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Abstract— Connected automated driving technologies have
shown substantial benefits to improve the safety and efficiency
of traffic. However, connected mixed traffic, which involves
both connected automated vehicles and connected human-driven
vehicles, is more foreseen for the realistic case in the near
future. This brings new challenges because of the complexity
of human elements in the system. In addition, the communica-
tion constraints in realistic connectivity such as random delays
and packet losses bring even more challenges to the system.
Therefore, this paper proposes a new anticipative and predictive
automated vehicle control approach in connected mixed traffic.
The approach first anticipates the states of surrounding vehi-
cles including human-driven vehicles, and then integrates the
anticipation into the predictive control of automated vehicles,
which can help improve the control performance and also handle
the communication constraints. An inverse model predictive
control (IMPC) based anticipation approach has been proposed.
The proposed approach, together with constant speed (CS),
intelligent driver model (IDM) and artificial neural network
(ANN) based anticipation methods are integrated with model
predictive control (MPC) for automated vehicle control. The
approaches have been tested in human-in-the-loop experiments
and the results show that the integration with a newly proposed
IMPC based anticipation has shown the best performance in
terms of accuracy, efficiency and scalability in connected mixed
traffic with both ideal and constrained communications.

Index Terms— Human driving behaviors, inverse model pre-
dictive control, learning and prediction, connected mixed traffic.

I. INTRODUCTION

CONNECTED automated vehicle (CAV) technologies is
becoming increasingly prevalent in the automobile indus-

try. With the evolving vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication technologies, CAVs can
bring many benefits in various of environments. In urban
environments, CAVs can reduce traffic jams and increase
road and intersection capacity [1], [2] by sharing traffic
and road infrastructure information. They can also improve
driving safety around corners by enhancing situational aware-
ness capability [3]. On highways, CAVs can save energy by
reducing aerodynamic drag and increasing road capacity [4].
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By sharing vehicle states, CAVs also help reduce the risk of
collision during emergent braking [5] and lane switching [6].
However, realizing the full potential of the aforemen-

tioned benefits requires seamless communication and perfect
control of each vehicle. Communication constraints, due to
their randomness, pose the biggest challenge to CAVs. They
change the dynamics of the platoon markedly [7], [8]. The
string stability of a platoon can be seriously compromised
by communication delays [9], [10], impacting both safety
and efficiency of the fleet. Some studies have tried to solve
this problem by implementing different controller designs.
H-infinity control [11] and other robust controllers are used
to resist communication delays. Some other researchers have
proposed methods to estimate communication delays [12].
Although robust controllers can regain string stability, control
error still increases significantly with communication delay in
the control loop [13]. For optimal controllers, the estimated
delays can be directly incorporated in the prediction model
[14], and the output of the controller can be compensated
using available timestamps [15]. In recent years, predictions
of motions of surrounding vehicles are used to compensate
for delays in the control of homogeneous automated vehicle
platoons [22]–[26]. However, existing approaches still do not
provide a comprehensive analysis of the tradeoffs between
safety, stability and efficiency, and comfort. Handling random
communication constraints in connected automated driving
still remains a problem.
Connected mixed traffic (CMT) is posing extra challenges

compared to CAVs. In CMT, human-driven vehicles (HDV)
will be mixed with automated vehicles (AV), which is going
to be a common situation in the near future. Unlike AVs, HDVs
are not controlled by computers, and their current actions
are not available to be shared. Therefore, AVs need to find
another method to know how HDVs behave and then adapt to
them. Therefore, predicting the behaviors of HDVs is critical,
especially under communication constraints.
This paper will focus on the longitudinal control of CMT.

To solve the HDV prediction problem, a suitable human driver
model needs to be built for anticipation. Car following models
such as the Tampère (TMP) model [16], Optimal Velocity
Model (OVM) [17], and Intelligent Driver Model (IDM) [18]
have been proposed. The limitations of these models are their
simple structure and original objective, which is generation
of smooth control outputs. The latter particularly renders
them unsuitable for making predictions about an individual
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HDV. In the recent years, many data-driven machine learning
approaches have been proposed to model the behaviors of a
human driver. The most popular ones are Artificial Neural
Networks (ANN) based approaches [19]–[21]. However, these
approaches require a large set of carefully prepared data to
train the network parameters. More importantly, the scalability
of such approaches is limited by the scenarios covered by
the training data. Consequently, they find it difficult to handle
never-seen situations.
Our previous work [27] has proposed an inverse model

predictive control (IMPC) based prediction for human-driven
vehicles. The novelty of this work when compared to the
previous paper is the further expansion of the IMPC formula-
tion for solving more complex control problems that involve
automated vehicles in connected mixed traffic. In addition,
we have also extended the application of IMPC to cope with
potential communication constraints in connected mixed traf-
fic. The IMPC’s capability in helping the predictive controls
to resist communication constraints is compared with other
existing approaches to illustrate the advantages. The major
contributions can be summarized as follows.
1. Proposes a new anticipative and predictive automated vehi-

cle control approach in connected mixed traffic based on
the anticipation of surrounding vehicles’ states including
human-driven vehicles and predictive control of automated
vehicles.

2. Propose a different anticipation approach to anticipate the
states of human-driven vehicle, especially including the
IMPC based approach which can achieve better anticipation
accuracy and scalability.

3. Conduct human-in-the-loop experiments to conclude that
the proposed anticipative and predictive automated vehicle
control with the proposed IMPC based anticipation can
achieve the best control performance in terms of safety,
accuracy, efficiency, and comfort under both ideal and
constrained communications in connected mixed traffic.
The rest of the paper is organized as follows. Section II

introduces predictive control of automated vehicles in con-
nected traffic. Section III presents the experimental design and
the analysis of results.

II. ANTICIPATIVE AND PREDICTIVE AUTOMATED

VEHICLE CONTROL

The framework for anticipative and predictive control of
automated vehicles is described in II-A. The details of pre-
dictive control of automated vehicles in connected traffic is
introduced in II-B. The comparison of anticipation methods,
especially the IMPC based predictor, is presented in II-C.
Finally, II-D discusses how the communication constraints are
handled by the proposed methods.

A. Anticipative and Predictive Control Framework

In connected mixed traffic, every vehicle including the HDV
shares information with every other vehicle. With anticipative
and predictive control, vehicles need to share not only their
instantaneous states, but also their entire anticipated trajecto-
ries for the near future. Each AV in the traffic utilizes the

Fig. 1. Framework of anticipative and predictive control.

shared information in the predictive controller to better plan
the driving task and control the motion. The structure of the
anticipative and predictive control in connected mixed traffic
is shown in Fig. 1.
In the framework, each vehicle measures the states of

itself and the vehicles that are right next to it using the
available sensors. The measured states are being used to
generate predictions about the future motion of the ego vehi-
cle. The predictions are then shared through V2V and V2I
communications with other vehicles. With the help of the
predictions, AVs can react way faster to events that are likely to
happen in the immediate future. AVs can plan ahead to avoid
unnecessary brakes and improve riding comfort and energy
efficiency, or to brake early to reduce the risks of the predicted
situation evolving into an accident. Communication delays
and packet losses together forms a combined delay. A large
combined delay compromises the benefits of V2V and V2I
communications. In such cases, the more precise the prediction
is, the less the predictive controller will be affected since the
AVs can still use the previously received predictions easily
by shifting the predicted motion trajectory by the estimated
combined delay.
In this paper we are applying the proposed framework to the

longitudinal car following control problem in connected mixed
traffic. Without loss of generality, we have selected the most
representative mixed traffic problem which can be generalized
into a three-car scenario. The lead car is an automated vehicle
(LAV) that is either free-flowing or at the end of a full AV
platoon. The center vehicle (CV) is an HDV that separates two
AV platoons. The following car is another automated vehicle
(FAV) that follows the CV. LAV is neither communicated to
CV nor affected by CV, so the anticipative and predictive
control is mainly applied to the FAV.

B. Anticipative and Predictive Automated Vehicle Control

In this paper we chose to use MPC as the controller since it
can find the optimal control solution given the predicted states
of the HDV. The rest of this section will introduce details about
the MPC for the AVs.
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1) Model of Automated Vehicles: The system model used
in the FAV’s MPC is a linear time invariant (LTI) model with
a first order lag with time constant τ [28]:


 ṡ f

v̇ f

ȧ f


 =



0 1 0
0 0 1

0 0 −1

τ





 s f

v f

a f


 +


 0
0
1
τ


 u f (1)

where s f , v f , a f and u f are the travelled distance, speed,
acceleration, and control input of the automated vehicle
respectively. The physical meaning of u f is desired accelera-
tion.
In the simulation, the plant model of FAV shares the same

form as the system model (1). Using such an LTI model as
plant model is acceptable in this paper since later all different
predictors share this same plant model. Thus, the effects of
inaccuracy in modelling vehicle dynamics can be ignored. The
plant model of the automated vehicle differs from the system
model in terms of the use of different time constants. Due
to the differences in the dynamics of the powertrain and the
brake systems, the time constant differs during braking and
acceleration. While the powertrain system has a large time
constant of τp = 0.45s, the braking system has a smaller time
constant of τb = 0.1s. The system model in the MPC uses the
mean time constant τm = 0.275s. Assuming that the road is
flat, the switching between τp and τb is governed by the drive
force Fw that acts on the wheels:

τ =
{

τp, Fw ≥ 0

τb, Fw < 0
,

Fw = mef f u f + 1

2
ρa A f Cdv

2
f + µmg (2)

The drive force Fw is calculated using the desired acceler-
ation u f . While a negative value of Fw means that the brake
needs to be applied, a positive value of Fw means that the
throttle needs to be applied. The parameters that are used
to calculate Fw are shown in Table I. The parameters were
determined based on [28].
2) Model Predictive Longitudinal Control of Automated

Vehicles: Due to the advantage of MPC, a variety of objectives
can be desired in MPC for the FAV based on different
requirements. In this paper, in order to make the performance
comparison between different predictors clearer and more
direct, without any loss of generality, the objective is designed
as maintaining a constant headway distance dre ff , which is
a common and critical requirement in connected automated
driving. The cost function can be then written as:

J f =
k+N∑
κ=k

[wd

(
d f (κ) − dreff

)2+waa f (κ)2+wuu f (κ)2] (3)

where d f is the spacing between the ego CAV and the
preceding vehicle, N is the number of prediction steps, wd , wa

and wu are the corresponding weights. The optimal control can

TABLE I

PLANT PARAMETERS

be obtained by solving the constrained optimization:
u∗
f = arg minu f J f

s.t . − 10m/s2 ≤ a f ≤ 5m/s2

0 ≤ v f ≤ 40m/s

− 10m/s2 ≤ u f ≤ 5m/s2

d f ≥ 0m (4)

These basic constraints are introduced to ensure feasibility
and rationality of the MPC controller. Traditionally, without
shared anticipation information, the MPC requires another
system model for the center vehicle which is as follows:[

ṡc
v̇c

]
=

[
0 1
0 0

] [
sc
vc

]
+

[
0
1

]
ac (5)

This facilitates the calculation of the headway distance d f =
sc − s f over the prediction horizon. The input ac could
be assumed to be either zero or the minimum appliable
deceleration during prediction. Most of the time, the motion of
the vehicle is more precisely described when ac = 0. However,
this can cause accidents when the center vehicle needs to brake
hard. On the contrary, the minimum ac assumption can make
sure that the AV does not collide with the CV. The downside of
this assumption is that it is over-conservative and significantly
lowers the traffic density. In connected traffic, the shared antic-
ipation information of the CV can give MPC the advantages
of both assumptions. The anticipation information contains a
set of predicted speed vc and displacement sc of the CV over
the prediction time interval.
In this paper, we select wd = 1 and wa = wu = 0 to

eliminate the tuning process of the MPC. This configuration
will only try to maintain the constant headway distance
regardless of the control cost. The same MPC is paired with
different anticipation methods and the performance indices for
different predictors would be headway tracking error, vehicle
acceleration and control input. The tracking error is a direct
measurement of how close the controller is keeping the FAV
to the control target. Vehicle acceleration can reflect how
comfortable the ride in the FAV is. Moreover, when com-
bined with control input, it also reflects how energy efficient
the FAV is. While the first two statements obviously hold
true, the relationships between vehicle acceleration, control
input and energy efficiency need to be proven through some
detailed modelling and experiments. A recent work [28] has
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demonstrated that if the vehicle acceleration and control input
can be minimized using an MPC controller then the same
controller can reduce fuel consumption when applied to a very
realistic simulation that includes the dynamic powertrain and
transmission models. Thus, the values of the aforementioned
parameters, including those in Table I and the time constants,
are all determined based on [28]. In the later section where a
multi-vehicle connected driving simulation is performed, if a
state predictor can simultaneously reduce the average control
input and the average acceleration of the FAV then it can also
reduce the energy consumption.

C. Anticipation of Human-Driven Vehicle States

In this paper, the CV is an HDV. The anticipation task for
a human-driven vehicle is very challenging since the control
model of an HDV is unknown, and can only be learned from
human driving demonstrations. Different humans may have
different driving models, thus, to ensure prediction precision
for HDV, we propose to make each HDV build its individual
model by learning from its driving data. Each model is subse-
quently employed to predict the behavior of the corresponding
HDV. Transmitting just motion information from LAV and
HDV to FAV may not provide sufficient data for FAV to
learn the individual model of each HDV. In addition, this
will make the computational efforts of the FAV more complex
because it will need to do the same modeling, learning and
prediction process for every single HDV. Making HDV do
its own prediction and share it with all other surrounding
vehicles will much more efficient. Our previous work [27]
has proposed an effective IMPC-based learning and modelling
method for HDVs. A brief explanation of that method will
be given in this section. The proposed IMPC predictor is
compared with three other different predictors in this paper.
Constant speed (zero ac) predictor, which is the commonly
used simple predictor in vehicle longitudinal control, is used
as the performance baseline of the other predictors. According
to an existing work [29], the Intelligent Driver Model and
the Artificial Neural network-based predictors are doing the
best in predicting human-driven vehicle states among many
existing methods. Thus, in this paper the three predictors to
be compared with IMPC are the CS, the IDM and the ANN
predictor.
1) Constant Speed Predictor: The constant speed predictor

assumes that the speed of the HDV remains unchanged during
a prediction. It uses the following kinematic model to predict
the motion of the human-driven vehicle:

ṡh = vh (6)

Under constant speed assumption, the FAV can directly
measure the initial speed of the HDV at the start of each pre-
diction using the onboard radar. Therefore, when the constant
speed predictor is used, the FAV does not need to connect to
other vehicles in the front to obtain driving information.
2) IDM-Based Predictor: Intelligent Driver Model is a

widely used adaptive cruise control (ACC) model that can
describe accelerations and decelerations in a satisfactory way.
It has been used to simulate human driver behaviors in traffic

simulation [30]. The predicted acceleration of the HDV is
given by:

ah = a

[
1 −

(
vh

v0

)4

−
(
d∗

dh

)2
]

d∗ = d0 + vhT + vhvr

2
√
ab

(7)

where vr = vh −vl is the predicted relative speed between the
LAV and the HDV. v0 is the desired velocity, d0 is minimum
desired spacing, T is the desired time headway, a is maximum
acceleration and b is comfort braking deceleration. These
5 parameters represent the preferences of a human driver, and
are the tunable/trainable parameters of this model. The IDM
model is paired with the following kinematic model to predict
the motion of the HDV:[

ṡh
v̇h

]
=

[
0 1
0 0

] [
sh
vh

]
+

[
0
1

]
ah (8)

The motion of the LAV also needs to be anticipated to
complete the system model. When a human driver is driving,
he/she may assume that the vehicle in the front is going to
maintain its current acceleration. However, since a human
driver can foresee the road situation only 0.5s-2s into the
future [31], it is not realistic to keep the constant acceleration
assumption through out the entire prediction process. In this
paper, the duration of the entire prediction horizon is 10 sec-
onds. While the first second of the prediction horizon uses
the constant acceleration assumption, the rest of the horizon
uses the constant speed assumption for the LAV, which can be
described by II-C.3:

[
ṡl
v̇l

]
=




[
0 1

0 0

] [
sl
vl

]
+

[
0

1

]
āl, ϒ ≤ 1s[

0 1

0 0

] [
sl
vl

]
, ϒ > 1s

(9)

where ϒ is the time within the prediction horizon, āl is
the LAV’s acceleration at the start of each prediction. vl is
assumed to be constant after the prediction has passed the
horizon of 1s. The predicted acceleration calculated from (7)
is fed to (8), then the states of the HDV at next prediction
step can be obtained. This process is repeated until a complete
prediction trajectory is obtained.
The IDM model is trained using real human driving data

to obtain the most suitable parameters for different drivers.
The training algorithm utilizes pattern search algorithm in a
high-level optimization. The optimization minimize the error
between the predicted speed and headway distance, and the
real speed and headway distance in demonstration.
3) ANN-Based Predictor: The ANN predictor used in this

paper is based on a feed-forward structure [20] with the hidden
layer having 16 sigmoidal neurons and the output layer having
linear neurons. The inputs to the network are the most basic
system states vl , vh and the system output dh . The network
is trained by fitting its output to the human demonstrated
accelerations arefh . The training data set is collected when
a human drives the HDV to follow the LAV in a driving
simulator. The data so collected is used by all three predictors.
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More details about the collection of the training data will
be given in Section III. The training algorithm we used is
Levenberg-Marquardt method [32]. The ANN model is paired
with the kinematic model given in (8) to predict the motion
of the HDV.
4) IMPC-Based Predictor: The IMPC utilizes the cost func-

tion in MPC to represent a human driver’s driving preferences.
IMPC finds the best primitive costs to be included in the cost
function and identifies the weights and references of those
primitive costs to formulate the most suitable cost function
dedicated to a human driver.
The HDV motion model used by IMPC is an LTI model

given by (10). The LAV motion model is the same as II-C.3.
 ṡh

v̇h
ȧh


 =


 0 1 0
0 0 1
0 0 0





 sh

vh
ah


 +


 0

0
1


 uh (10)

The MPC problem can be formulated by minimizing a
proper cost function Jh over the following prediction horizon:

Jh =
∑

�T
h �h (11)

where �h = (φ1, φ2, . . .)
T is a set of primitive costs for the

HDV in which each element specifies the cost of a partic-
ular motion objective such as tracking the reference speed,
maintaining the look-ahead distance gap and minimizing the
control efforts, etc., as shown in (12), r j is the target value of
the motion objective y j , and �h = (ω1, ω2, . . .)

T is the set of
associated weights.

φ j = g
(
xh, xa, r j , uh

) =
k+N∑
κ=k

(
y j (κ) − r j

)2
(12)

When a human driver is conducting a driving task, he/she
may focus on and try to maintain some of the system outputs
at their desired target values while leaving the rest unattended.
So, we propose to evaluate the primitive costs by using
each of the system outputs independently as stand-alone cost
functions, which can be written as:

Jφ j = φ j =
k+N∑
κ=k

(
y j (κ) − r j

)2 (13)

and then learning the reference r j with a higher-level
optimization:

r∗
j = arg minr j E

s.t . : r j ∈ Cr j (14)

E is the prediction error of the MPC over a human driving
demonstration. When the higher-level optimization finishes, a
minimum prediction error Eφ j over demonstrations will be
obtained for the primitive cost φ j . If the human driver is
focusing on φ j and trying to maintain y j at a specific target
value during driving, the resultant Eφ j should be small. This
means that φ j can be a ‘good’ primitive cost in the final cost
function. Otherwise, the resulted Eφ j should be large, and φ j

might better be excluded from the cost function. All primitive
costs can be ranked based on their Eφ j values. We assume that
�∗

h = (φ∗
1 , φ

∗
2 . . . , φ∗

j )
T is the set of all available primitive

costs that have been ranked from good to bad, with φ∗
1 being

the best and φ∗
j being the worst. Followed by this, we propose

to formulate the cost function by combining the primitive costs
from ‘good’ to ‘bad’, which can be described by (15).

J1 = ω1φ
∗
1 ,

J2 = ω1φ
∗
1 ,+ω2φ

∗
2 ,

J3 = ω1φ
∗
1 ,+ω2φ

∗
2 ,+ω3φ

∗
3

. . . .

Jj = ω1φ
∗
1 ,+ω2φ

∗
2 + · · · + ω jφ

∗
j (15)

Since humans normally focus on more than one aspect
during driving, it is reasonable to skip J1 and start with a
combination of the top two or three best primitive costs in
the cost function first. Subsequently, in the following attempts,
the next best primitive cost could be added to the cost function.
Every cost function Jj will learn its parameters using higher-
level optimization. Denote the set of references r1 . . . r j by
R j , and the set of weights ω1 . . . ω j by � j , the optimization
can be expressed as

(�∗
j , R

∗
j ) = arg min�h ,R E

s.t . : � j ∈ C�h, R j ∈ CR (16)

The total error E can be reduced by optimizing the weights
� j and the references R j in the cost function. Since only the
relative values of the weights are important, it is practical to fix
one weight to 1 and optimize the rest [33]. The object function
of this higher-level optimization is yet another optimization
problem, however, the Jacobian of E is not obtainable. Thus,
the Pattern Search (PS) algorithm [34] is adopted in this paper.
Each cost function Jj will get a minimal evaluation error

E j from the higher-level optimization. Adding an effective
primitive cost φ j should improve the prediction accuracy and
reduce the error E j while adding an ineffective primitive
cost will not bring any benefit but affect the optimization
convergence, which will result in a larger prediction error.
Thus, the addition of primitive costs will be repeated until the
evaluated performance of the predictor starts to deteriorate.
At this point, the previous cost function can be selected to be
the best cost function. It has been shown that the proposed
method to select the cost-function is very effective, and the
best cost function in this paper is chosen to be:

Jh =
k+N∑
κ=k

[wa(ah(κ)−arefh )
2+wv(vr (κ)−v

re f
r )

2

+ wT TCi (TTCih(κ)−TCCire fh )
2+wu(uh(κ)−urefh )

2]
(17)

where T TCi is the time to collision inverse. Three other
primitive costs that have been evaluated but excluded from
the cost function are the time headway inverse T HWih ,
the headway distance dh , and the ego vehicle speed vh . When
compared to the CS, IDM and ANN approaches, the major
additional information that the IMPC incorporates is control-
related information. It is difficult for the other approaches
to efficiently incorporate this information because they do
not have a closed-form dynamic with controls. The proposed
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approach adopts a closed-form vehicle dynamic with MPC
control which enables us to efficiently incorporate the control-
related information into the cost function. Such inclusion
makes the approach more complete and therefore achieve a
better performance.
When the IDM, ANN or IMPC-based speed predictor is

used, the FAV can only obtain the prediction information via
V2V communication from the HDV. Such communication is
prone to delays and packet losses.

D. Handling of Communication Constraints in Connectivity

When using V2V communication, time delays appear in the
control of the automated vehicle fleet since messages need to
be processed before they are transmitted between the sender
and the receiver. The sender needs to sample the sensory
data and process it into meaningful information. This adds
processing delays to the whole process. The message will then
be transmitted using certain communication protocols. During
this process, the message is subject to extra processing delay,
queuing delay and transmission delay. In this paper, without
loss of generality, the delays between sensory data collection
and anticipation generation is ignored. In order to simplify
the model and the simulation process, all the other delays are
merged into a single propagation delay.
Another factor that contributes to the constrains apart from

the propagation delay in V2V communication is packet loss.
It can be caused by errors occurring during data transmission
such as network congestion. Assume that the propagation
delay is 
tpro, and the communication cycle is 
tcom . If the
packet that is supposed to be delivered at t = k
tcom is
successfully delivered, then the delay in the control loop at
time t = k
tcom is 
tpro. However, if the packet failed
to reach the receiver, the controller will have to use the
information from the previous communication loop at time
t = (k − 1)
tcom . The delay in the control loop will increase
to 
tpro + 
tcom . If n consecutive packets are failed to be
delivered, the total delay will be 
tpro + n
tcom . When the
communication frequency is not high enough, packet losses
can cause very large combined delays in the control loop.
In this paper, the performance of the MPC is compared with

that of different predictors when propagation delays and packet
losses are injected in both independent and combined manners.
When communication constraints are present, the predictions
received are likely to have been made a short while ago in the
past, where 
tP is the prediction step size.

XP = [xP(t − 
τ), . . . , xP(t + nP
tP − 
τ)] (18)

In this paper, two different cases of handling such delayed
information are compared. In the first case, no global
timestamp information is assumed to be available to the FAV.
In other words, the FAV will treat the prediction information
available at every control loop as the latest information at
time t instead of at time t − 
τ . Such unawareness does not
affect the CS predictor since it is run locally. For IDM, ANN
and IMPC-based predictors, the delayed prediction will be
combined with on-board measurements dh(t), a f (t) and v f (t)
in MPC. The mismatch of timestamps between predictions and

measurements will generate unsatisfactory control input to the
automated vehicle. Such a case represents the worst situation
that can arise during connected automated driving.
In the second case, all vehicles are assumed to be sharing the

same global time system, and the timestamps of the predictions
are available to the FAV. In other words, the estimate of
the combined delay time 
τ becomes available to the MPC
controller. The whole predicted state trajectory can be shifted
by 
τ into the future in order to match the timestamps of the
current on-board measurements. The predicted states between
t + nP
tP − 
τ and t + nP
tP are assumed to be constant,

tP is the prediction step size. The detailed algorithm of this
constraint-handling method is shown in Algorithm 1.

Algorithm 1 : Algorithm for Handling Communication Con-
straints

Input: Original prediction list XP(t − 
τ)
Output: Adjusted prediction list X∗

P(t)
for timestep k from 0 to nP do

if k
tP < nP
tP − 
τ then
calculate xP (t + k
tP) from XP(t − 
τ) using linear

interpolation
append xP (t + k
tP ) to X∗

P (t)
else
append last element in X∗

P (t) to X∗
P(t)

end
end

If a predictor is making accurate predictions of the human-
driven vehicle’s states, then the performance of the FAV con-
troller should show a big improvement when delay handling
situation is changed from the first case to the second.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the experimental results and analysis are
presented. The setup of the experimental environment is intro-
duced in III-A. The results of predictive control in the absence
of communication constraints are presented and analyzed in
III-B. The control results under the effect of propagation delay
and packet loss are separately given in III-C and III-D. The
results under a realist setup of communication constraints are
presented and analyzed in III.E.

A. Experiment Setup

Since the control of an AV following another AV will be
the same as conventional CAV control problem, in order to
illustrate the core challenge in connected mixed traffic, we will
focus on the most critical and most difficult AV control,
which is to control the FAV to follow a HDV. We will use
the performance of this FAV to demonstrate the results of
anticipative and predictive Control.
According to our need, a three-vehicle simulation that

consists of two AVs and one HDV is constructed. The driving
simulator-based studies have been proven to be close to real
vehicle studies [35], [36] and widely adopted by a number of
researchers in the past [37], [38]. Using a driving simulator
instead of a real vehicle can ensure the safety and ease
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Fig. 2. Simulation setup.

the human driving experiments. Although the learnt human
models in simulator-based studies and real vehicle based
studies may be different due to the differences in human
perception between the two types of studies, it does not affect
the usability of the proposed approach because if it is proven to
be effective in simulator-based studies, it would be applicable
to real vehicle based studies too when used with real vehicle
experimental data.
The system is shown in Fig. 2. While vehicle 1 is the

LAV that simulates a free-flow driving case, vehicle 2 is the
HDV that can be controlled by a human driver in real-time
on a driving simulator with 6-DOF motion feedback. Given a
reference trajectory to the LAV, we can anticipate its speed
trajectory based on its known controller and share it with
the following HDV. The HDV then uses this information to
anticipates its trajectory and share it with the following AV.
The HDV is built with complete longitudinal dynamics and
the human driver needs to drive it to follow the LAV. Vehicle
3 is the FAV that is controlled by an MPC cruise controller.
These three vehicles form a platoon. Each vehicle can measure
its own speed and acceleration, while the HDV and FAV can
additionally detect the headway distances and the speed of the
vehicle in the front. Although the experiment in this paper only
considers three vehicles, the size of the platoon is scalable.
More automated vehicles, such as vehicle n in Fig. 2, can join
the platoon and follow vehicle 2 further behind as long as
they are within the V2V communication range. In this paper,
the MPC problem is solved using ACADO toolkit [39].
In the experiment, the LAV is tracking three different

driving cycles. The first one is the EPA Highway Fuel
Economy Test Cycle (HWFET), which is a 12-minute-long
mild highway cycle. The second is the Artemis Motorway
130 cycle which is an 18-minute-long aggressive motorway
cycle with heavier braking and wider open throttle. The last
one is the New York City Cycle (NYCC) with shortened stop
time, which is an eight-minute-long urban driving cycle. The
three cycles provide a variety of different driving behaviors
for the LAV, which makes the comparison of the controller’s
performance more convincing. Three different human drivers
(refer to as driver A, B and C hereafter) were required to drive
the HDV in their preferred ways and maintain a comfortable
distance from the LAV. One set of training data was collected
when the LAV was following the HWFET cycle, and one set of
testing data was collected when the LAV was following each
of the HWFET, the Artemis, and the NYCC cycles. During the
training process, the IDM, the ANN, and the IMPC predictors
were trained using the training data. During the testing

Fig. 3. Predictor performance for driver B under NYCC cycle.

process, the simulation reproduced the movement of the HDV
using the testing data. In both the learning and the testing
phases, the prediction horizon tP was chosen to be 10 seconds
and the prediction step size 
tP was chosen to be 0.5 seconds
for all predictors. The control frequency was 20Hz. The target
headway distance dre ff was chosen to be 15 meters.

B. Predictive Control With Different Predictors in Ideal
Situation

In this section, four predictors are coupled with the AV
controller in order to identify which one can provide the
smallest control error when there is no delay or packet loss
in communication. This will reveal the theoretical potential
of the IMPC predictor in connected automated driving. The
results are shown in Table II, Fig. 3 and Fig. 4.
In Table II, blue and green colored values mark the best and

the second best performers in that category. It can be clearly
seen that the IMPC is doing the best in realizing the best
headway tracking performance for the FAV. With the help of
IMPC, the FAV manages to achieve not just the smallest mean
absolute headway tracking error, but also the least prominent
maximum and smallest errors for driver A under all three
driving cycles. Since tracking headway distance is the only
target considered by the MPC, such result indicates that the
IMPC can maximize the performance of the FAV controller.
It is worth mentioning that while the ANN predictor can
achieve a level of mean tracking error that is similar to that
of CS and IDM predictors under HWFET and Artemis cycles,
its resulting mean tracking error under NYCC cycle is almost
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TABLE II

MPC PERFORMANCE COMPARISONWITH DIFFERENT PREDICTORS, IDEAL SITUATION, DRIVER A

Fig. 4. Predictor performance for driver C under artemis cycle.

twice as large as those of the other predictors. That is because
while the Artemis cycle is sharing some similarities with the
HWFET cycle, the NYCC cycle is completely different from
the other two cycles. Being trained from limited data collected
from the HWFET cycle, the ANN can perform relatively well
in a familiar environment. However, it loses functionality in a
new environment.
The performance and the efforts of the FAV to track the

target headway depends on the prediction accuracy of the
HDV and the controller design. With an unsatisfied prediction
and inappropriate controller design, the automated vehicle
may not track the reference well, and the controls may also
consume more energy. Therefore, although control input and
vehicle acceleration are not considered in the cost function of
the FAV’s MPC controller, we have compared these indices
between our proposed approach and existing approaches to
show the advantage in saving energy consumption. Table II
shows that the IMPC predictor is able to achieve lower
average acceleration and control input for the FAV, which is
equivalent to being more energy-efficient according to [28].
One may notice that the IMPC predictor sometimes causes a
slightly larger maximum deceleration than the IDM and the
CS predictors. When combined with the minimum tracking
error performance, a larger maximum deceleration means

TABLE III

FIGURE LEGEND

that the IMPC predictor makes the MPC controller to react
more responsively to emergent brake events from the human-
driven vehicle. Thus, in ideal situations, the IMPC is able to
provide improved control accuracy, riding comfort and energy
efficiency to the FAV. We observed similar results from driver
B and driver C’s experiment data.
Fig. 3 and Fig. 4 show two examples of how the predicted

HDV speed versus the actual HDV speed looks like, and
how the FAV changes its speed to HDV speed when different
predictors are used. Fig. 3 shows one prediction for driver B
under NYCC cycle. In Fig. 3 a), the IMPC is clearly generating
the most accurate anticipation for the HDV. It can maintain
the current motion trend of the HDV in a short horizon,
as well as avoid deviating too much from the actual motion
in a longer horizon. The IDM-based predictor is having much
larger prediction errors in longer horizons. The ANN-based
predictor is unable to make effective predictions in the NYCC
cycle since the environment of the cycle is entirely different
from that of the training data set. As a result, the HDV has
the smoothest speed curve when anticipations from IMPC
are available. Fig. 4 shows one prediction for driver C under
Artemis cycle. IMPC is the only predictor that catches both the
current deceleration and the future acceleration trends. Both
the IDM and the ANN-based predictors tend to be not very
sensitive in this situation. The HDV once again is having the
smallest speed variation when IMPC anticipation is available.

C. Predictive Control With Different Predictors Under
Different Propagation Delays

In this section, all four predictors are coupled with the MPC
FAV controller when there are different propagation delays.
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Fig. 5. Predictor performance under delays, driver A.

Literature [40] has pointed out that for close-range cooperative
platooning, the total communication delay should not exceed
100ms. Existing communication protocols have been able to
reduce the delay to below 20ms [41], [42]. In this paper, we
explore the performance of the three predictors around and
even beyond the 100ms delay limit. A random discrete-time
time-varying propagation delay is added to the simulation in
the form given by (19).


τ = 0.5
τavg + 
τavg � U(0, 1) (19)

where 
τavg is the average value of the injected propagation
delay, and U(0, 1) is a random number that obeys uniform
distribution between 0 and 1. The range of injected delay
in this paper is from 0.5
τavg to 1.5
τavg. In this section
we evaluated the predictors with 
τavg = 40, 80, 120 and
160ms. The results are of this shown in Fig. 5 to Fig. 7. The
meanings of the different curves and marks in the figures are
given in Table III.
Fig. 5 shows the performance of the MPC FAV controller

when the predictions about driver A is shared with it. The CS
predictor is not affected by the communication delay. In terms
of tracking performance, The IDM predictor performs better
than the CS predictor when the delay is low. However, when
the average delay exceeds 40-80ms, the tracking accuracy
worsens. Meanwhile, the IMPC predictor also shows a similar
trend but with even better performance. The performance is
superior to that of the CS predictor until the average delay
reaches 120-160ms, while showing consistent advantage over
the IDM predictor under all delays. The ANN predictor is
having the worst tracking accuracy, especially under NYCC
cycle, which again shows its disadvantage in handling unseen
situations. When the timestamps of shared information are
available and the prediction is corrected, both the IDM and the
IMPC predictors experience improvements in their respective
tracking accuracies. After delay compensation, the IMPC
experiences a more noticeable improvement than the rest,
eventually becoming better than all the other predictors under

Fig. 6. Predictor performance under delays, driver B.

Fig. 7. Predictor performance under delays, driver C.

all types of delays. This indicates that IMPC can provide
more accurate anticipations over the prediction horizon. The
tracking accuracy from ANN predictor, on the other hand,
is worsened when the timestamps are present. The ANN is
not able to provide effective multi-step predictions, possibly
because it is undertrained by the limited training data. Another
reason behind the ineffectiveness of multi-step prediction
is the unpredictable behavior of the network when it is
presented with unseen situations. Average control input and
vehicle acceleration are again shown in the figures to get
more comprehensive comparisons between predictors. The
average vehicle acceleration achieved by different predictors
is showing a similar trend to the headway tracking error. The
IMPC predictor is having a smaller mean acceleration, and
handles large delays better when compared to the IDM and
the ANN predictors. When timestamps are available, the IMPC
can reduce the mean absolute acceleration the most. All these
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phenomena mean that the IMPC predictor does not need
to sacrifice riding comfort in order to improve the control
accuracy of the FAV. When it comes to the average control
input, the delay correction can cause the IMPC to have a
larger average control input than when the timestamps are
unavailable. However, when compared to other predictors,
the control cost of the IMPC is still small as long as the
average delay is below 120ms. Based on driver A’s comparison
result, we can conclude that the IMPC predictor can lead to
the best headway tracking accuracy across all delay scenarios.
Meanwhile, it does not need to sacrifice riding comfort or
and energy efficiency when the average communication delay
is below 120ms. It is reasonable to believe that the IMPC
predictor can demonstrate consistent advantages in terms of
both riding comfort and energy efficiency when the MPC is
including corresponding primitive costs in the cost function.
Fig. 6 and Fig. 7 show the results from driver B and C. The

overall trends of the results are observed to be similar to that of
driver A. Since different drivers have different driving styles,
the location of the crossing points of predictors’ performance
are different. For driver B, the IDM predictor cannot predict
his action very accurately. It becomes worse than that of CS
when the delay is merely about 30ms under the HWFET and
the Artemis cycles, and falls behind that of CS almost all the
time under the NYCC cycle. The correction with available
timestamps does not seem to help much. The IMPC predictor
once again handles a delay of 120ms well even without the
timestamps. When the timestamps are available, the control
errors are significantly reduced with almost no compromise
on the control cost. For driver C, the IMPC predictor with
timestamps correction can maintain its advantage in all three
aspects even under an average communication delay of 160ms.
On the contrary, the large headway tracking error proves that
the ANN predictor is not working effectively.
Overall, the IMPC predictor can help the MPC controller of

the FAV to achieve lower control error, better riding comfort
and energy efficiency when the communication delay is under
120ms. Moreover, it reduces the control error even further
when the global timestamps of the shared information are
available.

D. Predictive Control With Different Predictors Under
Different Packet Loss Rates

In this section, all four predictors are coupled with the
MPC FAV controller when there are different packet loss
rates. Literature [43] has done a real-world reliability test
for IEEE 802.11p-based V2V communication. Their data
shows that the packet loss rate can be as high as 30% under
line of sight communication. The range of packet loss rate
in this paper is from 10% to 40%. The results are shown
in Fig. 8 to Fig. 10.
In this section, the communication frequency is set to 20Hz.

A 50ms equivalent delay will be imposed when a packet is lost.
Even when a packet loss rate of 40% is applied, it is still rare to
see three consecutive packets getting lost. Thus, theoretically,
the impact of packet loss alone should be less obvious than
that of delay. The figures confirm this guess. IDM, ANN,

Fig. 8. Predictor performance under packet losses, driver A.

Fig. 9. Predictor performance under packet losses, driver B.

and IMPC-based predictors are all performing better under
packet losses than under long delays. The IMPC predictor is
having the best headway tracking accuracy among all three
drivers under all packet loss scenarios. The IMPC predictor is
achieving the best performance in terms of mean acceleration
and mean control input among all the four predictors. Overall,
the performance of the IMPC predictor is the best in terms
of reducing the control error, improving riding comfort and
energy efficiency under the presence of packet drops.

E. Predictive Control With Different Predictors Under
Combination of Propagation Delays and Packet Losses

In this section, the performances of the four predictors under
a realistic combination of propagation delay and packet loss
is compared. Literature [10] suggests that the communication
delay should be between one and two times of communication
cycle time when there’s no packet loss. In this section, the
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TABLE IV

MPC PERFORMANCE COMPARISONWITH DIFFERENT PREDICTORS, UNDER DELAY AND PACKET LOSS, DRIVER A

TABLE V

MPC PERFORMANCE COMPARISONWITH DIFFERENT PREDICTORS, UNDER DELAY AND PACKET LOSS, DRIVER B

communication frequency is set to 10Hz, which is a com-
monly used standard by dedicated short range communication
(DSRC) [44]. The communication cycle time is then 100ms.
Based on the measurements in [43], a packet loss rate of 20%
is selected. The value of the loss rate is intentionally selected
from the worse side in order to cover the nonideality in real
V2V communication. The results are shown in Table IV to
Table VI.
It can be seen that with delays and packet losses injected,

all predictors except the CS predictor experienced a reduced
performance when compared to the results given in Table II.

Even the IMPC fails to deliver a smaller control error than that
of the CS. However, when the timestamps are available, the
performance of the IMPC predictor is improved significantly.
In this case, the IMPC is having a big lead over other the
predictors in terms of the average, the maximum and the
minimum control errors for all drivers and under all cycles.
Meanwhile, the IDM-based predictor has almost lost its func-
tionality and is falling behind the CS-based predictor in almost
every aspect. The ANN predictor is the only predictor for
which the control accuracy worsens when delay compensation
is available. The phenomena reflect that the IMPC is having
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TABLE VI

MPC PERFORMANCE COMPARISONWITH DIFFERENT PREDICTORS, UNDER DELAY AND PACKET LOSS, DRIVER C

Fig. 10. Predictor performance under packet losses, driver C.

the most accurate prediction over the horizon, while the ANN’s
prediction is inaccurate and unstable.
It is worth mentioning that when such large delay exists

in the system, the IMPC can no longer guarantee advantages
in riding comfort or energy efficiency based on current con-
troller. This is true even when the timestamps are available.
Sometimes, the IMPC loses out to the CS by a small margin
when it comes to vehicle acceleration and control input.
However, considering the former’s huge advantage in terms
of control accuracy, it is very likely that the IMPC will
regain its advantages in riding comfort and energy efficiency
when these two aspects are considered by the predictive
controller.
Overall, the combined communication delay and packet loss

test proves that the IMPC-based predictor can bring actual
benefits during real driving scenarios.

IV. CONCLUSION

In this paper a new IMPC-based approach is proposed
to model and predict the longitudinal behaviors of human-
driven vehicles in connected mixed traffic environments. Its
predictions can be utilized by the model predictive control of
following automated vehicles for improved control accuracy,
riding comfort and energy efficiency. Comparisons are done
between the IMPC-based and CS, IDM and ANN based
predictive controller under random communication constraints.
The results illustrate the effectiveness and the advantages of
the proposed approaches in terms of handling delays and
packet losses. It obviously outperforms other approaches when
communication delays and packet losses are present. This is
reflected in the lowest control error, average vehicle accel-
eration and average control input. With correction using the
timestamps, the IMPC-based predictive controller can almost
recover its performance under communication constrains to
that in ideal situation.
As for future work, we plan to apply the current IMPC-

based predictive controller to a larger platoon of vehicles to
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study its effect on the large mixed traffic flow. We are also
planning to use a more complex cost function design to more
evidently reveal the differences in driving preferences between
different drivers. In addition to the studied longitudinal driving,
extending the proposed framework to the prediction and the
control of other behaviors/states of connected mixed vehicles
such as lane tracking and lane switching will also be further
work to explore.

APPENDIX

See List of Abbreviations Table.

REFERENCES
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