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Abstract

Gene expression data features high dimensionality, multicollinearity, and non-Gaussian distribution noise, posing hurdles for identification of
true regulatory genes controlling a biological process or pathway. In this study, we integrated the Huber loss function and the Berhu penalty (HB)
into partial least squares (PLS) framework to deal with the high dimension and multicollinearity property of gene expression data, and developed
a new method called HB-PLS regression to model the relationships between regulatory genes and pathway genes. To solve the Huber-Berhu
optimization problem, an accelerated proximal gradient descent algorithm with at least 10 times faster than the general convex optimization
solver (CVX), was developed. Application of HB-PLS to recognize pathway regulators of lignin biosynthesis and photosynthesis in Arabidopsis
thaliana led to the identification of many known positive pathway regulators that had previously been experimentally validated. As compared to
sparse partial least squares (SPLS) regression, an efficient method for variable selection and dimension reduction in handling multicollinearity,
HB-PLS has higher efficacy in identifying more positive known regulators, a much higher but slightly less sensitivity/(1-specificity) in ranking the
true positive known regulators to the top of the output regulatory gene lists for the two aforementioned pathways. In addition, each method
could identify some unique regulators that cannot be identified by the other methods. Our results showed that the overall performance of HB-
PLS slightly exceeds that of SPLS but both methods are instrumental for identifying real pathway regulators from high-throughput gene
expression data, suggesting that integration of statistics, machine leaning and convex optimization can result in a method with high efficacy and
is worth further exploration.
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INTRODUCTION

In a gene regulatory network (GRN), a node corresponds to
a gene and an edge represents a directional regulatory
relationship between a transcription factor (TF) and a target
gene. Understanding the regulatory relationships among
genes in GRNs can help elucidate the various biological pro-
cesses and underlying mechanisms in a variety of organisms.
Although experiments can be conducted to acquire evidence
of gene regulatory interactions, these are labor-intensive and
time-consuming. In the past two decades, the advent of high-
throughput technologies including microarray and RNA-Seq,
have generated an enormous wealth of transcriptomic data.
As the data in public repositories grows exponentially, com-
putational algorithms and tools utilizing gene expression
data offer a more time- and cost-effective way to reconstruct
GRNs. To this end, efficient mathematical and statistical
methods are needed to infer qualitative and quantitative
relationships between genes.

Many methods have been developed to reconstruct GRNs,
each employing different theories and principles. The earliest
methods include differential equations!'), Boolean networks!?],
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stochastic networks!3, Bayesian*5lor dynamic Bayesian
networks (BN)®7], and ordinary differential equations (ODE)!8l,
Some of these methods require time series datasets with
short time intervals, such as those generated from easily
manipulated single cell organisms (e.g. bacteria, yeast etc.) or
mammalian cell lines®l. For this reason, most of these
methods are not suitable for gene expression data, especially
time series data involving time intervals on the scale of days,
from multicellular organisms like plants and mammals
(except cell lines).

In general, the methods that are useful for building gene
networks with non-time series data generated from higher
plants and mammals include ParCorAl'9, graphical Gaussian
models (GGM)!'Y], and mutual information-based methods
such as Relevance Network (RN)'2, Algorithm for the
Reconstruction of Accurate Cellular Networks (ARACNE)!"3],
C3NET™],  maximum  relevance/minimum  redundancy
Network (MRNET)!'3, and random forests!'617], Most of these
methods are based on the information-theoretic framework.
For instance, Relevance Network (RN)!'8], one of the earliest
methods developed, infers a network in which a pair of genes
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are linked by an edge if the mutual information is larger than
a given threshold. The context likelihood relatedness (CLR)
algorithml'9, an extension of RN, derives a score from the
empirical distribution of the mutual information for each pair
of genes and eliminates edges with scores that are not
statistically significant. ARACNE is similar to RN; however,
ARACNE makes use of the data processing inequality (DPI) to
eliminate the least significant edge of a triplet of genes, which
decreases the false positive rate of the inferred network.
MRNETR20 employs the maximum relevance and minimum
redundancy feature selection method to infer GRNs. Finally,
triple-gene mutual interaction (TGMI) uses condition mutual
information to evaluate triple gene blocks to infer GRNs[2',
Information theory-based methods are used extensively for
constructing GRNs and for building large networks because
they have a low computational complexity and are able to
capture nonlinear dependencies. However, there are also
disadvantages in using mutual information, including high
false-positive ratesl?2land the inability to differentiate

positive (activating), negative (inhibiting), and indirect
regulatory relationships. Reconstruction of the transcriptional
regulatory network can be implemented by the neighbor-
hood selection method. Neighborhood selection?lis a sub-
problem of covariance selection. Assume T is a set containing
all of the variables (genes), the neighborhood re, of a variable
a €T is the smallest subset of TI'\{a}such that, given all
variables in ne, , variable a is conditionally independent of all
remaining variables. Given n i.i.d. observations of T, neighbor-
hood selection aims to estimate the neighborhood of each
variable in T individually. The neighborhood selection

problem can be cast as a multiple linear regression problem
and solved by regularized methods.

Following the differential equation in[24, the expression
levels of a target gene y and the expression levels of the TF
genes x form a linear relationship:

yi=Bo+x B+e i=1,2,...,n €))
where nis the number of samples, x; = (xi],...,x,«p)T is the
expression level of p TF genes, and y; is the expression level of
the target gene in sample i. Byis the intercept and
B=, ,,Bp)T are the associated regression coefficients; if any
B;j#0 (j=1,---,p) then TF gene j requlates target gene i. {¢;}
are independent and identically distributed random errors with
mean 0 and variance 2. The method to get an estimate of 8
and Byis to transform this statistical problem to a convex
optimization problem:

B =argmingf () = argminﬂz:l:lL(y,‘ —Bo— x,Tﬁ) +AP(B) (2)

where L(-) is a loss function, P(-)is a penalization function, and
A > 0is a tuning parameter which determines the importance of
penalization. Different loss functions, penalization functions,
and methods for determining A have been proposed in the
literature. Ordinary least squares (OLS) is the simplest method
with a square loss function L(y; —Bo—x!B) = (yi—Bo —xl.Tﬂ)2
and no penalization function. The OLS estimator is unbiased?.
However, since it is common for the number of genes, p, to be
much larger than the number of samples, #, (i.e. p > n) in any
given gene expression data set, there is no unique solution for
OLS. Even when n > p, OLS estimation features high variance.
To tackle these problems, ridge regression?® adds a ¢, penalty,
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PP =3" 15_%' on the coefficients which introduces a bias but

reduces the variance of the estimated, 3. In ridge regression,
there is a unique solution even for the p > n case. Least absolute
shrinkage and selection operator (LASSO)?”is similar to ridge
regression, except the ¢, penalty in ridge regression is replaced
by the ¢, penalty, P(8) = !, 8|

The main benefit of least absolute shrinkage and selection
operator (LASSO) is that it performs variable selection and
regularization simultaneously thereby generating a sparse
solution, a desirable property for constructing GRNs. When
LASSO is used for selecting regulatory TFs for a target gene,
there are two potential limitations. First, if several TF genes
are correlated and have large effects on the target gene,
LASSO has a tendency to choose only one TF gene while
zeroing out the other TF genes. Second, some studies28! state
that LASSO does not have oracle properties; that is, it does
not have the capability to identify the correct subset of true
variables or to have an optimal estimation rate. It is claimed
that there are cases where a given A that leads to optimal
estimation rate ends up with an inconsistent selection of
variables. For the first limitation, Zou and Hastie? proposed
elastic net, in which the penalty is a mixture of LASSO and
ridge regressions: P(8)=aX!_ ||+ 52 5)_ B2, where
a(0 < a < 1) is called the elastic net mixing parameter. When
a =1, the elastic net penalty becomes the LASSO penalty;
when @ =0, the elastic net penalty becomes the ridge
penalty. For the second limitation, adaptive LASSOI28l was
proposed as a regularization method, which enjoys the oracle
properties. The penalty function for adaptive LASSO is:
P(ﬁ):zlew,w,— nd
[B,-m-| is an initial estimate of the coefficients obtained through
ridge regression or LASSO; y is a positive constant, and is
usually set to 1. It is evident that adaptive LASSO penalizes
more those coefficients with lower initial estimates.

It is well known that the square loss function is sensitive to
heavy-tailed errors or outliers. Therefore, adaptive LASSO may
fail to produce reliable estimates for datasets with heavy-
tailed errors or outliers, which commonly appear in gene
expression datasets. One possible remedy is to remove
influential observations from the data before fitting a model,
but it is difficult to differentiate true outliers from normal
data. The other method is to use robust regression. Wang et
al.B% combined the least absolute deviation (LAD) and
weighted LASSO penalty to produce the LAD-LASSO method.
The objective function is:

le |yi—Bo—x B +/IZZ=1WJ' I8 (3)

With this LAD loss, LAD-LASSO is more robust than OLS to
unusual y values, but it is sensitive to high leverage outliers.
Moreover, LAD estimation degrades the efficiency of the
resulting estimation if the error distribution is not heavy
tailed®". To achieve both robustness and efficiency, Lambert-
Lacroix and Zwald 201132, proposed Huber-LASSO, which
combined the Huber loss function and a weighted LASSO
penalty. The Huber function (see Materials and Methods) is a
hybrid of squared error for relatively small errors and absolute
error for relatively large ones. Owen 2007833! proposed the use
of the Huber function as a loss function and the use of a

, where adaptive weight v = ﬁ ,a
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reversed version of Huber's criterion, called Berhu, as a
penalty function. For the Berhu penalty (see Materials and
Methods), relatively small coefficients contribute their £; norm
to the penalty while larger ones cause it to grow quadra-
tically. This Berhu penalty sets some coefficients to 0, like
LASSO, while shrinking larger coefficients in the same way as
ridge regression. InB4, the authors showed that the combi-
nation of the Huber loss function and an adaptive Berhu
penalty enjoys oracle properties, and they also demonstrated
that this procedure encourages a grouping effect. In previous
research, the authors solved a Huber-Berhu optimization
problem using CVX softwarel33-35], a Matlab-based modeling
system for convex optimization. CVX turns Matlab into a
modeling language, allowing constraints and objectives to be
specified using standard Matlab expression syntax. However,
since CVX is slow for large datasets, a proximal gradient
descent algorithm was developed for the Huber-Berhu
regression in this study, which runs much faster than CVX.

Reconstruction of GRNs often involves ill-posed problems
due to high dimensionality and multicollinearity. Partial least
squares (PLS) regression has been an alternative to ordinary
regression for handling multicollinearity in several areas of
scientific research. PLS couples a dimension reduction
technique and a regression model. Although PLS has been
shown to have good predictive performance in dealing with
ill-posed problemes, it is not particularly tailored for variable
selection. Seebg et al. 200739 first proposed the soft-
threshold-PLS (ST-PLS), in which the ¢, penalty is used for PLS
loading weights of multiple latent components. Such a
method is especially applicable for classification and variable
selection when the number of variables is greater than the
number of samples. Chun and Keleg 20105371 proposed a
similar sparse PLS regression for simultaneous dimension
reduction and variable selection. Both the methods from
Saebg et al. 2007 and Chun and Keles 2010 used the same ¢,
penalty for PLS loading weights. Lé Cao et al. 2008538 also
proposed a sparse PLS method for variable selection when
integrating omics data. They added sparsity into PLS with a
LASSO penalization combined with singular value decompo-
sition (SVD) computation. In this study, the Huber loss
function and the Berhu penalty function were embedded into
a PLS framework. Real gene data was used to demonstrate
that this approach is applicable for the reconstruction of
GRNs.

MATERIALS AND METHODS

High-throughput gene expression data

The lignin pathway analysis used an Arabidopsis wood
formation compendium dataset containing 128 Affymetrix
microarrays pooled from six experiments (accession
identifiers: GSE607, GSE6153, GSE18985, GSE2000, GSE24781,
and GSE5633 in NCBI Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/)). These datasets were
originally obtained from hypocotyledonous stems under
short-day conditions known to induce secondary wood
formation!39l, The original CEL files were downloaded from
GEO and preprocessed using the affy package in
Bioconductor (https://www.bioconductor.org/) and then
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normalized with the robust multi-array analysis (RMA)
algorithm in affy package. This compendium data set was also
used in our previous studies[*l, The maize B73 compendium
data set used for predicting photosynthesis light reaction
(PLR) pathway regulators was downloaded from three NCBI
databases: (1) the sequence read archive (SRA)
(https://www.ncbi.nlm.nih.gov/sra), 39 leaf samples from
ERP011838; (2) Gene Expression Omnibus (GEO), 24 leaf
samples from GSE61333, and (3) BioProject (https://www.
ncbi.nlm.nih.gov/bioproject/), 36 seedling samples from
PRINA483231. This compendium is a subset of that used in
our earlier co-expression analysis®'. Raw reads were trimmed
to remove adaptors and low-quality base pairs via
Trimmomatic (v3.3). Clean reads were aligned to the B73Ref3
with STAR, followed by the generation of normalized FPKM
(fragments per kb of transcript per million reads) using
Cufflinks software (v2.1.1)42],

Huber and Berhu functions

In estimating regression coefficients, the square loss
function is well suited if y; follows a Gaussian distribution, but
it gives a poor performance when y; follows a heavy-tailed
distribution or there are outliers. On the other hand, the least
absolute deviation (LAD) loss function is more robust to
outliers, but the statistical efficiency is low when there are no
outliers in the data. The Huber function, introduced in#3], is a
combination of linear and quadratic loss functions. For any
given positive real M (called shape parameter), the Huber
function is defined as:

z2 lzl <M

2Mz|-M? |z >M

This function is quadratic for small zvalues but grows
linearly for large values of z. The parameter M determines
where the transition from quadratic to linear takes place
(Fig. 1a). In this study, the default value of M was set to be
one tenth of the interquartile range (IRQ), as suggested by#4,
The Huber function is a smooth function with a derivative
function:

Hyp(2) = { @

H ()= 2z lzZl <M
m&= 2M sign(z) |z|>M

The ridge regression uses the quadratic penalty on
regression coefficients, and it is equivalent to putting a
Gaussian prior on the coefficients. LASSO uses a linear penalty
on regression coefficients, and this is equivalent to putting a
Laplace prior on the coefficients. The advantage of LASSO
over ridge regression is that it implements regularization and
variable selection simultaneously. The disadvantage is that, if
a group of predictors is highly correlated, LASSO picks only
one of them and shrinks the others to zero. In this case, the
prediction performance of ridge regression dominates the
LASSO. The Berhu penalty function, introduced in Owen
2007831, is a hybrid of the quadratic penalty and LASSO. It
gives a quadratic penalty to large coefficients while giving a
linear penalty to small coefficients, as shown in Fig. 1b. The
Berhu function is defined as:

©)

2] lzl <M
By (2) = 2 2 6
M 2+ M > M (6)
2M

The shape parameter M was set to be the same as that in
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Fig. 1 Huber loss function (a) and Berhu penalty function (b); The 2D contours of Huber loss function (c) and Berhu penalty function (d).

the Huber function. As shown in Fig. 1b, the Berhu function is
a convex function, but it is not differentiable at z = 0. The 2D
contours of Huber and Berhu functions are shown in Fig. 1c
and Fig. 1d, respectively. When the Huber loss function and
the Berhu penalty were combined, an objective function, as
referred as the Huber-Berhu function, was obtained, as shown
below.

FB)= Y Hubi=fo=xIB+) " Bu(B) ()

The estimation of coefficients using the Huber-Berhu
objective (Fig. 2a), LASSO (Fig. 2b), and the ridge (Fig. 2¢)
regressions provided some insights. The Huber loss corres-
ponds to the rotated, rounded rectangle contour in the top
right corner, and the center of the contour is the solution of
the un-penalized Huber regression. The shaded area is a map
of the Berhu constraint where a smaller A corresponds to a
larger area. The estimated coefficient of the Huber-Berhu
regression is the first place the contours touch the shaded
area; when A is small, the touch point is not on the axes,
which means the Huber-Berhu regression behaves more like
the ridge regression, which does not generate a sparse
solution. When A increases, the correspondent shaded area
changes to a diamond, and the touch point is more likely to
be located on the axes. Therefore, for large A, the Huber-
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Fig. 2 Estimation picture for the Huber-Berhu regression (a)
when least absolute shrinkage and selection operator (LASSO)
(b) and ridge (c) regressions are used as a comparison.

Berhu regression behaves like LASSO, which can generate a
sparse solution.

The algorithm to solve the Huber-Berhu regression
Since the Berhu function is not differentiable at z =0, it is
difficult to use the gradient descent method to solve
equation (4). Although we can use the general convex
optimization solver CVXB3for a convex optimization
problem, it is too slow for real biological applications.
Therefore, a proximal gradient descent algorithm was
developed to solve equation (4). Proximal gradient descent is
an effective algorithm to solve an optimization problem with
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decomposable objective function. Suppose the objective
function can be decomposed as f(z) = g(z) + h(z), where g(z)
is a convex differentiable function and %(z) is a convex non-
differentiable function. The idea behind the proximal
gradient descent“!method is to make a quadratic
approximation to g(z) and leave 4 (z) unchanged. That is:

1
f@=g@+h@) ~g@)+Vgx) (z-x)+ % llz—xI3 +1(2)

At each step, x is updated by the minimum of the right side of
above formula.

1
X" =argmin. g(x)+Vg@)" z-x)+ N llz— x| +h(z)
1
= argmin, % llz—(x—tVg (x)||§ +h(z)

1 .
The operator Prox,; (x) = argmin22—t||z—x||§ +h(z)is called

proximal mapping for i. To solve (7), the key is to compute
the proximal mapping for the Berhu function:

22+ M? - MY
/lBM(Z):/l|z|1‘z|5M+/l—]|z‘>M:/I|Z|+/l(| |2M )

1y
oM t>M

2 . .
letu(z) = /l('z‘;}\l‘f’ 11 As u(2) satisfies theorem 4 int*él;
Prox; ap (x) = Prox, , (x) o Prox; y (x) ®)

It is not difficult to verify:
P (x) = sign( )min{l | Wi ( |+l/l)} C)
14 =
0x; 3 (x) = sign(x x|, y X|

Prox, y,(x) = sign(x)min{|x| — 4,0} (10)

Finding B, and B that minimize f(B)in (7) is detailed in
Algorithm 1.

Algorithm 1: Accelerated proximal gradient descent method to
minimize f () in equation (7) respected to 8y and 8

Input: predictor matrix (X), dependent vector (y), and penalty
constant (A)

Output: regression coefficient (3)

1 Initiate B8=10,£=1,Bp, =0

2 Forkin1... MAX_ITER

3 v=B+(k/(k+3)%(B—Bprer)

4 compute the gradient of Huber loss at v using (5), denoted as
v

while TRUE
compute p; = Prox; y;(v) using (10)
compute p = Prox; j, (p1) using (9)
if S0 Hyr (yi-Bo—xTp2) < S0 Hyr (yi— Bo—xTv) +
G,(p2—v)+ x|l p2—vll3
9 break
10 elset=1+0.5
1 Bprev:ﬂ'BZPZ
12 if converged
13 break

0 N Oowv

Algorithm 1 uses the accelerated proximal gradient
descent method to solve (7). Line 3 implements the
acceleration oft#7], Lines 6—7 compute the proximal mapping
of the Berhu function. Lines 5-10 use a backtracking method
to determine the step size.
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Embedding the Huber-Berhu objective function into
PLS

Let X(nx p)and Y(nxgq)be the standardized predictor
variables (gene expression of TF genes) and dependent
variables (gene expression of pathway genes), respectively.
PLS™8 looks for a linear combination of X and a linear
combination of Y such that their covariance reaches a
maximum:

Maxjy|,=1,vj,=1€0vV (Xu,Yv) (11)

Here, the linear combination &= Xuand 5 = Yv are called
component scores (or latent variables) which are generated
through the p and ¢ dimensional weight vectors uand v,
respectively. After getting this first component &, two
regression equations (from X to & and from Y to &) were set
up:

X=6C+te,Y=Ed"+e=Xb+&3 (12)

Here, cand dare commonly called loadings in the
literature. Next, X was deflated as X =X-&c’and Y was
deflated as Y = Y —&d’, and this process was continued until
enough components were extracted.

A close relationship exists between PLS and SVD. Let
M = XY, then cov(Xu,Yv) = lu’Mv. Let the SVD of pf be:

n
M =UAV’
where U(pxr)and V(gxr) are orthonormal and A(rxr)is a
diagonal matrix whose diagonal elements 6 (k=1...r)are
called singular values. According to the property of SVD, the
combinatory coefficients uand vin (7) are exactly the first
column of U and the first column of V. Therefore, the weight
vectors of PLS can be computed by:

[

2
where |M —w/|I} = 37, 3% (i —“i"j) :

i=1

min,, “M —u/

Lé Cao et al. 2008038] proposed a sparse PLS approach using
SVD decomposition of M by adding a ¢ penalty on the
weight vectors. The optimization problem to solve is:

. P
miny || M = w'|[7. + Ay lluly + AalVIly

As mentioned above, the Huber function is more robust to
outliers and has higher statistical efficiency than LAD loss, and
the Berhu penalty has a better balance between the ¢;and ¢,
penalty. The Huber loss and the Berhu penalty were adopted
to extract each component for the PLS regression. The
optimization problem becomes:

minwzip=1 Zj_:lH(m,-j - u,-vj) + /IZ’I_):IB(M,-) + /lz;:l B(v;) (13)

The objective function in (13) is not convex on u and v, but
it is convex on u when v is fixed and convex on v when u is
fixed. For example, when v is fixed, each u; in parallel can be
solved by:

minuiijlH(m,'j - Mf"j) +AB (u;) (14)

Similarly, when uis fixed, each v;in parallel can be
computed by:

minij;H(m,-_,v - u,-vj) +/lB(V_]') (15)
Equations (14) and (15) can be solved using Algorithm 1.
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Therefore (13) can be solved iteratively by updating uand v
alternately. Note, it is not cost-efficient to spend a lot of effort
optimizing over uin line 6 before a good estimate for v is
computed. Since Algorithm 1 is an iterative algorithm, it may
make sense to stop the optimization over uearly before
updating v. In the implementation, one step of proximal
mapping was used to update # and v. That is:

= Prox,.p (M_IM) (16)
ou

v = Prox, (v— SHM = w) (A; —w )) (17)
v

The algorithm for finding the solution of the Huber-Berhu
PLS regression in (13) is detailed in Algorithm 2.

Algorithm 2: Finding the solution of the Huber-Berhu PLS regression

Input: TF matrix (X), pathway matrix (Y), penalty constant (1), and
number of components (K)
Output: regression coefficient matrix (A)
T Xo=X.Xo=Y,cF=1A=0
2 Forkin1,.K
3 set My, =X;€71Yk_1
4 Initialize u to be the first left singular vector and initialize v to
be the product of first right singular vectors and first singular
value.
until convergence of uand v
update u using (16)
update v using (17)
extract component § = Xu
compute regression coefficients in (8) ¢ = X'&/(§'€), d = Y'E/
(49
update A=A+cF-u-d
updatecF =cF-(I-u-c’)
compute residualsfor Xand Y, X = X - &', Y =Y - &d

O 00 NOYWU!»

Tuning criteria and choice of the PLS dimension

The Huber-Berhu PLS regression has two tuning parameters,
namely, the penalization parameter 1 and the number of
hidden components K. To select the best penalization para-
meter, 1, a common k-fold cross-validation (CV) procedure
that minimizes the overall prediction error is applied using a

Huber-Berhu partial least squares regression

grid of possible values. If the sample size is too small, CV can
be replaced by leave-one-out validation; this procedure is
also used in for tuning penalization parameters37:49],

To choose the dimension of PLS, the Q2 criteria were
adopted. Q; criteria were first proposed by Tenenhaus!>0L.
These criteria characterize the predictive power of the PLS
model by performing cross-validation computation. Qﬁ is

defined as:
k
o1 ¢ PRESS
h — k
Z:lRSSh

where PRES S} = 37, (F —yh(_[))z is the Prediction Error Sum
of Squares, and RS S = Zj‘:l(y{.‘—j)h)z is the Residual Sum of

Squares for the variable k and the PLS dimension /. The criterion
for determining if £, contributes significantly to the prediction is:

07 2 (1-0.95%) = 0.0975

This criterion is also used in SIMCA-P softwarel®and
sparse PLSB8l. However, the choice of the PLS dimension still
remains an open question. Empirically, there is little biological
meaning when his large and good performance appears in
2-5 dimensions.

RESULTS

The efficiency of the proximal gradient descent
algorithm

We developed the proximal gradient descent algorithm
(Algorithm 1) to solve Huber-Berhu regression. As compared
to CVX, it could reduce the running time to at least 10 times,
but up to 90 times in a desktop computer with 2.2 GHz Intel
Core i7 processor and 16 GB 1600 MHz DDR3 memory for a
setting of mand p based on 30 replications. For different m,
the patterns are similar (Fig. 3). More details can be found in
the Deng 2018052,

Validation of Huber-Berhu PLS with lignin
biosynthesis pathway genes and regulators

The HB-PLS algorithm was examined for its accuracy in
identifying lignin pathway regulators using the A. thaliana

m =40 m = 100 m =200
504 CVX — CVX — CVX
— Algorithm 1 60 { — Algorithm 1 Y Algorithm 1
50 A
40 -
= &30
20 A
10 -
O{o—e— o—o—"° 0 a—o——H/ 0 o—¢—»—/
50 100200 5001000 5000 50 100200 5001000 5000 50 100200 5001000 5000
p p p

Fig.3 Comparison of running time for Algorithm 1 and CVX. p is the number of independent variables in TF-matrix (x).
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microarray compendium data set produced from stem
tissuest . TFs identified by HB-PLS were compared to those
identified by SPLS. The 50 top TFs that were ranked based on
their connectivities with the lignin biosynthesis pathway
genes were identified using HB-PLS (Fig. 4a) and compared to
those identified by SPLS (Fig. 4b), respectively. The lignin
biosynthesis pathway genes are shown in Fig. 4c. The positive
lignin biosynthesis pathway regulators, which are supported
by literature evidence, are shown in coral color. The HB-PLS
algorithm identified 15 known lignin pathway regulators. Of
these, MYB63, SND3, MYB46, MYB85, LBD15, SND1, SND2,
MYB103, MYB58, MYB43, NST2, GATA12, VND4, NST1, MYB52,
are positive known transcriptional activators of lignin
biosynthesis in the SND1-mediated transcriptional regulatory
network3), and LBD15634 and GATA1255 are also involved in
regulating various aspects of secondary cell wall synthesis.
Interestingly, SPLS identified the same set of positive pathway
regulators as HB-PLS though their ranking orders are different.
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Prediction of photosynthetic pathway regulators in
Arabidopsis thaliana using Huber-Berhu PLS
Photosynthesis is mediated by the coordinated action of
approximately 3,000 different proteins, commonly referred to
as photosynthesis proteins®6l, In this study, we used genes
from the photosynthesis light reaction pathway and Calvin
cycle pathway to study which regulatory genes can
potentially control photosynthesis. Analysis was performed
using HB-PLS, with SPLS as a comparative method. The
compendium data set we used is comprised of 238 RNA-seq
data sets from Arabidopsis thaliana leaves that were under
normal/untreated conditions. Expression data for 1389 TFs
and 130 pathway genes were extracted from the above
compendium data set and used for analyses. The results of
HB-PLS and SPLS methods are shown inFig. 5aand 5b,
respectively, where 33 rather than 50 TFs were shown
because the SPLS method only identified 33 TFs. Of the top
33 candidate TFs in the lists, HB-PLS identified 11 positive
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known TFs while SPLS identified 6 positive known TFs. /AA7,
also known as AXR2, is regulated by HY557], which binds to G-
box in LIGHT-HARVESTING CHLOROPHYLL A/B (Lhcb) pro-
teins8l, STO, also known as BBX24, whose protein physically
interacts with photosynthesis regulator HY5 to control photo-
morphogenesist®d;, PHYTOCHROME-INTERACTING FACTOR
(PIF) family have been shown to affect the expression of
photosynthesis-related genes, including genes encoding
LHCA, LHCB, and PsaD proteins[®0-62l, P|Fs repress chloroplast
development and photomorphogenesisi®Z; PIF7, together
with PIF3 and PIF4, regulates responses to prolonged red
light by modulating phyB levels63l, PIF7 is also involved in the
regulation of circadian rhythms. GLK2, directly regulate the
expression of a series of photosynthetic genes including the
genes encoding the PSI-LHCI complex and PSII-LHCII
complex!®465], The plastid sigma-like transcription factor SIG1
regulate psaA respectivelyl®s; TOC1 is a member of the PRR
(PSEUDO-RESPONSE REGULATOR) family that includes PRR9,
PRR7, PRR5, PRR3, and PRR1/TOC1. HY5 also binds and
regulates the circadian clock gene PRR7, which affects the
operating efficiency of PSIl under blue light67), GATA trans-
cription factors have implicated some proteins in light-
mediated and circadian-regulated gene expression(68:69]
GATAs can bind to XXIIl box, a cis-acting elements involved in
light-regulated expression of the nuclear gene GAPB, which
encodes the B subunit of chloroplast glyceraldehyde-3-
phosphate dehydrogenase in A. thaliana9, In addition, GATA
interacts with SORLIP motifs in the 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGR) promoter of Picrorhiza
kurrooa, a herb plant, for the control of light-mediated
expression; upstream sequences of HMGR of P. kurrooa

(PropkHMGR)-mediated gene expression was higher in the
dark as compared to that in the light in A. thaliana across four

Huber-Berhu partial least squares regression

temperatures studied’!. GATA phytochrome interacting
factor transcription factors regulate light-induced vindoline
biosynthesis in Catharanthus roseus”?. A number of genes
show greater than 2-fold higher expression in light-grown
than dark-grown seedlings with the greatest differences
observed for GATA6, GATA7, GATA21-23168, with GATA6 and 7
showing about 6- and 4-fold difference in expression levels.
GATA11 is found to be a hub regulator of photosynthesis and
Chlorophyll biosynthesisl’3, The GLK transcription factors
promote the expression of many nuclear-encoded photo-
synthetic genes that are associated with chlorophyll biosyn-
thesis and light-harvesting functions’4; HSFA1, a master
regulator of transcriptional regulation under heat stress,
regulates photosynthesis by inducing the expression of
downstream transcription factors73l. BEH1is a homolog of
BZR1, genetic analysis indicates that the BZR1-PIF4 interaction
controls a core transcription network by integrating
brassinosteroids and light responsel7sl,

The performance and sensitivity of HB-PLS using
SPLS as a comparison

We tested the HB-PLS method in comparison with SPLS
using two metabolic pathways, lignin biosynthesis pathway
and a unified photosynthesis pathway whose regulatory
genes are largely and partially known, respectively. We found
that HB-PLS could identify more positive known TFs that are
supported by existing literature in the output lists. To
examine which methods can rank relatively more positive
known TFs to the top of output regulatory gene lists, we
plotted receiver operating characteristic curves (ROC) and
calculated the area under the ROC curve (AuROC), which
reflects the sensitivity versus 1-specificity of a method. The
results are shown in Fig. 6. For lignin biosynthesis pathway,
HB-PLS was capable of ranking more positive known pathway
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Fig. 5 The implementation of Huber-Berhu-Partial Least Squares (HB-PLS) to identify candidate regulatory genes (purple and coral nodes)
controlling photosynthesis and related pathway genes. (a) was compared with the sparse partial least squares (SPLS) method (b) in identifying
regulators that affects maize photosynthesis light reaction and Calvin cycle pathway genes. The green and yellow nodes within the cycles
represent photosynthesis light reaction pathway genes and Calvin cycle pathway genes, respectively. Coral nodes in the circles represent
positive predicted biological process or pathway regulators that are supported by existing literature, and shallow purple nodes contain other
predicted TFs that do not have experimentally validated supporting evidence at present.
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regulators to the top in the inferred regulatory gene list. As a
result, the AUROC of HB-PLS (0.94) (Fig. 6a) is much large than
that of SPLS (0.73) (Fig. 6b). For the unified light reaction and
Calvin cycle pathway, the true pathway regulators have not
been fully identified, and they are only partially known.
Although SPLS only identified the 6 positive known pathway
regulators in comparison with 10 identified by HB-PLS, SPLS
ranked 4 out 6 positive known pathway regulators to the top
8 positions, resulting in slightly higher sensitivity versus 1-
specificity. HB-PLS identified 10 positive known regulators
among the top 33 regulatory genes, which are more evenly
distributed in the list, resulting in relatively smaller AUROC
(0.49) as compared to the AUROC of SPLS (0.64). The overall
lower AuROC values for both methods for photosynthesis
pathway are probably owing to the low number of positive
known regulatory genes for this pathway.

Given the fact that lignin biosynthesis pathway regulators
have been well identified and characterized experimentallyt’7],
they are specifically suited for examining the efficiency of the
HB-PLS method for each pathway gene. We selected two
methods, SPLS and PLS, as comparisons. For each output TF
list to a pathway gene yielded from one of three methods, we
applied a series of cutoffs, with the number of TFs retained
varying from 1 to 40 in a shifting step of 1 at a time, and then
counted the number of positive regulatory genes in each of
the retained lists. The results are shown in Supplementary
Fig. S1. It is obvious that for almost every pathway gene, HB-
PLS has higher sensitivity versus specificity.

The results indicate that the HB-PLS and SPLS regressions,
in many cases, are much more efficient in recognizing
positive regulators to a pathway gene compared to the PLS
regression (Supplementary Fig. S1). For most pathway genes
like PAL1, C4H, CCR1, C3H, and COMT1, HB-PLS method could
identify more positive regulators in the top 20 regulators as
compared to the SPLS method. For HCT, CCOAOMT1, CADS,
and F5H, HB-PLS was almost always more efficient than SPLS
when the top cut-off lists contained fewer than 40 regulators.
For pathway gene CADS8, both SPLS and PLS both failed to
identify positive regulators while HB-PLS performed more
efficiently.

Deng et al. Forestry Research 2021, 1: 6

DISCUSSION

The identification of gene regulatory relationships through
constructing GRNs from high-throughput expression data
sets has some inherent challenges due to high dimensionality
and multicollinearity. High dimensionality is caused by a
multitude of gene variables while multicollinearity largely
results from a large number of genes versus a relatively small
sample size. In this study, we combined three types of
computational approaches, statistics (PLS), machine learning
(Semi-unsupervised learning) and convex optimization
(Berhu and Huber) for simulating gene regulatory relation-
ships, as illustrated in Fig. 7, and our results showed this
integrative approach is viable and efficient.

One method that we frequently use to deal with dimen-
sionality and multicollinearity is partial least squares (PLS),
which couples dimension reduction with a regression model.
However, because PLS is not particularly suited for
variable/feature selection, it often produces linear combi-
nations of the original predictors that are hard to interpret
due to high dimensionalityl’8l. To solve this problem, Chun
and Keles developed an efficient implementation of sparse
PLS, referred to as the SPLS method, based on the least angle
regression79. SPLS was then benchmarked by means of
comparisons to well-known variable selection and dimension
reduction approaches via simulation experiments!’8l. We used
the SPLS method in our previous study“'’and found that it
was highly efficient in identifying pathway regulators and
thus used it as a benchmark for evaluating the new methods.

In this study, we developed a PLS regression that incorpo-
rates the Huber loss function and the Berhu penalty for
identification of pathway regulators using high-throughput
gene expression data (with dimensionality and multicolli-
nearity). Although the Huber loss function and the Berhu
penalty have been proposed in regularized regression
models[*389, this is the first time that both of them were
combined with the PLS regression at the same time. The
Huber function is a combination of linear and quadratic loss
functions. In comparison with other loss functions (e.g.,
square loss and least absolute deviation loss), Huber loss is
more robust to outliers and has higher statistical efficiency
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than the LAD loss function in the absence of outliers. The
Berhu function®3lis a hybrid of the ¢, penalty and the ¢,
penalty. It gives a quadratic penalty to large coefficients and a
linear penalty to small coefficients. Therefore, the Berhu
penalty has advantages of both the ¢, and ¢, penalties:
smaller coefficients tend to shrink to zero while the
coefficients of a group of highly correlated predictive
variables are not changed much if their coefficients are large.
A comparison of HB-PLS with SPLS and also PLS suggests
that HB-PLS can identify more true pathway regulators. This is
an advantage over either SPLS or PLS (Supplementary Fig. S1)
when experimental validation is concerned. The application
of HB-PLS and SPLS methods to identification of lignin
biosynthesis pathway regulators in A. thalianled to the
identification of 15 and 15 positive pathway regulators,
respectively, while application of the HB-PLS and SPLS
methods to identification of photosynthesis pathway
regulators in A. thalian resulted in 10 and 6 positive pathway
regulators, respectively. The outperformance of HB-PLS over
SPLS (Fig. 6a) and PLS (Supplementary Fig. S1) implicates that
the use of Huber loss function and Berhu penalty function for
convex optimization contributed to the recognition of true
pathway regulators and rank them at the top of the output
lists. It also suggests the viability and the increased power of
combination of statistics (PLS), machine learning (Semi-
unsupervised learning) and convex optimization (Berhu and
Huber) for recognition of regulatory relationships. In addition,
the ROC plotting suggests that HB-PLS method has
comparable sensitivity versus 1-specificity compared to SPLS
because HB-PLS achieved a higher AuROC for lignin
biosynthesis pathway but a lower AuROC for the unified
photosynthesis pathway as compared to SPLS (Fig. 6).
However, the fact that the HB-PLS identified the same or
higher number of positive true regulators than SPLS for the
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two pathways we analyzed, and the sensitivity of HB-PLS is
much better than that of SPLS for lignin pathway whose
regulatory genes are more complete, and slightly worse than
that of HB-PLS for photosynthesis light reaction and Calvin
cycle pathway (Fig. 5and Supplementary Fig. S1) whose
regulatory genes are only partially known. Therefore, HB-PLS
has an overall larger advantage. Unfortunately, except the
two pathways we evaluated, there are almost no other
metabolic pathways whose regulatory genes have been
mostly identified. Our analysis showed that the two methods
could empower the recognition of pathway regulators
including some unique pathway regulators, and thus are
useful in continued research.

CONCLUSIONS

A new method called the HB-PLS regression was developed
for identifying biological process or pathway regulators by
integration of statistics, machine learning and convex
optimization approaches. In HB-PLS, an accelerated proximal
gradient descent algorithm was specifically developed to
solve Huber and Berhu optimization, which can estimate the
regression parameters by optimizing the objective function
based on the Huber and Berhu functions. Characteristic
analysis of the Huber-Berhu regression indicated it could
identify sparse solution. When modeling the gene regulatory
relationships from regulatory genes to pathway genes, HB-
PLS is capable of dealing with the high multicollinearity of
both regulatory genes and pathway genes. Application of the
HB-PLS to real A. thaliana high-throughput data showed that
HB-PLS could identify majority positive known regulatory
genes that govern two pathways. Sensitivity verse 1-
specificity plotting showed that HB-PLS could rank more
positive known regulators to the top of output regulatory
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gene lists for lignin biosynthesis pathways while SPLS can
rank more for the unified photosynthesis pathway. Our study
suggests that the overall performance of HB-PLS exceeds that
of SPLS but both methods may have comparable
sensitivity/specificity and are instrumental for identifying real
biological process and pathway regulators from high-
throughput gene expression data.

ACKNOWLEDGEMENTS

NSF Plant Genome Program [1703007 to SL and HW]; NSF
Advances in Biological Informatics [dbi-1458130 to HWI;
USDA Mclntire-Stennis Fund to HW.

Availability of R Package: The R code and sample data for
HB-PLS is available at github https://github.com/hwei0805/
HB-PLS. For the R code of SPLS, please write to Dr. Wei
(hairong@mtu.edu) to request.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information accompanies this paper at
(http://www.maxapress.com/article/doi/10.48130/FR-2021-
0006)

Dates

Received 11 March 2021; Accepted 11 March 2021;
Published online 30 March 2021

REFERENCES

1. ChenT, He HL, Church GM. 1999. Modeling gene expression with
differential equations. In Proceeding of the Pacific Symposium on
Biocomputing 1999, 4:611. USA: World Scientific. pp.29-40
https://doi.org/10.1142/3925

2. Kauffman S.1969. Homeostasis and differentiation in random
genetic control networks. Nature 224:177-8

3. Chen BS, Chang CH, Wang YC, Wu CH, Lee HC.2011. Robust
model matching design methodology for a stochastic synthetic
gene network. Math. Biosci. 230:23-36

4. Friedman N, Nachman |, Pe'er D. 1999. Learning bayesian
network structure from massive datasets: the "sparse candidate"
algorithm. Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence (UAI1999). pp. 206—15. Stockholm:
Morgan Kaufmann Publishers Inc.

5. Friedman N, Linial M, Nachman |, Pe'er D. 2000. Using Bayesian
networks to analyze expression data. Journal of Computational
Biology 7:601-20

6. ChaiLE, Law CK, Mohamad MS, Chong CK, Choon YW, et al. 2014.
Investigating the effects of imputation methods for modelling
gene networks using a dynamic bayesian network from gene
expression data. Malays J Med Sci 21:20-7 https://pubmed.ncbi.
nlm.nih.gov/24876803/

7. Exarchos TP, Rigas G, Goletsis Y, Stefanou K, Jacobs S, et al. 2014.
A dynamic Bayesian network approach for time-specific survival
probability prediction in patients after ventricular assist device
implantation. 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA,
2014, pp. 3172-5. USA: IEEE https://doi.org/doi:10.1109/EMBC.
2014.6944296

Deng et al. Forestry Research 2021, 1: 6

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Forestry

Research

Cao J, Qi X, Zhao H. 2012. Modeling gene regulation networks
using ordinary differential equations. InNext Generation
Microarray Bioinformatics. Methods in Molecular Biology (Methods
and Protocols), eds. Wang J, Tan AC, Tian T, vol 802. USA:
Humana Press. pp: 185-97 https://doi.org/10.1007/978-1-61779-
400-1_12

Sima C, Hua J, Jung S.2009. Inference of Gene Regulatory
Networks Using Time-Series Data: A Survey. Current genomics
10:416-29

de la Fuente A, Bing N, Hoeschele |, Mendes P. 2004. Discovery of
meaningful associations in genomic data using partial
correlation coefficients. Bioinformatics 20:3565-74

Schafer J, Strimmer K.2005. An empirical Bayes approach to
inferring large-scale gene association networks. Bioinformatics
21:754-64

Butte A, Kohane I. 2000. Mutual information relevance networks:
Functional genomic clustering using pairwise entropy measure-
ments. In Proceedings of Pacific Symposium on Biocomputing
2000, 5:704. USA: World Scientific. pp.415-26
https://doi.org/10.1142/4316

Margolin AA, Nemenman |, Basso K, Wiggins C, Stolovitzky G, et
al. 2006. ARACNE: an algorithm for the reconstruction of gene
regulatory networks in @ mammalian cellular context. BMC
Bioinformatics 7(Suppl 1):57

Altay G, Emmert-Streib F. 2010. Inferring the conservative causal
core of gene regulatory networks. BMC Systems Biology 4:132
Meyer PE, Lafitte F, Bontempi G. 2008. minet: A R/Bioconductor
package for inferring large transcriptional networks using
mutual information. BMC Bioinformatics 9:461

Huynh-Thu VA, Geurts P. 2019. Unsupervised Gene Network
Inference with Decision Trees and Random Forests. In Gene
Regulatory Networks. Methods in Molecular Biology, eds.
Sanguinetti G, Huynh-Thu VA, vol 1883. New York: Humana
Press. pp. 195-215 https://doi.org/10.1007/978-1-4939-8882-2_8
Deng W, Zhang K, Busov V, Wei H. 2017. Recursive random forest
algorithm for constructing multilayered hierarchical gene
regulatory networks that govern biological pathways. PLoS One
12:e0171532

Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS.2000.
Discovering functional relationships between RNA expression
and chemotherapeutic susceptibility using relevance networks.
Proc. Natl. Acad. Sci. U. S. A. 97:12182—-6

Faith JJ, Hayete B, Thaden JT, Mogno |, Wierzbowski J, et al. 2007.
Large-scale mapping and validation of Escherichia coli
transcriptional regulation from a compendium of expression
profiles. PLoS Biol. 5:e8

Meyer PE, Kontos K, Lafitte F, Bontempi G. 2007. Information-
theoretic inference of large transcriptional regulatory networks.
EURASIP journal on bioinformatics and systems biology
2007:79879 https://rdcu.be/chDK7

Gunasekara C, Zhang K, Deng W, Brown L, Wei H. 2018. TGMI: an
efficient algorithm for identifying pathway regulators through
evaluation of triple-gene mutual interaction. Nucleic Acids Res.
46:67

Zhang X, Zhao X, He K, Lu L, Cao Y, et al. 2012. Inferring gene
regulatory networks from gene expression data by path
consistency algorithm based on conditional mutual information.
Bioinformatics 28:98—104

Meinshausen N, Bihlmann P.2006. High-dimensional graphs
and variable selection with the Lasso.Annals of statistics
34:1436-62

Zhang X, Liu K, Liu Z, Duval B, Richer JM, et al. 2013. NARROMI: a
noise and redundancy reduction technique improves accuracy
of gene regulatory network inference. Bioinformatics 29:106—13

Page 110f 13


https://github.com/hwei0805/HB-PLS
https://github.com/hwei0805/HB-PLS
mailto:hairong@mtu.edu
http://www.maxapress.com/article/doi/10.48130/FR-2021-0006
http://www.maxapress.com/article/doi/10.48130/FR-2021-0006
https://doi.org/10.1142/3925
https://doi.org/10.1038/224177a0
https://doi.org/10.1016/j.mbs.2010.12.007
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1089/106652700750050961
https://pubmed.ncbi.nlm.nih.gov/24876803/
https://pubmed.ncbi.nlm.nih.gov/24876803/
https://doi.org/doi:10.1109/EMBC.2014.6944296
https://doi.org/doi:10.1109/EMBC.2014.6944296
https://doi.org/10.1007/978-1-61779-400-1_12
https://doi.org/10.1007/978-1-61779-400-1_12
https://doi.org/10.1007/978-1-61779-400-1_12
https://doi.org/10.1007/978-1-61779-400-1_12
https://doi.org/10.2174/138920209789177610
https://doi.org/10.1093/bioinformatics/bth445
https://doi.org/10.1093/bioinformatics/bti062
https://doi.org/10.1142/4316
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1186/1752-0509-4-132
https://doi.org/10.1186/1471-2105-9-461
https://doi.org/10.1007/978-1-4939-8882-2_8
https://doi.org/10.1371/journal.pone.0171532
https://doi.org/10.1073/pnas.220392197
https://doi.org/10.1371/journal.pbio.0050008
https://rdcu.be/chDK7
https://doi.org/10.1093/nar/gky210
https://doi.org/10.1093/bioinformatics/btr626
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1093/bioinformatics/bts619
https://github.com/hwei0805/HB-PLS
https://github.com/hwei0805/HB-PLS
mailto:hairong@mtu.edu
http://www.maxapress.com/article/doi/10.48130/FR-2021-0006
http://www.maxapress.com/article/doi/10.48130/FR-2021-0006
https://doi.org/10.1142/3925
https://doi.org/10.1038/224177a0
https://doi.org/10.1016/j.mbs.2010.12.007
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1089/106652700750050961
https://pubmed.ncbi.nlm.nih.gov/24876803/
https://pubmed.ncbi.nlm.nih.gov/24876803/
https://doi.org/doi:10.1109/EMBC.2014.6944296
https://doi.org/doi:10.1109/EMBC.2014.6944296
https://doi.org/10.1007/978-1-61779-400-1_12
https://doi.org/10.1007/978-1-61779-400-1_12
https://doi.org/10.1007/978-1-61779-400-1_12
https://doi.org/10.1007/978-1-61779-400-1_12
https://doi.org/10.2174/138920209789177610
https://doi.org/10.1093/bioinformatics/bth445
https://doi.org/10.1093/bioinformatics/bti062
https://doi.org/10.1142/4316
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1186/1752-0509-4-132
https://doi.org/10.1186/1471-2105-9-461
https://doi.org/10.1007/978-1-4939-8882-2_8
https://doi.org/10.1371/journal.pone.0171532
https://doi.org/10.1073/pnas.220392197
https://doi.org/10.1371/journal.pbio.0050008
https://rdcu.be/chDK7
https://doi.org/10.1093/nar/gky210
https://doi.org/10.1093/bioinformatics/btr626
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1093/bioinformatics/bts619

Forestry

Research

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Hayes AF, Cai L.2007. Using heteroskedasticity-consistent
standard error estimators in OLS regression: an introduction and
software implementation. Behav. Res. Methods 39:709-22

Hoerl AE, Kennard RW. 1970. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics 12:55-67

Tibshirani R. 1996. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B
(Methodological) 58:267—-88

Zou H. 2006. The adaptive lasso and its oracle properties. J. Am.
Stat. Assoc. 101:1418-29

Zou H, Hastie T.2005. Regularization and variable selection via
the elastic net.Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67:301-20

Wang H, Li G, Jiang G. 2007. Robust regression shrinkage and
consistent variable selection through the LAD-Lasso. Journal of
Business & Economic Statistics 25:347—-55

Yu C, Yao W.2017. Robust linear regression: A review and
comparison. Communications in Statistics - Simulation and
Computation 46:6261-82

Lambert-Lacroix S, Zwald L. 2011. Robust regression through the
Huber’s criterion and adaptive lasso penalty. Electronic Journal of
Statistics 5:1015-53

Owen AB. 2007. A robust hybrid of lasso and ridge regression.
Proceedings of the AMS-IMS-SIAM Joint Summer Research
Conference on Machine and Statistical Learning: Prediction and
Discovery, Snowbird, UT, 2006, Contemporary Mathematics
443:59-72. Providence, Rl: American Mathematical Society
http://www.ams.org/books/conm/443/

Zwald L, Lambert-Lacroix S. 2012. The BerHu penalty and the
grouped effect. arXiv preprint arXiv: 1207.6868

Grant M, Boyd S, Ye Y. 2008. CVX: Matlab software for disciplined
convex programming. http://cvxr.com/cvx/

Saebe S, Almgy T, Aarge J, Aastveit AH.2007. ST-PLS: a multi-
directional nearest shrunken centroid type classifier via PLS.
Chemometrics 22:54—62

Chun H, Keles S. 2010. Sparse partial least squares regression for
simultaneous dimension reduction and variable selection.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 72:3-25

Lé Cao K-A, Rossouw D, Robert-Granié C, Besse P. 2008. A sparse
PLS for variable selection when integrating omics data. Statistical
applications in genetics and molecular biology 7:Ariticl 35

Chaffey N, Cholewa E, Regan S, Sundberg B.2002. Secondary
xylem development in Arabidopsis: a model for wood formation.
Physiologia plantarum 114:594—-600

Kumari S, Deng W, Gunasekara C, Chiang V, Chen HS, et al. 2016.
Bottom-up GGM algorithm for constructing multilayered
hierarchical gene regulatory networks that govern biological
pathways or processes. BMC Bioinformatics 17:132

Zheng J, He C, Qin Y, Lin G, Park WD, et al. 2019. Co-expression
analysis aids in the identification of genes in the cuticular wax
pathway in maize. Plant J. 97:530—-42

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al.
2010. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell
differentiation. Nat. Biotechnol. 28:511-5

Huber PJ. 2011. Robust statistics. In International Encyclopedia of
Statistical Science, ed. Lovric M. Berlin, Heidelberg: Springer. pp.
1248-51 https://doi.org/10.1007/978-3-642-04898-2_594

Yi C, Huang J.2017. Semismooth newton coordinate descent
algorithm for elastic-net penalized huber loss regression and
quantile regression. JJournal of Computational and Graphical
Statistics 26:547-57

Parikh N, Boyd S.2014. Proximal algorithms. Foundations and
Trends®in Optimization 1:127-239

Page 120f 13

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Huber-Berhu partial least squares regression

Yu YL. 2013. On decomposing the proximal map. NIPS'13:
Proceedings of the 26th International Conference on Neural
Information Processing Systems, Lake Tahoe, Nevada, 2013, vol
1:91-9. New York: Curran Associates Inc. https://proceedings.
neurips.cc/paper/2013/file/98dce83da57b0395e163467c9dae52
1b-Paper.pdf

Beck, A. and M. Teboulle.2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM journal
on imaging sciences 2(1):183-202

Vinzi VE, Russolillo G.2013. Partial least squares algorithms and
methods. WIREs Computational Statistics 5:1-19

Shen H, Huang JZ. 2008. Sparse principal component analysis via
regularized low rank matrix approximation.Journal of
multivariate analysis 99:1015-34

Tenenhaus A, Guillemot V, Gidrol X, Frouin V.2010. Gene
association networks from microarray data using a regularized
estimation of partial correlation based on PLS regression.
IEEE/ACM Trans Comput Biol Bioinform 7:251-62

Simca P. 2002. SIMCA-P+ 10 Manual. Umetrics AB

Deng W. 2018. Algorithms for reconstruction of gene regulatory
networks from high -throughput gene expression data. PhD. Open
Access Dissertation. Michigan Technological University. pp. 101
https://digitalcommons.mtu.edu/etdr/722/

Zhou J, Lee C, Zhong R, Ye ZH.2009. MYB58 and MYB63 are
transcriptional activators of the lignin biosynthetic pathway
during secondary cell wall formation in Arabidopsis. Plant Cell
21:248-66

Shuai B, Reynaga-Pena CG, Springer PS. 2002. The lateral organ
boundaries gene defines a novel, plant-specific gene family.
Plant Physiol. 129:747—-61

Nishitani K, Demura T. 2015. Editorial: An Emerging View of Plant
Cell Walls as an Apoplastic Intelligent System. Plant and Cell
Physiology 56:177—9

Wang P, Hendron RW, Kelly S.2017. Transcriptional control of
photosynthetic capacity: conservation and divergence from
Arabidopsis to rice. New Phytol. 216:32—-45

Cluis CP, Mouchel CF, Hardtke CS.2004. The Arabidopsis
transcription factor HY5 integrates light and hormone signaling
pathways. Plant J. 38:332-47

Andronis C, Barak S, Knowles SM, Sugano S, Tobin EM. 2008. The
clock protein CCA1 and the bZIP transcription factor HY5
physically interact to regulate gene expression in Arabidopsis.
Mol. Plant 1:58—-67

Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H.2018.
Two B-Box Proteins Regulate Photomorphogenesis by
Oppositely Modulating HY5 through their Diverse C-Terminal
Domains. Plant Physiol. 176:2963—-76

Jiang Y, Yang C, Huang S, Xie F, Xu Y, et al. 2019. The ELF3-PIF7
Interaction Mediates the Circadian Gating of the Shade
Response in Arabidopsis. iScience 22:288—98

Kim K, Jeong J, Kim J, Lee N, Kim ME, et al. 2016. PIF1 Regulates
Plastid Development by Repressing Photosynthetic Genes in the
Endodermis. Molecular plant 9:1415-27

Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, et al.20009.
Phytochromes promote seedling light responses by inhibiting
four negatively-acting phytochrome-interacting factors. Proc.
Natl. Acad. Sci. U. S. A. 106:7660—-5

Leivar P, Monte E, Al-Sady B, Carle C, Storer A, et al. 2008. The
Arabidopsis phytochrome-interacting factor PIF7, together with
PIF3 and PIF4, regulates responses to prolonged red light by
modulating phyB levels. Plant Cell 20:337-52

Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ,
Langdale JA.2009. GLK transcription factors coordinate
expression of the photosynthetic apparatus in Arabidopsis. The
Plant cell 21:1109-28

Deng et al. Forestry Research 2021, 1: 6


https://doi.org/10.3758/BF03192961
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1198/073500106000000251
https://doi.org/10.1198/073500106000000251
https://doi.org/10.1080/03610918.2016.1202271
https://doi.org/10.1080/03610918.2016.1202271
https://doi.org/10.1214/11-EJS635
https://doi.org/10.1214/11-EJS635
http://www.ams.org/books/conm/443/
http://cvxr.com/cvx/
https://doi.org/10.1002/cem.1101
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.1034/j.1399-3054.2002.1140413.x
https://doi.org/10.1186/s12859-016-0981-1
https://doi.org/10.1111/tpj.14140
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1007/978-3-642-04898-2_594
https://doi.org/10.1080/10618600.2016.1256816
https://doi.org/10.1080/10618600.2016.1256816
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://proceedings.neurips.cc/paper/2013/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.1002/wics.1239
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1109/TCBB.2008.87
https://digitalcommons.mtu.edu/etdr/722/
https://doi.org/10.1105/tpc.108.063321
https://doi.org/10.1104/pp.010926
https://doi.org/10.1093/pcp/pcv001
https://doi.org/10.1093/pcp/pcv001
https://doi.org/10.1111/nph.14682
https://doi.org/10.1111/j.1365-313X.2004.02052.x
https://doi.org/10.1093/mp/ssm005
https://doi.org/10.1104/pp.17.00856
https://doi.org/10.1016/j.isci.2019.11.029
https://doi.org/10.1016/j.molp.2016.08.007
https://doi.org/10.1073/pnas.0812219106
https://doi.org/10.1073/pnas.0812219106
https://doi.org/10.1105/tpc.107.052142
https://doi.org/10.1105/tpc.108.065250
https://doi.org/10.1105/tpc.108.065250
https://doi.org/10.3758/BF03192961
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1198/073500106000000251
https://doi.org/10.1198/073500106000000251
https://doi.org/10.1080/03610918.2016.1202271
https://doi.org/10.1080/03610918.2016.1202271
https://doi.org/10.1214/11-EJS635
https://doi.org/10.1214/11-EJS635
http://www.ams.org/books/conm/443/
http://cvxr.com/cvx/
https://doi.org/10.1002/cem.1101
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.1034/j.1399-3054.2002.1140413.x
https://doi.org/10.1186/s12859-016-0981-1
https://doi.org/10.1111/tpj.14140
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1007/978-3-642-04898-2_594
https://doi.org/10.1080/10618600.2016.1256816
https://doi.org/10.1080/10618600.2016.1256816
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://proceedings.neurips.cc/paper/2013/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.1002/wics.1239
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1109/TCBB.2008.87
https://digitalcommons.mtu.edu/etdr/722/
https://doi.org/10.1105/tpc.108.063321
https://doi.org/10.1104/pp.010926
https://doi.org/10.1093/pcp/pcv001
https://doi.org/10.1093/pcp/pcv001
https://doi.org/10.1111/nph.14682
https://doi.org/10.1111/j.1365-313X.2004.02052.x
https://doi.org/10.1093/mp/ssm005
https://doi.org/10.1104/pp.17.00856
https://doi.org/10.1016/j.isci.2019.11.029
https://doi.org/10.1016/j.molp.2016.08.007
https://doi.org/10.1073/pnas.0812219106
https://doi.org/10.1073/pnas.0812219106
https://doi.org/10.1105/tpc.107.052142
https://doi.org/10.1105/tpc.108.065250
https://doi.org/10.1105/tpc.108.065250

Huber-Berhu partial least squares regression

65.

66.

67.

68.

69.

70.

71.

72.

Zubo YO, Blakley IC, Franco-Zorrilla JM, Yamburenko MV, Solano
R, et al. 2018. Coordination of Chloroplast Development through
the Action of the GNC and GLK Transcription Factor Families.
Plant physiology 178:130—47

Privat I, Hakimi MA, Buhot L, Favory JJ, Mache-Lerbs S. 2003.
Characterization of Arabidopsisplastid sigma-like transcription
factors SIG1, SIG2 and SIG3. Plant Mol. Biol. 51:385—99

Litthauer S, Battle MW, Lawson T, Jones MA. 2015. Phototropins
maintain robust circadian oscillation of PS Il operating efficiency
under blue light. Plant J. 83:1034-45

Manfield IW, Devlin PF, Jen CH, Westhead DR, Gilmartin PM.
2007. Conservation, convergence, and divergence of light-
responsive, circadian-regulated, and tissue-specific expression
patterns during evolution of the Arabidopsis GATA gene family.
Plant Physiol 143:941-58

Zhang Z,Ren C, Zou L, Wang Y, Li S, et al. 2018. Characterization
of the GATA gene family in Vitis vinifera: genome-wide analysis,
expression profiles, and involvement in light and phytohormone
response. Genome 61:713-23

Jeong MJ, Shih MC. 2003. Interaction of a GATA factor with cis-
acting elements involved in light regulation of nuclear genes
encoding chloroplast glyceraldehyde-3-phosphate dehydro-
genase in Arabidopsis. Biochem. Biophys. Res. Commun.
300:555-62

Kawoosa T, Gahlan P, Devi AS, Kumar S.2014. The GATA and
SORLIP motifs in the 3-hydroxy-3-methylglutaryl-CoA reductase
promoter of Picrorhiza kurrooa for the control of light-mediated
expression. Funct. Integr. Genomics 14:191-203

Liu Y, Patra B, Pattanaik S, Wang Y, Yuan L.2019. GATA and
Phytochrome Interacting Factor Transcription Factors Regulate
Light-Induced Vindoline Biosynthesis in Catharanthus roseus.
Plant Physiol. 180:1336—50

Deng et al. Forestry Research 2021, 1: 6

73.

74.

75.

76.

77.

78.

79.

80.

Forestry

Research

Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, et al. 2015.
Identification of regulatory network hubs that control lipid
metabolism in Chlamydomonas reinhardtii. J. Exp. Bot.
66:4551-66

Waters MT, Langdale JA.2009. The making of a chloroplast.
EMBO J. 28:2861-73

Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, et al. 2011.
Arabidopsis HsfA1 transcription factors function as the main
positive regulators in heat shock-responsive gene expression.
Mol. Genet. Genomics. 286:321-32

Oh E, Zhu JY, Wang ZY. 2012. Interaction between BZR1 and PIF4
integrates brassinosteroid and environmental responses. Nature
cell biology 14:802-9

Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. 2008. A battery of
transcription factors involved in the regulation of secondary cell
wall biosynthesis in Arabidopsis. Plant Cell 20:2763—-82

Chun H, Keles S. 2010. Sparse partial least squares regression for
simultaneous dimension reduction and variable selection. J. R.
Stat. Soc. Series B Stat. Methodol 72:3-25

Efron B, Hastie T, Johnstone |, Tibshirani R.2004. Least angle
regression. Annals of Statistics 32:407—99

Xie Y, Liu Y, Valdar W.2016. Joint estimation of multiple
dependent Gaussian graphical models with applications to
mouse genomics. Biometrika 103:493-511

Copyright: © 2021 by the author(s). Exclusive
By Licensee Maximum Academic Press, Fayetteville,
GA. This article is an open access article distributed under

Creative Commons Attribution License (CC BY 4.0), visit https://
creativecommons.org/licenses/by/4.0/.

Page 130f 13


https://doi.org/10.1104/pp.18.00414
https://doi.org/10.1023/A:1022095017355
https://doi.org/10.1111/tpj.12947
https://doi.org/10.1104/pp.106.090761
https://doi.org/10.1139/gen-2018-0042
https://doi.org/10.1016/S0006-291X(02)02892-9
https://doi.org/10.1007/s10142-013-0350-3
https://doi.org/10.1104/pp.19.00489
https://doi.org/10.1093/jxb/erv217
https://doi.org/10.1038/emboj.2009.264
https://doi.org/10.1007/s00438-011-0647-7
https://doi.org/10.1038/ncb2545
https://doi.org/10.1038/ncb2545
https://doi.org/10.1105/tpc.108.061325
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1093/biomet/asw035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1104/pp.18.00414
https://doi.org/10.1023/A:1022095017355
https://doi.org/10.1111/tpj.12947
https://doi.org/10.1104/pp.106.090761
https://doi.org/10.1139/gen-2018-0042
https://doi.org/10.1016/S0006-291X(02)02892-9
https://doi.org/10.1007/s10142-013-0350-3
https://doi.org/10.1104/pp.19.00489
https://doi.org/10.1093/jxb/erv217
https://doi.org/10.1038/emboj.2009.264
https://doi.org/10.1007/s00438-011-0647-7
https://doi.org/10.1038/ncb2545
https://doi.org/10.1038/ncb2545
https://doi.org/10.1105/tpc.108.061325
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1093/biomet/asw035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1104/pp.18.00414
https://doi.org/10.1023/A:1022095017355
https://doi.org/10.1111/tpj.12947
https://doi.org/10.1104/pp.106.090761
https://doi.org/10.1139/gen-2018-0042
https://doi.org/10.1016/S0006-291X(02)02892-9
https://doi.org/10.1007/s10142-013-0350-3
https://doi.org/10.1104/pp.19.00489
https://doi.org/10.1093/jxb/erv217
https://doi.org/10.1038/emboj.2009.264
https://doi.org/10.1007/s00438-011-0647-7
https://doi.org/10.1038/ncb2545
https://doi.org/10.1038/ncb2545
https://doi.org/10.1105/tpc.108.061325
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1093/biomet/asw035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1104/pp.18.00414
https://doi.org/10.1023/A:1022095017355
https://doi.org/10.1111/tpj.12947
https://doi.org/10.1104/pp.106.090761
https://doi.org/10.1139/gen-2018-0042
https://doi.org/10.1016/S0006-291X(02)02892-9
https://doi.org/10.1007/s10142-013-0350-3
https://doi.org/10.1104/pp.19.00489
https://doi.org/10.1093/jxb/erv217
https://doi.org/10.1038/emboj.2009.264
https://doi.org/10.1007/s00438-011-0647-7
https://doi.org/10.1038/ncb2545
https://doi.org/10.1038/ncb2545
https://doi.org/10.1105/tpc.108.061325
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1093/biomet/asw035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/jxb/erv217
https://doi.org/10.1038/emboj.2009.264
https://doi.org/10.1007/s00438-011-0647-7
https://doi.org/10.1038/ncb2545
https://doi.org/10.1038/ncb2545
https://doi.org/10.1105/tpc.108.061325
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1111/j.1467-9868.2009.00723.x
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1093/biomet/asw035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	INTRODUCTION
	MATERIALS AND METHODS
	High-throughput gene expression data
	Huber and Berhu functions
	The algorithm to solve the Huber-Berhu regression
	Embedding the Huber-Berhu objective function into PLS
	Tuning criteria and choice of the PLS dimension

	RESULTS
	The efficiency of the proximal gradient descent algorithm
	Validation of Huber-Berhu PLS with lignin biosynthesis pathway genes and regulators
	Prediction of photosynthetic pathway regulators in Arabidopsis thaliana using Huber-Berhu PLS
	The performance and sensitivity of HB-PLS using SPLS as a comparison

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS

