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IN BRIEF

Government analysts and policy makers have failed to fully utilize consumer behavior data in
decisions related to EV charging infrastructure. This is because a large share of EV data is
unstructured text, which presents challenges for data discovery. In this article, we deploy advances
in transformer-based deep learning to discover issues in a nationally representative sample of EV
user reviews. We describe applications for public policy analysis and find evidence that less

populated areas could be underserved in station availability.

THE BIGGER PICTURE

Transformer neural networks have emerged as the preeminent models for natural language
processing, seeing production-level use with Google search and translation algorithms. These
models have had a major impact on context learning from text in many fields, e.g., health care,
finance, manufacturing; however, there have been no empirical advances to date in electric
mobility. Given the digital transformations in energy and transportation, there are growing
opportunities for real-time analysis of critical energy infrastructure. A large, untapped source of
EV mobility data is unstructured text generated by mobile app users reviewing charging stations.
Using transformer-based deep learning, we present multilabel classification of charging station
reviews with performance exceeding human experts in some cases. This paves the way for
automatic discovery and real-time tracking of EV user experiences, which can inform local and

regional policies to address climate change.



SUMMARY

The transportation sector is a major contributor to greenhouse gas (GHG) emissions and is a driver
of adverse health effects globally. Increasingly, government policies have promoted the adoption
of electric vehicles (EVs) as a solution to mitigate GHG emissions. However, government analysts
have failed to fully utilize consumer data in decisions related to charging infrastructure. This is
because a large share of EV data is unstructured text, which presents challenges for data discovery.
In this article, we deploy advances in transformer-based deep learning to discover topics of
attention in a nationally representative sample of user reviews. We report classification accuracies
greater than 91% (F1 scores of 0.83), outperforming previously leading algorithms in this domain.
We describe applications of these deep learning models for public policy analysis and large-scale
implementation. This capability can boost intelligence for the EV charging market, which is

expected to grow to $27.6 billion USD by 2027.



INTRODUCTION

In recent years, there has been a growing emphasis on vehicle electrification as a means to mitigate
the effects of greenhouse gas emissions' and related health impacts from the transportation sector.’
For example, typical calculations suggest that electric vehicles reduce emissions from 244 to
98g/km, and this number could further decrease to 10g/km with renewable energy integration.’
The environmental benefits range by fuel type with reported carbon intensities of 8,887 grams CO>
per gallon of gasoline, and 10,180 grams CO> per gallon of diesel.* Government-driven incentives
for switching to electric vehicles, including utility rebates, tax credits, exemptions and other
policies, have been rolled out in many U.S. states.>” In this effort, public charging infrastructure
remains a critical complementary asset to consumers in building range confidence for trip planning
and in EV purchase decisions.®!? Prior behavioral research has shown that policies designed to
enhance EV adoption have largely focused on increasing the quantity of cars and connected
infrastructure as opposed to the quality of the charging experience.!! However, a fundamental
challenge to deploying large-scale EV infrastructure is regular assessments of quality.

Private digital platforms such as mobility apps for locating charging stations and other services
have become increasingly popular. Reports by third party platform owners suggest there are
already over 3 million user reviews of EV charging stations in the public domain.'?"!> In this paper,
we evaluate whether transformer-based deep learning models can automatically discover
experiences about EV charging behavior from unstructured data and whether supervised deep
learning models perform better than human benchmarks, particularly in complex technology areas.
Because mobile apps facilitate exchanges of user texts on the platform, multiple topics of
discussion exist in EV charging reviews. For example, a review states: “Fast charger working fine.
Don’t mind the $7 to charge, do mind the over-the-phone 10 minute credit card transaction.” A

multi-label classification algorithm may be able to discover that the station is functional, that a



user reports an acceptable cost, and that a user reports issues with customer service. Therefore,
text classification algorithms that can automatically perform multi-label classification are needed
to interpret the data. Being able to do multi-label classification on these reviews is important for
three principal reasons. First, these algorithms can enable analysis of massive digital data. This is
important because behavioral evidence about charging experiences has primarily been inferred
through data from government surveys or simulations. These survey-based approaches have major
limitations as they are often slow and costly to collect, are limited to regional sampling, and are
often subject to self-report or recency bias. Second, multi-label algorithms with digital data can
characterize phenomena across different EV networks and regions. Some industry analysts have
criticized EV mobility data for poor network interoperability, which prevents data from easily
being accessed, shared and collected.!® This type of multi-labeled output is also important for
application programming interface (API) standardization across the industry such as with
emerging but not yet widely accepted technology standards including the Open Charge Point
Protocol!” that would help with real-time data sharing across regions. Third, this capability may
be critical for standardizing software and mobile app development in future stages of data science
maturity (see https://www.cell.com/patterns/dsml) to detect behavioral failures in near real-time
from user generated data.

Modern computational algorithms from natural language processing (NLP) could uniquely
address the need for fast, real-time consumer intelligence related to electric mobility, but these
algorithms need to be appropriately tailored to domains to be useful. Large-scale analysis of
unstructured EV user data remains difficult to carry out, especially when there are multiple topics
discussed in each review, and the datasets are imbalanced. Unbalanced data creates challenges for

models to learn important but less frequently occurring labels often lead to algorithmic bias. In



this paper, we demonstrate the use of deep neural networks to automatically discover insights for
topic analysis. We use supervised learning to overcome prior challenges with unsupervised
methods that could produce clusters with very little theoretical or social meaning. We provide a
proof of concept to the complex task of multi-label topic classification in this domain, which builds
on an earlier demonstration of binary sentiment classification with NLP.!! We apply transformer
neural networks, a recent class of pre-trained contextual language models, to accurately detect
long-tail discussion topics with imbalanced data—a capability that has been elusive with prior
approaches.

Prior research demonstrated the efficacy of convolutional neural networks (CNNs)!8-2! and long
short-term memory (LSTM), a commonly used variant of recurrent neural networks (RNNs)2!22
for NLP. These models have been recently applied to sentiment classification and single-label
topic classification tasks in this domain. As a result, this has increased our understanding of
potential EV charging infrastructure issues such as the prevalence of negative consumer
experiences in urban locations as compared to non-urban locations.!!?*?* While these models
showed promise for binary classification of short texts, generalizing these models to reliably
identify multiple discussion topics automatically from text presents researchers with an unsolved
challenge of under-detection, particularly in corpora with wide-ranging topics and possible
imbalances in the training data. Prior research using sentiment analysis indicates negative user
experiences in EV charging station reviews, but it has not been able to extract the specific causes.'!
As a result, multi-label topic classification is needed to understand behavioral foundations of user
interactions in electric mobility.

In this paper, we achieve state-of-the-art multi-label topic classification in this domain using

transformer-based®> deep neural networks BERT, which stands for bidirectional encoder



representations®® and XLNet, which integrates ideas from Transformer-XL?’architectures. We
benchmark the performance of these transformer models against classification results obtained
from adapted CNNs and LSTMs. We also evaluate the potential for super-human performance of
the classifiers by comparing human benchmarks from crowd annotated training data, versus expert
annotated training data and transformer models. The extent of this improvement could
significantly accelerate automated research evaluation using large-scale consumer data for
performance assessment and regional policy analysis. We discuss implications for scalable
deployment, real-time detection of failures, and management of infrastructure in sustainable

transportation systems.

RESULTS & DISCUSSION

Discovering Topics

Charging station reviews can be considered asynchronous social interactions within a community
of EV drivers. To characterize user experiences, we introduce 8 main topics and 32 sub-topics that
make up a typology of charging behavior. This typology allows for easier identification of
behavioral issues with the charging process (Table 1). The definitions we use for supervised
learning are as follows: Functionality refers to comments describing whether particular features
or services are working properly at a charging station. Range Anxiety refers to comments regarding
EV drivers’ fear of running out of fuel mid-trip and to comments concerning tactics to avoid
running out of fuel. Availability refers to comments concerning whether charging stations are
available for use at a given location. Cost refers to comments about the amount of money required
to park and/or charge at particular locations. User Interaction refers to comments in which users
are directly interacting with other EV drivers in the community. Location refers to comments about

various features or amenities specific to a charging station location. The Service Time topic refers



to comments reporting charging rates (e.g. 10 miles of range per hour charged) experienced in a
charging session. The Dealerships topic refers to comments concerning specific dealerships and
user’s associated charging experiences. Reviews that do not fall into the previous 8 topics refer to
the Other topic, which are relatively rare. For more information on the robustness of typology, see
Supplemental Experimental Procedures and Table S5-S7 in Supplemental Information.

In preliminary experiments, we investigated several unsupervised topic modeling techniques
that did not provide theoretically meaningful clusters. By contrast, our empirically driven typology
is ideally suited for hypothesis testing, spatial analysis, benchmarking with other corpora in this
domain, and real-time tracking of station failures, all of which are not identifiable with current
information systems. For additional details on how the typology and coding scheme were
developed from prior work and theory, see Developing the Coding Scheme for Supervised

Learning section.

Transformers Beat Other Deep Neural Networks

Overall Performance. We evaluated the accuracy of BERT and XLNet transformer models
against other leading models, CNN and LSTM, which were previously dominant architectures in
this domain.!!** Given that we have imbalanced data for machine classification, we also report the
F1 score, which is the harmonic average of precision and recall, and is considered a measure of
detection efficiency. As shown in Table 2, we achieved high overall accuracy scores for BERT
and XLNet of 91.6% (0.13 s.d.) and 91.6% (0.07 s.d.), and F1 scores of 0.83 (0.0037 s.d.) and 0.84
(0.0015 s.d.), respectively. The standard deviations were generated from 10 cross-validation runs.
While CNN and LSTM models had slightly lower accuracy, we find that both transformer models

outperform the CNN and LSTM models considering both accuracy and F1 score. We report 2 to



4 percentage point improvements in the FI1 scores for both transformer models. For
implementation details, see Supplemental Experimental Procedures, and Figure S1 in the
Supplemental Information. For reference, we provide the hyper-parameters used for the
transformer models in Table S1. We also open sourced the model weights (see Resource
Availability).

The F1 scores for the transformer models are also a substantial 40 percentage points higher
compared with the majority classifier (Table 2). This means the models learned to detect minority
classes effectively. Briefly, the majority classifier provides a measure of the level of imbalance.
For a given category, the majority classifier simply predicts the most prevalent label. For example,
if 90% of training data has not been selected for a topic, then the classifier predicts all data as not
selected, giving a high accuracy of 90%. Thus, for highly imbalanced data, a majority classifier
can provide arbitrarily high accuracy without significant learning.?® Because it is possible that mis-
classification errors may not distribute equally across the topics, in the next section, we also

evaluated the performance by topics.

Increasing Detection of Imbalanced Labels. A key challenge was to evaluate whether we
could improve multi-label classifications even in the presence of imbalanced data. Figure 1A
shows a large percentage point increase in accuracy for all the deep learning models tested, as
compared with the majority classifier. This evidence of learning is especially notable for the most
balanced topics (e.g. Functionality, Location and Availability). As shown in Figure 1B, we report
improvements in the F1 scores for BERT and XLNet across most topics versus the benchmark
models. In particular, this result holds for the relatively imbalanced topics (e.g. Range Anxiety,

Service Time, and Cost), which have presented technical hurdles in prior implementations.?* In



comparison with the previously leading CNN algorithm, BERT and XLNet produce F1 score
increases of 1-3 percentage points on Functionality, Availability, Cost, Location, and Dealership
topics, 5-7 percentage points on User Interaction, and Service Time topics. For Range Anxiety,
BERT is within the statistical uncertainty of the CNN performance, while XLNet produces an
increase in the F1 score of 4 percentage points. These numbers represent considerable
improvements in topic level detection. For detailed point estimates, see Table S2 and S3 in the
Supplemental Information.

Given these promising results, next we consider some requirements for possible large-scale
implementation related to computation time and scalability related to the sourcing of the training

data.

Computation Time
An important metric to consider while running deep learning models for large-scale deployment is
the computation time. Deep neural networks have been criticized for the large amount of resources
needed such as graphics processing units (GPUs) and distributed computing clusters, frequently
leading to higher costs of deployment.” Further, NLP researchers have also considered the
environmental costs of the power consumption and CO, emissions for computing,*® which
necessarily involve trade-offs. In our application, we report the training times per epoch for BERT
and XLNet as 196 and 346 seconds, respectively. These results were generated using 4 widely
available NVIDIA Tesla P100 GPUs with 16 GB of memory.

We find that the training and testing times are considerably longer for the transformer models
compared with CNN and LSTM. For transformers, total computing times vary from 1 to 4 hours
and for CNN and LSTM, computing times vary from 1 to 90 minutes, depending on the number

of GPUs (see Table S4 for details). We argue that the model performance improvements in the



transformer models may be justified for large-scale deployment. This is because the increase in
computational cost is offset by substantial gains in accuracy and F1 score. When comparing BERT
and XLNet within the class of transformers, we also show BERT to be considerably faster in total
computing time for a comparable level of performance. Therefore, we note that as further
enhancements to BERT and its optimized variants are rapidly advancing in the literature,*!"* we

argue that BERT could be a preferred text classification algorithm for this domain. In the next

section, we consider scalability of the models by evaluating potential sources of training data.

Trained Experts Beat the Crowd

In Table 3, we compare the machine classification results based on training data from a crowd of
non-experts versus a group of trained expert annotators. For performance comparison of models
trained with expert and crowd annotated data, we created a ground truth dataset by conducting
researcher audits to ensure 100% agreement on the ground truth labels. See Human Annotation of
Training Data section for further details. Not surprisingly, we find that human experts are closer
to the ground truth (random holdout sample; » = 100) in both accuracy and F1 score as shown in
Table 3. This is consistent with related literature on limitations to wise crowds.** In fact, prior
research has found gaps in general public knowledge about EVs and consumer misperceptions.*>-
3% In the next section, we quantify the performance of crowd-trained versus expert-trained

transformer models, using the two experimentally curated sources of training data.

Crowd-Trained Models Perform Poorly. The transformer models trained with crowd-
annotated data produced accuracies of 73.2% (3.85 s.d.) and 74.2% (4.15 s.d.) and F1 scores of
0.53 (0.06 s.d.) and 0.54 (0.07 s.d.) for BERT and XLNet, respectively (see Table 3). By contrast,
we see a remarkable improvement in these results with the expert-trained BERT and XLNet

models, which produced model accuracies of 89.1% (4.09 s.d.) and 91.0% (4.70 s.d.) and F1 scores



of 0.82 (0.06 s.d.) and 0.85 (0.06 s.d.), respectively. We discovered that the enhancement in the
F1 score is largely due to gains in the inter-rater reliability, which is the result of improvements in
the quality of the training data between crowds and experts (see Fleiss’ k score increase from 0.007
to 0.538 in Table 3). We argue that inter-rater agreement is critical when working with annotated
data from complex domains such as EV mobility. For reference, at the sub-topic level, values for
Fleiss’ k range from -0.001 to 0.019 for the crowd, and 0.30 to 0.72 for the experts, which indicate
considerable disagreement on the labeling task within a sample of 18+ adults representative of the
U.S. population. See Experimental Procedures for details on human annotation experiments.
While sourcing strategies with online labor pools may be inexpensive, we find that the cost
advantage does not justify the poor performance (F1 score 0.61, 0.09 s.d.). These results indicate
that the use of low-cost crowd-sourcing approaches to build massive training sets are likely not
feasible for large-scale implementation in this domain. This is in stark contrast to other deep
learning domains, such as computer vision, where cheap, crowd-sourced training data can be easily
acquired. For example, identifying sections of a road or public bus in an image is an easy task for
the average person, but the average person cannot easily categorize the topics of EV user reviews.

I3

To provide an example of this, in our experiments, the review: “... What an inconvenience when I
need to drive to Glendale and I have a very low charge...”, was cognitively difficult for general
crowd annotators to correctly classify as Range Anxiety, even when annotators had unrestricted
access to definitions and related examples. This was not the case for most experts. As a result, for
these complex domains, expert-curated training data will be required for large-scale

implementations. In the next section, we compared the performance of our best classifiers using

artificial intelligence versus human intelligence.



Possibility of Super-Human Classification

During hand validations of the transformers-based experiments, we noticed that some test data that
were not correctly labeled by the human experts were being correctly labeled by the transformer
models. This caught our attention as it indicated the possibility that BERT and XLNet could in
some cases exceed the human experts in multi-label classification. In Table 3, we see that expert-
trained transformer models performed about 3-5 percentage points higher in accuracy and 0.03-
0.06 points higher in the F1 score as compared to our human experts. In Table 4, we provide 6
specific examples of this phenomenon where the expert-trained transformers do better than human
experts. For example, exceeding human expert benchmarks could happen in multiple ways. It
could be that the algorithm correctly detects a topic that the human experts did not detect (i.e.
reviews 1 and 2 in Table 4); or that it does not detect a topic that has been incorrectly labeled by
an expert (i.e. reviews 4-6 in Table 4); or that the sum of misclassification errors is smaller than
that of human experts (i.e. reviews 3-6 in Table 4). We also provide quantitative measures in
accuracy for these examples in Table 4.

Although a full investigation of superhuman performance for these transformer neural networks
is outside the scope of the current study, we suggest this as an important future work. Evidence
that artificial intelligence can outperform human benchmarks on multi-label classification tasks
can benefit station managers and investors to be able to accurately predict system problems or

examine customer needs at high-resolution in ways not previously possible.

Applications for Local and Regional Policy
As EV consumer reviews data expands, we comment on the possibility to apply this computational
approach widely to local and regional policy analysis. We note that previously, this type of

extracted consumer intelligence has not been easily accessible to policy makers or governments



due to the nature of unstructured data and issues with data access. For example, the U.S.
Department of Energy’s (DOE) Alternative Fuels Data Center maintains a list of all publicly
accessible stations in the U.S. and Canada. This includes location information, such as station
name, address, phone number, charging level (e.g. L1, L2 or L3), number of connectors, and
operating hours with a developer-friendly API. However, these aggregated data sources do not
typically include real-time usage or station availability, due to challenges with network
interoperability.!® This means that due to the presence of different charging standards by
manufacturers and regional EV networks, there remain structural issues with sharing and receiving
EV usage data between regions.

Recently, there has been a movement by a global consortium of public and private EV
infrastructure leaders to promote open standards such as the Open Charge Point Protocol (OCPP)!’
and the Open Smart Charging Protocol (OSCP).** As these technology standards become more
widely adopted, there will be a rapid increase in the amount of real-time data that can be shared
with researchers and analysts. For instance, a growing number of digital platform providers have
begun moving towards open data. These include platforms such as Open Charge Map, Recharge
and Google Maps. In the future, it should be possible to easily merge consumer reviews data with
other spatial features and information. This could provide a wealth of commonly used features for
analysis such as socio-economic indicators including population, income levels, educational
attainment, age, poverty rates, unemployment, and affordability of nearby housing. Other
important features could include transportation economic indicators, air pollution, health data,
mobile phone tracking data, point of interest information, and local and regional incentives.

To provide an example of possible data insights for urban policy, we conducted a spatial analysis

of metropolitan and micropolitan statistical areas (MSAs and uSAs). One of the dominant topics



is Availability, which is predicted when a user reports whether a given charging station is available
for use. In Figure 2, we visualize the spatial distribution of predicted station availability by U.S.
census regions. To create this map, we merged the predicted review topics with counties based on
shape files from the Office of Management and Budget’s (OMB) 2013 specification of MSAs and
uSAs. In the United States, there are 1,167 MSAs (population larger than 50,000) and 641 uSAs
(population greater than 10,000), and 1,335 non-core-based statistical areas (population less than
10,000). To visualize model predictions, we standardized the predicted frequency of Availability
topic into quantiles for each census region (West, Midwest, Northeast, and South), where 0-44%:
Rarely, 45-69%: Sometimes, 70-90%: A Moderate amount, and over 90%: A great deal (see Figure
2). The map reveals areas with high and low predicted Availability consumer discussions in all
core-based statistical areas.

Using this approach, we find that predicted station availability issues are not necessarily
concentrated in the large central metro counties (MSAs over 1 million population), but rather away
from the city centers such as smaller uSAs of population less than 50,000. This is particularly true
in the West (e.g. Oregon, Utah, Colorado, Wyoming, New Mexico) and Midwest (e.g. South
Dakota and Nebraska) and Hawaii. By contrast, for the South (e.g. Texas, Alabama, Florida, North
Carolina, South Carolina, Tennessee) and Northeast regions (e.g. New York, New Jersey,
Massachusetts, Maryland, Pennsylvania), we find the highest frequency of availability issues in
the major MSAs for the period of analysis. One primary insight from this analysis is that uSAs
could be under-served with regard to station availability. In additional analyses, we also used our
methodology to detect whether a specific station is functioning. Based on the rate of consumers
leaving reviews at charging stations across the U.S., we find that the deep learning algorithms can

detect functioning of a certain station, daily. For further details of these estimates, see



Supplemental Experimental Procedures. This type of detection could also be done with any of our
introduced topics and with expanded sample datasets from network providers.

Given the proliferation of EV policies worldwide, this spatial analysis could be expanded
globally. For example, in the European Union, policies such as Alternative Fuels Infrastructure
Directives, or AFID (previously known as the Directive on Alternative Fuels Infrastructure, or
DAFI).* In addition, the European Commission has supported implementation of fast charging
infrastructure through the Trans-European Network for Transport (TEN-T) and Connecting
Europe Facility Transport (CEF-T) programs.***! This type of national scale infrastructure
expansion in the EU is part of an overall strategy by The European Union to reduce CO> emissions
from the transportation sector by 60% by 2050.4>

This capability to deploy accurate and more efficient deep learning models can be applied to
evaluate other charging infrastructure roll-out policies that aim to increase the number of charge
points, reduce charging congestion, promote vehicle-to-grid and overnight charging, as well as

solar adoption.*® For recent reviews on how charging behavior can guide charging infrastructure

1.43 1.44

implementation policy, see van der Kam et al.”> and McCollum et al.** Other applications that use
artificial intelligence and NLP to discover hard-to-reveal patterns in unstructured data, especially

those that merge spatial information, should generate fruitful areas of future inquiry.

Concluding Remarks

In this study, we report state-of-the-art results for multi-label topic classification of consumer
reviews in EV infrastructure. This represents a potential step change in our ability to aggregate
data and insights for EV business model development and public policy advisory. Implementing

automated topic modeling solutions has been challenging because of the technical nature of the



corpus and training data imbalances. Our experimental protocols highlight the importance of the
quality of training data annotations in the data processing pipeline. First, human expert annotators
outperform the general crowd both in accuracy and F1 score metrics. This is due to improvements
in the inter-rater reliability that is critical while working with data from complex domains. Second,
improvements in training data quality also produce more accurate and reliable detection. This is
seen in the approximate increase of 15 percentage points in accuracy and 50% improvement in the
F1 score in the expert-trained transformer models as compared to the crowd-trained models (Table
3). Third, when the models are trained on top of high-quality expert curated training data,
surprisingly the transformer neural networks can outperform even human experts. This indicates
evidence of super-human classification on imbalanced corpora. As deep learning models have
been often been criticized for their black-box nature, we suggest technical enhancements that focus
on model interpretability as future work such as through the use of rationales,* influence
functions,*® or sequence tagging approaches*’ that can offer deeper insights on the models and the
reasons for their predictions. This is an area of active research.

Further applications of methods that we propose particularly those that integrate artificial
intelligence with real-time data and spatial analysis can greatly enhance new ways of thinking
about infrastructure management as well as economic and policy analysis. Other opportunities

abound.

EXPERIMENTAL PROCEDURES
Resource Availability
Lead Contact. Further information and requests for resources and materials should be

directed to and will be fulfilled by the Lead Contact, Dr. Omar I. Asensio (asensio@gatech.edu)



Materials Availability. The trained model weights for BERT and XLNet generated in this
study have been deposited to Figshare DOI: https://doi.org/10.6084/m9.figshare.12612092.v1.

Data and Code Availability. The anonymized datasets and code generated during this study
have been deposited to the Zenodo repository at: https://doi.org/10.5281/zenod0.4276350. The raw

data may not be posted publicly due to privacy restrictions.

Data

We reanalyze data derived from a nationally representative collection of unstructured consumer
reviews from 12,720 charging station locations across the United States. It comprises 127,257
reviews all written in English by 29,532 registered and unregistered EV drivers across a 4-year
duration from 2011 to 2015.11:23:48

The spatial coverage of the dataset includes reviews from 750 metropolitan statistical areas (309
large MSAs of population 1 million or more; 228 medium MSAs population of 250,000-999,999;
213 small MSAs population of 50,000-249,999). This also includes 294 micropolitan statistical
areas (e.g. USA population 10,000-49,999), and 232 non-core-based statistical areas (e.g.
population less than 10,000). This spatial coverage is based on the 2013 OMB delineation of
metropolitan statistical areas (MSA) and micropolitan statistical areas.

The data is statistically representative of the entire U.S. EV market, which includes all major
EV networks, and a mix of both public and private stations, urban and rural stations, and both low
and highly rated stations. The data includes the text of consumer reviews and contains other useful
indicators such as the timestamp of the reviews, the car make and model. We also geo-coded the

station location and related points of interest using the Google Places API. However, the dataset



does not contain EV transactions data, such has how many kWh were transferred. The data is also
only observable conditional on a user checking-in and posting a review.

This type of data is expanding globally and we estimate that there are already over 3.2 million
reviews through 2020 across more than 15 charge station locator apps.'?"® This includes English-
language reviews as well as reviews in over 42 languages in all continents, such as Ukrainian,
Russian, Spanish, French, German, Finnish, Italian, Croatian, Icelandic, Haitian-creole, Ganda,
Sudanese, Kinyarwanda, Afrikaans, Nyanja, Korean, Mandarin, Japanese, Indonesian and

Cebuano.

Developing the Coding Scheme for Supervised Learning

We developed the coding scheme for our typology from prior work and theory using three
strategies. First, we reviewed the extant literature to capture the most important potential
behavioral issues for EV drivers. This led to identification of Range Anxiety,**>? Dealership

practices,”>> Cost,552°%5% Service Time,5°%% Availability issues,>® User Interaction,®' %

station Functionality,'!->%6*

and Location.'! Second, to find evidence of the importance of these
topics from the data, we hand-coded 8,953 randomly selected reviews to validate the 8 topics from
prior literature and used these to generate 34 sub-topics for classification. We found that only 1%
of the reviews were unclassifiable according to our 8 main categories (e.g. Other). Third, to
validate the coding scheme, we also interviewed industry experts and practitioners, which allowed
us to further refine our main topics and sub-topics shown in Table 1. This included representatives
from firms such as General Motors, Chargepoint, Recharge Technologies, Electrada, Electrify

America, and charging station managers (e.g. representatives from Ford and Georgia Tech Parking

and Transportation Services).



Human Annotation of Training Data

A common criticism with deep neural networks is the high cost and annotator skill requirements
for implementations in specialized corpora. We evaluated possible methods to lower
implementation costs, such as crowd sourcing by using online labor pools for human annotation.
This led us to conduct human annotator experiments with two training sets each labeled by a crowd
of non-experts and a small group of trained experts. Given the known possible biases with
historical data, we investigated whether protocols related to the labeling of the training data could

have an impact on performance.5>-%

The crowd and expert annotators each labeled a random sample of 10,652 reviews. We used an
80:10:10 split for training, validation, and testing, which met our objective of having an equal
number of training data for both annotator groups. We conducted statistical tests to determine
whether the sampled training dataset is representative of the full dataset in key observable station
characteristics. We confirmed that the training dataset is statistically representative in the mix of
urban and non-urban stations (t-test p-value 0.426), public and private stations (t-test p-value
0.709), as well as by station points of interest (t-test p-value 0.802), e.g. retail, shopping, workplace,
and transit centers, etc.). We also found that the training data was not statistically different in topic

distribution from the predictions of the full dataset (Kolmogorov-Smirnov test p-value 0.9801).

Crowd Annotators. For the crowd-sourced training data sample, 1,000 U.S. adults (age 18+)
were pre-recruited via a Qualtrics online panel using their popular online survey platform. The
crowd was statistically sampled on the basis of age, income, education, and sex, representative of
the U.S. population. This is important to mitigate possible human rater biases that could arise when
discussing environmental topics. To enhance understanding of the domain-specific terminology

for the general crowd, definitions and examples for the topics and sub-topic as shown in Table 1



were provided for annotation along with a supporting diagram containing typical components of
an EV charging station (See Figure S2 and Figure S3 in the Supplemental Information). We report

the Fleiss’ Kappa for crowd annotators as 0.007.

Expert Annotators. For the expert-sourced training data sample, five student annotators
with technical backgrounds were recruited and trained in a facilitated focus group. They were
instructed to recognize the domain-specific topics using a detailed training manual for the
annotation. To support scientific replication and to document the protocols, we have open sourced
this training manual.®’ These protocols were developed in consultation with EV industry experts
who have been in contact with the researchers. Although our expert annotators have been trained
to recognize domain-specific terminology, we acknowledge that we are not able to compare the
performance of our expert annotators to EV industry professionals due to cost reasons. Despite
this limitation however, we find that our human experts are two orders of magnitude more reliable
in the annotation (76-fold increase in our reliability measure) versus the crowd annotators (k=
0.538 and k= 0.007, respectively). See the Model Metrics section under Performance Measures
for additional details on computing Fleiss’ Kappa.

To provide a greater control over the labeling task, we developed a custom web application used
by the expert annotators as shown in Figure S3. The web app provides efficient database support
for random sampling from a large dataset and overcomes latency and scaling challenges that we

encountered during crowd annotation in popular survey software.

Ground Truth Labels. To generate the ground truth labels, we followed the same training
protocols used by the expert annotators. Then, we randomly sampled 100 overlapping reviews that
were annotated by both annotator groups to enable performance comparisons. On this sample, we

conducted an additional round of researcher audits that validated 100% agreement on the



annotations. Given that the human experts exhibited some level of disagreement (Fleiss’ kappa =
0.538, Table 3), this sample was used to benchmark the performance of the U.S. crowd and the
human experts. The results of these comparisons as well as their statistical uncertainty are reported
in Table 3. To generate the uncertainty, we performed a cross validation using block randomization

with 10 equal-sized blocks of ground truth data.

Performance Measures

Model Metrics. In order to assess model performance, we report the micro-averaging F1
score, which is a standard metric for classifier performance on detection of false positives and false
negatives. We use standard measures for multi-label accuracy, where annotators could choose
multiple labels per review. Our overall accuracy metric accounts for partially correct matches. By
convention, this is equivalent to 1 - Hamming Loss, where the Hamming Loss is an xor calculation
of the dissimilarity (i.e. a fraction of wrong labels compared to the total number of labels). For L

categories classified on a sample of size N, the accuracy can be calculated as:

Overall Accuracy = 1 — Hamming Loss

IN| LI (1

1
=1-— mz Z xor(yl',]"zl',j)

i=1j=1

For example, if a multi-label prediction [1, 1, 1, 0] had a true label [1, 1, 1, 1], the accuracy is 3/4

or 75%.

Inter-Rater Reliability. To measure the inter-rater agreement level among the annotators,
we used Fleiss’ Kappa (k), which allows for the measurement of agreement between multiple

annotators (e.g., more than 2). It is calculated as below:



, (2)

where P is the average number of agreements on all annotations between rater pairs for the reviews,
and P, is the sum of squares of the probability share for the assignment to a topic. As k is bounded
between -1 and 1, when k is less than 0, agreement between raters is occurring below what would
be expected at random, while a k above 0 means that agreement between raters is occurring more

than what would be expected by random chance.®® For more information, see Fleiss.®
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FIGURE TITLES AND LEGENDS

Figure 1. Topic level classification performance.

(A) For the baseline model, we use the majority classifier, which predicts the simple majority for
a given topic. For higher values in accuracy, the majority classifier reflects more imbalance in the
training and testing data. We find that the deep learning models outperform the majority classifier
in model accuracy, particularly for more frequently occurring labels, Functionality, Location, and
Availability topics. (B) We also compare the relative performance of the transformer models with
CNN and LSTM classifiers. High F1 scores for imbalanced topics indicate strong detection of true
positives. Our results indicate that transformer models, BERT and XLNet, which achieve similar
performance, improve upon the CNN and LSTM benchmarks in the F1 score across all topics. The
error bars represent upper and lower 95% confidence intervals. See also Table S2 and S3.
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Figure 2. Predicted discussion frequency of station availability for U.S. metropolitan and
micropolitan statistical areas.

The map reveals areas with high and low predicted Availability consumer discussions in all
metropolitan statistical areas (e.g. population greater than 50,000). Micropolitan statistical areas
(e.g. population 10,000 - 49,999) have higher Availability discussions in some states in the West
and Midwest regions. Thus, algorithms predict that many micropolitan statistical areas could be
under-served with regards to station availability.

Predicted Availability Issues

B > 90% quantiles (A Great Deal) [ 45-69% quantiles (Sometimes) No Reviews 7/ Micropolitan Areas
M 70-90% quantiles (A Moderate Amount ) < 45% quantiles (Rarely) Not in Metro/Micropolitan Areas (Non-core)

Midwest Northeast




Tables

Table 1. EV mobile app typology of user reviews

Topic Sub-topic examples

Functionality general Functionality, charger, screen, power level, connector type,
card, reader, connection, time, error message, station, mobile
application, customer service

Range Anxiety trip, range, location accessibility

Availability number of stations available, ICE, general congestion

Cost parking, charging, payment

User Interactions charger etiquette, anticipated time available, user tips

Location general location, directions, staff, amenities, points of interest, user
activity, signage

Service Time charging rate

Dealership dealership charging experience, competing brand quality, relationship

with dealers
Other general experiences

Table 2. Overall model performance

Accuracy % (s.d.) F1 score (s.d.)

BERT 91.6 (0.13) 0.83 (0.0037)
XLNet 91.6 (0.07) 0.84 (0.0015)
Majority Classifier 81.1 (0.00) 0.45 (0.0000)
LSTM 90.3 (0.17) 0.80 (0.0036)
CNN 90.9 (0.12) 0.81 (0.0032)

Note: Models are trained and tested on expert annotated data

Table 3. Ground truth evaluation of human performance versus transformer models

Classifier Training set Accuracy % (s.d.) F1 score (s.d.)
BERT Expert-annotated 89.1 (4.09) 0.82 (0.06)
BERT Crowd-annotated 73.2 (3.85) 0.53 (0.06)
XLNet Expert-annotated 91.0 (4.70) 0.85 (0.06)
XLNet Crowd annotated 74.2 (4.15) 0.54 (0.07)
Crowd (k= 0.007) - 73.9 (6.06) 0.61 (0.09)
Human Experts (k = 0.538) - 86.0 (4.40) 0.79 (0.07)

Note: Cross validation = 10 runs



Table 4. Examples where expert-trained transformers exceed human benchmarks

Expert-trained Transformers

Ground Truth Human Expert BERT XLNet
Labels Labels /2;:) Labels /2;:) Labels /2;:)
1. “... unit says decommissioned but it will still release Functionality =~ User 75 Functionality 100 Functionality 100
the charger after a long pause.” Interaction
2. “Thanks very busy dealership but happy to allow use Functionality, Functionality, 87.5 Functionality, 100 Functionality, 100
of gede” Availability, Dealership Availability, Availability,
Dealership Dealership Dealership
3. “Charging on the quick charger - will be done by Functionality, Functionality, 75 User 87.5 User 87.5
12:15” User Location Interaction Interaction
Interaction
4. “Went from 18-82% in 27 minutes! First time DC Functionality, Functionality, 62.5 Service Time 87.5 Functionality, 87.5
charging and met another nice Leaf owner who showed Service Time  Availability, Service
me how to use the machine. Thanks for the charge!” Location, Time,
User Dealership
Interaction,
Dealership
5. “The CHAdeMO charger does work. ... Nissan Hill Functionality, Functionality, 62.5 Functionality, 87.5 Functionality, 75
had to move an ICE for me to gain access, but did so Availability, Availability, Cost, Cost,
quickly. The CHAdeMO did not cost me any 8 Charged Cost, Cost, Dealership Service
quick! Don'’t hesitate to use.” Dealership User Time,
Interaction, Dealership
Location,
Service Time,
Dealership
6. “So the dealer had all of their cars being serviced Availability, Functionality, 50 Availability, 87.5 Availability, 75
parked in every spot including the quick charger. I called  Cost, Availability, Dealership Location,
and asked them for at least access to the quick charger Dealership User Dealership
and they agreed but never did anything so 1 left and drove Interaction,
to Larry h nissan. I was willing to pay because [ was in a Location,
hurry and obviously the Toyota dealer doesn’t want my Dealership

2

business.
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Figure S2. Diagram of EV charging station. Illustration of major EV charging components shown to the human annotators
to help understand frequently occurring terms.
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Review 1 of 2500

This review comes from vehicle drivers using a popular mobile app.

Leaf past 80%, both level 2 chargers were

"Chademo is working now but was charging a
Review Text
plugged into but not charging dealer cars. "

12. What is the attitude of this review?

@ Positive
® Negative

13. What are the main topics? (Select more than one as necessary.)
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Range Anxiety
Topic Choices

Availability

Cost/pricing

Figure S3. Web App for training data collection A screenshot of the online interface for the human annotation.
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Supplemental Tables

Table S1. Hyper-parameters for BERT and XLNet

Hyper-parameter Value
Number of Epochs 20
Batch Size 8
Learning Rate le-4
Max Sequence Length 8
Weight Decay 0.01
Adam Epsilon le-8
Max Grad Norm 1
Warmup Steps 500
Train:Valid: Test 80:10:10

Table S2. Topic level accuracy

Functionality /fn i(niify Availability Cost Intg:i:ion Location S%:I:ze Dealership
Acc. sd.  Acc. sd.  Acc. sd.  Acc. sd.  Acc. sd. Acc. sd.  Acc. sd.  Acc.  sd.
BERT 86.0 0.445 96.7 0259 915 0414 96.8 0260 894 0460 852 0448 97.1 0334 912 0.341
XLNET 86.1 0.515 97.0 0.171 914 0397 973 0.196 894 0284 847 0536 964 0303 90.8 0.378
Majority Classifier  53.1 96.2 78.3 90.0 85.4 68.1 90.8 86.9
LSTM 832 0483 96.6 0247 89.8 0.752 962 0249 874 0378 839 0422 947 0312 903 0.264
CNN 84.1 0.639 97.0 0.135 902 0282 963 0282 881 0341 852 0314 952 0.165 909 0.300
Table S3. Topic level F1 score
Functionality Raqge Availability Cost User. Location Se¥v1ce Dealership
Anxiety Interaction Time
F1 s.d. Fl1 s.d. Fl1 s.d. Fl1 s.d. F1 s.d. Fl1 s.d. Fl1 s.d. Fl1 s.d.
BERT 0.860 0.005 0.707 0.028 0.869 0.008 0912 0.007 0.754 0.011 0.824 0.006 0.909 0.010 0.807 0.010
XLNET 0.860 0.005 0.792 0.010 0.867 0.006 0.926 0.006 0.760 0.007 0.821 0.006 0.892 0.009 0.802 0.010
Majority Classifier  0.347 0.490 0.439 0.474 0.461 0.405 0.476 0.465
LSTM 0.831 0.005 0.733 0.018 0.847 0.008 0.889 0.010 0.706 0.015 0.810 0.005 0.828 0.010 0.783 0.006
CNN 0.841 0.007 0.755 0.022 0.850 0.005 0.896 0.009 0.702 0.013 0.824 0.006 0.835 0.007 0.797 0.013
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Table S4. Computation times

Number of GPUs  Overall Computation Time"  Train Time per Epoch (seconds) ~ Test Time per Example (seconds)

CNN 1 00:00:56 2.8 2.7e-4

4 00:00:50 2.5 2.6-¢4
LSTM 1 01:25:38 257 3.0e-3

4 00:57:42 173 2.2e-3
BERT 1 02:10:39 392 1.2e-2

4 01:05:33 196 2.2e-2
XLNet 1 04:31:40 1,084 Te-2

4 01:27:20 346 4e-2

Thours:minutes:seconds

Note: Computation times using PACE force-gpu cluster on 16GB memory.

Table S5. Pairwise topic correlation

1 2 3 4 5 6 7 8
1. Functionality 1.000
2. Range Anxiety -0.027  1.000
3. Availability -0.256  -0.048 1.000
4. Cost -0.069 -0.003"  -0.053 1.000
5. User Interactions  -0.177 -0.0137  -0.046  -0.018"  1.000
6. Location -0.218  0.048 -0.036 0.074 -0.066 1.000
7. Service Time -0.004 0.061 -0.073 0.055 -0.060 -0.022 1.000
8. Dealership -0.069 0.061 0.0525 -0.0117 0.068 0.0117 0.070 1.000

"Not significant (p >0.05)
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Table S6. Accuracy conditional on changing the number of topics

Number of . . . o . User Service  Range
Categories Functionality Location Availability = Cost Dealership Interaction ~ Time  Anxiety
2 85.5 85.8
3 85.5 84.8 91.5
4 85.1 84.9 91.7 96.8
5 86.0 854 91.2 97.1 91.7
6 86.3 85.6 91.7 97.6 91.4 88.8
7 85.6 84.7 91.3 97.1 91.2 88.4 96.5
8 85.7 85.6 91.2 97.1 90.7 89.2 96.7 96.7
Average 85.7 85.3 91.4 97.1 91.3 88.8 96.6 96.7
Max Difference (%) 0.734 0.653 0.292 0.474 0.603 0.450 0.104 0.000
Table S7. F1 score conditional on changing the number of topics
Number. of Functionality Location Availability Cost Dealership User. Serwce Raqge
Categories Interaction Time Anxiety
2 0.854 0.831
3 0.854 0.820 0.872
4 0.851 0.821 0.877 0.915
5 0.860 0.826 0.866 0.923 0.825
6 0.863 0.827 0.874 0.934 0.824 0.759
7 0.856 0.815 0.868 0.919 0.816 0.742 0.897
8 0.857 0.830 0.863 0.920 0.805 0.749 0.897 0.722
Average 0.856 0.824 0.870 0.922 0.818 0.750 0.897 0.722
Max Difference (%) 0.767 1.127 0.805 1.280 1.529 1.200 0.000 0.000
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Supplemental Experimental Procedures

Robustness of typology
We assembled a pairwise correlation matrix to easily inspect whether the labels represent non-overlapping categories. In Table
S5, we show that 25 out of 28 pairwise correlations are below 0.10 in absolute value, which indicates small correlation. In
addition, none of the correlation coefficients are above 0.3 in absolute value, which indicates small to moderate correlation.
We also investigated the sensitivity of our models to having more or fewer topics. To do this, we computed the accuracy
and F1 scores for a series of models trained with a varying number of topics. For example, in Table S6 and Table S7, we
started with Functionality and successively added topics, starting from 2 topics and increasing up to 8. We report the accuracy
measures in Table S6, and F1 scores in Table S7. For accuracy, we find that the maximum difference in performance varies by
less than 1% for all topics, and for the F1 score, the maximum difference in performance varies by less than 2% for all topics.
These additional results are well within the statistical uncertainty reported in our main results shown in Figure 1, Table S2, and
S3. We therefore provide evidence that our technical approach is not very sensitive to having varying number of topics. We also
evaluated impacts on the computing times, and found that the number of topics had limited impact on computing times (~1%).

BERT and XLNet implementations
BERT and XLNet are pre-trained contextual language models that leverage massive corpora such as the English Wikipedia and
BooksCorpus to learn context from tokenized words [1]. These models leverage neural network architectures with information
feeding in a bidirectional context. The language models are fine-tuned on our domain specific multi-label classification problem
using training data.

To illustrate differences between BERT and XLNet in their ability to capture bidirectional context in our domain, we
provide the following sample review, “Fast charger working great!” To understand the relational encoding, BERT and XL Net
maximize the conditional probability of the word context in the forward and backward direction as follows:

Zperr = logP(Fast | working great! )

1
+ logP(Charger | working great!) (1

Lxine = logP(Fast | working great!) o
+ logP(Fast | charger working great!)

Here, Zperr and Lxner refer to the log-likelihood functions for the two models. When comparing the equations 1 and 2,
we see that the dependency between the tokens Fast and Charger in this example are learned as a relevant training signal
in XLNet but not in BERT. For code implementation of BERT and XLNet, we followed the protocols in [2,3] as a starting
point. Since there were no known references for optimal hyper-parameters for BERT or XLNet in this domain, we report
our hyper-parameter values in Table S1, which we arrived at through minimal fine-tuning. We did not do an exhaustive
hyper-parameter search. This further optimization could be done in future work. For seminal readings on BERT and XLNet,
see [1,4,5].

CNN and LSTM implementations

The baseline models used for comparison with the transformer models are convolutional neural networks (CNN) [6, 7] and long
short-term memory (LSTM) classifiers [8]. Architecturally, while CNNs build feature representations of a sentence through
convolution with filters of varying sizes [6], LSTMs encode hidden state representations via a recurrent neural network [8]
which is updated by traversing the sentence in one direction. Although currently there is no consensus on which models are
better for text classification tasks, CNNs and LSTMs provide complementary information. CNNs are hierarchical architectures,
while LSTMs are sequential architectures, which tend to perform better in sequence modeling tasks. In this paper, we adapted
code and protocols from [7,9] for CNN implementation and [10] for LSTM implementation. For a comparative review of
CNNs and LSTMs in natural language processing, see [11].

Detecting if a certain station is functioning
To get an initial idea of how the method performs to detect if a certain station is functioning, we calculated the conditional
probability of jointly detecting the Functionality topic and a negative sentiment in the review (e.g. the qualifying event).

To do this, we sampled reviews from charging stations with both high number of repeat check-ins and a low number of
repeat check-ins in order to get a range of estimates across different station types. For this simulation, we assume that the joint
probability of detecting a functionality topic and positive sentiment (e.g. “This station is working great!”) is not a qualifying
event. We provide an illustrative example below. To derive the negative sentiment probabilities, we used published numbers
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from [12] that uses EV charging reviews data from a similar date range. For example, for highly used stations in the 90th
percentile by number of reviews, the negative sentiment probability is 0.495. Likewise, for less commonly used stations in the
25th percentile, the negative sentiment probability is 0.390. Next we calculated the prediction probabilities for the Functionality
topic for these two groups of stations as 0.574 and 0.451 for the 90th and 25th percentile by number of reviews, respectively.
The joint probability of a qualifying event, e.g. if a certain station is functioning and negative sentiment, gives us a range of
0.176 to 0.284.

This indicates that for every 100 reviews, we expect between 17 and 28 qualifying events on whether if a certain station is
not functioning. In other words, this turns out to be one qualifying event every 3 to 5 reviews in this dataset. For example, a
large CBSA such as San Jose-Sunnyvale-Santa Clara, CA, received 6,703 reviews between Aug 2011 and September 2015.
This is approximately 4.5 reviews per day. Consequently, for large-scale implementation, the model will detect a qualifying
event typically every day. On the other hand, a small CBSA such as Chattanooga, TN-GA, received 2,132 reviews between
December 2011 and September 2015. This is approximately 1.5 reviews per day, which means that the model will detect a
qualifying event typically every 2 to 3 days for a small CBSA. On a national basis, this means that our model would typically
detect if a certain station is functioning, daily. Given the exponential growth of EV infrastructure data and usage, we expect this
detection rate to get even better over time.

Software and resources

The deep learning algorithms used in this paper were written in Python, using PyTorch for BERT and XLNet; and TensorFlow
for CNN and LSTM. Experiments for Table S4 were run on the PACE Force cluster using the NVIDIA Tesla P100 GPUs. The
experiments for Table 2, S2, S3, S6, and S7 were run on Microsoft Azure Cloud, using the same NVIDIA Tesla P100 GPUs.
We replicated these results across both high-performance computing clusters to within the statistical uncertainty reported.
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