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Abstract— Human-multi-robot collaboration is becoming
more and more common in intelligent manufacturing. Optimal
assembly scheduling of such systems plays a critical role in their
production efficiency. Existing approaches mostly consider
humans as agents with assumed or known capabilities, which
leads to suboptimal performance in realistic applications where
human capabilities usually change. In addition, most robot
adaptation focuses on human-single-robot interaction and the
adaptation in human-multi-robot interaction with changing
human capability still remains challenging due to the
complexity of the heterogeneous multi-agent interactions. This
paper proposes a real-time adaptive assembly scheduling
approach for human-multi-robot collaboration by modeling and
incorporating changing human capability. A genetic algorithm
is also designed to derive implementable solutions for the
formulated adaptive assembly scheduling problem. The
proposed approaches are validated through different simulated
human-multi-robot assembly tasks and the results demonstrate
the effectiveness and advantages of the proposed approaches.

1. INTRODUCTION

In developing intelligent manufacturing, human-robot
collaborations have been becoming a new paradigm to
leverage the capabilities of both humans and robots. During
such collaborations, efficient scheduling plays an important
role in improving production efficiency.

Many approaches have been proposed for human-robot
assembly scheduling. A logic mathematic method is
developed to quantitatively describe the subtask allocation
problem by considering the system tradeoff between the
assembly time cost and payment cost[1]. In order to support
safe and efficient coordination between humans and robots, a
centralized algorithm is presented, which handles tightly
intercoupled temporal and spatial constraints[2]. A novel
framework is proposed, which integrates both physical and
social human-robot interaction factors into the robot motion
controller for human-robot collaborative assembly tasks[3].
To minimize the cycle time through trajectory selection, task
sequence and task allocation, an integrated motion planning
and scheduling method is presented in [4]. To alleviate the
information overload problem of human operators, a human
operator is made responsible for overseeing autonomous
agents and providing feedback based on sensor data[5]. In
order to balance the required product and process
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characteristics, an approach based on a detailed analysis of the
skills of humans and robots is adopted in [6].

However, these existing approaches for human-robot
cooperative assembly largely consider humans as agents with
assumed or known capabilities and performance. However,
most existing approaches in such scheduling mainly assume
that the human capability is known and unchanged. During
human-robot collaborations, while the capabilities of robots
usually remain unchanged, human capabilities are subject to
change due to factors such as muscle fatigue, mental fatigue,
workload, and environmental effects. This may lead to
performance degradation in realistic applications due to
dynamic changes in human capabilities. Therefore, it is critical
to investigate this calculated capability issue and real-time
adaptive scheduling.

Recently some robot adaptation approaches have been
proposed in human-robot interaction. A time series trust
model of human coworker to robot in a collaborative
manufacturing task is proposed[7] in which human
performance is modeled based on muscle fatigue and recovery
dynamics. A robotic scheduling and control capability is
proposed, which can adapt to the changing preferences of a
human while providing strong guarantees for synchronization
and timing of activities[8]. Some other robot adaptation
approaches are also proposed to improve the human-robot
efficiency and safety based on the detection of human states
such as fatigue, distraction, motions and attributes [9][10][11].
However, these robot adaptation approaches mainly focus on
human-single-robot  interaction. =~ The adaptation in
human-multi-robot interaction considering changing human
capability still remains a challenge due to the complexity of
heterogeneous multi-agent interaction.

This  paper presents a  real-time  adaptive
human-multi-robot  collaboration assembly scheduling
problem according to the human capability changes. We
propose a human capability model by considering measurable
performance indices and then incorporate this model into the
human-multi-robot assembly problem. We then propose a
solution to dynamically generate the assembly schedule using
Genetic Algorithm (GA) according to the change of human
capability during the assembly process. In the experiments, we
simulate the changes in human capability and adaptively
generate the schedules for multiple robots and human. The
results show that the advantages of the proposed solution over
existing ones from multiple evaluation perspectives.

The rest of this paper is organized as follows. In Section II,
we present the assembly scheduling problem and its model,
the model of human capability and the idea of adaptive
assembly scheduling that incorporates human capability. In
Section III, GA is adopted to solve the adaptive scheduling
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problem. In Section IV, simulations of numerical examples of
a typical assembly scheduling problem are presented. Finally,
conclusions are made in Section V.

II. MODEL OF HUMAN-MULTI-ROBOT ASSEMBLY

A. Problem Statement and Representation

In the human-multi-robot assembling scenario, a single
human collaborates with multiple robots to complete a series
of assembly tasks, as shown in Fig. 1. In each task, one or
more parts are assembled. The human and the robots can be
modeled as heterogenous agents. Each task can contain
multiple subtasks and each subtask must be conducted by at
most one agent at each time instant. There may also be some
temporal constraints between the subtasks but there is only
one subtask that can be assigned to an agent in each time
epoch. In addition, the human capability is subject to change
and different from that of the robots. Given this fact, the
objective of human-multi-robot assembly scheduling is to
design an adaptive scheduler to find the best schedule so that
all tasks can be completed in the shortest amount of time.

We will also provide a formal representation of the
human-multi-robot assembly problem. Define m agents

aeA={a,,a,} , including capability-consistent robot
agents and capability-varying human agent, to complete n
tasks 7, (i=1,---,n ), which represents the set of steps

required to assemble one part. The subtasks 7/ (j=1,---,n,)
is a stage of procedure of task 7, . d:, specifies the required
processing time from agent a to subtask 7/ er

Seqq‘%,> =1 if subtask 7. should be started after 7/ is

accomplished. Otherwise, it is 0. The assembly scheduling
problem is then to find a schedule with minimum time when
all the tasks are completed.

B. Model of Assembly Scheduling

Define ’A:, S {O,l} as a binary decision variable for
assigning an agent a to a subtask 7/ at the beginning of the
time epoch ¢ €[1,T]. Define the estimated upper time limit as

T. Define B_, , € {0,1} as a binary decision variable, in
which B, , =1 if 7/ and 7 are assigned to the same

7. Otherwise, B

X <t/ .z

agent and 7/ succeeds 7 _=0.Lets,

and f, €[L,T] represent the start time and the finish time of

7/ respectively. The problem of human-multi-robot assembly

scheduling can then be formulated as
mixed-integer program expressed by:

a nonlinear

min(maxfﬂ} )
subject to:
T
ZrAa/ :1, \V/T,iief (2)
acd t=1 fi
) tA: <1, Vae AVt 3)
j=1
. J oy
By fa <spVE T et )
[, <T, V7]er )
S€q<T/ T‘1>'f;j <ST‘,VTl.j,T;V er (6)

where the objective function in (1) represents the overall
processing time of schedule that should be minimized.
Equation (2) ensures that each subtask is assigned only one
agent during each time epoch [#,7+1), constraints given in
equations (3) and (4) enforce that no agent is oversubscribed.
Equation (5) ensures that the finish time of no subtask exceeds
the upper limit 7 , and constraints of the processing order
between subtasks are satisfied by (6).

In addition, f,,s andd V1! er in (4)-(6) can be

obtained using the below equations:

T
d, = ZZ(d:, A ) Viler )

aed t=l1

tbl :zlAa/’ VTlifET,vt (8)
i acA i
tCT/ - be/ +”1b1/, Vz’lf er,t=2,---,T ©)
T .
Sr’ :T+l—ztcr/’ VTI./ (S (10)
' =1
f,/ =S5, +dr,, Vil er (11

i

where (7) is used to get the processing time of 7/,
intermediate variables 'br, and ’cr, in (8) and (9) are used to
calculate the start time s, in (10), equation (11) can be used

to derive finish time /, of 7.

II1. HUMAN CAPABILITY AND ADAPTIVE SCHEDULING

A. Model of Human Capability

In the above formulation, we assume that human
performance and capability remain unchanged throughout the
assembly process. But in realistic applications, human
capabilities change over time due to many other factors such
as fatigue, work intensity, absence of reasonable breaks or
circadian rthythms. Therefore, in order to capture such
capability changes in real-time with an effective and practical
solution, we propose to model the human capability and its
dynamics based on real-time measurable human performance
indices. Define the human capability at time k& as
¢, (k) €[0,1] so that its dynamics can then be modeled as:
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¢, (k+1) = min{l, max{0, ¢, (k) + o -Ap}} (12)
g (AP, () Ly i [ Ap, ()| =max {|Ap, (6|} > L,

Ap(k) =
% Z Ap, (k), otherwise.

(13)

where  P={p, |i=1--N} the  human
performance vector which contains N performance indices,

p, represents a normalized index of one type of measurable

represents

human performance, Ap,(k) is the value change of p, attime

k, a is a coefficient to weigh the effects of performance
change on capability change, and L, is a threshold for

dramatic performance change. If a performance index changes
dramatically (i.e., its value change is larger L, ), it indicates

the human is stimulated to increase his/her capability or
affected decrease his/her capability. In order to avoid the
over-effect of the dramatic change, we set the maximal
considerable change as L, . In other cases, we just take the

average index change into consideration for the human
capability dynamics.

For the measurable human performance index design, we
can consider indices which are important to the assembly
performance and can also be easily captured using available
sensing systems. For instance, we can design the indices as the
average speed of the human hand movement, the stability (e.g.,
speed variance) of the human hand movement, the assembly
accuracy of human operations, and the smoothness (e.g., hand
trajectory variance) of human operations over a period of time.
All these information can be captured using hand motion
capture techniques such as vision-based motion capture
systems[12], [13] or wearable hand devices such as smart
gloves[14].

B. Adaptive Assembly Scheduling According to Human

Capability

During the human-multi-robot assembly process, the
capability of robots can be considered stable, while the human
capability is usually varying. Existing approaches generate
assembly scheduling solutions by mostly considering humans
as agents with assumed and known capability that does not
change. If such a solution is applied to realistic cases where
human-capability-varies, it will lead to suboptimal
performance as the optimization of the original scheduling
will not hold anymore. Therefore, a real-time adaptive
assembly scheduling method should be adopted.

Defining a, € 4 as the human agent, and given the

variation in human capability, the processing time d:}

(V7] er) will be no longer constant. Instead, they should be

functions of human capabilities. Specifically, they should also
change in real-time according to the variations of human
capabilities. Based on this understanding, the process of the
proposed real-time adaptive assembly scheduling algorithm is
shown in Fig. 2. The algorithm will first generate an initial
schedule by solving the assembly scheduling problem in
Section II.B, and then during the process, periodically detect

Generate an
Initial Schedule
Execute Subtasks

Detect the Human Performance
and Calculate the Capability ¢, (k)

Update the Time Table and
Regenerate a Schedule for
all Unstart Subtasks

[ END

No|

Are al
Tasks
Finished?

Figure 2. Flowchart of the adaptive assembly scheduling algorithm

human performance indices and compute the human
capability index c,(k) using (12) and (13). If the change of

¢, (k) is higher than a predefined threshold L, , it will update
the processing time table for the human using

d* (k) =d* (0)/ c, (k) (14)
which continuously increases or decreases the task processing
time of human according to his/her capability variations. With
these updated processing times, the assembly scheduling
problem in Section II.B will be re-solved in real-time to
generate the best schedule for all the remaining subtasks to be
accomplished by multiple robots and human. With this
real-time adaptation plan, the assembly can always be
scheduled efficiently although the human capability may keep
changing during the human-multi-robot assembly process.
The approach to solving the assembly scheduling problem will
be introduced in the following section.

C. Genetic Solution to Assembly Scheduling

The assembly scheduling problem is similar to the Job
Shop Scheduling Problem (JSSP)[15], which is a nonlinear
mixed-integer and NP-hard problem with high computational
complexity. In order to solve it quickly with an acceptable
solution, we propose to adopt the Genetic Algorithm
(GA)[16], which is also often used to solve the JSSP. The GA
proposed in this paper is described as Algorithm 1. The core
components in the algorithm are explained in detail as below.

Algorithm 1: GA for Assembly Scheduling Problem
procedure GA for ASP

initial the population P by encoding;
for i < 1 to the max generation number
crossover P(i) at given probability p;

1
2
3
4
5: mutation P(i) at given probability pp,;
6 fitness calculation of each individual by decoding;
7 select P(i+1) from P(i);

8 record the best schedule;

9

output best schedule;

(1) Encoding: The encoding process is to express a
solution to the problem as a chromosome. A chromosome of
an individual is represented by two sections[17]: Agent
Selection (AS) section and Task Sequence (TS) section. AS
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Figure 3. Encoding of a schedule for Genetic Algorithm

stores the index of the agent to which 7/ is assigned, and TS

is the processing order of tasks. One example of encoding for
three agents and two tasks with each task having three
subtasks is shown in Fig. 3.

(2) Decoding: The decoding process is the mapping
approach from chromosomes to solutions. It needs to
maintain an idle timetable for each agent. After obtaining the
subtask sequence from the TS section, it is traversed from the
left to the right and the following steps repeated:

e If the subtask 7/ needs to be processed, get the
assigned agent a, from AS section;

e From the subtask sequence constrains, get the earliest
time when 7/ can be processed;

e  From the idle time table of a, , search the earliest time
slot which is long enough to execute 7/ ;
e Sets,, f,,andupdate the idle time table of a, .

The designed encoding and decoding operators can
guarantee the obtained solutions satisfy the constraints (2) to
(6). Crossover and mutation operators cannot destroy the
feasibility of solutions, so the careful design is required.

(3) Crossover: For the AS section, randomly select 2 loci
and swap the two parents’ genes between them with a
prescribed probability p, ; for the TS section, adopt the POX
method[18], which can ensure that the number of per task
index remains the same after crossover.

(4) Mutation: For the AS section, randomly select a locus,
and change the gene on it to the agent index that has the
shortest processing time for a given prescribed probability
p,, ; for the TS section, simply swap two random genes with
pﬂ? .

(5) Calculation of a Fitness: Use (15) to calculate the
fitness of a schedule. C is a predefined big integer.

C, schedule is infeasible;
C/max f

tjer

F= (15)

otherwise.

(6) Selection: The roulette wheel method[16] is adopted to
select feasible solutions.

(7) Initializing a Population: For each individual, the AS
and TS sections are generated separately and then
concatenated. While the AS section is generated by randomly
generating a number series from 1 to 7, the TS section is

generated by randomly permutating the initial task index
sequence [+ n---n| (every task index i

repeats 7; times) to get the TS section.

IV. HUMAN CAPABILITY AND ADAPTIVE SCHEDULING

A. Experimental Setup

In the first experiment, we assume that there are one
human and two robots who work collaboratively to complete
five tasks, i.e., to assemble five parts. For each task, the
following subtasks are needed in sequence: pick up part, pick
up a tool and assemble it. The task-subtask-robot combination
is (5-3-2). In addition, the last subtasks of part 4 and part 5
must not begin until all other parts are successfully assembled.
According to our formulation, there are five tasks, three agents
(a, is the human agent, a, and a, are robot agents) and three

subtasks for each task. In every task z,, subtask 7/ has to be

j+1
processed before 7/"' . 7, and 7, have to be processed

before all the subtasks of 7, to 7, .

We assume that the initial processing time table is shown
in Table I. The numbers in the table represent time segments,
where each segment is equal to 10 minutes. The processing
time of each subtask by a human agent a, is under the

assumption that the human has full capability and the number
999 means the subtask can not be assigned to the agent.
During the assembly process, human performance indices are
detected periodically to compute the human capability ¢, (k)

using (12) and (13); If the change in ¢, (k) is higher than a
predefined threshold L,, the human processing time in the

table is updated and the schedule for the subtasks that have not
started yet will be regenerated.

In order to comprehensively evaluate the schedule in
addition to total assembly time cost, we also define two
metrics which are task switch times and ratio of human work
time 1,,... as described below in detail.

o Task switch times: For an agent, if there is a sequence of
subtasks scheduled for processing then the task switch time is
the total switch times from one task to another. This indicates
the fluency of the task accomplishment.

® Ratio of human work time r,

“man - FOT @ schedule, this
refers to the ratio of human work time over the total finish
time. This indicates the minimization of human efforts during

task accomplishment.

After the first experiment, three other experiments with
different numbers of tasks and robots are carried out. The
results show that the overall processing time and the 7, are

decreased significantly.

B. Experimental Results and Analysis

In the GA implement, the population size is set to 160 and
the total generation number is 60. The possibility of crossover
and mutation is 0.8 and 0.1 respectively. The ratio of human
work time is 7, =0.8. The GA algorithm is implemented

using MATLAB. The total computation time required to
generate a schedule is approximately 5 seconds on a laptop
with 15-8350U processor and 8GB RAM.

The performance of GA is shown in Fig. 4. The initial
population includes many infeasible solutions, so the average
overall time is high. After several iterations, the feasible
solution and the suboptimal solution occupy the majority of
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TABLE L.

THE INITIAL PROCESSING TIME TABLE

Subtask
Agent
gen S R T A A A A A 5
a, 999 1 1 999 1 2 999 2 1 999 3 4 999 2 3
a, 4 3 4 3 2 1 3 2 2 3 5 6 4 3 4
a, 6 2 5 4 2 2 2 4 3 2 7 9 4 5 3
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Figure 4. GA performance
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Figure 5. The initial schedule

the population. Thus, the average overall time stabilizes
around 37 segments. The best schedule is found in the 22"
iteration, which shows that the algorithm is stable and
converges quickly.

Despite the changes in human capabilities, the initial
solution of GA is shown in the form of a Gantt chart in Fig. 5.
In that figure, each rectangle represents a subtask. The tuple
[i,j] in the rectangle represents the subtask 7/, and the

number below the tuple is the processing time segments for
the assigned agent. The overall processing time of this initial
schedule is 15 segments, the task switch time of the human
agent is 5, and 6 subtasks are assigned to the human agent.

The changes of four normalized human performance
indices and the calculated human capability c,(k) using
(12)-(13) are shown in Fig. 6. Given this changing capability,
the processing time of the human agent for specific subtask
increases, resulting in an overall processing time of 24
segments (Fig. 7). Consequently, the actual ratio of human
work time 7., becomes 0.92, which is higher than the

specified value of 0.8. On the other hand, the actual ratios of
the work times of the first and the second robots have dropped
from 1.00 and 0.63 to 0.63 and 0.42 respectively. This results
in a high workload for the human and long idle times for the
robots.

Based on the simulated human capability change in Fig. 4,
the adaptive assembly scheduling algorithm repeatedly
generates the schedules for the subtasks, which are still not
processed, at the beginning of time segments 4, 7 and 14
respectively ( Fig. 8 - Fig. 10). In Fig. 8§, by the time a change
in human capability is detected in time segment 4, subtasks
7}, 7;, 7; and 7, have already finished, and 7| has already
started. So the scheduler regenerates the schedule for the rest
of the subtasks. Because 7, will be finished at the end of time

segment 6, subtask 7, is started at 7 in the new schedule. The

subtask 7 is completed, 7; and 7, are still not finished at
time segment 7. The rest of the subtasks are scheduled again as
shown in Fig. 9. Finally, the last two subtasks z; and 7. are
scheduled when human capability changes at time segment 14.

The final actual processing schedule is shown in Fig. 11.
The overall completion time is 20, and the total human work
time is 9 time segments. Therefore, 7, . =0.45. The number

of subtasks assigned to the human has dropped from 6 to 3, the
task switch time of the human has dropped from 5 to 2, and
is also significantly reduced. The idles times of the

rhuman
robots are much shorter than in the initial schedule. This
allows the human to get reasonable idle time and have the
opportunity to restore performance and capability.
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C. Statistical Evaluations

In addition to the first experiment (5-3-2 combination), we
also designed experiments with more complicated
task-subtask combinations (7-28-2, 7-35-3, and 10-50-4) as
shown in Table II. The number of human and the human
capability change trend remains the same as the first
experiment. In addition, the last subtasks of the last three tasks
cannot begin until all other parts are successfully assembled.
The population size of GA is changed according to the number
of subtasks in order to ensure optimum performance.

As shown in Table 11, using the initial schedule, due to the
changing of human capability, the actual overall time is on
average 38.0% higher than the ideal case. The actual ratios of
human work time 7, .. are increased to around 0.90. Using

the adaptive scheduling algorithm proposed in this paper, the
overall time is dropped on average by 18.8% when compared
to the actual overall time of the initial schedule with changing
human capability. On average, the number of subtasks

TABLE II. THE RESULT OF EXPERIMENTS WITH MORE TASKS

Experiments
1 2 3
Number of Tasks 7 7 10
Number of Subtasks 28 35 50
Number of Robots 2 3 4
Population Size of GA 800 1000 12000
Initial Overall Time 51 50 58
Schedule Subtasks Assigned to 1 9 12
: Human
with Full
Human Task Switch Times 8 7 9
Capability T paman 0.76  0.72 0.71
Initial Overall Time 67 68 85
Schedule -
with SUbtaSkiI Assigned to 1 9 12
. uman
Changing
Human Task Switch Times 8 7 9
Capability Trman 090 091  0.89
Adaptive Overall Time 58 58 61
Schedule g a5k Assigned to
with Human 6 6 7
Changing Task Switch Times 5 4 5
Human
Capability Thman 0.64 052 0.66
TABLE III. THE STATISTICS OF PERFORMANCE IMPROVEMENTS
Decrease on Decrease Decrease on Human
Overall Time ON Fhuman Task Switch Times
Exp. 1 13.4% 28.9% 37.5%
Exp. 2 14.7% 42.8% 42.9%
Exp. 3 28.2% 25.8% 44.4%

assigned to humans dropped by 40.2%, and the actual ratios of
human work time 7., is smaller. The statistics of schedule

performance improvements also conclude in Table III. When
compared to the initial schedule with changing human
capabilities, the schedule generated by the adaptive scheduling
algorithm can significantly reduce the overall processing time,
the ratio of human work time and the task switch times.

V. CONCLUSIONSs

Using the framework proposed in this paper, we can
dynamically perform human-robot collaborative assembly
scheduling according to the modeled human capability. The
results of the simulated experiment show that the proposed
algorithm can adjust the scheduling real-time to adapt to
changing human capabilities. Adaptive scheduling can reduce
the overall assembly task completion time, and allows human
to get reasonable rest and improve assembly efficiency.

This paper focuses on the framework of adaptive assembly
scheduling. The experiments use one set of simulated data of
human capability. So we plan to detect the human
performance in real-world assembly scenarios using motion
capture systems, and test the proposed framework on more
complex tasks. Furthermore, this paper only studies
one-human and multi-robot collaboration assembly
scheduling problem. Multi-human and multi-robot
collaboration assembly scheduling problem adapting
multi-human capability will be studied in the future work.
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