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Abstract
Gene expression data features high dimensionality,  multicollinearity,  and non-Gaussian distribution noise,  posing hurdles for  identification of

true regulatory genes controlling a biological process or pathway. In this study, we integrated the Huber loss function and the Berhu penalty (HB)

into partial least squares (PLS) framework to deal with the high dimension and multicollinearity property of gene expression data, and developed

a new method called HB-PLS regression to model  the relationships between regulatory genes and pathway genes.  To solve the Huber-Berhu

optimization problem, an accelerated proximal gradient descent algorithm with at least 10 times faster than the general convex optimization

solver  (CVX),  was developed.  Application of  HB-PLS to recognize pathway regulators  of  lignin biosynthesis  and photosynthesis  in Arabidopsis
thaliana led to the identification of many known positive pathway regulators that had previously been experimentally validated. As compared to

sparse partial least squares (SPLS) regression, an efficient method for variable selection and dimension reduction in handling multicollinearity,

HB-PLS has higher efficacy in identifying more positive known regulators, a much higher but slightly less sensitivity/(1-specificity) in ranking the

true positive known regulators to the top of the output regulatory gene lists for the two aforementioned pathways. In addition, each method

could identify some unique regulators that cannot be identified by the other methods. Our results showed that the overall performance of HB-

PLS  slightly  exceeds  that  of  SPLS  but  both  methods  are  instrumental  for  identifying  real  pathway  regulators  from  high-throughput  gene

expression data, suggesting that integration of statistics, machine leaning and convex optimization can result in a method with high efficacy and

is worth further exploration.
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INTRODUCTION

In a gene regulatory network (GRN), a node corresponds to
a  gene  and  an  edge  represents  a  directional  regulatory
relationship  between  a  transcription  factor  (TF)  and  a  target
gene.  Understanding  the  regulatory  relationships  among
genes in GRNs can help elucidate the various biological  pro-
cesses and underlying mechanisms in a variety of organisms.
Although experiments can be conducted to acquire evidence
of gene regulatory interactions, these are labor-intensive and
time-consuming. In the past two decades, the advent of high-
throughput  technologies  including microarray  and RNA-Seq,
have  generated  an  enormous  wealth  of  transcriptomic  data.
As  the  data  in  public  repositories  grows  exponentially,  com-
putational  algorithms  and  tools  utilizing  gene  expression
data offer a more time- and cost-effective way to reconstruct
GRNs.  To  this  end,  efficient  mathematical  and  statistical
methods  are  needed  to  infer  qualitative  and  quantitative
relationships between genes.

Many methods have been developed to reconstruct GRNs,
each employing different theories and principles. The earliest
methods include differential equations[1], Boolean networks[2],

stochastic  networks[3],  Bayesian[4,5] or  dynamic  Bayesian
networks (BN)[6,7], and ordinary differential equations (ODE)[8].
Some  of  these  methods  require  time  series  datasets  with
short  time  intervals,  such  as  those  generated  from  easily
manipulated single cell organisms (e.g. bacteria, yeast etc.) or
mammalian  cell  lines[9].  For  this  reason,  most  of  these
methods are not suitable for gene expression data, especially
time series data involving time intervals on the scale of days,
from  multicellular  organisms  like  plants  and  mammals
(except cell lines).

In  general,  the  methods  that  are  useful  for  building  gene
networks  with  non-time  series  data  generated  from  higher
plants  and  mammals  include  ParCorA[10],  graphical  Gaussian
models  (GGM)[11],  and  mutual  information-based  methods
such  as  Relevance  Network  (RN)[12],  Algorithm  for  the
Reconstruction  of  Accurate  Cellular  Networks  (ARACNE)[13],
C3NET[14],  maximum  relevance/minimum  redundancy
Network  (MRNET)[15],  and random forests[16,17].  Most  of  these
methods  are  based  on  the  information-theoretic  framework.
For  instance,  Relevance  Network  (RN)[18],  one  of  the  earliest
methods developed, infers a network in which a pair of genes
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are linked by an edge if the mutual information is larger than
a  given  threshold.  The  context  likelihood  relatedness  (CLR)
algorithm[19],  an  extension  of  RN,  derives  a  score  from  the
empirical distribution of the mutual information for each pair
of  genes  and  eliminates  edges  with  scores  that  are  not
statistically  significant.  ARACNE  is  similar  to  RN;  however,
ARACNE makes use of the data processing inequality (DPI) to
eliminate the least significant edge of a triplet of genes, which
decreases  the  false  positive  rate  of  the  inferred  network.
MRNET[20] employs  the  maximum  relevance  and  minimum
redundancy  feature  selection  method  to  infer  GRNs.  Finally,
triple-gene  mutual  interaction  (TGMI)  uses  condition  mutual
information  to  evaluate  triple  gene  blocks  to  infer  GRNs[21].
Information  theory-based  methods  are  used  extensively  for
constructing  GRNs  and  for  building  large  networks  because
they  have  a  low  computational  complexity  and  are  able  to
capture  nonlinear  dependencies.  However,  there  are  also
disadvantages  in  using  mutual  information,  including  high
false-positive  rates[22] and  the  inability  to  differentiate
positive  (activating),  negative  (inhibiting),  and  indirect
regulatory relationships. Reconstruction of the transcriptional
regulatory  network  can  be  implemented  by  the  neighbor-
hood  selection  method.  Neighborhood  selection[23] is  a  sub-
problem of covariance selection. Assume  is a set containing
all of the variables (genes), the neighborhood  of a variable

 is  the  smallest  subset  of  such  that,  given  all
variables in  , variable  is conditionally independent of all
remaining variables. Given  i.i.d. observations of , neighbor-
hood  selection  aims  to  estimate  the  neighborhood  of  each
variable  in  individually.  The  neighborhood  selection
problem can be cast  as  a  multiple  linear  regression problem
and solved by regularized methods.

y
x

Following  the  differential  equation  in[24],  the  expression
levels  of  a  target  gene  and  the  expression  levels  of  the  TF
genes  form a linear relationship:

yi = β0+ xT
i β+εi i = 1,2, . . . ,n (1)

n xi = (xi1, . . . , xip)T

p yi

i β0

β = (β1, · · · ,βp)T

β j , 0 ( j = 1, · · · , p) j i {εi}

σ2 β
β0

where  is  the  number  of  samples,  is  the
expression level of  TF genes, and  is the expression level of
the  target  gene  in  sample .  is  the  intercept  and

 are the associated regression coefficients; if any
 , then TF gene  regulates target gene . 

are independent and identically distributed random errors with
mean  0  and  variance .  The  method  to  get  an  estimate  of 
and  is  to  transform  this  statistical  problem  to  a  convex
optimization problem:

β = argminβ f (β) = argminβ
∑n

i=1
L
(
yi−β0− xT

i β
)
+λP (β) (2)

L(·) P(·)
λ > 0

λ

L(yi−β0− xT
i β) = (yi−β0− xT

i β)2

p
n p≫ n)

n > p
ℓ2

where  is a loss function,  is a penalization function, and
 is a tuning parameter which determines the importance of

penalization.  Different  loss  functions,  penalization  functions,
and  methods  for  determining  have  been  proposed  in  the
literature.  Ordinary  least  squares  (OLS)  is  the  simplest  method
with  a  square  loss  function 
and no penalization function. The OLS estimator is unbiased[25].
However, since it is common for the number of genes, , to be
much larger than the number of  samples, ,  (i.e.  in any
given gene expression data set,  there is no unique solution for
OLS.  Even  when ,  OLS  estimation  features  high  variance.
To tackle these problems, ridge regression[26] adds a  penalty,

P (β) =
∑p

j=1β
2
j

β̂

p > n

ℓ2

ℓ1 P (β) =
∑p

j=1

∣∣∣β j

∣∣∣

,  on the coefficients  which introduces a  bias  but

reduces  the  variance  of  the  estimated, .  In  ridge  regression,
there is a unique solution even for the  case. Least absolute
shrinkage  and  selection  operator  (LASSO)[27] is  similar  to  ridge
regression, except the  penalty in ridge regression is replaced

by the  penalty, .

λ

P (β) = α
∑p

j=1

∣∣∣β j

∣∣∣+ 1−α
2

∑p
j=1β

2
j ,

α(0 < α < 1)
α = 1 ,

α = 0

P (β) =
∑p

j=1ŵ j

∣∣∣β j

∣∣∣ , ŵ j =
1
|β̂ini|γ ,∣∣∣β̂ini

∣∣∣
γ

The main benefit of least absolute shrinkage and selection
operator  (LASSO)  is  that  it  performs  variable  selection  and
regularization  simultaneously  thereby  generating  a  sparse
solution,  a  desirable  property  for  constructing  GRNs.  When
LASSO  is  used  for  selecting  regulatory  TFs  for  a  target  gene,
there  are  two  potential  limitations.  First,  if  several  TF  genes
are  correlated  and  have  large  effects  on  the  target  gene,
LASSO  has  a  tendency  to  choose  only  one  TF  gene  while
zeroing out the other TF genes. Second, some studies[28] state
that  LASSO  does  not  have  oracle  properties;  that  is,  it  does
not  have  the  capability  to  identify  the  correct  subset  of  true
variables  or  to  have  an  optimal  estimation  rate.  It  is  claimed
that  there  are  cases  where  a  given  that  leads  to  optimal
estimation  rate  ends  up  with  an  inconsistent  selection  of
variables. For the first limitation, Zou and Hastie[29] proposed
elastic  net,  in  which  the  penalty  is  a  mixture  of  LASSO  and

ridge  regressions:  where

 is called the elastic net mixing parameter.  When
 the  elastic  net  penalty  becomes  the  LASSO  penalty;

when ,  the  elastic  net  penalty  becomes  the  ridge
penalty.  For  the  second  limitation,  adaptive  LASSO[28] was
proposed as a regularization method, which enjoys the oracle
properties.  The  penalty  function  for  adaptive  LASSO  is:

 where  adaptive  weight  and

 is an initial estimate of the coefficients obtained through
ridge  regression  or  LASSO;  is  a  positive  constant,  and  is
usually  set  to  1.  It  is  evident  that  adaptive  LASSO  penalizes
more those coefficients with lower initial estimates.

It is well known that the square loss function is sensitive to
heavy-tailed errors or outliers. Therefore, adaptive LASSO may
fail  to  produce  reliable  estimates  for  datasets  with  heavy-
tailed  errors  or  outliers,  which  commonly  appear  in  gene
expression  datasets.  One  possible  remedy  is  to  remove
influential observations from the data before fitting a model,
but  it  is  difficult  to  differentiate  true  outliers  from  normal
data.  The other method is  to use robust regression.  Wang et
al.[30] combined  the  least  absolute  deviation  (LAD)  and
weighted LASSO penalty to produce the LAD-LASSO method.
The objective function is:∑n

i=1

∣∣∣yi−β0− xT
i β

∣∣∣+λ∑p

j=1
ŵ j

∣∣∣β j

∣∣∣ (3)

y
With this LAD loss, LAD-LASSO is more robust than OLS to

unusual  values,  but  it  is  sensitive  to  high leverage outliers.
Moreover,  LAD  estimation  degrades  the  efficiency  of  the
resulting  estimation  if  the  error  distribution  is  not  heavy
tailed[31]. To achieve both robustness and efficiency, Lambert-
Lacroix  and  Zwald  2011[32],  proposed  Huber-LASSO,  which
combined  the  Huber  loss  function  and  a  weighted  LASSO
penalty. The Huber function (see Materials and Methods) is a
hybrid of squared error for relatively small errors and absolute
error for relatively large ones. Owen 2007[33] proposed the use
of  the  Huber  function  as  a  loss  function  and  the  use  of  a
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ℓ1

reversed  version  of  Huber’s  criterion,  called  Berhu,  as  a
penalty  function.  For  the  Berhu  penalty  (see  Materials  and
Methods), relatively small coefficients contribute their  norm
to  the  penalty  while  larger  ones  cause  it  to  grow  quadra-
tically.  This  Berhu  penalty  sets  some  coefficients  to  0,  like
LASSO, while shrinking larger coefficients in the same way as
ridge  regression.  In[34],  the  authors  showed  that  the  combi-
nation  of  the  Huber  loss  function  and  an  adaptive  Berhu
penalty enjoys oracle properties, and they also demonstrated
that this procedure encourages a grouping effect. In previous
research,  the  authors  solved  a  Huber-Berhu  optimization
problem using CVX software[33−35],  a  Matlab-based modeling
system  for  convex  optimization.  CVX  turns  Matlab  into  a
modeling language, allowing constraints and objectives to be
specified using standard Matlab expression syntax. However,
since  CVX  is  slow  for  large  datasets,  a  proximal  gradient
descent  algorithm  was  developed  for  the  Huber-Berhu
regression in this study, which runs much faster than CVX.

ℓ1

ℓ1

Reconstruction  of  GRNs  often  involves  ill-posed  problems
due to high dimensionality and multicollinearity. Partial least
squares  (PLS)  regression  has  been  an  alternative  to  ordinary
regression  for  handling  multicollinearity  in  several  areas  of
scientific  research.  PLS  couples  a  dimension  reduction
technique  and  a  regression  model.  Although  PLS  has  been
shown to have good predictive  performance in  dealing with
ill-posed  problems,  it  is  not  particularly  tailored  for  variable
selection.  Sæbø  et  al.  2007[36] first  proposed  the  soft-
threshold-PLS (ST-PLS), in which the  penalty is used for PLS
loading  weights  of  multiple  latent  components.  Such  a
method is especially applicable for classification and variable
selection  when  the  number  of  variables  is  greater  than  the
number  of  samples.  Chun  and  Keleş 2010[37] proposed  a
similar  sparse  PLS  regression  for  simultaneous  dimension
reduction  and  variable  selection.  Both  the  methods  from
Sæbø et al.  2007 and Chun and Keleş 2010 used the same 
penalty  for  PLS  loading  weights.  Lê Cao  et  al.  2008[38] also
proposed  a  sparse  PLS  method  for  variable  selection  when
integrating  omics  data.  They  added  sparsity  into  PLS  with  a
LASSO penalization combined with singular value decompo-
sition  (SVD)  computation.  In  this  study,  the  Huber  loss
function and the Berhu penalty function were embedded into
a  PLS  framework.  Real  gene  data  was  used  to  demonstrate
that  this  approach  is  applicable  for  the  reconstruction  of
GRNs. 

MATERIALS AND METHODS
 

High-throughput gene expression data
The  lignin  pathway  analysis  used  an Arabidopsis wood

formation  compendium  dataset  containing  128  Affymetrix
microarrays  pooled  from  six  experiments  (accession
identifiers: GSE607, GSE6153, GSE18985, GSE2000, GSE24781,
and  GSE5633  in  NCBI  Gene  Expression  Omnibus  (GEO)
(http://www.ncbi.nlm.nih.gov/geo/)).  These  datasets  were
originally  obtained  from  hypocotyledonous  stems  under
short-day  conditions  known  to  induce  secondary  wood
formation[39].  The  original  CEL  files  were  downloaded  from
GEO  and  preprocessed  using  the  affy  package  in
Bioconductor  (https://www.bioconductor.org/)  and  then

normalized  with  the  robust  multi-array  analysis  (RMA)
algorithm in affy package. This compendium data set was also
used in our previous studies[40].  The maize B73 compendium
data  set  used  for  predicting  photosynthesis  light  reaction
(PLR)  pathway  regulators  was  downloaded  from  three  NCBI
databases:  (1)  the  sequence  read  archive  (SRA)
(https://www.ncbi.nlm.nih.gov/sra),  39  leaf  samples  from
ERP011838;  (2)  Gene  Expression  Omnibus  (GEO),  24  leaf
samples  from  GSE61333,  and  (3)  BioProject  (https://www.
ncbi.nlm.nih.gov/bioproject/),  36  seedling  samples  from
PRJNA483231.  This  compendium  is  a  subset  of  that  used  in
our earlier co-expression analysis[41]. Raw reads were trimmed
to  remove  adaptors  and  low-quality  base  pairs  via
Trimmomatic (v3.3). Clean reads were aligned to the B73Ref3
with  STAR,  followed  by  the  generation  of  normalized  FPKM
(fragments  per  kb  of  transcript  per  million  reads)  using
Cufflinks software (v2.1.1)[42]. 

Huber and Berhu functions

yi

yi

M

In  estimating  regression  coefficients,  the  square  loss
function is well suited if  follows a Gaussian distribution, but
it  gives  a  poor  performance  when  follows  a  heavy-tailed
distribution or there are outliers. On the other hand, the least
absolute  deviation  (LAD)  loss  function  is  more  robust  to
outliers, but the statistical efficiency is low when there are no
outliers in the data. The Huber function, introduced in[43], is a
combination  of  linear  and  quadratic  loss  functions.  For  any
given  positive  real  (called  shape  parameter),  the  Huber
function is defined as:

HM (z) =
{

z2 |z| ≤ M
2M |z| −M2 |z| > M

(4)

z
z M

M

This  function  is  quadratic  for  small  values  but  grows
linearly  for  large  values  of .  The  parameter  determines
where  the  transition  from  quadratic  to  linear  takes  place
(Fig.  1a).  In  this  study,  the  default  value  of  was  set  to  be
one tenth of the interquartile range (IRQ), as suggested by[44].
The  Huber  function  is  a  smooth  function  with  a  derivative
function:

H′M (z) =
{

2z |z| ≤ M
2M sign (z) |z| > M

(5)

The  ridge  regression  uses  the  quadratic  penalty  on
regression  coefficients,  and  it  is  equivalent  to  putting  a
Gaussian prior on the coefficients. LASSO uses a linear penalty
on regression coefficients,  and this is equivalent to putting a
Laplace  prior  on  the  coefficients.  The  advantage  of  LASSO
over ridge regression is that it implements regularization and
variable selection simultaneously. The disadvantage is that, if
a  group  of  predictors  is  highly  correlated,  LASSO  picks  only
one  of  them  and  shrinks  the  others  to  zero.  In  this  case,  the
prediction  performance  of  ridge  regression  dominates  the
LASSO.  The  Berhu  penalty  function,  introduced  in  Owen
2007[33],  is  a  hybrid  of  the  quadratic  penalty  and  LASSO.  It
gives  a  quadratic  penalty  to  large  coefficients  while  giving a
linear  penalty  to  small  coefficients,  as  shown  in Fig.  1b.  The
Berhu function is defined as:

BM (z) =


|z| |z| ≤ M

z2+M2

2M
|z| > M

(6)

MThe shape parameter  was set to be the same as that in
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z = 0
the Huber function. As shown in Fig. 1b, the Berhu function is
a convex function, but it is not differentiable at .  The 2D
contours  of  Huber  and  Berhu  functions  are  shown  in Fig.  1c
and Fig.  1d,  respectively.  When  the  Huber  loss  function  and
the  Berhu  penalty  were  combined,  an  objective  function,  as
referred as the Huber-Berhu function, was obtained, as shown
below.

f (β) =
∑n

i=1
HM(yi−β0− xT

i β)+λ
∑p

j=1
BM

(
β j

)
(7)

λ

λ

λ

λ

The  estimation  of  coefficients  using  the  Huber-Berhu
objective  (Fig.  2a),  LASSO  (Fig.  2b),  and  the  ridge  (Fig.  2c)
regressions  provided  some  insights.  The  Huber  loss  corres-
ponds  to  the  rotated,  rounded  rectangle  contour  in  the  top
right  corner,  and the center  of  the contour  is  the solution of
the un-penalized Huber regression. The shaded area is a map
of  the  Berhu  constraint  where  a  smaller  corresponds  to  a
larger  area.  The  estimated  coefficient  of  the  Huber-Berhu
regression  is  the  first  place  the  contours  touch  the  shaded
area;  when  is  small,  the  touch  point  is  not  on  the  axes,
which means  the Huber-Berhu regression behaves  more like
the  ridge  regression,  which  does  not  generate  a  sparse
solution.  When  increases,  the  correspondent  shaded  area
changes to a  diamond,  and the touch point  is  more likely  to
be  located  on  the  axes.  Therefore,  for  large ,  the  Huber-

Berhu  regression  behaves  like  LASSO,  which  can  generate  a
sparse solution. 

The algorithm to solve the Huber-Berhu regression
z = 0Since  the  Berhu  function  is  not  differentiable  at ,  it  is

difficult  to  use  the  gradient  descent  method  to  solve
equation  (4).  Although  we  can  use  the  general  convex
optimization  solver  CVX[35] for  a  convex  optimization
problem,  it  is  too  slow  for  real  biological  applications.
Therefore,  a  proximal  gradient  descent  algorithm  was
developed to solve equation (4). Proximal gradient descent is
an effective algorithm to solve an optimization problem with
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Fig. 1    Huber loss function (a) and Berhu penalty function (b); The 2D contours of Huber loss function (c) and Berhu penalty function (d).

a

β1
^

β2
^

β1
^

β2
^

β1
^

β2
^

Huber_Berhu b LASSO c Ridge

 
Fig.  2    Estimation  picture  for  the  Huber-Berhu  regression  (a)
when  least  absolute  shrinkage  and  selection  operator  (LASSO)
(b) and ridge (c) regressions are used as a comparison.
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f (z) = g (z)+h (z) g (z)
h (z)

g (z) h (z)

decomposable  objective  function.  Suppose  the  objective
function can be decomposed as , where 
is  a  convex differentiable  function and  is  a  convex non-
differentiable  function.  The  idea  behind  the  proximal
gradient  descent[45] method  is  to  make  a  quadratic
approximation to  and leave  unchanged. That is:

f (z) = g (z)+h (z) ≈ g (z)+∇g(x)T (z− x)+
1
2t
∥z− x∥22+h (z)

xAt each step,  is updated by the minimum of the right side of
above formula.

x+ = argminz g (x)+∇g(z)T (z− x)+
1
2t
∥z− x∥22+h (z)

= argminz
1
2t
∥z− (x− t∇g (x)∥22+h (z)

Proxt,h (x) = argminz
1
2t
||z− x ||22+h (z)

h

The operator  is  called

proximal  mapping  for .  To  solve  (7),  the  key  is  to  compute
the proximal mapping for the Berhu function:

λBM (z) = λ |z|1|z|≤M +λ
z2+M2

2M
1|z|>M = λ |z|+λ

(|z| −M)2

2M
1|z|>M

u (z) = λ (|z|−M)2

2M 1|z|>M u (z)let . As  satisfies theorem 4 in[46]:

Proxt,λB (x) = Proxt,λu (x)◦Proxt,λ|·| (x) (8)

It is not difficult to verify:

Proxt,λu (x) = sign (x)min
{
|x| , M

M+ tλ
(|x|+ tλ)

}
(9)

Proxt,λ|·| (x) = sign (x)min {|x| − tλ,0} (10)

β0 β f (β)Finding  and  that  minimize  in  (7)  is  detailed  in
Algorithm 1.

Algorithm  1 uses  the  accelerated  proximal  gradient

descent  method  to  solve  (7).  Line  3  implements  the

acceleration of[47].  Lines 6−7 compute the proximal mapping

of the Berhu function. Lines 5−10 use a backtracking method

to determine the step size.
 

Embedding the Huber-Berhu objective function into
PLS

X(n× p) Y(n×q)

X
Y

Let  and  be  the  standardized  predictor
variables  (gene  expression  of  TF  genes)  and  dependent
variables  (gene  expression  of  pathway  genes),  respectively.
PLS[48] looks  for  a  linear  combination  of  and  a  linear
combination  of  such  that  their  covariance  reaches  a
maximum:

max∥u∥2=1,∥v∥2=1cov (Xu,Yv) (11)

ξ = Xu η = Yv

p q u v
ξ

X ξ Y ξ

Here,  the  linear  combination  and  are  called
component  scores  (or  latent  variables)  which  are  generated
through  the  and  dimensional  weight  vectors  and ,
respectively.  After  getting  this  first  component ,  two
regression equations (from  to  and from  to )  were set
up:

X = ξc′+ε1,Y = ξd′+ε2 = Xb+ε3 (12)
c d

X X = X− ξc′ Y
Y = Y − ξd′

Here,  and  are  commonly  called  loadings  in  the
literature.  Next,  was  deflated  as  and  was
deflated  as ,  and  this  process  was  continued  until
enough components were extracted.

M = X′Y cov (Xu,Yv) =
1
n

u′Mv M

A  close  relationship  exists  between  PLS  and  SVD.  Let

, then . Let the SVD of  be:

M = U∆V ′

U(p× r) V(q× r) ∆(r× r)
δk(k = 1 . . .r)

u v
U V

where  and  are  orthonormal  and  is  a
diagonal  matrix  whose  diagonal  elements  are
called  singular  values.  According  to  the  property  of  SVD,  the
combinatory  coefficients  and  in  (7)  are  exactly  the  first
column  of  and  the  first  column  of .  Therefore,  the  weight
vectors of PLS can be computed by:

minu,v

∥∥∥M−uv′
∥∥∥p

F

∥M−uv′∥pF =
∑p

i=1
∑q

j=1

(
mi j−uiv j

)2
where .

M ℓ1

Lê Cao et al. 2008[38] proposed a sparse PLS approach using
SVD  decomposition  of  by  adding  a  penalty  on  the
weight vectors. The optimization problem to solve is:

minu,v

∥∥∥M−uv′
∥∥∥p

F +λ1∥u∥1+λ2∥v∥1

ℓ1 ℓ2

As mentioned above, the Huber function is more robust to
outliers and has higher statistical efficiency than LAD loss, and
the Berhu penalty has a better balance between the  and 
penalty. The Huber loss and the Berhu penalty were adopted
to  extract  each  component  for  the  PLS  regression.  The
optimization problem becomes:

minu,v

∑p

i=1

∑q

j=1
H

(
mi j−uiv j

)
+λ

∑p

i=1
B (ui)+λ

∑q

i=1
B (vi) (13)

u v
u v v u

v ui

The objective function in (13) is not convex on  and , but
it  is  convex  on  when  is  fixed and convex  on  when  is
fixed. For example, when  is fixed, each  in parallel  can be
solved by:

minui

∑q

j=1
H

(
mi j−uiv j

)
+λB (ui) (14)

u v jSimilarly,  when  is  fixed,  each  in  parallel  can  be
computed by:

minv j

∑p

i=1
H

(
mi j−uiv j

)
+λB

(
v j

)
(15)

Equations  (14)  and  (15)  can  be  solved  using Algorithm  1.

 

f (β) β0 β
Algorithm  1:  Accelerated  proximal  gradient  descent  method  to
minimize  in equation (7) respected to  and 

X y
λ

Input:  predictor  matrix  ( ),  dependent vector  ( ),  and penalty
constant ( )

βOutput: regression coefficient ( )
  1 β = 0 t βprev = 0Initiate ,  = 1, 
  2 kFor  in 1… MAX_ITER
  3 v = β+ (k/ (k+3))∗

(
β−βprev

)
  4 v

Gv
compute the gradient of Huber loss at  using (5), denoted as

  5 while TRUE
  6 p1 = Proxt,λ|·| (v)compute  using (10)
  7 p2 = Proxt,λu (p1)compute  using (9)
  8 ∑n

i=1HM
(
yi−β0−xT

i p2

)
≤∑n

i=1HM
(
yi−β0−xT

i v
)
+

G′v(p2− v)+ 1
2t || p2− v ||22

if  

  9 break
  10 t = t ∗0.5else 
  11 βprev = β β = p2, 

  12 if converged
  13 break

Huber­Berhu partial least squares regression
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u v

u v

u
v

u v

Therefore  (13)  can  be  solved  iteratively  by  updating  and 
alternately. Note, it is not cost-efficient to spend a lot of effort
optimizing  over  in  line  6  before  a  good  estimate  for  is
computed. Since Algorithm 1 is an iterative algorithm, it may
make  sense  to  stop  the  optimization  over  early  before
updating .  In  the  implementation,  one  step  of  proximal
mapping was used to update  and . That is:

u = Proxt,λB

(
u− t
∂H (M−uv′)

∂u

)
(16)

v = Proxt,λB

(
v− t
∂H (M−uv′)

∂v

)
(17)

The algorithm for finding the solution of the Huber–Berhu
PLS regression in (13) is detailed in Algorithm 2. 

Tuning criteria and choice of the PLS dimension

λ

K
λ k

The Huber-Berhu PLS regression has two tuning parameters,
namely,  the  penalization  parameter  and  the  number  of
hidden components .  To select  the best  penalization para-
meter, ,  a  common -fold  cross-validation  (CV)  procedure
that minimizes the overall  prediction error is  applied using a

grid of possible values. If the sample size is too small, CV can
be  replaced  by  leave-one-out  validation;  this  procedure  is
also used in for tuning penalization parameters[37,49].

Q2
h

Q2
h

Q2
h

To  choose  the  dimension  of  PLS,  the  criteria  were
adopted.  criteria  were  first  proposed  by  Tenenhaus[50].
These  criteria  characterize  the  predictive  power  of  the  PLS
model  by  performing  cross-validation  computation.  is
defined as:

Q2
h = 1−

∑q
k=1PRES S k

h∑q
k=1RS S k

h

PRES S k
h =

∑n
i=1(yk

i − ŷk
h(−i))

2

RS S k
h =

∑n
i=1(yk

i − ŷk
h)2

k h
ξh

where  is  the  Prediction  Error  Sum

of  Squares,  and  is  the  Residual  Sum  of

Squares for the variable  and the PLS dimension . The criterion
for determining if  contributes significantly to the prediction is:

Q2
h ≥

(
1−0.952

)
= 0.0975

h

This  criterion  is  also  used  in  SIMCA-P  software[51] and
sparse PLS[38].  However, the choice of the PLS dimension still
remains an open question. Empirically, there is little biological
meaning  when  is  large  and  good  performance  appears  in
2−5 dimensions. 

RESULTS
 

The efficiency of the proximal gradient descent
algorithm

m p m

We  developed  the  proximal  gradient  descent  algorithm
(Algorithm 1)  to  solve Huber-Berhu regression.  As  compared
to CVX, it could reduce the running time to at least 10 times,
but up to 90 times in a desktop computer with 2.2 GHz Intel
Core  i7  processor  and  16  GB  1600  MHz  DDR3  memory  for  a
setting  of  and  based  on  30  replications.  For  different ,
the patterns are similar (Fig.  3).  More details  can be found in
the Deng 2018[52]. 

Validation of Huber-Berhu PLS with lignin
biosynthesis pathway genes and regulators

The  HB-PLS  algorithm  was  examined  for  its  accuracy  in
identifying  lignin  pathway  regulators  using  the A.  thaliana

 

Algorithm 2: Finding the solution of the Huber-Berhu PLS regression

X Y λ
K

Input: TF matrix ( ), pathway matrix ( ), penalty constant ( ), and
number of components ( )

AOutput: regression coefficient matrix ( )
  1 X0 = X,X0 = Y cF = I A = 0, , 
  2 k KFor  in 1,...,
  3 Mk−1 = X′k−1Yk−1set 
  4 u vInitialize  to be the first left singular vector and initialize  to

be the product of first right singular vectors and first singular
value.

  5 u vuntil convergence of  and 
  6 uupdate  using (16)
  7 vupdate  using (17)
  8 ξ = Xuextract component 

  9 c = X′ξ/(ξ′ξ), d = Y′ξ/
(ξ′ξ)
compute regression coefficients in (8) 

  10 A = A+ cF ·u · d′update 
  11 cF = cF · (I−u · c′update )
  12 X Y X = X− ξc′ Y = Y− ξdcompute residuals for  and , , 
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microarray  compendium  data  set  produced  from  stem
tissues[40].  TFs  identified  by  HB-PLS  were  compared  to  those
identified by SPLS. The 50 top TFs that were ranked based on
their  connectivities  with  the  lignin  biosynthesis  pathway
genes were identified using HB-PLS (Fig. 4a) and compared to
those  identified  by  SPLS  (Fig.  4b),  respectively.  The  lignin
biosynthesis pathway genes are shown in Fig. 4c. The positive
lignin  biosynthesis  pathway regulators,  which  are  supported
by  literature  evidence,  are  shown  in  coral  color.  The  HB-PLS
algorithm  identified  15  known  lignin  pathway  regulators.  Of
these,  MYB63,  SND3,  MYB46,  MYB85,  LBD15,  SND1,  SND2,
MYB103, MYB58, MYB43, NST2, GATA12, VND4, NST1, MYB52,
are  positive  known  transcriptional  activators  of  lignin
biosynthesis in the SND1-mediated transcriptional regulatory
network[53], and LBD15[54] and GATA12[55] are also involved in
regulating  various  aspects  of  secondary  cell  wall  synthesis.
Interestingly, SPLS identified the same set of positive pathway
regulators as HB-PLS though their ranking orders are different. 

Prediction of photosynthetic pathway regulators in
Arabidopsis thaliana using Huber-Berhu PLS

Photosynthesis  is  mediated  by  the  coordinated  action  of
approximately 3,000 different proteins, commonly referred to
as  photosynthesis  proteins[56].  In  this  study,  we  used  genes
from  the  photosynthesis  light  reaction  pathway  and  Calvin
cycle  pathway  to  study  which  regulatory  genes  can
potentially  control  photosynthesis.  Analysis  was  performed
using  HB-PLS,  with  SPLS  as  a  comparative  method.  The
compendium data set  we used is  comprised of  238 RNA-seq
data  sets  from Arabidopsis  thaliana leaves  that  were  under
normal/untreated  conditions.  Expression  data  for 1389 TFs
and  130  pathway  genes  were  extracted  from  the  above
compendium  data  set  and  used  for  analyses.  The  results  of
HB-PLS  and  SPLS  methods  are  shown  in Fig.  5a and 5b,
respectively,  where  33  rather  than  50  TFs  were  shown
because  the  SPLS  method  only  identified  33  TFs.  Of  the  top
33  candidate  TFs  in  the  lists,  HB-PLS  identified  11  positive
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Fig.  4    The  implementation  of  Huber-Berhu-Partial  Least  Squares  (HB-PLS)  to  identify  candidate  regulatory  genes  controlling  lignin
biosynthesis pathway. (a) HB-PLS; (b) SPLS. Green nodes (inside the circles) represent lignin biosynthesis genes. Coral nodes represent positive
lignin pathway regulators supported by existing literature, and shallow purple nodes contain other predicted transcription factors that are not
supported by current available literature. (c) The lignin biosynthesis pathway.
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known  TFs  while  SPLS  identified  6  positive  known  TFs. IAA7,
also known as AXR2, is regulated by HY5[57], which binds to G-
box  in  LIGHT-HARVESTING  CHLOROPHYLL  A/B  (Lhcb)  pro-
teins[58]. STO,  also  known as BBX24,  whose  protein  physically
interacts with photosynthesis regulator HY5 to control photo-
morphogenesis[59];  PHYTOCHROME-INTERACTING  FACTOR
(PIF)  family  have  been  shown  to  affect  the  expression  of
photosynthesis-related  genes,  including  genes  encoding
LHCA, LHCB, and PsaD proteins[60−62]. PIFs repress chloroplast
development  and  photomorphogenesis[62];  PIF7,  together
with  PIF3  and  PIF4,  regulates  responses  to  prolonged  red
light by modulating phyB levels[63]. PIF7 is also involved in the
regulation  of  circadian  rhythms.  GLK2,  directly  regulate  the
expression of  a  series  of  photosynthetic  genes  including the
genes  encoding  the  PSI-LHCI  complex  and  PSII-LHCII
complex[64,65].  The plastid sigma-like transcription factor SIG1
regulate psaA respectively[66];  TOC1  is  a  member  of  the  PRR
(PSEUDO-RESPONSE  REGULATOR)  family  that  includes  PRR9,
PRR7,  PRR5,  PRR3,  and  PRR1/TOC1.  HY5  also  binds  and
regulates  the  circadian  clock  gene PRR7,  which  affects  the
operating  efficiency  of  PSII  under  blue  light[67].  GATA  trans-
cription  factors  have  implicated  some  proteins  in  light-
mediated  and  circadian-regulated  gene  expression[68,69],
GATAs can bind to XXIII box, a cis-acting elements involved in
light-regulated  expression  of  the  nuclear  gene  GAPB,  which
encodes  the  B  subunit  of  chloroplast  glyceraldehyde-3-
phosphate dehydrogenase in A. thaliana[70]. In addition, GATA
interacts  with  SORLIP  motifs  in  the  3-hydroxy-3-
methylglutaryl-CoA reductase (HMGR)  promoter of Picrorhiza
kurrooa,  a  herb  plant,  for  the  control  of  light-mediated
expression;  upstream  sequences  of HMGR of P.  kurrooa
(PropkHMGR)-mediated  gene  expression  was  higher  in  the
dark as compared to that in the light in A. thaliana across four

temperatures  studied[71].  GATA  phytochrome  interacting
factor  transcription  factors  regulate  light-induced  vindoline
biosynthesis  in Catharanthus  roseus[72].  A  number  of  genes
show  greater  than  2-fold  higher  expression  in  light-grown
than  dark-grown  seedlings  with  the  greatest  differences
observed for GATA6, GATA7, GATA21-23[68],  with GATA6 and 7
showing  about  6-  and  4-fold  difference  in  expression  levels.
GATA11 is found to be a hub regulator of photosynthesis and
Chlorophyll  biosynthesis[73].  The  GLK  transcription  factors
promote  the  expression  of  many  nuclear-encoded  photo-
synthetic  genes  that  are  associated  with  chlorophyll  biosyn-
thesis  and  light-harvesting  functions[74];  HSFA1,  a  master
regulator  of  transcriptional  regulation  under  heat  stress,
regulates  photosynthesis  by  inducing  the  expression  of
downstream  transcription  factors[75]. BEH1 is  a  homolog  of
BZR1, genetic analysis indicates that the BZR1-PIF4 interaction
controls  a  core  transcription  network  by  integrating
brassinosteroids and light response[76]. 

The performance and sensitivity of HB-PLS using
SPLS as a comparison

We  tested  the  HB-PLS  method  in  comparison  with  SPLS
using  two  metabolic  pathways,  lignin  biosynthesis  pathway
and  a  unified  photosynthesis  pathway  whose  regulatory
genes are largely and partially known, respectively. We found
that  HB-PLS could identify  more positive known TFs that  are
supported  by  existing  literature  in  the  output  lists.  To
examine  which  methods  can  rank  relatively  more  positive
known  TFs  to  the  top  of  output  regulatory  gene  lists,  we
plotted  receiver  operating  characteristic  curves  (ROC)  and
calculated  the  area  under  the  ROC  curve  (AuROC),  which
reflects  the  sensitivity  versus  1-specificity  of  a  method.  The
results  are  shown  in Fig.  6.  For  lignin  biosynthesis  pathway,
HB-PLS was capable of ranking more positive known pathway

a b

 
Fig.  5    The implementation of  Huber-Berhu-Partial  Least  Squares  (HB-PLS)  to  identify  candidate regulatory  genes (purple  and coral  nodes)
controlling photosynthesis and related pathway genes. (a) was compared with the sparse partial least squares (SPLS) method (b) in identifying
regulators  that  affects  maize  photosynthesis  light  reaction  and  Calvin  cycle  pathway  genes.  The  green  and  yellow  nodes  within  the  cycles
represent  photosynthesis  light  reaction  pathway  genes  and  Calvin  cycle  pathway  genes,  respectively.  Coral  nodes  in  the  circles  represent
positive predicted biological process or pathway regulators that are supported by existing literature, and shallow purple nodes contain other
predicted TFs that do not have experimentally validated supporting evidence at present.
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regulators to the top in the inferred regulatory gene list. As a
result, the AuROC of HB-PLS (0.94) (Fig. 6a) is much large than
that of SPLS (0.73) (Fig. 6b). For the unified light reaction and
Calvin  cycle  pathway,  the  true  pathway  regulators  have  not
been  fully  identified,  and  they  are  only  partially  known.
Although SPLS only identified the 6 positive known pathway
regulators  in  comparison  with  10  identified  by  HB-PLS,  SPLS
ranked 4 out 6 positive known pathway regulators to the top
8  positions,  resulting  in  slightly  higher  sensitivity  versus  1-
specificity.  HB-PLS  identified  10  positive  known  regulators
among  the  top  33  regulatory  genes,  which  are  more  evenly
distributed  in  the  list,  resulting  in  relatively  smaller  AuROC
(0.49)  as  compared  to  the  AuROC  of  SPLS  (0.64).  The  overall
lower  AuROC  values  for  both  methods  for  photosynthesis
pathway  are  probably  owing  to  the  low  number  of  positive
known regulatory genes for this pathway.

Given  the  fact  that  lignin  biosynthesis  pathway  regulators
have been well identified and characterized experimentally[77],
they are specifically suited for examining the efficiency of the
HB-PLS  method  for  each  pathway  gene.  We  selected  two
methods,  SPLS  and  PLS,  as  comparisons.  For  each  output  TF
list to a pathway gene yielded from one of three methods, we
applied  a  series  of  cutoffs,  with  the  number  of  TFs  retained
varying from 1 to 40 in a shifting step of 1 at a time, and then
counted  the  number  of  positive  regulatory  genes  in  each  of
the  retained  lists.  The  results  are  shown  in Supplementary
Fig. S1. It is obvious that for almost every pathway gene, HB-
PLS has higher sensitivity versus specificity.

The results  indicate  that  the HB-PLS and SPLS regressions,
in  many  cases,  are  much  more  efficient  in  recognizing
positive  regulators  to  a  pathway  gene  compared  to  the  PLS
regression (Supplementary Fig.  S1).  For most pathway genes
like PAL1, C4H, CCR1, C3H,  and COMT1,  HB-PLS method could
identify  more  positive  regulators  in  the  top  20  regulators  as
compared  to  the  SPLS  method.  For HCT, CCoAOMT1, CAD8,
and F5H, HB-PLS was almost always more efficient than SPLS
when the top cut-off lists contained fewer than 40 regulators.
For  pathway  gene CAD8,  both  SPLS  and  PLS  both  failed  to
identify  positive  regulators  while  HB-PLS  performed  more
efficiently. 

DISCUSSION

The identification of gene regulatory relationships through
constructing  GRNs  from  high-throughput  expression  data
sets has some inherent challenges due to high dimensionality
and  multicollinearity.  High  dimensionality  is  caused  by  a
multitude  of  gene  variables  while  multicollinearity  largely
results from a large number of genes versus a relatively small
sample  size.  In  this  study,  we  combined  three  types  of
computational  approaches,  statistics  (PLS),  machine  learning
(Semi-unsupervised  learning)  and  convex  optimization
(Berhu  and  Huber)  for  simulating  gene  regulatory  relation-
ships,  as  illustrated  in Fig.  7,  and  our  results  showed  this
integrative approach is viable and efficient.

One  method  that  we  frequently  use  to  deal  with  dimen-
sionality  and  multicollinearity  is  partial  least  squares  (PLS),
which couples dimension reduction with a regression model.
However,  because  PLS  is  not  particularly  suited  for
variable/feature  selection,  it  often  produces  linear  combi-
nations  of  the  original  predictors  that  are  hard  to  interpret
due  to  high  dimensionality[78].  To  solve  this  problem,  Chun
and  Keles  developed  an  efficient  implementation  of  sparse
PLS, referred to as the SPLS method, based on the least angle
regression[79].  SPLS  was  then  benchmarked  by  means  of
comparisons to well-known variable selection and dimension
reduction approaches via simulation experiments[78]. We used
the  SPLS  method  in  our  previous  study[41] and  found  that  it
was  highly  efficient  in  identifying  pathway  regulators  and
thus used it as a benchmark for evaluating the new methods.

In this study, we developed a PLS regression that incorpo-
rates  the  Huber  loss  function  and  the  Berhu  penalty  for
identification  of  pathway  regulators  using  high-throughput
gene  expression  data  (with  dimensionality  and  multicolli-
nearity).  Although  the  Huber  loss  function  and  the  Berhu
penalty  have  been  proposed  in  regularized  regression
models[43,80],  this  is  the  first  time  that  both  of  them  were
combined  with  the  PLS  regression  at  the  same  time.  The
Huber  function is  a  combination of  linear  and quadratic  loss
functions.  In  comparison  with  other  loss  functions  (e.g.,
square  loss  and  least  absolute  deviation  loss),  Huber  loss  is
more  robust  to  outliers  and  has  higher  statistical  efficiency
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Fig. 6    The receiver operating characteristic (ROC) curves of Huber-Berhu-partial least squares (HB-PLS) and sparse partial least squares (SPLS)
methods for  identifying pathway regulators  in Arabidopsis  thaliana.  (a)  Lignin  biosynthesis  pathway;  (b)  a  merged pathway of  light  reaction
pathway and Calvin cycle pathway.

Huber­Berhu partial least squares regression
 

Deng et al. Forestry Research 2021, 1: 6   Page 9 of 13



ℓ2 ℓ1

ℓ2 ℓ1

than  the  LAD  loss  function  in  the  absence  of  outliers.  The
Berhu  function[33] is  a  hybrid  of  the  penalty  and  the 
penalty. It gives a quadratic penalty to large coefficients and a
linear  penalty  to  small  coefficients.  Therefore,  the  Berhu
penalty  has  advantages  of  both  the  and  penalties:
smaller  coefficients  tend  to  shrink  to  zero  while  the
coefficients  of  a  group  of  highly  correlated  predictive
variables are not changed much if their coefficients are large.

A  comparison  of  HB-PLS  with  SPLS  and  also  PLS  suggests
that HB-PLS can identify more true pathway regulators. This is
an advantage over either SPLS or PLS (Supplementary Fig. S1)
when  experimental  validation  is  concerned.  The  application
of  HB-PLS  and  SPLS  methods  to  identification  of  lignin
biosynthesis  pathway  regulators  in A.  thalian led  to  the
identification  of  15  and  15  positive  pathway  regulators,
respectively,  while  application  of  the  HB-PLS  and  SPLS
methods  to  identification  of  photosynthesis  pathway
regulators in A. thalian resulted in 10 and 6 positive pathway
regulators,  respectively.  The  outperformance  of  HB-PLS  over
SPLS (Fig. 6a) and PLS (Supplementary Fig. S1) implicates that
the use of Huber loss function and Berhu penalty function for
convex  optimization  contributed  to  the  recognition  of  true
pathway  regulators  and  rank  them  at  the  top  of  the  output
lists. It also suggests the viability and the increased power of
combination  of  statistics  (PLS),  machine  learning  (Semi-
unsupervised  learning)  and  convex  optimization  (Berhu  and
Huber) for recognition of regulatory relationships. In addition,
the  ROC  plotting  suggests  that  HB-PLS  method  has
comparable sensitivity versus 1-specificity compared to SPLS
because  HB-PLS  achieved  a  higher  AuROC  for  lignin
biosynthesis  pathway  but  a  lower  AuROC  for  the  unified
photosynthesis  pathway  as  compared  to  SPLS  (Fig.  6).
However,  the  fact  that  the  HB-PLS  identified  the  same  or
higher  number  of  positive  true  regulators  than  SPLS  for  the

two  pathways  we  analyzed,  and  the  sensitivity  of  HB-PLS  is
much  better  than  that  of  SPLS  for  lignin  pathway  whose
regulatory genes are more complete, and slightly worse than
that  of  HB-PLS  for  photosynthesis  light  reaction  and  Calvin
cycle  pathway  (Fig.  5 and Supplementary  Fig.  S1)  whose
regulatory genes are only partially known. Therefore,  HB-PLS
has  an  overall  larger  advantage.  Unfortunately,  except  the
two  pathways  we  evaluated,  there  are  almost  no  other
metabolic  pathways  whose  regulatory  genes  have  been
mostly identified. Our analysis showed that the two methods
could  empower  the  recognition  of  pathway  regulators
including  some  unique  pathway  regulators,  and  thus  are
useful in continued research. 

CONCLUSIONS

A new method called the HB-PLS regression was developed
for  identifying  biological  process  or  pathway  regulators  by
integration  of  statistics,  machine  learning  and  convex
optimization approaches.  In HB-PLS,  an accelerated proximal
gradient  descent  algorithm  was  specifically  developed  to
solve Huber and Berhu optimization, which can estimate the
regression  parameters  by  optimizing  the  objective  function
based  on  the  Huber  and  Berhu  functions.  Characteristic
analysis  of  the  Huber-Berhu  regression  indicated  it  could
identify sparse solution. When modeling the gene regulatory
relationships  from  regulatory  genes  to  pathway  genes,  HB-
PLS  is  capable  of  dealing  with  the  high  multicollinearity  of
both regulatory genes and pathway genes. Application of the
HB-PLS to real A. thaliana high-throughput data showed that
HB-PLS  could  identify  majority  positive  known  regulatory
genes  that  govern  two  pathways.  Sensitivity  verse  1-
specificity  plotting  showed  that  HB-PLS  could  rank  more
positive  known  regulators  to  the  top  of  output  regulatory
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Fig.  7    An integrative framework for identifying biological  process and pathway regulators from high-throughput gene expression data by
integration of statistics, machine learning and convex optimization. PLS: Partial least squares.
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gene  lists  for  lignin  biosynthesis  pathways  while  SPLS  can
rank more for the unified photosynthesis pathway. Our study
suggests that the overall performance of HB-PLS exceeds that
of  SPLS  but  both  methods  may  have  comparable
sensitivity/specificity and are instrumental for identifying real
biological  process  and  pathway  regulators  from  high-
throughput gene expression data.  
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