 83.9 0.422 94.7 0.312 90.3 0.264
CNN 84.1 0.639 97.0 0.135 90.2 0.282 96.3 0.282 88.1 0.341 85.2 0.314 95.2 0.165 90.9 0.300

Table S3. Topic level F1 score

Functionality Range
Anxiety Availability Cost User

Interaction Location Service
Time Dealership

F1 s.d. F1 s.d. F1 s.d. F1 s.d. F1 s.d. F1 s.d. F1 s.d. F1 s.d.
BERT 0.860 0.005 0.707 0.028 0.869 0.008 0.912 0.007 0.754 0.011 0.824 0.006 0.909 0.010 0.807 0.010
XLNET 0.860 0.005 0.792 0.010 0.867 0.006 0.926 0.006 0.760 0.007 0.821 0.006 0.892 0.009 0.802 0.010

Majority Classifier 0.347 0.490 0.439 0.474 0.461 0.405 0.476 0.465
LSTM 0.831 0.005 0.733 0.018 0.847 0.008 0.889 0.010 0.706 0.015 0.810 0.005 0.828 0.010 0.783 0.006
CNN 0.841 0.007 0.755 0.022 0.850 0.005 0.896 0.009 0.702 0.013 0.824 0.006 0.835 0.007 0.797 0.013
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Table S4. Computation times

Number of GPUs Overall Computation Time† Train Time per Epoch (seconds) Test Time per Example (seconds)

CNN 1 00:00:56 2.8 2.7e-4
4 00:00:50 2.5 2.6-e4

LSTM 1 01:25:38 257 3.0e-3
4 00:57:42 173 2.2e-3

BERT 1 02:10:39 392 1.2e-2
4 01:05:33 196 2.2e-2

XLNet 1 04:31:40 1,084 7e-2
4 01:27:20 346 4e-2

†hours:minutes:seconds
Note: Computation times using PACE force-gpu cluster on 16GB memory.

Table S5. Pairwise topic correlation

1 2 3 4 5 6 7 8

1. Functionality 1.000
2. Range Anxiety -0.027 1.000
3. Availability -0.256 -0.048 1.000
4. Cost -0.069 -0.003† -0.053 1.000
5. User Interactions -0.177 -0.013† -0.046 -0.018† 1.000
6. Location -0.218 0.048 -0.036 0.074 -0.066 1.000
7. Service Time -0.004 0.061 -0.073 0.055 -0.060 -0.022 1.000
8. Dealership -0.069 0.061 0.0525 -0.011† 0.068 0.011† 0.070 1.000
†Not significant (p >0.05)
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Table S6. Accuracy conditional on changing the number of topics

Number of
Categories Functionality Location Availability Cost Dealership User

Interaction
Service
Time

Range
Anxiety

2 85.5 85.8
3 85.5 84.8 91.5
4 85.1 84.9 91.7 96.8
5 86.0 85.4 91.2 97.1 91.7
6 86.3 85.6 91.7 97.6 91.4 88.8
7 85.6 84.7 91.3 97.1 91.2 88.4 96.5
8 85.7 85.6 91.2 97.1 90.7 89.2 96.7 96.7

Average 85.7 85.3 91.4 97.1 91.3 88.8 96.6 96.7
Max Difference (%) 0.734 0.653 0.292 0.474 0.603 0.450 0.104 0.000

Table S7. F1 score conditional on changing the number of topics

Number of
Categories Functionality Location Availability Cost Dealership User

Interaction
Service
Time

Range
Anxiety

2 0.854 0.831
3 0.854 0.820 0.872
4 0.851 0.821 0.877 0.915
5 0.860 0.826 0.866 0.923 0.825
6 0.863 0.827 0.874 0.934 0.824 0.759
7 0.856 0.815 0.868 0.919 0.816 0.742 0.897
8 0.857 0.830 0.863 0.920 0.805 0.749 0.897 0.722

Average 0.856 0.824 0.870 0.922 0.818 0.750 0.897 0.722
Max Difference (%) 0.767 1.127 0.805 1.280 1.529 1.200 0.000 0.000
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Supplemental�Experimental�Procedures
Robustness�of�typology
We�assembled�a�pairwise�correlation�matrix�to�easily�inspect�whether�the�labels�represent�non-overlapping�categories.�In�Table�
S5,�we�show�that�25�out�of�28�pairwise�correlations�are�below�0.10�in�absolute�value,�which�indicates�small�correlation.� In�
addition,�none�of�the�correlation�coefficients�are�above�0.3�in�absolute�value,�which�indicates�small�to�moderate�correlation.

We�also�investigated�the�sensitivity�of�our�models�to�having�more�or�fewer�topics.�To�do�this,�we�computed�the�accuracy�
and�F1�scores�for�a�series�of�models�trained�with�a�varying�number�of�topics.� For�example,�in�Table�S6�and�Table�S7,�we�
started�with�Functionality�and�successively�added�topics,�starting�from�2�topics�and�increasing�up�to�8.�We�report�the�accuracy�
measures�in�Table�S6,�and�F1�scores�in�Table�S7.�For�accuracy,�we�find�that�the�maximum�difference�in�performance�varies�by�
less�than�1%�for�all�topics,�and�for�the�F1�score,�the�maximum�difference�in�performance�varies�by�less�than�2%�for�all�topics.�
These�additional�results�are�well�within�the�statistical�uncertainty�reported�in�our�main�results�shown�in�Figure�1,�Table�S2,�and�
S3.�We�therefore�provide�evidence�that�our�technical�approach�is�not�very�sensitive�to�having�varying�number�of�topics.�We�also�
evaluated�impacts�on�the�computing�times,�and�found�that�the�number�of�topics�had�limited�impact�on�computing�times�(~1%).

BERT�and�XLNet�implementations
BERT�and�XLNet�are�pre-trained�contextual�language�models�that�leverage�massive�corpora�such�as�the�English�Wikipedia�and�
BooksCorpus�to�learn�context�from�tokenized�words�[1].�These�models�leverage�neural�network�architectures�with�information�
feeding�in�a�bidirectional�context.�The�language�models�are�fine-tuned�on�our�domain�specific�multi-label�classification�problem�
using�training�data.

To�illustrate�differences�between�BERT�and�XLNet�in�their�ability�to�capture�bidirectional�context�in�our�domain,�we�
provide�the�following�sample�review,�“Fast�charger�working�great!”�To�understand�the�relational�encoding,�BERT�and�XLNet�
maximize�the�conditional�probability�of�the�word�context�in�the�forward�and�backward�direction�as�follows:

LBERT = logP(Fast | working great! )
+ logP(Charger | working great!)

(1)

LXLNet = logP(Fast | working great!)
+ logP(Fast | charger working great!)

(2)

Here,�LBERT� and�LXLNet� refer�to�the�log-likelihood�functions�for�the�two�models.�When�comparing�the�equations�1�and�2,�
we�see�that�the�dependency�between�the�tokens�Fast�and�Charger� in�this�example�are�learned�as�a�relevant�training�signal�
in�XLNet�but�not�in�BERT.�For�code�implementation�of�BERT�and�XLNet,�we�followed�the�protocols�in�[2,�3]�as�a�starting�
point.� Since�there�were�no�known�references�for�optimal�hyper-parameters�for�BERT�or�XLNet�in�this�domain,�we�report�
our�hyper-parameter�values� in�Table�S1,�which�we�arrived�at� through�minimal�fine-tuning.�We�did�not�do�an�exhaustive�
hyper-parameter�search.�This�further�optimization�could�be�done�in�future�work.�For�seminal�readings�on�BERT�and�XLNet,�
see�[1,�4,�5].

CNN�and�LSTM�implementations
The�baseline�models�used�for�comparison�with�the�transformer�models�are�convolutional�neural�networks�(CNN)�[6,�7]�and�long�
short-term�memory�(LSTM)�classifiers�[8].�Architecturally,�while�CNNs�build�feature�representations�of�a�sentence�through�
convolution�with�filters�of�varying�sizes�[6],�LSTMs�encode�hidden�state�representations�via�a�recurrent�neural�network�[8]�
which�is�updated�by�traversing�the�sentence�in�one�direction.�Although�currently�there�is�no�consensus�on�which�models�are�
better�for�text�classification�tasks,�CNNs�and�LSTMs�provide�complementary�information.�CNNs�are�hierarchical�architectures,�
while�LSTMs�are�sequential�architectures,�which�tend�to�perform�better�in�sequence�modeling�tasks.�In�this�paper,�we�adapted�
code�and�protocols�from�[7,�9]�for�CNN�implementation�and�[10]�for�LSTM�implementation.�For�a�comparative�review�of�
CNNs�and�LSTMs�in�natural�language�processing,�see�[11].

Detecting�if�a�certain�station�is�functioning
To�get�an�initial�idea�of�how�the�method�performs�to�detect�if�a�certain�station�is�functioning,�we�calculated�the�conditional�
probability�of�jointly�detecting�the�Functionality�topic�and�a�negative�sentiment�in�the�review�(e.g.�the�qualifying�event).

To�do�this,�we�sampled�reviews�from�charging�stations�with�both�high�number�of�repeat�check-ins�and�a�low�number�of�
repeat�check-ins�in�order�to�get�a�range�of�estimates�across�different�station�types.�For�this�simulation,�we�assume�that�the�joint�
probability�of�detecting�a�functionality�topic�and�positive�sentiment�(e.g.�“This�station�is�working�great!”)�is�not�a�qualifying�
event.�We�provide�an�illustrative�example�below.�To�derive�the�negative�sentiment�probabilities,�we�used�published�numbers
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from�[12]�that�uses�EV�charging�reviews�data�from�a�similar�date�range.� For�example,�for�highly�used�stations�in�the�90th�
percentile�by�number�of�reviews,�the�negative�sentiment�probability�is�0.495.�Likewise,�for�less�commonly�used�stations�in�the�
25th�percentile,�the�negative�sentiment�probability�is�0.390.�Next�we�calculated�the�prediction�probabilities�for�the�Functionality�
topic�for�these�two�groups�of�stations�as�0.574�and�0.451�for�the�90th�and�25th�percentile�by�number�of�reviews,�respectively.�
The�joint�probability�of�a�qualifying�event,�e.g.�if�a�certain�station�is�functioning�and�negative�sentiment,�gives�us�a�range�of�
0.176�to�0.284.

This�indicates�that�for�every�100�reviews,�we�expect�between�17�and�28�qualifying�events�on�whether�if�a�certain�station�is�
not�functioning.�In�other�words,�this�turns�out�to�be�one�qualifying�event�every�3�to�5�reviews�in�this�dataset.�For�example,�a�
large�CBSA�such�as�San�Jose-Sunnyvale-Santa�Clara,�CA,�received�6,703�reviews�between�Aug�2011�and�September�2015.�
This�is�approximately�4.5�reviews�per�day.�Consequently,�for�large-scale�implementation,�the�model�will�detect�a�qualifying�
event�typically�every�day.�On�the�other�hand,�a�small�CBSA�such�as�Chattanooga,�TN-GA,�received�2,132�reviews�between�
December�2011�and�September�2015.�This�is�approximately�1.5�reviews�per�day,�which�means�that�the�model�will�detect�a�
qualifying�event�typically�every�2�to�3�days�for�a�small�CBSA.�On�a�national�basis,�this�means�that�our�model�would�typically�
detect�if�a�certain�station�is�functioning,�daily.�Given�the�exponential�growth�of�EV�infrastructure�data�and�usage,�we�expect�this�
detection�rate�to�get�even�better�over�time.

Software�and�resources
The�deep�learning�algorithms�used�in�this�paper�were�written�in�Python,�using�PyTorch�for�BERT�and�XLNet;�and�TensorFlow�
for�CNN�and�LSTM.�Experiments�for�Table�S4�were�run�on�the�PACE�Force�cluster�using�the�NVIDIA�Tesla�P100�GPUs.�The�
experiments�for�Table�2,�S2,�S3,�S6,�and�S7�were�run�on�Microsoft�Azure�Cloud,�using�the�same�NVIDIA�Tesla�P100�GPUs.�
We�replicated�these�results�across�both�high-performance�computing�clusters�to�within�the�statistical�uncertainty�reported.
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