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In human–robot collaborative tasks, the performance of robot path planning has a direct
impact on the robot-to-human hand-over process, or even the collaboration quality. In
this work, we propose an evaluation study on multiple robot path planners with different
metrics and reveal their pros and cons in representative human–robot collaborative man-
ufacturing contexts. Afterward, based on the proposed metrics, we define a cost function for
the dual-arm robot to choose optimized path planning solutions with maximum efficiency
for its human partner in human–robot collaboration. We implement the proposed evalua-
tion and optimization approaches to multiple realistic human–robot collaborative manufac-
turing contexts. Experimental results and evaluations suggest that our approaches are able
to provide positive solutions for the robot path planner selection and also open a window
for exploring more complicated and general robot path planning applications to human–
robot collaborative tasks in smart manufacturing contexts. [DOI: 10.1115/1.4046577]
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1 Introduction
Robotics technology plays a significant role in the manufacturing

evolution as it can facilitate the manufacturing process to be
more effective and intelligent than traditional labor-intensive
manners [1–4]. Industrial robots have been extensively utilized in
different kinds of manufacturing tasks such as welding, sorting,
polishing, and 3D printing [5,6]. With the complexity increasing
and configuration updating of products, however, the limitation
of traditional robotics technology occurs gradually. For example,
in the automotive final assembly phase, about 60% of tasks are
manually accomplished by human workers because fenced indus-
trial robots are inflexible and too large for automotive final assem-
bly processes. Assembly is the most challenging subtask in vehicle
production processes due to its nature of heavy manual labor,
which affects the manufacturing quality and ergonomics distinc-
tively. Such similar issues also exist in other application areas
such as 3C industry, agriculture, and food industry [7,8]. In
recent years, collaborative robotics technology provides effective
solutions to these challenges. Collaborative robots are able to
work with humans as partners to conduct shared tasks. Through
human–robot collaboration, the tasks can be co-finished appropri-
ately by taking advantages of the intelligence of humans and the
accuracy of robots.
In human–robot collaborative tasks, handing over the parts or

tools to each other is an indispensable and significant physical inter-
action [9]. Hand-over is known as a cooperative action/behavior to
meet the needs of each other by delivering a desired object [10]. For
example, in the automotive maintenance process, two human
workers may hand over auto parts or tools to each other for the
vehicle inspection or repairing. With the increasing applications
in different kinds of manufacturing contexts, the collaborative

robot is also expected to grasp and hand over target parts to its
human partner seamlessly in human–robot collaboration just like
human–human hand-over.
During the robot-to-human hand-over process, the performance

of robot path planning has a direct impact on the hand-over execu-
tion, or even the collaborative task quality. Imaging that a collabo-
rative robot grasps a target part and delivers to its human partner on
a conveyor-type assembly line, if the robot plans its motion with too
many waypoints or a long path length from the start-point to the
destination, the human may feel uncomfortable or the human–
robot team may miss the part assembly. In addition, for different
sorts of tasks in diverse working settings, the robot may need differ-
ent kinds of corresponding motion planning algorithms to achieve
robust path planning and stable operation performance to keep
the collaborative tasks well conducted. Motivated by these issues
in human–robot collaboration, in this work, we develop an optimi-
zation strategy for the robot path planning by evaluating and dis-
cussing 12 kinds of path planning algorithms in multiple types of
representative human–robot collaborative tasks. This study also
opens a window for exploring more complicated and general
robot motion planning applications to human–robot collaborative
tasks in smart manufacturing contexts.
The major contributions of this work are (1) we develop an

optimal path planning selection strategy for the dual-arm robot to
grasp and deliver desired parts with maximum efficiency for its
human partner in human–robot collaboration and (2) we conduct
a comprehensive evaluation study on multiple robot path planning
algorithms with different metrics and reveal their pros and cons in
typical human–robot collaborative manufacturing contexts.

2 Related Work
With the increasing employment of robotics technology in a

variety of fields over the past decades, robot motion planning
issues have been attracting extensive attention from both academia
and industries. Such issues can be generally formulized as searching
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the task workspace of one or more complex geometric bodies for a
collision-free trajectory, which connects the given start-point and
target-point in obstacle-constrained or obstacle-free working envi-
ronments [11,12]. The research of robot motion planning emerged
in the mid-1960s and stepped into a prosperity period along with
the contributions of Lozano-Perez on spatial planning [13]. Cur-
rently, the family of robot motion planner has dozens of members
[14]. In this work, to investigate and optimize the robot motion
planning strategy in different kinds of human–robot collaborative
tasks, we study and discuss 12 kinds of typical robot motion plan-
ners. As presented in Table 1, these motion planners are categorized
by different categories.
When searching paths in configuration spaces, some planners

generally build one exploring tree to expand and generate a valid
route from the start-point to the destination. They are also known
as unidirectional motion planners, such as RRT, FMT, PRM,
EST, and SPARS. In order to improve searching performance,
several planners, including RRT-connect, SBL, and BKPIECE,
explore paths via the bidirectional search manner by constructing
two trees rooted at the start and goal configurations. These trees
expand paths simultaneously, and an efficient route will be gener-
ated when they are connected.
The query types of these path planners contain single query and

multiple query. In single query based planners, the heuristic algo-
rithm generally generates the valid collision-free path by adding
samples to the search space incrementally [22]. For multiple
query based planners (e.g., PRM and SPARS), they usually con-
struct roadmaps for the entire workspace. The valid configuration
states, which are connected to neighboring states by edges, are
sampled in the configuration space during the roadmap construction
process.
In path searching processes, these planners can expand sample

spaces by the random manner or the structured manner. To decrease
the computation time of path selection, several planners (e.g., SBL
and LazyPRM) employ the lazy collision checking strategy, by
which the valid collision-free path is able to be decided from all
sampled points [23–25]. As listed in Table 1, each of these path
planners has its own advantages and disadvantages in robot
motion planning because of their different features. Therefore, for
different situations in human–robot collaboration, the best robot
path planner should be selected to reduce robot motion time and
improve robot motion stability.

3 Mathematical Modeling
3.1 Robot–Human Hand-Over Problem Formulation. In

robot–human hand-over processes, human hand-over intentions
(e.g., “I need something”) can be characterized by multiple
methods such as vision systems [26] and natural language process-
ing [27]. In this study, we employ a practical and easy-to-use
approach by using a wearable sensory system to parameterize

human gestures to have the robot understand human hand-over
intentions. The sensory system we selected is Myo, which is config-
ured by a 9-degree-of-freedom inertial measurement unit (IMU) and
8 electromyography (EMG) sensors and can be worn by the human
at his/her forearm [28,29]. The human gesture information, includ-
ing forearm muscle activities and rotation angles, are able to be
tracked and detected by the EMG sensor and the IMU, respectively.
Based on our previous study in Ref. [28] and the collected human

gesture information, we develop a human intention recognition
approach via the hidden Markov model (HMM) for human–robot
collaboration in the object deliver or picking processes. The
HMM can be normally parameterized by five elements

λ = {N, M, π, A, B} (1)

where N is the number hidden states, M is the number of
observation symbols, π is the initial state distribution, A is a
N ×N matrix for the state transition probability distributions,
and B is a N×M matrix for the observation symbol probability
distributions [30].
When the human needs something from the robot, human inten-

tions, which maneuver the robot-to-human hand-over procedures,
can be considered as observation states of the HMM. Each intention
is described with M (M= 11 in this study) observation symbols,
which include three forearm rotation angles and eight EMG
signals collected by the Myo system. In this study, N is initialized
as 30 based on the validation set approach [31]. The initial state dis-
tribution π is able to start with any hand-over intentions. The prob-
ability matrices A and B are decided by the training data of different
human intentions. In the HMM training process, the goal is to adjust
and evaluate the parameters in Eq. (1) to obtain the maximum prob-
ability of the human intention characterized by the observation
state.
By taking advantage of the trained HMMs, we input the given

human gesture information to each HMM, then we can obtain the
output probabilities of this intention. Therefore, the human hand-
over intention is able to be classified and matched by the corre-
sponding HMM, which has the maximum output probability.
After that, using the recognized human intention, the robot can be
controlled to pick up objects and deliver them to its human
partner. Since it is not the main contribution of this study, more
details of human hand-over intention recognition process via
HMMs can be found in our previous work [28].

3.2 Evaluation Strategy of Path Planning Algorithms. In
order to comprehensively evaluate robot path planners in Table 1
in different kinds of human–robot collaboration contexts, we
employ three metrics, including path length, computation time,
and execution time, for them when they plan the robot from the
start-point to the destination.
When the planer searches a valid path for the robot, a bunch of

waypoints will be planned between two configurations. Based on
the generated waypoints on the valid path, we can estimate the
path length by

L =
∑N
n=1

��������������������������������������������
(xn − xn−1)2 + (yn − yn−1)2 + (zn − zn−1)2

√
(2)

where (x, y, z) denotes the position of the waypoints in the 3D
workspace, n= 1 represents the start waypoints, and N is the
number of waypoints. Generally, longer path length means that
the planner presents lower performance in the given task. Addi-
tionally, after a given path planner runs multiple times with the
same task in the workspace, the standard deviation of these path
lengths is able to reflect the stability of this path planner. A
high standard deviation indicates that the corresponding path
planner has a low stability, while a low standard deviation indi-
cates the inverse. Therefore, we also employ the standard devia-
tion of the path length testing results in a certain planning task

Table 1 Robot motion planners

Planner Ref. Directionality
Query
type

Expansion
manner Lazy

RRT [15] Unidirectional Single Random No
FMT [16] Unidirectional Single Structured No
PRM [17] Unidirectional Multiple Random No
RRT* [18] Unidirectional Single Random No
RRT-connect [11] Bidirectional Single Random No
PRM* [18] Unidirectional Multiple Random No
EST [19] Unidirectional Single Structured No
SBL [23] Bidirectional Single Structured Yes
SPARS [20] Unidirectional Multiple Structured No
LazyPRM [24] Unidirectional Multiple Random Yes
BKPIECE [25] Bidirectional Single Structured No
T-RRT [21] Unidirectional Single Random No
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to evaluate the performance of the planner. The standard deviation
can be calculated by

σL =

����������������������������
1
M

∑M
m=1

Lm −
1
M

∑M
m=1

Lm

( )2
√√√√ (3)

where M is the times of running of the path planner in the work-
space, m denotes each time of running, and m∈ [1, M ]. Usually,
the planner is regarded with better performance if it has a lower
standard deviation of the path length testing results.
The computation time refers to the total time cost of configuration

space searching, path optimization, and valid path generation when
the planner is called to plan a path for the robot from a given start-
point to the destination. The computation time can be detected by
our simulation system (see Sec. 4). In this study, we utilize TC to
denote the computation time of a certain path planner. Similarly,
the standard deviation of computation time is also used to assess
the planner performance

σTC =

�������������������������������
1
M

∑M
m=1

TCm −
1
M

∑M
m=1

TCm

( )2
√√√√ (4)

where M is the times of running of the path planner in the work-
space, m denotes each time of running, and m∈ [1, M ]. It also
can be considered that the shorter of the computation time and
the lower of the standard deviation, the better of the planner
performance.
The execution time is known as the time cost when the robot

moves from a given start-point to the destination on the generated
optimized path by the planner. The execution time can be
described as

TE =
∑N
n=1

(Tn − Tn−1) (5)

where N is the number of waypoints. We also employ the standard
deviation of the execution time to depict the performance of the path
planner

σTE =

������������������������������
1
M

∑M
m=1

TEm −
1
M

∑M
m=1

TEm

( )2
√√√√ (6)

where M is the times of running of the path planner in the work-
space, m denotes each time of running, and m∈ [1, M ]. Suppose
the robot moves with the same velocity on the valid paths generated
by different kinds of planners, the planner, which corresponds to a
shorter execution time and a lower standard deviation of execution
time, has better performance than others.

3.3 Optimization of Dual-Arm Robot Path Planning. In dif-
ferent kinds of obstacle-free or obstacle-constrained task environ-
ments, different path planners present diverse performance. In
order to enable the dual-arm robot to select a correct arm with the
best path planner to collaborate with its human partner in hand-over
tasks, we propose a cost function considering the planners’ path
length, computation time, and execution time for the robot. The
cost function is defined as

C(L′, T ′
C , T ′

E , S, σL, σTC , σTE ) =WA*(L′ + T ′
C + T ′

E)

+WB*(σL + σTC + σTE )
(7)

where WA is the static constant, WB is the dynamic constant, WA+
WB= 1, L′, T ′

C , and T ′
E are mean normalized path length, computa-

tion time, and execution time.
In the robot arm and path planner selection process, the static

constant WA works as the weight of the attention that humans pay
to the robot’s separate running result or short-term running

performance, while the dynamic constant WB acts as the weight
of the attention that humans pay to the robot’s long-term operation
performance. The weightsWA andWB provide a lot of flexibility for
tuning the motion planning preferences in different applications. If
we alter the weightsWA andWB in human–robot collaborative tasks,
some certain features will become comparatively advantageous for
different performance objectives to reflect the different preferences
of the applications. For example, if the human needs to work with
the robot for a same all-day collaboration task, he/she may adjust
WB to be greater than WA. On the contrary, if the human wants to
work with the robot for some separate tasks in a short term, he/
she can set WA with a bigger value than WB. The min-max normal-
ization method [32] is employed in this study.
Note that if a given path planner cannot generate a valid path

solution for the robot in the allocated task, we will regard this
path searching as failure, which will affect the value of cost func-
tion. When calculating L′, T ′

C , T
′
E, σL, σTC , and σTE in this study,

we set L, TC, and TE as zero in case the given planner fails to
search a valid path for the robot.
According to the definitions of L, TC, and TE above, it can be con-

cluded that the less of the cost function value the better of the
planner performance. By leveraging the cost function, the robot
can obtain the optimized selection of arm and path planner for
motion planning in different kinds of task settings by

(R*
A, P*) ← Cmin

RA, P∈Q
(L′, T ′

C , T ′
E, σL, σTC , σTE ) (8)

where R*
A denotes the kind of robot arm (e.g., left arm or right arm),

P denotes the kind of planner (see Table 1), and ℚ represents the
configuration space in human–robot collaborative tasks.

4 Experimental Study
4.1 Experimental Platform. In this work, we implement and

verify the proposed approach on a multi-modal collaborative assem-
bly platform, which is structured by our lab for the study of human–
robot collaboration in smart manufacturing contexts. The platform
consists of a dual-arm robot YuMi and a set of multi-modal based
human–robot interactive interfaces, such as wearable sensory
systems, 3D vision systems, and physiological sensing systems.
All the equipment of the platform are controlled by the robot oper-
ating system (ROS) [33]. To get an objective evaluation for path
planners, we employ the same computer as a control center to run
high level robot control algorithms and motion planning algorithms
in the same working condition.

4.2 Task Description. In this experimental study, the robot
works with its human partner to assemble a high-fidelity model
vehicle in the manufacturing context. The human wears the Myo
sensory system to trigger the robot for hand-over tasks based on
our human intention recognition model (see Sec. 3.1). The robot’s
motion paths are generated by the planners listed in Table 1. The
Open Motion Planning Library [34] is employed to operate path
planners in the ROS environment.
As presented in Fig. 1, during the robot-to-human hand-over

process, the robot moves its left arm or right arm from point A1 or

Fig. 1 The robot collaborates with its human partner for assem-
bling a high-fidelity model vehicle: (a) before picking up,
(b) picking up, and (c) delivering
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A2 to point B1, B2, or B3, then picks up the vehicle seat and delivers it
to the human at point C. When the robot grasps the vehicle seat at
point B1, B2, or B3, as shown in Fig. 1(b), its grasping orientation
is assigned to be downward. The initial positions of each arm are
same for each picking up-and-delivering experiment. The path
length, computation time, and execution time of each experiment
include the task of moving the arm from the initial position,
picking up the target object, and delivering to the human. In order
to obtain reliable data of the length path, computation time, and exe-
cution time, each path planner run 20 times for the allocated motion
task on our experimental platform. In robot-to-human hand-over
tasks, three vehicle seats (front right seat (seat 1), rear seat (seat
2), and front left seat (seat 3)) on the workbench need to be picked
up and delivered by the robot. The front right seat is located near
the robot right arm, the rear seat is located between the right arm
and left arm, and the front left seat is located near the robot left
arm. In the hand-over process, we develop a real-time robot
control system using MoveIt! package [35] based on the ROS envi-
ronment to acquire the number of way points, the computation time,
and the execution time of each path planner. After that, the metrics
we defined in Sec. 3.2 can be calculated via these collected data.
To comprehensively test and evaluate the path planners in differ-

ent working environments, we employ three typical kinds of hand-
over scenarios in obstacle-constrained environments. As shown in
Fig. 2, different types of obstacles are arranged for each vehicle
seat. In these tasks, via the generated paths from path planners,
the robot utilizes its right arm or left arm to pick up the front
right seat, front left seat, and rear seat, then delivers them to the
human, respectively. Through the collision-aware plug-in in our
simulation system, the path planner can be aware of the geometrical
information of obstacles. Then, the path planner attempts to search a
valid path for the robot based on the obstacle-constrained configu-
ration space. By taking advantage of the valid paths, the robot can
employ its arms to pick up vehicle seats and work with its human
partner in each scenario.

5 Results and Evaluations
5.1 Path Planning Evaluation in Obstacle-Constrained

Environments. The path length calculation of each path planner
for the vehicle seat picking up and delivery are shown in Figs. 3
and 4, respectively. When the robot operates the seats via its right
arm, as presented in Fig. 3, different path planners generate
diverse lengths of valid paths. The path lengths of seat 1 operation
are generally shorter than those of seat 3 operation because seat 1 is
closest to the right arm. In this set of evaluation, the PRM planner

shows a shortest path for seat 1 operation, while the RRT-connect
planner generates a shortest path for seat 3 operation. When operat-
ing seat 2, the RRT* planner presents the best performance in path
length evaluation. Similarly, in Fig. 4, when the vehicle seats are
operated by the robot left arm, all the planners generate shorter
valid paths for seat 3 operation than those for seat 1 operation
since the seat 3 is located near the robot left arm. Among these plan-
ners, the RRT-connect generate a shortest path for the farthest seat
(seat 1), while it presents a longest path for the closest seat (seat 3).
Based on the collected path lengths of each path planner, as listed

in Table 2, we calculate their standard deviations. When the vehicle
seats are operated using the robot right arm, it can be seen that the
T-RRT planner, the FMT planner, and the LazyPRM planner
present lowest standard deviations for seat 1 operation, seat 2 oper-
ation, and seat 3 operation, separately. However, the performance of
these planners is different when the robot left arm is employed. In
this situation, the SPARS planner shows a lowest standard deviation
for seat 1 operation, while the RRT-connect planner and the FMT
planner are more stable in seat 2 operation and seat 3 operation,
respectively.
The computation time of each path planner in vehicle seat oper-

ation are calculated and presented in Figs. 5 and 6. When the robot
right arm is employed, as shown in Fig. 5, the RRT-connect
planner is able to search a valid path for seat 1 operation with
the least computation time. For seat 3 operation, the EST
planner shows a best performance in computation time cost.
When operating seat 2, most planners’ computation time is under
0.4 s. However, the BKPIECE planner, which costs about 1.1 s
for searching a valid path, shows a worst performance in compu-
tation time evaluation.
The standard deviations of computation time of each path planner

are shown in Table 3.When the robot right arm is used for the vehicle
seat operation, the EST planner presents lowest standard deviation
for seat 1 operation and seat 3 operation. For seat 2 operation, the

Fig. 2 Hand-over tasks in obstacle-constrained environments

Fig. 3 The path length calculation of each path planner when
the robot right arm is used

Fig. 4 The path length calculation of each path planner when
the robot left arm is used

Table 2 The standard deviations of path length of each path
planner

Planner

Robot right arm Robot left arm

Seat 1 Seat 2 Seat 3 Seat 1 Seat 2 Seat 3

RRT 0.31559 0.25442 1.3649 0.94348 0.4084 0.45455
FMT 0.36609 0.21842 1.5142 0.57614 0.35854 0.20558
PRM 0.22254 0.22583 1.9171 0.85262 0.44564 0.21466
RRT* 0.31179 0.25234 1.2331 1.1206 0.48685 0.21756
RRT-connect 0.30841 0.35592 0.30841 1.0102 0.29516 1.0102
PRM* 0.22772 0.39028 0.54806 1.1409 0.33726 0.21466
EST 0.22062 0.30953 1.2499 0.94096 0.37805 0.21985
SBL 0.22087 0.343 1.4525 1.4369 0.67286 0.36555
SPARS 0.22099 0.473 1.3347 0.42769 0.65154 0.21984
LazyPRM 0.22625 0.7674 0.089731 0.79646 0.42261 0.45646
BKPIECE 0.22121 0.76357 1.5636 1.0474 0.85334 0.21664
T-RRT 0.22027 0.50056 0.51778 1.0113 0.3422 0.47436

Note: The bold values indicates the lowest standard deviations of path length
of each path planner when the three seats are operated by each robot arm.
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RRT* planner shows a distinct stable when searching a valid path.
When the vehicle seats are operated through the robot right arm, it
can be observed that the PRM* planner, the PRM planner, and the
RRT* planner have lowest standard deviations for seat 1 operation,
seat 2 operation, and seat 3 operation, respectively.
Figures 7 and 8 depict the execution time evaluation of each

path planner in vehicle seat operation. As presented in Fig. 7,
when the robot right arm is utilized for seat 1 (the closest seat)
operation, the execution time on most generated paths are
similar to each other. However, for the farthest seat (seat 3), the
diversity of the execution time is shown obviously. Similarly, in
Fig. 8, it can be seen that the execution time of seat 3 operation
are close to each other when the robot right arm is employed.
When operating seat 2, the RRT planner shows a fastest path
for the robot. However, the RRT-connect planner generated a
most time-saved path for the robot when seat 1 need to be
picked up and delivered.
The standard deviations of execution time of each path planner

are illustrated in Table 4. When the robot right arm is employed
to pick up and deliver vehicle seats, the FMT planner generates
the most stable path than that of other planners in seat 1 operation
and seat 2 operation. The LazyPRM planner presents a lowest stan-
dard deviation of execution time in seat 3 operation. When operat-
ing seat 1 and seat 2 using the robot left arm, the RRT planner

shows the most robust performance. However, the PRM* is most
time-saved option in seat 3 operation.

5.2 Path Planning Optimization in Different Tasks. In this
study, since we consider the proposed approach to be used in a
long time human–robot collaborative work, the values of WA and
WB in Eq. (7) are selected as WA= 0.4 and WB= 0.6, respectively.
Based on the evaluation results in Sec. 5.1, we figure out the cost
comparisons of the two robot arms in vehicle seat operation. As
shown in Fig. 9, when seat 1 is operated, it can be seen that it is
better to choose robot right arm than left arm. In addition, when
the right arm is employed, it is the best to select the RRT planner
for the robot path planning. In addition, Fig. 10 suggests that,
when seat 2 is operated, the robot right arm with FMT planner is
the best option. Moreover, from Fig. 11, it can be observed that
the robot left arm with the T-RRT planner is the best way to
operate seat 3.
The results of robot path planning optimization based on the cost

function are tested and verified in realistic human–robot collabora-
tive manufacturing contexts. Based on our developed approach in
Ref. [21] and the use of standard human gesture expressions in
the hand-over experiments of this study, all the human “Need”
intentions could be always recognized.
Figure 12 presents one of the optimized strategies that the robot

employs its right arm with the FMT planner to pick up seat 2 and
deliver it to its human partner. The path length of the seat 2 oper-
ation is about 1.4 m, the computation time is about 0.19 s, the exe-
cution time is about 17 s, and the cost of is about 1.25. As shown in
Fig. 12(a), the robot is ready for the collaborative task in the work-
space. Based on the optimized strategy, the robot moves to the
target seat in Figs. 12(b) and 12(c). After picking up the seat, as
presented in Fig. 12(d ), the robot hands it over to the human.
Then it returns to its original position, as depicted in Figs. 12(e)
and 12( f ). The successful robot-to-human hand-over verification
indicates that our proposed evaluation and optimization approaches
are able to provide positive strategies for the robot path planner
selection in human–robot collaborative tasks in smart manufactur-
ing contexts.

6 Conclusions and Future Work
In this work, we have proposed an evaluation study on multiple

robot path planners with different metrics, such as path length, com-
putation time, and execution time, for human–robot collaboration in
smart manufacturing contexts. Based on the proposed metrics, we
have defined a cost function for the robot to choose optimized
path planning solutions to finish corresponding human–robot col-
laborative tasks. Additionally, by analyzing the empirical study
data, we have successfully enabled the robot to select best ways

Table 3 The standard deviations of computation time of each path planner

Planner

Robot right arm Robot left arm

Seat 1 Seat 2 Seat 3 Seat 1 Seat 2 Seat 3

RRT 0.005732 0.015693 0.023198 0.25471 0.016639 0.008628
FMT 0.021055 0.012457 0.049019 0.1497 0.015096 0.008613
PRM 0.010929 0.016543 0.054537 0.14019 0.010532 0.010194
RRT* 0.009488 0.006864 0.037279 0.10403 0.057555 0.006146
RRT-connect 0.005826 0.013073 0.027142 0.28881 0.061862 0.016388
PRM* 0.005362 0.011472 0.022622 0.10101 0.084969 0.016666
EST 0.005355 0.23394 0.018561 0.15892 0.036946 0.017777
SBL 0.012124 0.007957 0.045608 0.12573 0.081813 0.017965
SPARS 0.009649 0.01134 0.021244 0.12442 0.10993 0.015761
LazyPRM 0.016859 0.026287 0.025181 0.15923 0.1004 0.010729
BKPIECE 0.008875 0.18301 0.062276 0.31677 0.074343 0.011531
T-RRT 0.006623 0.006876 0.03778 0.47941 0.10099 0.008139

Note: The bold values indicates the lowest standard deviations of path length of each path planner when the three seats are operated by each robot arm.

Fig. 5 The computation time calculation of each path planner
when the robot right arm is used

Fig. 6 The computation time calculation of each path planner
when the robot left arm is used
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to finish its tasks in different kinds of scenarios. Moreover, we have
implemented the proposed evaluation and optimization approaches
to multiple realistic human–robot collaborative manufacturing con-
texts. Experimental results and evaluations have suggested that our
approaches can provide positive solutions for the robot path planner
selection.

In the experiments of this study, we have got all three optimal
planners (RRT, FMT, and T-RRT) are unidirectional, single
query, and non-lazy algorithms. However, for other applications,
the optimal planners may not be unidirectional, single query, or
non-lazy algorithms. In addition, if we change the values of WA

and WB of Eq. (7) in human–robot collaborative tasks, some
certain features of different path planners would also be altered.
Therefore, more complicated and general robot path planning appli-
cations will be investigated in future work to reveal deeper property
comparisons of unidirectional and bidirectional, single query and
multiple query, and non-lazy and lazy for these path planners in
smart manufacturing contexts.
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