
  

  

Abstract— Human-multi-robot collaboration is becoming 

more and more common in intelligent manufacturing. Optimal 

assembly scheduling of such systems plays a critical role in their 

production efficiency. Existing approaches mostly consider 

humans as agents with assumed or known capabilities, which 

leads to suboptimal performance in realistic applications where 

human capabilities usually change. In addition, most robot 

adaptation focuses on human-single-robot interaction and the 

adaptation in human-multi-robot interaction with changing 

human capability still remains challenging due to the 

complexity of the heterogeneous multi-agent interactions. This 

paper proposes a real-time adaptive assembly scheduling 

approach for human-multi-robot collaboration by modeling and 

incorporating changing human capability. A genetic algorithm 

is also designed to derive implementable solutions for the 

formulated adaptive assembly scheduling problem. The 

proposed approaches are validated through different simulated 

human-multi-robot assembly tasks and the results demonstrate 

the effectiveness and advantages of the proposed approaches.  

I. INTRODUCTION 

In developing intelligent manufacturing, human-robot 
collaborations have been becoming a new paradigm to 
leverage the capabilities of both humans and robots. During 
such collaborations, efficient scheduling plays an important 
role in improving production efficiency.  

Many approaches have been proposed for human-robot 
assembly scheduling. A logic mathematic method is 
developed to quantitatively describe the subtask allocation 
problem by considering the system tradeoff between the 
assembly time cost and payment cost[1]. In order to support 
safe and efficient coordination between humans and robots, a 
centralized algorithm is presented, which handles tightly 
intercoupled temporal and spatial constraints[2]. A novel 
framework is proposed, which integrates both physical and 
social human-robot interaction factors into the robot motion 
controller for human-robot collaborative assembly tasks[3]. 
To minimize the cycle time through trajectory selection, task 
sequence and task allocation, an integrated motion planning 
and scheduling method is presented in [4]. To alleviate the 
information overload problem of human operators, a human 
operator is made responsible for overseeing autonomous 
agents and providing feedback based on sensor data[5]. In 
order to balance the required product and process 
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characteristics, an approach based on a detailed analysis of the 
skills of humans and robots is adopted in [6]. 

However, these existing approaches for human-robot 
cooperative assembly largely consider humans as agents with 
assumed or known capabilities and performance. However, 
most existing approaches in such scheduling mainly assume 
that the human capability is known and unchanged. During 
human-robot collaborations, while the capabilities of robots 
usually remain unchanged, human capabilities are subject to 
change due to factors such as muscle fatigue, mental fatigue, 
workload, and environmental effects. This may lead to 
performance degradation in realistic applications due to 
dynamic changes in human capabilities. Therefore, it is critical 
to investigate this calculated capability issue and real-time 
adaptive scheduling. 

Recently some robot adaptation approaches have been 
proposed in human-robot interaction. A time series trust 
model of human coworker to robot in a collaborative 
manufacturing task is proposed[7] in which human 
performance is modeled based on muscle fatigue and recovery 
dynamics. A robotic scheduling and control capability is 
proposed, which can adapt to the changing preferences of a 
human while providing strong guarantees for synchronization 
and timing of activities[8]. Some other robot adaptation 
approaches are also proposed to improve the human-robot 
efficiency and safety based on the detection of human states 
such as fatigue, distraction, motions and attributes [9][10][11]. 
However, these robot adaptation approaches mainly focus on 
human-single-robot interaction. The adaptation in 
human-multi-robot interaction considering changing human 
capability still remains a challenge due to the complexity of 
heterogeneous multi-agent interaction. 

This paper presents a real-time adaptive 
human-multi-robot collaboration assembly scheduling 
problem according to the human capability changes. We 
propose a human capability model by considering measurable 
performance indices and then incorporate this model into the 
human-multi-robot assembly problem. We then propose a 
solution to dynamically generate the assembly schedule using 
Genetic Algorithm (GA) according to the change of human 
capability during the assembly process. In the experiments, we 
simulate the changes in human capability and adaptively 
generate the schedules for multiple robots and human. The 
results show that the advantages of the proposed solution over 
existing ones from multiple evaluation perspectives.  

The rest of this paper is organized as follows. In Section II, 
we present the assembly scheduling problem and its model, 
the model of human capability and the idea of adaptive 
assembly scheduling that incorporates human capability. In 
Section III, GA is adopted to solve the adaptive scheduling  
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Figure 1.  The framework of adaptive assembly scheduling 

problem. In Section IV, simulations of numerical examples of 
a typical assembly scheduling problem are presented. Finally, 
conclusions are made in Section V. 

II. MODEL OF HUMAN-MULTI-ROBOT ASSEMBLY 

A. Problem Statement and Representation 

In the human-multi-robot assembling scenario, a single 
human collaborates with multiple robots to complete a series 
of assembly tasks, as shown in Fig. 1. In each task, one or 
more parts are assembled. The human and the robots can be 
modeled as heterogenous agents. Each task can contain 
multiple subtasks and each subtask must be conducted by at 
most one agent at each time instant. There may also be some 
temporal constraints between the subtasks but there is only 
one subtask that can be assigned to an agent in each time 
epoch. In addition, the human capability is subject to change 
and different from that of the robots. Given this fact, the 
objective of human-multi-robot assembly scheduling is to 
design an adaptive scheduler to find the best schedule so that 
all tasks can be completed in the shortest amount of time.  

We will also provide a formal representation of the 
human-multi-robot assembly problem. Define m  agents 

 1, , ma A a a = , including capability-consistent robot 

agents and capability-varying human agent, to complete n  

tasks i  ( 1, ,i n= ), which represents the set of steps 

required to assemble one part. The subtasks j

i  ( 1, , ij n= ) 

is a stage of procedure of task i . j
i

ad


 specifies the required 

processing time from agent a  to subtask j

i  . 

,
1j y

xi

Seq
  

=  if subtask y

x  should be started after j

i  is 

accomplished. Otherwise, it is 0. The assembly scheduling 
problem is then to find a schedule with minimum time when 
all the tasks are completed. 

B. Model of Assembly Scheduling 

Define  0,1j
i

t aA


  as a binary decision variable for 

assigning an agent a  to a subtask j

i  at the beginning of the 

time epoch [1, ]t T . Define the estimated upper time limit as 

T . Define  
,

0,1j y
xi

B
  

  as a binary decision variable, in 

which 
,

1j y
xi

B
  

=  if j

i  and y

x  are assigned to the same 

agent and j

i  succeeds y

x . Otherwise, 
,

0j y
xi

B
  

= . Let j
i

s


 

and [1, ]j
i

f T


  represent the start time and the finish time of 

j

i  respectively. The problem of human-multi-robot assembly 

scheduling can then be formulated as a nonlinear 
mixed-integer program expressed by: 

 min max j
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where the objective function in (1) represents the overall 
processing time of schedule that should be minimized. 
Equation (2) ensures that each subtask is assigned only one 

agent during each time epoch [ , 1)t t + , constraints given in 

equations (3) and (4) enforce that no agent is oversubscribed. 
Equation (5) ensures that the finish time of no subtask exceeds 
the upper limit T , and constraints of the processing order 
between subtasks are satisfied by (6).  

In addition, , andj j j
i i i

f s d
  

, j

i    in (4)-(6) can be 

obtained using the below equations: 
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where (7) is used to get the processing time of j

i , 

intermediate variables j
i

tb


 and j
i

tc


 in (8) and (9) are used to 

calculate the start time j
i

s


 in (10), equation (11) can be used 

to derive finish time j
i

f


 of j

i . 

III. HUMAN CAPABILITY AND ADAPTIVE SCHEDULING 

A. Model of Human Capability 

In the above formulation, we assume that human 
performance and capability remain unchanged throughout the 
assembly process. But in realistic applications, human 
capabilities change over time due to many other factors such 
as fatigue, work intensity, absence of reasonable breaks or 
circadian rhythms. Therefore, in order to capture such 
capability changes in real-time with an effective and practical 
solution, we propose to model the human capability and its 
dynamics based on real-time measurable human performance 

indices. Define the human capability at time k  as 

( ) [0,1]hc k   so that its dynamics can then be modeled as: 
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 ( 1) min{1, max{0, ( ) }}h hc k c k p+ = +   () 

( )  max 1 max 1sign ( ) , if ( ) = max ( )

( ) 1
( ), otherwise.

i

i

i

p k L p k p k L

p k
p k

N

    


 = 





 () 

where  | 1,iP p i N= =  represents the human 

performance vector which contains N  performance indices, 

ip  represents a normalized index of one type of measurable 

human performance, ( )ip k  is the value change of ip  at time 

k ,   is a coefficient to weigh the effects of performance 

change on capability change, and 1L  is a threshold for 

dramatic performance change. If a performance index changes 

dramatically (i.e., its value change is larger 1L ), it indicates 

the human is stimulated to increase his/her capability or 
affected decrease his/her capability. In order to avoid the 
over-effect of the dramatic change, we set the maximal 

considerable change as 1L . In other cases, we just take the 

average index change into consideration for the human 
capability dynamics. 

For the measurable human performance index design, we 
can consider indices which are important to the assembly 
performance and can also be easily captured using available 
sensing systems. For instance, we can design the indices as the 
average speed of the human hand movement, the stability (e.g., 
speed variance) of the human hand movement, the assembly 
accuracy of human operations, and the smoothness (e.g., hand 
trajectory variance) of human operations over a period of time. 
All these information can be captured using hand motion 
capture techniques such as vision-based motion capture 
systems[12], [13] or wearable hand devices such as smart 
gloves[14].  

B. Adaptive Assembly Scheduling According to Human 

Capability 

During the human-multi-robot assembly process, the 
capability of robots can be considered stable, while the human 
capability is usually varying. Existing approaches generate 
assembly scheduling solutions by mostly considering humans 
as agents with assumed and known capability that does not 
change. If such a solution is applied to realistic cases where 
human-capability-varies, it will lead to suboptimal 
performance as the optimization of the original scheduling 
will not hold anymore. Therefore, a real-time adaptive 
assembly scheduling method should be adopted.  

Defining 1a A  as the human agent, and given the 

variation in human capability, the processing time 1
j

i

a
d


 

( j

i   )  will be no longer constant. Instead, they should be 

functions of human capabilities. Specifically, they should also 
change in real-time according to the variations of human 
capabilities. Based on this understanding, the process of the 
proposed real-time adaptive assembly scheduling algorithm is 
shown in Fig. 2. The algorithm will first generate an initial 
schedule by solving the assembly scheduling problem in 
Section II.B, and then during the process, periodically detect  

 

Figure 2.  Flowchart of the adaptive assembly scheduling algorithm 

human performance indices and compute the human 

capability index ( )hc k  using (12) and (13). If the change of 

( )hc k  is higher than a predefined threshold 2L , it will update 

the processing time table for the human using  

 1 1( ) (0) / ( )j j
i i

a a

hd k d c k
 

=  () 

which continuously increases or decreases the task processing 
time of human according to his/her capability variations. With 
these updated processing times, the assembly scheduling 
problem in Section II.B will be re-solved in real-time to 
generate the best schedule for all the remaining subtasks to be 
accomplished by multiple robots and human. With this 
real-time adaptation plan, the assembly can always be 
scheduled efficiently although the human capability may keep 
changing during the human-multi-robot assembly process. 
The approach to solving the assembly scheduling problem will 
be introduced in the following section. 

C. Genetic Solution to Assembly Scheduling 

The assembly scheduling problem is similar to the Job 
Shop Scheduling Problem (JSSP)[15], which is a nonlinear 
mixed-integer and NP-hard problem with high computational 
complexity. In order to solve it quickly with an acceptable 
solution, we propose to adopt the Genetic Algorithm 
(GA)[16], which is also often used to solve the JSSP. The GA 
proposed in this paper is described as Algorithm 1. The core 
components in the algorithm are explained in detail as below. 

Algorithm 1: GA for Assembly Scheduling Problem 

1:  procedure GA for ASP 

2:   initial the population P by encoding; 

3:   for i  1 to the max generation number 

4:    crossover P(i) at given probability pc; 

5:    mutation P(i) at given probability pm; 

6:    fitness calculation of each individual by decoding; 

7:    select P(i+1) from P(i); 

8:    record the best schedule; 

9:   output best schedule; 

(1) Encoding: The encoding process is to express a 
solution to the problem as a chromosome. A chromosome of 
an individual is represented by two sections[17]: Agent 
Selection (AS) section and Task Sequence (TS) section. AS  
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Figure 3.  Encoding of a schedule for Genetic Algorithm 

stores the index of the agent to which 
j

i  is assigned, and TS 

is the processing order of tasks. One example of encoding for 
three agents and two tasks with each task having three 
subtasks is shown in Fig. 3. 

(2) Decoding: The decoding process is the mapping 

approach from chromosomes to solutions. It needs to 

maintain an idle timetable for each agent. After obtaining the 

subtask sequence from the TS section, it is traversed from the 

left to the right and the following steps repeated:  

• If the subtask j

i  needs to be processed, get the 

assigned agent ka  from AS section; 

• From the subtask sequence constrains, get the earliest 

time when j

i  can be processed; 

• From the idle time table of ka , search the earliest time 

slot which is long enough to execute j

i ; 

• Set j
i

s


, j
i

f


, and update the idle time table of ka . 

The designed encoding and decoding operators can 
guarantee the obtained solutions satisfy the constraints (2) to 
(6). Crossover and mutation operators cannot destroy the 
feasibility of solutions, so the careful design is required. 
(3) Crossover: For the AS section, randomly select 2 loci 
and swap the two parents’ genes between them with a 

prescribed probability cp ; for the TS section, adopt the POX 

method[18], which can ensure that the number of per task 
index remains the same after crossover. 
(4) Mutation: For the AS section, randomly select a locus, 
and change the gene on it to the agent index that has the 
shortest processing time for a given prescribed probability 

mp ; for the TS section, simply swap two random genes with 

mp . 

(5) Calculation of a Fitness: Use (15) to calculate the 
fitness of a schedule. C  is a predefined big integer.  

 
schedule is infeasi

h

,

/ max , ot erwise.

ble;

j
j i

i

C
F

C f
 


= 



 () 

(6) Selection: The roulette wheel method[16] is adopted to 
select feasible solutions. 
(7) Initializing a Population: For each individual, the AS 
and TS sections are generated separately and then 
concatenated. While the AS section is generated by randomly 
generating a number series from 1 to m , the TS section is 
generated by randomly permutating the initial task index 

sequence  1 1 2 2 n n  (every task index i  

repeats in  times) to get the TS section. 

IV. HUMAN CAPABILITY AND ADAPTIVE SCHEDULING 

A. Experimental Setup 

In the first experiment, we assume that there are one 
human and two robots who work collaboratively to complete 
five tasks, i.e., to assemble five parts. For each task, the 
following subtasks are needed in sequence: pick up part, pick 
up a tool and assemble it. The task-subtask-robot combination 
is (5-3-2). In addition, the last subtasks of part 4 and part 5 
must not begin until all other parts are successfully assembled. 
According to our formulation, there are five tasks, three agents 

( 1a  is the human agent, 2a  and 3a  are robot agents) and three 

subtasks for each task. In every task i , subtask j

i  has to be 

processed before 1j

i + . 3

4  and 3

5  have to be processed 

before all the subtasks of 1  to 3 . 

We assume that the initial processing time table is shown 
in Table I. The numbers in the table represent time segments, 
where each segment is equal to 10 minutes. The processing 

time of each subtask by a human agent 1a  is under the 

assumption that the human has full capability and the number 
999 means the subtask can not be assigned to the agent. 
During the assembly process, human performance indices are 

detected periodically to compute the human capability ( )hc k  

using (12) and (13); If the change in ( )hc k  is higher than a 

predefined threshold 2L , the human processing time in the 

table is updated and the schedule for the subtasks that have not 
started yet will be regenerated. 

In order to comprehensively evaluate the schedule in 
addition to total assembly time cost, we also define two 
metrics which are task switch times and ratio of human work 

time humanr  as described below in detail. 

•  Task switch times: For an agent, if there is a sequence of 
subtasks scheduled for processing then the task switch time is 
the total switch times from one task to another. This indicates 
the fluency of the task accomplishment.  

•  Ratio of human work time humanr : For a schedule, this 

refers to the ratio of human work time over the total finish 
time. This indicates the minimization of human efforts during 
task accomplishment.  

After the first experiment, three other experiments with 
different numbers of tasks and robots are carried out. The 

results show that the overall processing time and the humanr  are 

decreased significantly. 

B. Experimental Results and Analysis 

In the GA implement, the population size is set to 160 and 
the total generation number is 60. The possibility of crossover 
and mutation is 0.8 and 0.1 respectively. The ratio of human 

work time is 0.8humanr = . The GA algorithm is implemented 

using MATLAB. The total computation time required to 
generate a schedule is approximately 5 seconds on a laptop 
with i5-8350U processor and 8GB RAM.  

The performance of GA is shown in Fig. 4. The initial 
population includes many infeasible solutions, so the average 
overall time is high. After several iterations, the feasible 
solution and the suboptimal solution occupy the majority of  
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TABLE I.  THE INITIAL PROCESSING TIME TABLE 

 

Agent 

Subtask 

1

1  2

1  3

1  1

2  2

2  3

2  1

3  2

3  3

3  1

4  2

4  3

4  1

5  2

5  3

5  

1a  999 1 1 999 1 2 999 2 1 999 3 4 999 2 3 

2a  4 3 4 3 2 1 3 2 2 3 5 6 4 3 4 

3a  6 2 5 4 2 2 2 4 3 2 7 9 4 5 3 

 
(a)  (b) 

Figure 4.  GA performance 

 

Figure 5.  The initial schedule 

the population. Thus, the average overall time stabilizes 
around 37 segments. The best schedule is found in the 22nd 
iteration, which shows that the algorithm is stable and 
converges quickly. 

Despite the changes in human capabilities, the initial 
solution of GA is shown in the form of a Gantt chart in Fig. 5. 
In that figure, each rectangle represents a subtask. The tuple 

[ , ]i j  in the rectangle represents the subtask j

i , and the 

number below the tuple is the processing time segments for 
the assigned agent. The overall processing time of this initial 
schedule is 15 segments, the task switch time of the human 
agent is 5, and 6 subtasks are assigned to the human agent. 

The changes of four normalized human performance 

indices and the calculated human capability ( )hc k  using 

(12)-(13) are shown in Fig. 6. Given this changing capability, 
the processing time of the human agent for specific subtask 
increases, resulting in an overall processing time of 24 
segments (Fig. 7). Consequently, the actual ratio of human 

work time humanr  becomes 0.92, which is higher than the 

specified value of 0.8. On the other hand, the actual ratios of 
the work times of the first and the second robots have dropped 
from 1.00 and 0.63 to 0.63 and 0.42 respectively. This results 
in a high workload for the human and long idle times for the 
robots. 

Based on the simulated human capability change in Fig. 4, 
the adaptive assembly scheduling algorithm repeatedly 
generates the schedules for the subtasks, which are still not 
processed, at the beginning of time segments 4, 7 and 14 
respectively ( Fig. 8 - Fig. 10). In Fig. 8, by the time a change 
in human capability is detected in time segment 4, subtasks 

1

2 , 1

3 , 2

3  and 1

4  have already finished, and 1

1  has already 

started. So the scheduler regenerates the schedule for the rest 

of the subtasks. Because 1

1  will be finished at the end of time 

segment 6, subtask 3

3  is started at 7 in the new schedule. The 

subtask 2

2  is completed, 2

4  and 1

5  are still not finished at 

time segment 7. The rest of the subtasks are scheduled again as 

shown in Fig. 9. Finally, the last two subtasks 3

4  and 3

5  are 

scheduled when human capability changes at time segment 14. 

The final actual processing schedule is shown in Fig. 11. 
The overall completion time is 20, and the total human work 

time is 9 time segments. Therefore, 0.45humanr = . The number 

of subtasks assigned to the human has dropped from 6 to 3, the 
task switch time of the human has dropped from 5 to 2, and 

humanr  is also significantly reduced. The idles times of the 

robots are much shorter than in the initial schedule. This 
allows the human to get reasonable idle time and have the 
opportunity to restore performance and capability. 

 
(a)  (b) 

Figure 6.  Human performance indices and capability  

 

Figure 7.  The actual processing induced by human capability change 

3864

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 11,2021 at 00:59:18 UTC from IEEE Xplore.  Restrictions apply. 



  

 

Figure 8.  Regenerate schedule at time segment 4 

 

Figure 9.  Regenerate schedule at time segment 7 

 

Figure 10.  Regenerate schedule at time segment 14 

 

Figure 11.  The schedule adapted to human capability 

C. Statistical Evaluations  

In addition to the first experiment (5-3-2 combination), we 
also designed experiments with more complicated 
task-subtask combinations (7-28-2, 7-35-3, and 10-50-4) as 
shown in Table II. The number of human and the human 
capability change trend remains the same as the first 
experiment. In addition, the last subtasks of the last three tasks 
cannot begin until all other parts are successfully assembled. 
The population size of GA is changed according to the number 
of subtasks in order to ensure optimum performance. 

As shown in Table II, using the initial schedule, due to the 
changing of human capability, the actual overall time is on 
average 38.0% higher than the ideal case. The actual ratios of 

human work time humanr  are increased to around 0.90. Using 

the adaptive scheduling algorithm proposed in this paper, the 
overall time is dropped on average by 18.8% when compared 
to the actual overall time of the initial schedule with changing 
human capability. On average, the number of subtasks  

TABLE II.  THE RESULT OF EXPERIMENTS WITH MORE TASKS 
 

Experiments 

1 2 3 

Number of Tasks 7 7 10 

Number of Subtasks 28 35 50 

Number of Robots 2 3 4 

Population Size of GA 800 1000 12000 

Initial 

Schedule 

with Full 

Human 

Capability 

Overall Time 51 50 58 

Subtasks Assigned to 
Human 

11 9 12 

Task Switch Times 8 7 9 

humanr  0.76 0.72 0.71 

Initial 

Schedule 

with 

Changing 

Human 

Capability 

Overall Time  67 68 85 

Subtasks Assigned to 
Human 

11 9 12 

Task Switch Times 8 7 9 

humanr  0.90 0.91 0.89 

Adaptive 

Schedule 

with 

Changing 

Human 

Capability 

Overall Time 58 58 61 

Subtasks Assigned to 
Human 

6 6 7 

Task Switch Times 5 4 5 

humanr  0.64 0.52 0.66 

TABLE III.  THE STATISTICS OF PERFORMANCE IMPROVEMENTS 

 Decrease on 

Overall Time 

Decrease 

on rhuman 

Decrease on Human 

Task Switch Times 

Exp. 1 13.4% 28.9% 37.5% 

Exp. 2 14.7% 42.8% 42.9% 

Exp. 3 28.2% 25.8% 44.4% 

assigned to humans dropped by 40.2%, and the actual ratios of 

human work time humanr  is smaller. The statistics of schedule 

performance improvements also conclude in Table III. When 
compared to the initial schedule with changing human 
capabilities, the schedule generated by the adaptive scheduling 
algorithm can significantly reduce the overall processing time, 
the ratio of human work time and the task switch times. 

V. CONCLUSIONS  

Using the framework proposed in this paper, we can 
dynamically perform human-robot collaborative assembly 
scheduling according to the modeled human capability. The 
results of the simulated experiment show that the proposed 
algorithm can adjust the scheduling real-time to adapt to 
changing human capabilities. Adaptive scheduling can reduce 
the overall assembly task completion time, and allows human 
to get reasonable rest and improve assembly efficiency. 

This paper focuses on the framework of adaptive assembly 
scheduling. The experiments use one set of simulated data of 
human capability. So we plan to detect the human 
performance in real-world assembly scenarios using motion 
capture systems, and test the proposed framework on more 
complex tasks. Furthermore, this paper only studies 
one-human and multi-robot collaboration assembly 
scheduling problem. Multi-human and multi-robot 
collaboration assembly scheduling problem adapting 
multi-human capability will be studied in the future work.
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