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This article reviews deep learning applications in biomedical
optics with a particular emphasis on image formation. The
review is organized by imaging domains within biomedical
optics and includes microscopy, fluorescence lifetime imag-
ing, in vivo microscopy, widefield endoscopy, optical coher-
ence tomography, photoacoustic imaging, diffuse tomogra-
phy, and functional optical brain imaging. For each of these
domains, we summarize how deep learning has been ap-
plied and highlight methods by which deep learning can en-
able new capabilities for optics in medicine. Challenges and
opportunities to improve translation and adoption of deep
learning in biomedical optics are also summarized. Lasers
Surg. Med. 00:00–00, 2020. 2020 Wiley-Liss, Inc.
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Biomedical optics is the study of biological light-matter in-
teractions with the overarching goal of developing sensing
platforms that can aid in diagnostic, therapeutic, and sur-
gical applications [1]. Within this large and active field of
research, novel systems are continually being developed to
exploit unique light-matter interactions that provide clini-
cally useful signatures. These systems face inherent trade-
offs in signal-to-noise ratio (SNR), acquisition speed, spatial
resolution, field of view (FOV), and depth of field (DOF).
These trade-offs affect the cost, performance, feasibility, and
overall impact of clinical systems. The role of biomedical op-
tics developers is to design systems which optimize or ideally
overcome these trade-offs in order to appropriately meet a
clinical need.

In the past few decades, biomedical optics system design,
image formation, and image analysis have primarily been
guided by classical physical modeling and signal processing
methodologies. Recently, however, deep learning (DL) has
become a major paradigm in computational modeling and
demonstrated utility in numerous scientific domains and var-
ious forms of data analysis [2,3]. As a result, DL is increas-

Fig 1: Number of reviewed research papers which utilize DL
in biomedical optics stratified by year and imaging domain.

ingly being utilized within biomedical optics as a data-driven
approach to perform image processing tasks, solve inverse
problems for image reconstruction, and provide automated
interpretation of downstream images. This trend is high-
lighted in Fig. 1, which summarizes the articles reviewed in
this paper stratified by publication year and image domain.

This review focuses on the use of DL in the design and
translation of novel biomedical optics systems. While im-
age formation is the main focus of this review, DL has also
been widely applied to the interpretation of downstream im-
ages, as summarized in other review articles [4, 5]. This re-
view is organized as follows. First, a brief introduction to
DL is provided by answering a set of questions related to
the topic and defining key terms and concepts pertaining
to the articles discussed throughout this review. Next, re-
cent original research in the following eight optics-related
imaging domains is summarized: (1) microscopy, (2) fluores-
cence lifetime imaging, (3) in vivo microscopy, (4) widefield
endoscopy, (5) optical coherence tomography, (6) photoa-
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Fig 2: (a) Classical machine learning uses engineered fea-
tures and a model. (b) Deep learning uses learned features
and predictors in an “end-to-end” deep neural network.

coustic imaging, (7) diffuse tomography, and (8) functional
optical brain imaging. Within each domain, state-of-the-art
approaches which can enable new functionality for optical
systems are highlighted. We then offer our perspectives on
the challenges and opportunities across these eight imaging
domains. Finally, we provide a summary and outlook of ar-
eas in which DL can contribute to future development and
clinical impact biomedical optics moving forward.

DEEP LEARNING OVERVIEW

What is deep learning?

To define DL, it is helpful to start by defining machine learn-
ing (ML), as the two are closely related in their historical
development and share many commonalities in their prac-
tical application. ML is the study of algorithms and statis-
tical models which computer systems use to progressively
improve their performance on a specified task [6]. To ensure
the development of generalizable models, ML is commonly
broken in two phases: training and testing. The purpose of
the training phase is to actively update model parameters to
make increasingly accurate predictions on the data, whereas
the purpose of testing is to simulate a prospective evaluation
of the model on future data.

In this context, DL can be considered a subset of ML, as
it is one of many heuristics for development and optimiza-
tion of predictive, task-specific models [7]. In practice, DL
is primarily distinguished from ML by the details of the un-
derlying computational models and optimization techniques
utilized. Classical ML techniques rely on careful develop-
ment of task-specific image analysis features, an approach
commonly referred to as “feature engineering” (Fig. 2(a)).
Such approaches typically require extensive manual tuning
and therefore have limited generalizability. In contrast, DL
applies an “end-to-end” data-driven optimization (or “learn-
ing”) of both feature representations and model predictions
[2] ((Fig. 2(b)). This is achieved through training a type
of general and versatile computational model, termed deep
neural network (DNN).

DNNs are composed of multiple layers which are con-
nected through computational operations between layers, in-
cluding linear weights and nonlinear “activation” functions.
Thereby, each layer contains a unique feature representa-
tion of the input data. By using several layers, the model

can account for both low-level and high-level representa-
tions. In the case of images, low-level representations could
be textures and edges of the objects, whereas higher level
representations would be object-like compositions of those
features. The joint optimization of both feature representa-
tion at multiple levels of abstraction and predictive model
parameters is what makes DNNs so powerful.

How is deep learning implemented?

The majority of the existing DL models in biomedical optics
are implemented using the supervised learning strategy. At a
high-level, there are three primary components to implement
a supervised DL model: 1) labeled data, 2) model architec-
ture, and 3) optimization strategy. Labeled data consist of
the raw data inputs as well as the desired model output.
Large amounts of labeled data are often needed for effective
model optimization. This requirement is currently one of
the main challenges for utilizing DL on small-scale biomed-
ical data sets, although strategies to overcome this are an
active topic in the literature, such as unsupervised [8], self-
supervised [9], and semi-supervised learning [10]. For a typ-
ical end-to-end DL model, model architecture defines the
hypothesis class and how hierarchical information flows be-
tween each layer of the DNN. The selection of a DNN archi-
tecture depends on the desired task and is often determined
empirically through comparison of various state-of-the-art
architectures. Three of the most widely used DNN architec-
tures in current biomedical optics literature are illustrated
in Fig. 3.

The encoder-decoder network [11] shown in Fig. 3(a) aims
to establish a mapping between the input and output images
using a nearly symmetrically structure with a contracting
“encoder” path and an expanding “decoder” path. The en-
coder consists of several convolutional blocks, each followed
by a down-sampling layer for reducing the spatial dimension.
Each convolutional block consists of several convolutional
layers (Conv2D) that stacks the processed features along
the last dimension, among which each layer is followed by a
nonlinear activation function, e.g. the Rectified Linear Unit
(ReLU). The intermediate output from the encoder has a
small spatial dimension but encodes rich information along
the last dimension. These low-resolution “activation maps”
go through the decoder, which consists of several additional
convolutional blocks, each connected by a upsampling con-
volutional (Up-Conv) layer for increasing the spatial dimen-
sion. The output of the network typically has the same di-
mension as the input image.

The U-Net [12] architecture shown in Fig. 3(b) can be
thought of as an extension to the encoder-decoder network.
It introduces additional “skip connections” between the en-
coder and decoder paths so that information across different
spatial scales can be efficiently tunneled through the net-
work, which has shown to be particularly effective to pre-
serve high-resolution spatial information [12].

The generative adversarial network (GAN) [13] shown in
Fig. 3(c) is a general framework that involves adversarially
training a pair of networks, including the “generator” and
“discriminator”. The basic idea is to train the generator
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Fig 3: Three of the most commonly-used DNN architectures
in biomedical optics: (a) Encoder-decoder, (b) U-Net, and
(c) GAN.

to make high-quality image predictions that are indistin-
guishable from the real images of the same class (e.g. H&E
stained lung tissue slices). To do so, the discriminator is
trained to classify that the generator’s output is fake, while
the generator is trained to fool the discriminator. Such al-
ternating training steps iterate until a convergence is met
when the discriminator can hardly distinguish if the images
produced from the generator are fake or real. When apply-
ing to biomedical optics techniques, the generator is often
implemented by the U-Net. The discriminator is often im-
plemented using an image classification network. The input
image is first processed by several convolutional blocks and
downsampling layers to extract high-level 2D features. These
2D features are then “flattened” to a 1D vector, which is
then processed by several fully connected layers to perform
additional feature synthesis and make the final classification.

Once labeled data and model architecture have been de-
termined, optimization of model parameters can be under-
taken. Optimization strategy includes two aspects: 1) cost
function, and 2) training algorithm. Definition of a cost func-
tion (a.k.a. objective function, error, or loss function) is
needed to assess the accuracy of model predictions relative
to the desired output and provide guidance to adjust model
parameters. The training algorithm iteratively updates the
model parameters to improve model accuracy. This train-
ing process is generally achieved by solving an optimization
problem, using variants of the gradient descent algorithm,
e.g. stochastic gradient descent and Adam [14]. The opti-
mizer utilizes the gradient of the cost function to update

each layer of the DNN through the principle of “error back-
propagation” [15]. Given labeled data, a model architecture,
and the optimization guides the model parameters towards
a local minimum of the cost function, thereby optimizing
model performance.

With the recent success of DL, several software frame-
works have been developed to enable easier creation and
optimization of DNNs. Many of the major technology com-
panies have been active in this area. Two of the front-runners
are TensorFlow and PyTorch, which are open-source frame-
works published and maintained by Google and Facebook,
respectively [16,17]. Both frameworks enable easy construc-
tion of custom DNN models, with efficient parallelization
of DNN optimization over high-performance graphics com-
puting units (GPUs). These frameworks have enabled non-
experts to train and deploy DNNs and have played a large
role in the spread of DL research into many new applica-
tions, including the field of biomedical optics.

What is deep learning used for in biomedical optics?

There are two predominant tasks for which DL has been uti-
lized in biomedical optics: 1) image formation and 2) image
interpretation. Both are important applications; however,
image formation is a more central focus of biomedical optics
researchers and consequently is the focus of this review.

With regards to image formation, DL has proven very use-
ful for effectively approximating the inverse function of an
imaging model in order to improve the quality of image re-
constructions. Classical reconstruction techniques are built
on physical models with explicit analytical formulations. To
efficiently compute the inverse of these analytical models,
approximations are often needed to simplify the problem,
e.g. linearization. Instead, DL methods have shown to be
very effective to directly “learn” an inverse model, in the
form of a DNN, based on the training input and output
pairs. This in practice has opened up novel opportunities to
perform image formation that would otherwise be difficult
to formulate an analytical model. In addition, the directly
learned DL inverse model can often better approximate the
inverse function, which in turn leads to improved image qual-
ity as shown in several imaging domains in this review.

Secondly, DL has been widely applied for modeling im-
age priors for solving the inverse problems across multiple
imaging domains. Most image reconstruction problems are
inherently ill-posed in that the reconstructed useful image
signal can be overwhelmed by noise if a direct inversion is
implemented. Classical image reconstruction techniques rely
on regularization using parametric priors for incorporating
features of the expected image. Although being widely used,
such models severely limit the type of features that can
be effectively modeled, which in turn limit the reconstruc-
tion quality. DL-based reconstruction bypasses this limita-
tion and does not rely on explicit parameterization of image
features, but instead represents priors in the form of a DNN
which is optimized (or “learned”) from a large data set that
is of the same type of the object of interest (e.g. endoscopic
images of esophagus). By doing so, DL enables better quality
reconstructions.
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Beyond achieving higher quality reconstructions, there are
other practical benefits of DNNs in image formation. Clas-
sical inversion algorithms typically require an iterative pro-
cess that can take minutes to hours to compute. Further-
more, they have stringent sampling requirements, which if
lessened, make the inversion severely ill-posed. Due to more
robust “learned” priors, DL-based techniques can accom-
modate highly incomplete or undersampled inputs while
still providing high-quality reconstructions. Additionally, al-
though DNNs typically require large datasets for training,
the resulting models are capable of producing results in real
time with a GPU. These combined capabilities allow DL-
based techniques to bypass physical trade-offs (e.g., acquisi-
tion speed and imaging quality) and enable novel capabilities
beyond existing solutions.

By leveraging these unique capabilities of DL methods, in-
novative techniques have been broadly reported across many
imaging domains in biomedical optics. Examples include im-
proving imaging performance, enabling new imaging func-
tionalities, extracting quantitative microscopic information,
and discovering new biomarkers. These and other technical
developments have the potential to significantly reduce sys-
tem complexity and cost, and may ultimately improve the
quality, affordability, and accessibility of biomedical imaging
in health care.

DEEP LEARNING APPLICATIONS IN BIOMED-
ICAL OPTICS

Microscopy

Overview. Microscopy is broadly used in biomedical
and clinical applications to capture cellular and tissue struc-
tures based on intrinsic (e.g. scattering, phase, and autoflu-
orescence) or exogenous contrast (e.g. stains and fluores-
cent labels). Fundamental challenges exist in all forms of
microscopy because of the limited information that can be
extracted from the instrument. Broadly, the limitations can
be categorized based on two main sources of origin. The
first class is due to the physical tradeoffs between multiple
competing performance parameters, such as SNR, acquisi-
tion speed, spatial resolution, FOV, and DOF. The second
class is from the intrinsic sensitivity and specificity of dif-
ferent contrast mechanisms. DL-augmented microscopy is a
fast-growing area that aims to overcome various aspects of
conventional limitations by synergistically combining novel
instrumentation and DL-based computational enhancement.
This section focuses on DL strategies for bypassing the phys-
ical tradeoffs and augmenting the contrast in different mi-
croscopy modalities.

Overcoming physical tradeoffs. An ideal microscopy
technique often needs to satisfy several requirements, such
as high resolution in order to resolve the small features in
the sample, low light exposure to minimize photo-damage,
and a wide FOV in order to capture information from a
large portion of the sample. Traditional microscopy is fun-
damentally limited by the intrinsic tradeoffs between various
competing imaging attributes. For example, a short light ex-
posure reduces the SNR; a high spatial resolution requires a
high-magnification objective lens that provides a small FOV

and shallow DOF. This section summarizes recent achieve-
ments in leveraging DL strategies to overcome various phys-
ical tradeoffs and expand the imaging capabilities.

1) Denoising. Enhancing microscopy images by DL-
based denoising has been exploited to overcome the tradeoffs
between light exposure, SNR, and imaging speed, which in
turn alleviates photo-bleaching and photo-toxicity. The gen-
eral strategy is to train a supervised network that takes a
noisy image as the input and produces the SNR-enhanced
image output. Weigert et al. [18] demonstrated a practical
training strategy of a U-Net on experimental microscopy
data that involves taking paired images with low and high
light exposures as the noisy input and high-SNR output
of the network (Fig. 4(a)). This work showed that the
DNN can restore the same high-SNR images with 60-fold
fewer photons used during the acquisition. Similar strategies
have been applied to several microscopy modalities, includ-
ing widefield, confocal, light-sheet [18], structured illumina-
tion [24], and multi-photon microscopy [25].

2) Image reconstruction. Beyond denoising, the imag-
ing capabilities of several microscopy techniques can be
much expanded by performing image reconstruction. To per-
form reconstruction by DL, the common framework is to
train a DNN, such as the U-Net and GAN, that takes the
raw measurements as the input and the reconstructed image
as the output. With this DL framework, three major bene-
fits have been demonstrated. First, Wang et al. showed that
GAN-based super-resolution reconstruction allows recover-
ing high-resolution information from low-resolution mea-
surements, which in turn provides an enlarged FOV and
an extended DOF [19] (Fig. 4(b)). For widefield imaging,
[19] demonstrated super-resolution reconstruction using in-
put images from a 10×/0.4-NA objective lens and pro-
ducing images matching a 20×/0.75-NA objective lens. In
a cross-modality confocal-to-STED microscopy transforma-
tion case, [19] showed resolution improvement from 290 nm
to 110 nm. Similar results have also been reported in label-
free microscopy modalities, including brightfield [26], holog-
raphy [27], and quantitative phase imaging [20] (Fig. 4(c)).

Second, DL-based 3D reconstruction technique allows
drastically extending the imaging depth from a single-shot
and thus bypasses the need for physical focusing. In [21],
Wu et al. demonstrated 20× DOF extension in widefield flu-
orescence microscopy using a conditional GAN (Fig. 4(d)).
Recent work on DL-based extended DOF has also shown
promising results on enabling rapid slide-free histology [28].

Third, DL significantly improves both the imaging acqui-
sition and reconstruction speeds and reduces the number
of measurements for microscopy modalities that intrinsi-
cally require multiple measurements for the image forma-
tion, as shown in quantitative phase microscopy [20, 29, 30]
(Fig. 4(c)), single molecule localization microscopy [31–33],
and structured illumination microscopy [24]. For example,
in [20], a 97% data reduction as compared to the con-
ventional sequential acquisition scheme was achieved for
gigapixel-scale phase reconstruction based on a multiplexed
acquisition scheme using a GAN.
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Fig 4: DL overcomes physical tradeoffs and augments microscopy contrast. (a) CARE network achieves higher SNR with
reduced light exposure (with permission from the authors [18]). (b) Cross-modality super-resolution network reconstructs
high-resolution images across a wide FOV [19] (with permission from the authors). (c) DL enables wide-FOV high-resolution
phase reconstruction with reduced measurements (adapted from [20]). (d) Deep-Z network enables digital 3D refocusing
from a single measurement [21] (with permission from the authors). (e) Virtual staining GAN transforms autofluorescence
images of unstained tissue sections to virtual H&E staining [22] (with permission from the authors) (f) DL enables predicting
fluorescent labels from label-free images [23] (Reprinted from Cell, 2018 Apr 19;173(3):792-803.e19, Christiansen et al., In
Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images, Copyright (2020), with permission from Elsevier).

Augmenting contrasts. The image contrast used in
different microscopy modalities can be broadly categorized
into endogenous and exogenous. For example, label-free mi-
croscopy captures endogenous scattering and phase contrast,
and is ideal for imaging biological samples in their natural
states, but suffers from lack of molecular specificity. Speci-
ficity is often achieved by staining with absorbing or fluo-
rescent labels. However, applications of exogenous labeling
are limited by the physical staining/labeling process and po-
tential perturbation to the natural biological environment.
Recent advances in DL-augmented microscopy have the po-
tential to achieve the best of both label-free and labeled
microscopy. This section summarizes two most widely used
frameworks for augmenting microscopy contrast with DL.

1) Virtual staining/labeling. The main idea of vir-
tual staining/labeling is to digitally transform the captured
label-free contrast to the target stains/labels. DL has been
shown to be particularly effective to perform this “cross-
modality image transformation” task. By adapting this idea
to different microscopy contrasts, two emerging applications
have been demonstrated. First, virtual histological staining
has been demonstrated for transforming a label-free image
to the brightfield image of the histologically-stained sample
(Fig. 4(e)). The label-free input utilized for this task in-
clude autofluorescence [22, 34], phase [35, 36], multi-photon
and fluorescence lifetime [37]. The histological stains include
H&E, Masson’s Trichrome and Jones’ stain. Notably, the
quality of virtual staining on tissue sections from multiple
human organs of different stain types was assessed by board-
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certified pathologists to show superior performance [22]. A
recent cross-sectional study has been carried out for clini-
cal evaluation of unlabeled prostate core biopsy images that
have been virtually stained [38]. The main benefits of the
virtual staining approach include saving time and cost [22],
as well as facilitating multiplexed staining [34]. Interested
readers can refer to a recent review on histopathology using
virtual staining [39].

Second, digital fluorescence labeling has been demon-
strated for transforming label-free contrast to fluorescence
labels [23,40–43] (Fig. 4(f)). In the first demonstration [23],
Christiansen et al. performed 2D digital labeling using trans-
mission brightfield or phase contrast images to identify cell
nuclei (accuracy quantified by Pearson correlation coeffi-
cient PCC = 0.87–0.93), cell death (PCC = 0.85), and
to distinguish neuron from astrocytes and immature di-
viding cells (PCC = 0.84). A main benefit of digital flu-
orescence labeling is digital multiplexing of multiple sub-
cellular fluorescence labels, which is particularly appealing
to kinetic live cell imaging. This is highlighted in [40], 3D
multiplexed digital labeling using transmission brightfield or
phase contrast images on multiple subcellular components
are demonstrated, including nucleoli (PCC∼0.9), nuclear
envelope, microtubules, actin filaments (PCC∼0.8), mito-
chondria, cell membrane, Endoplasmic reticulum, DNA+
(PCC∼0.7), DNA (PCC∼0.6), Actomyosin bundles, tight
junctions (PCC∼0.5), Golgi apparatus (PCC∼0.2), and
Desmosomes (PCC∼0.1). Recent advances further exploit
other label-free contrasts, including polarization [41], quan-
titative phase map [43], and reflectance phase-contrast mi-
croscopy [42]. Beyond predicting fluorescence labels, recent
advances further demonstrate multiplexed single-cell profil-
ing using the digitally predicted labels [42].

In both virtual histopathological staining and digital flu-
orescence labeling, the U-Net forms the basic architecture
to perform the image transformation. GAN has also been
incorporated to improve the performance [22,38].

2) Classification Instead of performing pixel-wise vir-
tual stain/label predictions, DL is also very effective in
holistically capturing complex ‘hidden’ image features for
classification. This has found broad applications in aug-
menting the label-free measurements and provide improved
specificity and classify disease progression [44, 45] and can-
cer screening [46–48], as well as detect cell types [49, 50],
cell states [44, 51], stem cell lineage [52–54], and drug re-
sponse [55]. For example, in [44], Eulenberg et al. demon-
strated a classification accuracy of 98.73% for the G1/S/G2
phase, which provided 6× improvement in error rate as com-
pared to the previous state-of-the-art method based on clas-
sical ML techniques.

Opportunities and challenges. By overcoming the
physical tradeoffs in traditional systems, DL-augmented mi-
croscopy achieves unique combinations of imaging attributes
that are previously not possible. This may create new op-
portunities for diagnosis and screening. By augmenting the
contrast using virtual histological staining techniques, DL
can open up unprecedented capabilities in label-free and
slide-free digital pathology. This can significantly simplify

the physical process and speed up the diagnosis. By fur-
ther advancing the digital fluorescence labeling techniques,
it can enable high-throughput and highly multiplexed single-
cell profiling and cytometry. Beyond clinical diagnoses, this
may find applications in drug screening and phenotyping.

In addition, several emerging DL techniques can fur-
ther enhance the capabilities of microscopy systems. First,
DL can be applied to optimize the hardware parameters
used in microscopy experiments. In quantitative phase mi-
croscopy, DL was applied to optimized the illumination
patterns to reduce the data requirement [30, 56]. In single
molecule localization microscopy, DL was used to optimize
the point spread functions to enhance the localization accu-
racy [33, 57]. DL has also been used to optimize the illumi-
nation power [58] and focus positions [59–61].

Second, new DL frameworks are emerging to significantly
reduce the labeled data requirements in training, which is
particularly useful in biomedical microscopy since acquir-
ing a large-scale labeled training data set is often imprac-
tical. For example, a novel denoising approach, known as
Noise2Noise [62], has been developed that can be trained
using only independent pairs of noisy images, and by-
passes the need for ground-truth clean images. Following
this work, self-supervised denoising DL approaches have
been advanced to further alleviate the training data re-
quirement. Techniques, such as Noise2Void, Noise2Self and
their variants, can be directly trained on noisy data set
without the need for paired noisy images [63–65]. In addi-
tion, semi-supervised and unsupervised DL approaches have
also been developed to reduce or completely remove the
need for labeled training data during training, which have
been demonstrated for vessel segmentation [66, 67]. Lastly,
physics-embedded DL opens up a new avenue for reducing
training requirements by incorporating the physical model
of the microscopy technique [68,69].

Finally, uncertainty quantification techniques address the
need for assessing the reliability of the DL model by quan-
tifying the confidence of the predictions, and has recently
been applied in quantitative phase reconstruction [20].

Fluorescence Lifetime Imaging

Overview. Fluorescence imaging has become a central
tool in biomedical studies with high sensitivity to observe en-
dogenous molecules [70,71] and monitor important biomark-
ers [72]. Increasingly, fluorescence imaging is not limited to
intensity-based techniques but can extract additional infor-
mation by measuring fluorophore lifetimes [73–75]. Fluores-
cence lifetime imaging (FLI) has become an established tech-
nique for monitoring cellular micro-environment via analysis
of various intracellular parameters [76], such as metabolic
state [77, 78], reactive oxygen species [79] and/or intracel-
lular pH [80]. FLI is also a powerful technique for study-
ing molecular interactions inside living samples, via Frster
Resonance Energy Transfer (FRET) [81], enabling applica-
tions such as quantifying protein-protein interactions [82],
monitoring biosensor activity [83] and ligand-receptor en-
gagement in vivo [84]. However, FLI is not a direct imaging
technique. To quantify lifetime or lifetime-derived parame-
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ters, an inverse solver is required for quantification and/or
interpretation.

To date, image formation is the main utility of DL in
FLI. Contributions include reconstructing quantitative life-
time image from raw FLI measurements, enabling enhanced
multiplexed studies by leveraging both spectral and lifetime
contrast simultaneously, and facilitating improved instru-
mentation with compressive measurement strategies.

Lifetime quantification, representation, and re-
trieval. Conventionally, lifetime quantification is obtained
at each pixel via model-based inverse-solvers, such as least-
square fitting and maximum-likelihood estimation [85], or
the fit-free phasor method [86, 87]. The former is time-
consuming, inherently biased by user-dependent a priori set-
tings, and requires operator expertise. The phasor method
is the most widely-accepted alternative for lifetime repre-
sentation [87]. However, accurate quantification using the
phasor method requires careful calibration, and when con-
sidering tissues/turbid-media in FLI microscopy (FLIM) ap-
plications, additional corrections are needed [87,88]. There-
fore, it has largely remained qualitative in use.

Wu et al. [89] demonstrated a multilayer perceptron
(MLP) for lifetime retrieval for ultrafast bi-exponential
FLIM. The technique exhibited an 180-fold faster speed then
conventional techniques, yet it was unable to recover the
true lifetime-based values in many cases due to ambiguities
caused by noise. Smith et al. [90] developed an improved
3D-CNN, FLI-Net, that can retrieve spatially independent
bi-exponential lifetime parameter maps directly from the 3D
(x, y, t) FLI data. By training with a model-based approach
including representative noise and instrument response func-
tions, FLI-Net was validated across a variety of biologi-
cal applications. These include quantification of metabolic
and FRET FLIM, as well as preclinical lifetime-based stud-
ies across the visible and near-infrared (NIR) spectra. Fur-
ther, the approach was generalized across two data acquisi-
tion technologies – Time-correlated Single Photon Counting
(TCSPC) and Intensified Gated CCDs (ICCD). FLI-Net has
two advantages. First, it outperformed classical approaches
i‘n the presence of low photon counts, which is a common
limitation in biological applications. Second, FLI-Net can
output lifetime-based whole-body maps at 80 ms in wide-
field pre-clinical studies, which highlights the potential of
DL methods for fast and accurate lifetime-based studies. In
combination with DL in silico training routines that can be
crafted for many applications and technologies, DL is ex-
pected to contribute to the dissemination and translation
of FLI methods as well as to impact the design and imple-
mentation of future-generation FLI instruments. An exam-
ple FLI-Net output for metabolic FLI is shown in Fig. 5.

Emerging FLI applications using DL. The technolo-
gies used in FLI have not fundamentally shifted over the
last two decades. One bottleneck for translation is a lack
of sensitive, widefield NIR detectors. Advances in computa-
tional optics have sparked development of new approaches
using structured light [91], such as single-pixel methods [92].
These methods are useful when widefield detectors are lack-
ing, such as in applications with low photon budget and

Fig 5: Example of quantitative FLI metabolic imaging as
reported by NADH tm for a breast cancer cell line (AU565)
as obtained (a) with SPCImage and (b) FLI-Net. (c) Linear
regression with corresponding 95% confidence band (gray
shading) of averaged NADH Tm values from 4 cell line data
(adapted from [90]).

when higher dimensional data are sought [93] (e.g., hyper-
spectral imaging [94]). However, these computational meth-
ods are based on more complex inverse models that require
user expertise and input.

Yao et al. [95] developed a CNN, NetFLICS, capable of re-
trieving both intensity and lifetime images from single-pixel
compressed sensing-based time-resolved input. NetFLICS
generated superior quantitative results at low photon count
levels, while being four orders of magnitude faster than ex-
isting approaches. Ochoa-Mendoza et al. [96] further devel-
oped the approach to increase its compression ratio to 99%
and the reconstruction resolution to 128×128 pixels. This
dramatic improvement in compression ratio enables signif-
icantly faster imaging protocols and demonstrates how DL
can impact instrumentation design to improve clinical utility
and workflow [97].

Recent developments have made hyperspectral FLI imag-
ing possible across microscopic [98] and macroscopic set-
tings [99]. Traditionally, combining spectral and lifetime
contrast analytically is performed independently or sequen-
tially using spectral decomposition and/or iterative fit-
ting [100]. Smith et al. [101] proposed a DNN, UNMIX-
ME, to unmix multiple fluorophore species simultaneously
for both spectral and temporal information. UNMIX-ME
takes a 4D voxel (x, y, t, λ) as the input and outputs spa-
tial (x, y) maps of the relative contributions of distinct
fluorophore species. UNMIX-ME demonstrated higher per-
formance during tri- and quadri-abundance coefficient re-
trieval. This method is expected to find utility in applica-
tions such as autofluorescence imaging in which unmixing of
metabolic and structural biomarkers is challenging.
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Although FLI has shown promise for deep tissue imaging
in clinical scenarios, FLI information is affected by tissue op-
tical properties. Nonetheless, there are several applications
that would benefit from optical property-corrected FLI with-
out solving the full 3D inverse problem. For optical guided
surgery, Smith et al. [102] proposed a DNN that outputs
2D maps of the optical properties, lifetime quantification,
and the depth of fluorescence inclusion (topography). The
DNN was trained using a model-based approach in which
a data simulation workflow incorporated “Monte Carlo eX-
treme” [103] to account for light propagation through tur-
bid media. The method was demonstrated experimentally,
with real-time applicability over large FOVs. Both widefield
time-resolved fluorescence imaging and Spatial Frequency
Domain Imaging (SFDI) in its single snapshot implementa-
tion were performed with fast acquisition [91] and process-
ing speeds [104]. Hence, their combination with DL-based
image processing provides a possible future foundation for
real-time intraoperative use.

While recent advances in FLI-based classification and seg-
mentation are limited to using classical ML techniques [105–
107], Sagar et al. [108] used MLPs paired with bi-exponential
fitting for label-free detection of microglia. However, DL ap-
proaches often outperform such “shallow learning” classi-
fiers. Although reports using DL for classification based on
FLI data are currently absent from the literature, it is ex-
pected that DL will play a critical role in enhancing FLI
classification and semantic segmentation tasks in the near
future.

In vivo microscopy

Overview. In vivo microscopy (IVM) techniques enable
real-time assessment of intact tissue at magnifications sim-
ilar to that of conventional histopathology [113]. As high-
resolution assessment of intact tissue is desirable for many
biomedical imaging applications, a number of optical tech-
niques and systems have been developed which have trade-
offs in FOV, spatial resolution, achievable sampling rates,
and practical feasibility for clinical deployment [113]. How-
ever, a commonality of IVM systems used for clinical imag-
ing is the need for image analysis strategies to support in-
traoperative visualization and automated diagnostic assess-
ment of the high-resolution image data. Currently, three of
the major IVM techniques for which DL is being utilized are
optical coherence tomography (OCT) [114], confocal laser
endomicroscopy (CLE, Fig. 6) [115], and reflectance con-
focal microscopy (RCM) [116]. This section focuses on DL
approaches for CLE and RCM. More specifically, endoscopic
imaging using probe-based CLE (pCLE) and dermal imag-
ing for RCM. OCT is discussed in a subsequent section.

Automated diagnosis. Automated diagnostic classifi-
cation has been the earliest and most frequent application
of DL within IVM. Most commonly, histopathology analysis
of imaged specimens provides a ground truth categorization
for assessing diagnostic accuracy. The limited size of pCLE
and RCM datasets and logistical challenges in precisely cor-
relating them with histopathology remain two ongoing chal-
lenges for training robust classifiers. To address these chal-

lenges, a variety of strategies have been applied which range
from simple classification schemes (benign vs malignant) us-
ing pre-trained CNNs [110] to more complicated tasks, such
as cross-domain feature learning and multi-scale encoder-
decoder networks [112,117]. The following section contrasts
recent reports and methods utilizing DL for diagnostic im-
age analysis of pCLE and RCM image datasets.

1) CNNs and transfer learning approaches. Early
reports on DL-based image classification for CLE and
RCM have demonstrated that transfer learning using pre-
trained CNNs can outperform conventional image analysis
approaches, especially when data is limited as is often the
case for CLE and RCM [110,118–120].

Aubreville et al. published an early and impactful study
comparing the performance of two CNN-based approaches
to a textural feature-based classifier (random forest) on
pCLE video sequences acquired during surgical resection of
oral squamous carcinoma (Fig. 6b) [110]. Of their two CNN-
based approaches, one was a LeNet-5 architecture and was
trained to classify sub-image patches whereas the other uti-
lized transfer learning of a pre-trained CNN (Fig. 6c) for
whole image classification. Using leave-one-out cross valida-
tion on 7,894 frames from 12 patients, the two CNN-based
approaches both outperformed the textural classifier.

Transfer learning is one strategy to overcome limited
dataset sizes, which remains a common challenge for CLE
and RCM. As larger CLE and RCM datasets are obtainable
in the future, transfer learning is unlikely to be an optimal
strategy for image classification; however, it can remain a
useful benchmark for the difficulty of image classification
tasks on novel, small-scale datasets moving forward. The
subsequent sections introduce alternatives to transfer learn-
ing which utilize video data as well as cross-domain learning.

2) Recurrent convolutional approaches. CLE and
RCM are typically used in video recording while the optical
probe is physically or optically scanned to obtain images
over a larger tissue area or at varying depths. Some reports
have utilized recurrent convolutional networks to account
for spatial and/or temporal context of image sequences [121–
123]. The additional spatial/temporal modeling provided by
recurrent networks is one promising approach to leverage
video data. [121–123].

3) Cross-domain learning. A novel approach, termed
“transfer recurrent feature learning”, was developed by Gu
et al. which leveraged cross-domain feature learning for clas-
sification of pCLE videos obtained from 45 breast tissue
specimens [112]. Although this method relied on data ac-
quired ex vivo, the data itself is not qualitatively differ-
ent from other pCLE datasets and still provides a proof-
of-principle. Their model utilized a cycle-consistent GAN
(CycleGAN) to first learn feature representations between
H&E microscopy and pCLE images and to identify visually
similar images (Fig. 6e). The optimized discriminator from
the CycleGAN is then utilized in conjunction with a recur-
rent neural network to classify video sequences (Fig. 6f).
The method outperformed other DL methods and achieved
84% accuracy in classifying normal, benign, and malignant
tissues.
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(a) Confocal laser endomicrosopy 

(CLE) optical probes

(b) Example CLE images acquired in the oral cavity

(c)  Fine-tuning approach for training classifiers on CLE datasets

(e) Style transfer between CLE and H&E image domains using a 

cycle consistency GAN

(f) Transfer recurrent feature learning (GAN-LSTM) for training diagnostic 

classifiers using CLE and histology images

Histology (H&E) image

CLE video mosaic

H&E  CLE 

Synthesis via GANs

(d)  Super-resolution network for sparse, irregular CLE data

Fig 6: DL approaches to support real-time, automated diagnostic assessment of tissues with confocal laser endomicroscopy.
(a) Graphical rendering of two confocal laser endomicroscopy probes (left: Cellvizio, right: Pentax) (adapted from [109]).
(b) Example CLE images obtained from four different regions of the oral cavity (adapted from [110]) (c) Fine-tuning of
CNNs pre-trained using ImageNet is utilized in the majority of CLE papers reported since 2017 (adapted from [110]). (d)
Super-resolution networks for probe-based CLE images incorporate novel layers to better account for the sparse, irregular
structure of the images (adapted from [111]). (e) Example H&E stained histology images with corresponding CLE images.
Adversarial training of GANs to transfer between these two modalities has been successful (adapted from [112]). (f) Transfer
recurrent feature learning utilizes adversarially trained discriminators in conjunction with an LSTM for state-of-the-art
video classification performance (adapted from [112]).

4) Multiscale segmentation. Kose et al. [117] de-
veloped a novel segmentation architecture, “multiscale
encoder-decoder network” (MED-Net), which outperformed
other state-of-the-art network architectures for RCM mosaic
segmentation . In addition to improving accuracy, MED-Net
produced more globally consistent, less fragmented pixel-
level classifications. The architecture is composed of multi-
ple, nested encoder-decoder networks and was inspired by
how pathologists often examine images at multiple scales to
holistically inform their image interpretation.

5) Image quality assessment. A remaining limitation
of many studies was some level of manual or semi-automated
pre-processing of pCLE and RCM images/videos to exclude
low-quality and/or non-diagnostic image data. Building on
the aforementioned reports for diagnostic classification, ad-
ditional work utilized similar techniques for automated im-
age quality assessment using transfer learning [124, 125] as
well as MED-Net [126].

Super-resolution. Several IVM techniques, including
pCLE, utilize flexible fiber-bundles as contact probes to il-
luminate and collect light from localized tissue areas [127].
Such probes are needed for minimally invasive endoscopic
procedures and can be guided manually or via robotics. The
FOV of fiber-optic probes is typically <1 mm2 and lateral
resolution is limited by the inter-core spacing of individ-
ual optical fibers, which introduce a periodic image artifact
(“honeycomb patterns”) from the individual fibers.

Shao et al. [128] developed a novel super-resolution ap-
proach which outperformed maximum a posteriori (MAP)
estimation using a two-stage CNN model which first es-
timates the motion of the probe and then reconstructs a
super-resolved image using the aligned video sequence. The
training data was acquired using a dual camera system, one
with and one without a fiber-bundle in the optical setup, to
obtain paired data.
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Others have taken a more computational approach to
pCLE super-resolution by using synthetic datasets. For ex-
ample, Rav̀ı et al. [129] demonstrated super-resolution of
pCLE images using unpaired image data via a CycleGAN,
and Szczotka et al. [111] introduced a novel Nadaraya-
Watson layer to account for the irregular sparse artifacts
introduced by the fiber-bundle (Fig. 6d).

Future directions. Beyond automatic diagnosis and
super-resolution approaches in IVM, recent advances also
highlight ways in which DL can enable novel instrumenta-
tion development and image reconstructions to enable new
functionalities for compact microscopy systems. Such ex-
amples include multispectral endomicroscopy [130], more
robust mosaicking for FOV expansion [131], and end-to-
end image reconstruction using disordered fiber-optic probes
[132, 133]. We anticipate that similarly to ex vivo mi-
croscopy, in the coming years DL will be increasingly utilized
to overcome physical constraints, augment contrast mecha-
nisms, and enable new capabilities for IVM systems.

Widefield endoscopy

Overview. The largest application of optics in medical
imaging, by U.S. market size, is widefield endoscopy [134]. In
this modality, tissue is typically imaged on the >1 cm scale,
over a large working distance range, with epi-illumination
and video imaging via a camera. Endoscopic and laparo-
scopic examinations are commonly used for screening, di-
agnostic, preventative, and emergency medicine. There has
been extensive research in applying various DL tools for an-
alyzing conventional endoscopy images for improving and
automating image interpretation [135–138]. This section in-
stead reviews recent DL research in image formation tasks
in endoscopy, including denoising, resolution enhancement,
3D scene reconstruction, mapping of chromophore concen-
trations, and hyperspectral imaging.

Denoising. A hallmark of endoscopic applications is
challenging geometrical constraints. Imaging through small
lumens such as the gastrointestinal tract or keyholes for
minimally-invasive surgical applications requires optical sys-
tems with compact footprints–often on the order of 1-cm di-
ameter. These miniaturized optical systems typically utilize
small-aperture cameras with high pixel counts, wide FOVs
and even smaller illumination channels. Consequently, man-
aging the photon budget is a significant challenge in en-
doscopy, and there have been several recent efforts to apply
DL to aid in high-quality imaging in these low-light condi-
tions. A low-light net (LLNET) with contrast-enhancement
and denoising autoencoders has been introduced to adap-
tively brighten images [139]. This study simulated low-light
images by darkening and adding noise and found that train-
ing on this data resulted in a learned model that could
enhance natural low-light images. Other work has applied
a U-Net for denoising on high-speed endoscopic images of
the vocal folds, also by training on high-quality images that
were darkened with added noise [140]. Brightness can also
be increased via laser-illumination, which allows greater cou-
pling efficiency than incoherent sources, but results in laser
speckle noise in the image from coherent interference. Con-
ditional GANs have been applied to predict speckle-free im-

ages from laser-illumination endoscopy images by training
on image pairs acquired of the same tissue with both coher-
ent and incoherent illumination sources [141].

Improving image quality. In widefield endoscopy, wet
tissue is often imaged in a perpendicular orientation to the
optical axis, and the close positioning of the camera and light
sources leads to strong specular reflections that mask un-
derlying tissue features. GANs have been applied to reduce
these specular reflections [142]. In this case, unpaired train-
ing data with and without specular reflections were used
in a CycleGAN architecture with self-regularization to en-
force similarity between the input specular and predicted
specular-free images. Other work has found that specular
reflection removal can be achieved in a simultaneous local-
ization and mapping elastic fusion architecture enhanced
by DL depth estimation [143]. Lastly, Ali et al. [144] intro-
duced a DL framework that identifies a range of endoscopy
artifacts (multi-class artifact detection), including specu-
lar reflection, blurring, bubbles, saturation, poor contrast,
and miscellaneous artifacts using YOLOv3-spp with classes
that were hand-labeled on endoscopy images. These artifacts
were then removed and the image restored using GANs.

Resolution enhancement. For capsule endoscopy ap-
plications, where small detectors with low pixel counts are
required, DL tools have been applied for super-resolution
with the goal of obtaining conventional endoscopy-like im-
ages from a capsule endoscope [145]. In this study, a condi-
tional GAN was implemented with spatial attention blocks,
using a loss function that included contributions of pixel
loss, content loss, and texture loss. The intuition behind the
incorporation of spatial attention blocks is that this module
guides the network to prioritize the estimation of the sus-
picious and diagnostically relevant regions. This study also
performed ablation studies and found that the content and
texture loss components are especially important for esti-
mating high-spatial frequency patterns, which becomes more
important for larger upsampling ratios. With this frame-
work, the resolution of small bowel images was increased
by up to 12× with favorable quantitative metrics as well as
qualitative assessment by gastroenterologists. Though this
study demonstrated that the resolution of gastrointestinal
images could be enhanced, it remains to be seen if prepro-
cessing or enhancing these images provides any benefit to
automated image analysis.

3D imaging and mapping. The three dimensional
shape of the tissue being imaged via endoscopy is useful
for improving navigation, lesion detection and diagnosis, as
well as obtaining meaningful quality metrics for the effec-
tiveness of the procedure [146]. However, stereo and time-
of-flight solutions are challenging and expensive to imple-
ment in an endoscopic form factor. Accordingly, there has
been significant work in estimating the 3D shape of an endo-
scopic scene from monocular images using conditional GANs
trained with photo realistic synthetic data [147, 148]. Do-
main adaptation can be used to improve the generalizability
of these models, either by making the synthetic data more
realistic, or by making the real images look more like the syn-
thetic data that the depth-estimator is trained on [149]. Re-
searchers have also explored joint conditional random fields
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and CNNs in a hybrid graphical model to achieve state-
of-the-art monocular depth estimation [150]. A U-Net style
architecture has been implemented for simultaneously es-
timating depth, color, and oxygen saturation maps from a
fiber-optic probe that sequentially acquired structured light
and hyperspectral images [151]. Lastly, DL tools have been
applied to improve simultaneous localization and mapping
(SLAM) tasks in endoscopic applications, both by incorpo-
rating a monocular depth estimation prior into a SLAM al-
gorithm for dense mapping of the gastrointestinal tract [143],
and by developing a recurrent neural network to predict
depth and pose in a SLAM pipeline [152].

Widefield spectroscopy. In addition to efforts to re-
construct high-quality color and 3D maps through an en-
doscope, DL is also being applied to estimate bulk tissue
optical properties from wide FOV images. Optical prop-
erty mapping can be useful for meeting clinical needs in
wound monitoring, surgical guidance, minimally-invasive
procedures, and endoscopy. A major challenge to estimating
optical properties in turbid media is decoupling the effects
of absorption, scattering, and the scattering phase function,
which all influence the widefield image measured with flood
illumination. Spatial frequency domain imaging can provide
additional inputs to facilitate solving this inverse problem
by measuring the attenuation of different spatial frequen-
cies [153]. Researchers have demonstrated that this inverse
model can be solved orders of magnitude faster than con-
ventional methods with a 6-layer Perceptron [154]. Others
have shown that tissue optical properties can be directly es-
timated from structured light images or widefield illumina-
tion images using content-aware conditional GANs [155]. In
this application, the adversarial learning framework reduced
errors in the optical property predictions by more than half
when compared to the same network trained with an ana-
lytical loss function. Intuitively, the discriminator learns a
more sophisticated and appropriate loss function in adver-
sarial learning, allowing for the generation of more-realistic
optical property maps. Moreover, this study found that the
conditional GANs approach resulted in an increased perfor-
mance benefit when data is tested from tissue types that
were not spanned in the training set. The authors hypothe-
size that this observation comes from the discriminator pre-
venting the generator from learning from and overfitting to
the context of the input image. Optical properties can also
be estimated more quickly using a lighter-weight twin U-
Net architecture with a GPU-optimized look-up table [104].
Further, chromophores can be computed in real-time with
reduced error compared to an intermediate optical property
inference by directly computing concentrations from struc-
tured illumination at multiple wavelengths using conditional
GANs [156].

Going beyond conventional color imaging, researchers are
also processing 1D hyperspectral measurement through an
endoscope using shallow CNNs to classify pixels into the cor-
rect color profiles, illustrating the potential to classify tissue
with complex absorbance spectra [157]. The spectral resolu-
tion can be increased in dual-modality color/hyperspectral
systems from sparse spectral signals with CNNs [151]. To

enable quantitative spectroscopy measurements in endo-
scopic imaging, it may be necessary to combine hyperspec-
tral techniques with structured illumination and 3D map-
ping [104,151,155,158].

Future directions. Future research in endoscopy and
DL will undoubtedly explore clinical applications. Imag-
ing system for guiding surgery are already demonstrating
clinical potential for ex-vivo tissue classification: a modified
Inception-v4 CNNs was demonstrated to effectively classify
squamous cell carcinoma versus normal tissue at the cancer
margin from ex-vivo hyperspectral images with 91 spectral
bands [159]. For in-vivo applications, where generalizability
may be essential and training data may be limited, future
research in domain transfer [149] and semi-supervised learn-
ing [160] may become increasingly important. Moreover, for
clinical validation, these solutions must be real-time, easy-
to-use, and robust, highlighting the need for efficient archi-
tectures [104] and thoughtful user interface design [161].

Optical coherence tomography

Overview. Optical coherence tomography (OCT) is a
successful example of biophotonic technological translation
into medicine [162,163]. Since its introduction in 1993, OCT
has revolutionized the standard-of-care in ophthalmology
around the world, and continued thriving in technical ad-
vances and other clinical applications, such as dermatology,
neurology, cardiology, oncology, gastroenterology, gynecol-
ogy, and urology [164–171].

Image segmentation. The most common use of OCT is
to quantify structural metrics via image segmentation, such
as retinal anatomical layer thickness, anatomical structures,
and pathological features. Conventional image processing
is challenging in the case of complex pathology where tis-
sue structural alteration can be complex and may not be
fully accounted for when designing a rigid algorithm. Im-
age segmentation is the earliest application of DL explored
in OCT applications. Several DNNs have been reported
for OCT segmentation in conjunction with manual annota-
tions (Fig. 7(a)), including U-Net [172–174], ResNet [175],
and fully-convolutional network (FCN) [176, 177]. Success-
ful implementation of DNNs have been broadly reported
in different tissues beyond the eye [178–180]. In all ar-
eas of applications, the DNN showed superior segmenta-
tion accuracy over conventional techniques. For example,
Devalla et al. [175] quantified the accuracy of the proposed
DRUNET(Dilated-Residual U-Net) for segmenting the reti-
nal nerve fiber layer (RNFL), retinal Layers, the retinal pig-
ment epithelium (RPE), and choroid on both healthy and
glaucoma subjects, and showed that the DRUNET consis-
tently outperformed alternative approaches on all the tissues
measured by dice coefficient, sensitivity, and specificity. The
errors of all the metrics between DRUNET and the observers
were within 10% and the patch-based neural network always
provided greater than 10% error irrespective of the observer
chosen for validation. In addition, the DRUNET segmen-
tation further allowed automatic extraction of six clinically
relevant neural and connective tissue structural parameters,
including the disc diameter, peripapillary RNFL thickness
(p-RNFLT), peripapillary choroidal thickness (p-CT), min-
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Fig 7: (a) Example automatic retinal layer segmentation
using DL compared to manual segmentation (reprinted
from [175]). (b) GAN for denoising OCT images (adapted
from [181]). (c) Attention map overlaid with retinal images
indicated features that CNN used for diagnosing normal ver-
sus age-related macular degeneration (AMD) [182] (Repro-
duced from Detection of features associated with neovascu-
lar age-related macular degeneration in ethnically distinct
data sets by an optical coherence tomography: trained deep
learning algorithm, Hyungtaek et al., Br. J. Ophthalmol.
bjophthalmol-2020-316984, 2020 with permission from BMJ
Publishing Group Ltd.).

imum rim width (MRW), prelaminar thickness (PLT), and
the prelaminar depth (PLD).

Denoising and speckle removal. OCT images suffer
from speckle noise due to coherent light scattering, which
leads to image quality degradation. There exist other sources
of noise to further degrade the image quality when the sig-
nal level is low. Denoising and despeckling are important
applications of DNNs, which are often trained with the av-
eraged reduced-noise image as the ‘ground truth’ in a U-Net
and ResNet [183,184]. GAN has also been applied and pro-
vided improved visual perception than the DNNs trained
with only the least-squares loss function [181] (Fig. 7(b)).
For example, Dong et al. [181] showed that the GAN-based
denoising network outperformed state-of-the-art image pro-
cessing based (e.g. BM3D and MSBTD) and a few other

DNNs (e.g. SRResNet and SRGAN) in terms of contrast-
tonoise ratio (CNR) and peak signaltonoise ratio (PSNR).

Clinical diagnosis and classification. In clinical ap-
plications using DL, a large body of literature over the past
3 years emerges particularly in ophthalmology. Most of the
studies use a CNN to extract image features for diagnosis
and classification [185]. A clear shift of attention recently
is to interpret the DNN, for example using the attention
map [182,186] (Fig. 7(c)). The purpose is to reveal the most
important structural features that the DNN used for making
the predictions. This addresses the major concern from the
clinicians on the “black-box” nature of DL. Another emerg-
ing effort is to improve the generalization of a trained DNN
to allow process images from different devices, with differ-
ent image qualities and other possible variations. Transfer
learning has been reported to refine pre-trained DNNs to
other dataset, with much reduced training and data bur-
dens [187, 188]. Domain adaptation is another method to
generalize the DNN trained on images taken by one device to
another [189,190]. We expect more innovations for address-
ing the generalization in clinical diagnosis and prediction.

Emerging applications. Beyond segmentation, denois-
ing, and diagnosis/classification, there are several emerging
DL applications for correlating the OCT measurements with
vascular functions. OCT angiography (OCTA) and Doppler
OCT (DOCT) are two advanced methods to measure label-
free microangiography and blood flows. While normally re-
quiring specific imaging protocols, the raw OCT measure-
ments contain structural features that may be recognized by
a CNN. Reports have shown that angiographic image and
blood flows can be predicted by mere structural image input
without specific OCTA or DOCT protocols [191, 193, 194].
For example, Braaf et al. [191] showed that DL enabled ac-
curate quantification of blood flow from OCT intensity time-
series measurements, and was robust to vessel angle, hema-
tocrit levels, and measurement SNR. This is appealing for
generating not only anatomical features, but also functional
readouts using the simplest OCT imaging protocols by any
regular OCT device (Fig. 8(a)). Recent work also reports
the use of a fully connected network and a CNN to extract
the spectroscopic information in OCT to quantify the blood
oxygen saturation (sO2) within microvasculature, as an im-
portant measure of the perfusion function [192] (Fig. 8(b-
c)). The DL models in [192] demonstrated more than 60%
error reduction for predicting sO2 as compared to the stan-
dard nonlinear least-squares fitting method. These advances
present emerging directions of DL applied to OCT to extract
functional metrics beyond structures.

Photoacoustic imaging and sensing

Overview. Photoacoustic imaging relies on optical
transmission, followed by sensing of the resulting acoustic
response [195,196]. This response may then be used to guide
surgeries and interventions [197,198] (among other possible
uses [199]). In order to guide these surgeries and interven-
tions, image maps corresponding to structures of high opti-
cal absorption must be formed, which is a rapidly increasing
area of interest for the application of DL to photoacoustic
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Fig 8: (a) Examples of using DL to predict blood flow based
on structural OCT image features (reprinted from [191]).
(b) Example of deep spectral learning for label-free oxime-
try in visible light OCT (reprinted from [192]). (c) The pre-
dicted blood oxygen saturation and the tandem prediction
uncertainty from rat retina in vivo in hypoxia, normoxia and
hyperoxia (reprinted from [192]).

imaging and sensing. This section focuses on many of the
first reports of DL for photoacoustic source localization, im-
age formation, and artifact removal. Techniques applied af-
ter an image has been formed (e.g., segmentation, spectral
unmixing, and quantitative imaging) are also discussed, fol-
lowed by a summary of emerging applications based on these
DL implementations.

Source localization. Localizing sources correctly and
removing confusing artifacts from raw sensor data (also
known as channel data) are two important precursors to ac-
curate image formation. Three key papers discuss the pos-
sibility of using DL to improve source localization. Reiter
and Bell [200] introduced the concept of source localization
from photoacoustic channel data, relying on training data
derived from simulations based on the physics of wave prop-
agation. Allman et al. [201] built on this initial success to
differentiate true photoacoustic sources from reflection arti-
facts based on wavefront shape appearances in raw channel
data. Waves propagating spherically outward from a photoa-
coustic source are expected to have a unique shape based on

Fig 9: Example of point source detection as a precur-
sor to photoacoustic image formation after identifying true
sources and removing reflection artifacts, modified from
[201]. ( c©2018 IEEE. Adapted, with permission, from All-
man et al. Photoacoustic source detection and reflection ar-
tifact removal enabled by deep learning, IEEE Transactions
on Medical Imaging. 2018; 37:14641477.)

distance from the detector, while artifacts are not expected
to preserve this shape-to-depth relationship [201]. A CNN
(VGG-16) was trained to demonstrate this concept, with
initial results shown in Fig. 9. Johnstonbaugh et al. [202]
expanded this concept by developing an encoder-decoder
CNN with custom modules to accurately identify the ori-
gin of photoacoustic wavefronts inside an optically scatter-
ing deep-tissue medium. In the latter two papers [201,202],
images were created from the accurate localization of pho-
toacoustic sources.

Image formation. Beyond source localization, DL may
also be used to form photoacoustic images directly from
raw channel data with real-time speed [203, 204]. This sec-
tion summarizes the application of DL to four technical
challenges surrounding image formation: (1) challenges sur-
rounding the limited view of transducer arrays [205–207] (in
direct comparison to what is considered the “full view” pro-
vided by ring arrays), (2) sparse sampling of photoacoustic
channel data [206, 208–210], (3) accurately estimating and
compensating for the fluence differences surrounding a pho-
toacoustic target of interest [211], and (4) addressing the
traditional limited bandwidth issues associated with array
detectors [212].

1) Limited view. Surgical applications often preclude
the ability to completely surround a structure of interest.
Historically, ring arrays were introduced for small animal
imaging [213]. While these ring array geometries can also be
used for in vivo breast cancer detection [214] or osteoarthri-
tis detection in human finger joints [215], a full ring geome-
try is often not practical for many surgical applications [198].
The absence of full ring arrays often leads to what is known
as “limited view” artifacts, which can appear as distortions
of the true shape of circular targets or loss in the appearance
of the lines in vessel targets.

DL has been implemented to address these artifacts and
restore our ability to interpret the true structure of photoa-
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Fig 10: Example of blood vessel and tumor phantom results
with multiple DL approaches. (Reprinted from [205].)

coustic targets. For example, Hauptmann et al. [205] con-
sidered backprojection followed by a learned denoiser and a
learned iterative reconstruction, concluding that the learned
iterative reconstruction approach sufficiently balanced speed
and image quality, as demonstrated in Fig. 10. To achieve
this balance, a physical model of wave propagation was in-
corporated during the gradient of the data fit and an it-
erative algorithm consisting of several CNNs was learned.
The network was demonstrated for a planar array geome-
try. Tong et al. [206] learned a feature projection, inspired
by the AUTOMAP network [216], with the novelty of in-
corporating the photoacoustic forward model and universal
backprojection model in the network design. The network
was demonstrated for a partial ring array.

2) Sparse sampling. In tandem with limited view con-
straints, it is not always possible to sufficiently sample an
entire region of interest when designing photoacoustic de-
tectors, resulting in sparse sampling of photoacoustic re-
sponses. This challenge may also be seen as an extension of
limited view challenges, considering that some of the desired
viewing angles or spatial locations are missing (i.e., limited)
due to sparse sampling, which often results in streak arti-
facts in photoacoustic images [217]. Therefore, networks that
address limited view challenges can simultaneously address
sparse sampling challenges [206,218].

Antholzer et al. [208] performed image reconstruction to
address sparse sampling with a CNN, modeling a filtered
backprojection algorithm [219] as a linear preprocessing step
(i.e., the first layer), followed by the U-Net architecture
to remove undersampling artifacts (i.e., the remaining lay-
ers). Guan et al. [209] proposed pixel-wise DL (Pixel-DL)
for limited-view and sparse PAT image reconstruction. The
raw sensor data was first interpolated to window informa-
tion of interest, then provided as an input to a CNN for
image reconstruction. In contrast to previously discussed
model-based approaches [205, 208], this approach does not
learn prior constraints from training data and instead the
CNN uses more information directly from the CNN and sen-
sor data to reconstruct an image. This utilization of sensor
data directly shares similarity with source localization meth-
ods [197,201,202].

The majority of methods discussed up until this point
have used simulations in the training process for photoa-
coustic image formation. Davoudi et al. [210] take a differ-
ent approach to address sparse sampling challenges by using
whole-body in vivo mouse data acquired with a high-end,
high-channel count system. This approach also differs from
previously discussed approaches by operating solely in the

image domain (i.e., rather than converting sensor or channel
data to image data).

3) Fluence correction. The previous sections address
challenges related to sensor spacing and sensor geometries.
However, challenges introduced by the laser and light deliv-
ery system limitations may also be addressed with DL. For
example, Hariri et al. [211] used a multi-level wavelet-CNN
to denoise photoacoustic images acquired with low input
energies, by mapping these low fluence illumination source
images to a corresponding high fluence excitation map.

4) Limited transducer bandwidth. The bandwidth of
a photoacoustic detector determines the spatial frequencies
that can be resolved. Awasthi et al. [212] developed a net-
work with the goal of resolving higher spatial frequencies
than those present in the ultrasound transducer. Improve-
ments were observable as better boundary distinctions in the
presented photoacoustic data. Similarly, Gutta et al. [220]
used a DNN to predict missing spatial frequencies.

Segmentation. After photoacoustic image formation is
completed, an additional area of interest has been segmenta-
tion of various structures of interest, which can be performed
with assistance from DL. Moustakidis et al. [221] investi-
gated the feasibiliity of DL to segment and identify skin
layers by using pretrained models (i.e., ResNet50 [222] and
AlexNet [223]) to extract features from images and by train-
ing CNN models to classify skin layers directly using images,
skipping the processing, transformation, feature extraction,
and feature selection steps. These DL methods were com-
pared to other ML techniques. Boink et al. [224] explored
simultaneous photoacoustic image reconstruction and seg-
mentation for blood vessel networks. Training was based on
the learned primal-dual algorithm [225] for CNNs, includ-
ing spatially varying fluence rates with a weighting between
imaging reconstruction quality and segmentation quality.

Spectral unmixing and quantitative imaging. Pho-
toacoustic data and images may also be used to determine
or characterize the content of identified regions of interest
based on data obtained from a series of optical wavelength
excitations. These tasks can be completed with assistance
from DL. Cai et al. [226] proposed a DL framework for
quantitative photoacoustic imaging, starting with the raw
sensor data received after multiple wavelength transmisions,
using a residual learning mechanism adopted to the U-Net to
quantify chromophore concentration and oxygen saturation.

Emerging applications. Demonstrated applications
for image formation with DL has spanned multiple spatial
scales, with applications that include cellular-level imaging
(e.g., microscopy [227], label-free histology), molecular imag-
ing (e.g., low concentrations of contrast agents in vivo [211]),
small animal imaging [210], clinical and diagnostic imag-
ing, and surgical guidance [197]. In addition to applications
for image formation, other practical applications in photoa-
coustic imaging and sensing include neuroimaging [209,228],
dermatology (e.g., clinical evaluation, monitoring, and di-
agnosis of diseases linked to skin inflammation, diabetes,
and skin cancer [221]), real-time monitoring of contrast
agent concentrations, microvasculature, and oxygen satu-
ration during surgery [203, 226], and localization of biopsy
needle tips [229], cardiac catheter tips [229–231], or prostate
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brachytherapy seeds [201].

Diffuse Tomography

Overview. Diffuse Optical Tomography (DOT), Fluo-
rescence Diffuse Optical Tomography (fDOT, also known
as Fluorescence Molecular Tomography - FMT) and Biolu-
minescence Tomography (BLT) are non-invasive and non-
ionizing 3D diffuse optical imaging techniques [232]. They
are all based on acquiring optical data from spatially re-
solved surface measurements and performing similar math-
ematical computational tasks that involve the modeling of
light propagation according to the tissue attenuation prop-
erties. In DOT, the main biomarkers are related to the
functional status of tissues reflected by the total blood con-
tent (HbT) and relative oxygen saturation (StO2) that can
be derived from the reconstructed absorption maps [233].
DOT has found applications in numerous clinical scenar-
ios including optical mammography [234,235], muscle phys-
iology [236], brain functional imaging [237] and peripheral
vascular diseases monitoring. In fDOT, the inverse prob-
lem aims to retrieve the effective quantum yield distribu-
tion (related to concentration) of an exogenous contrast
agent [238, 239] or reporter gene in animal models [240]
while illuminated by excitation light. In BLT, the goal is
to retrieve the location and strength of an embedded biolu-
minescent source.

The highly scattering biological tissues lead to ill-posed
nonlinear inverse problems that are highly sensitive to
model mismatch and noise amplification. Therefore, tomo-
graphic reconstruction in DOT/fDOT/BLT is often per-
formed via iterative approaches [241] coupled with regu-
larization. Moreover, the model is commonly linearized us-
ing the Rytov (DOT) or Born (DOT/fDOT) methods [242].
Additional constraints, such as preconditioning [243] and a
priori information are implemented [244–247]. Further ex-
perimental constraints in DOT/fDOT are also incorporated
using spectral and temporal information [248]. Despite this
progress, the implementation and optimization of a regular-
ized inverse problem is complex and requires vast computa-
tional resources. Recently, DL methods have been developed
for DOT/fDOT/BLT to either aid or fully replace the classi-
cal inverse solver. These developments have focused on two
main approaches, including 1) learned denoisers and 2) end-
to-end solvers.

Learned denoisers. Denoisers can enhance the final re-
construction by correcting for errors from model mismatch
and noise amplification. Long [249] proposed a 3D CNN for
enhancing the spatial accuracy of mesoscopic FMT outputs.
The spatial output of a Tikhonov regularized inverse solver
was translated into a binary segmentation problem to reduce
the regularization-based reconstruction error. The network
was trained with 600 random ellipsoids and spheres as it
only aimed to reconstruct simple geometries in silico. Final
results displayed improved “intersection over union” values
with respect to the ground truth. Since denoising approaches
still involve inverting the forward model, it can still lead to
large model mismatch. Hence, there has been great interest
in end-to-end solutions that directly map the raw measure-

Fig 11: Reconstruction for a mouse with tumor (right thigh)
where higher absorption values are resolved (slices at z=15
and 3.8 mm) for the tumor area with the DNN in (a) com-
pared to the L1-based inversion in (b). (adapted with per-
mission from the authors from [252]).

ments to the 3D object without any user input.

End-to-end solvers. Several DNNs have been proposed
to provide end-to-end inversion. Gao et al. [250] proposed a
MLP for BLT inversion for tumor cells, in which the bound-
ary measurements were inputted to the first layer that has
a similar number of surface nodes as a standardized mesh
built using MRI and CT images of the mouse brain, and
output the photon distribution of the bioluminescent tar-
get. Similarly, Guo et al. [251] proposed 3D-En-Decoder, a
DNN for FMT with the encoder-decoder structure that in-
puts photon densities and outputs the spatial distribution of
the fluorophores. It was trained with simulated FMT sam-
ples. Key features of the measurements were extracted in
the encoder section and the transition of boundary photon
densities to fluorophore densities was accomplished in the
middle section with a fully connected layer. Finally, a 3D-
Decoder outputted the reconstruction with better accuracy
than L1-regularized inversion method in both simulated and
phantom experiments.

Huang et al. [253] proposed a similar CNN approach. Af-
ter feature encoding, a Gated Recurrent unit (GRU) com-
bines all the output features in a single vector, and the MLP
(composed of two hidden layers with dropout and ReLu ac-
tivations) outputs the fluorophores location. Simulated sam-
ples of a mouse model (with five organs and one fluorescent
tumor target) were used. In silico results displayed compara-
ble performance to an L1 inversion method. It was also val-
idated with single-embeddings in silico by outputting only
the positions since the network does not support 3D render-
ing. Yoo et al. [252] proposed an encoder-decoder DNN to
invert the LippmannSchwinger integral photon equation for
DOT using the deep convolutional framelet model [254] and
learn the nonlinear scattering model through training with
diffusion-equation based simulated data. Voxel domain fea-
tures were learned through a fully connected layer, 3D con-
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volutional layers and a filtering convolution. The method
was tested in biomimetic phantoms and live animals with
absorption-only contrast. Figure 11 shows an example recon-
struction for an in vivo tumor in a mouse inside water/milk
mixture media.

Summary and future challenges. DL has been
demonstrated for improving (f)DOT image formation for
solving complex ill-posed inverse problems. The DL mod-
els are often trained with simulated data, and in a few
cases, validated in simple experimental settings. With ef-
ficient and accurate light propagation platforms such as
MMC/MCX [255, 256], model-based training could become
more efficient. Still, it is not obvious that such DL ap-
proaches will lead to universal solutions in DOT/FMT since
many optical properties of tissues are still unknown and/or
heterogeneous. Hence, further studies should aim to validate
the universality of the architectures across different tissue
conditions.

Functional optical brain imaging

Overview. Functional optical brain imaging provides
the opportunity to correlate neurobiological biomarkers with
human behaviors, which impacts numerous fields, such as
basic neuroscience, clinical diagnostics, brain computer in-
terface (BCI) and social sciences. The two main established
human functional optical brain imaging approaches are func-
tional Near InfraRed Spectroscopy (fNIRS) and Diffuse Cor-
relation Spectroscopy (DCS), both of which report brain ac-
tivations via monitoring changes in optical signals as light
reflected back to the detector while traveling through corti-
cal areas. Classical neuroimaging studies are based on sta-
tistical analysis of biomarkers from a large group of subjects
with different statuses (resting/active, stimuli/non-stimuli,
disease/disease-free, etc.). However, the derivation of the
biomarkers of interests are associated with data processing
workflows that can be complex and computationally inten-
sive. While numerous applications in neuroimaging inher-
ently focus on classification of subjects based on spatiotem-
poral features, DL methods have two outstanding benefits.
First, there is the potential to extract meaningful features
from high-dimensional noisy data without expert knowledge
required for the input/output mapping. Second, DL meth-
ods enable statistical inference at the single subject level
which is critical for clinical practice. Hence, there has been
a recent surge in DL solutions for functional optical brain
imaging.

Classification based on cortical activations. Most
DL applications to functional optical brain imaging have fo-
cused on classification tasks based on fNIRS. Hiroyasu et
al. [258] reported a DNN to perform gender classification
on subjects performing a numerical memory task while sub-
jecting to a white-noise sound environment to elicit gender-
based differences in cortical activations. Using time series
data of oxygenated hemoglobin of the inferior frontal gyrus
on the left side of the head captured by 4 fNIRS channels,
they reported a 81% accuracy in gender classification. The
learned classifier identified the inferior frontal gyrus and pre-
motor areas provide the highest discrimination accuracy.
Mirbagheri et al. [259] developed a DNN to predict stress

Fig 12: Hemodynamic time series for prediction of epilep-
tic seizure using a CNN (with permission from the au-
thors [257]) (Computers in Biology and Medicine, 11, 2019,
103355, Rosas-Romero et al., Prediction of epileptic seizures
with convolutional neural networks and functional near-
infrared spectroscopy signals, Copyright (2020), with per-
mission from Elsevier).

using fNIRS data collected on the prefrontal cortex regions,
demonstrating 88% accuracy when following the Montreal
Imaging Stress Task (MIST) protocols [260].

DL has also been used on fNIRS data for diagnostic and
therapeutic applications [261]. Rosas-Romero et al. [257] de-
veloped a CNN to predict epilectic seizure (Fig. 12) and
reported accuracy ranging between 97% and 100%, sensi-
tivity between 95% and 100% and specificity between 98%
and 100% using both oxy- and deoxy-hemoglobin time se-
ries as the input. Electroencephalography (EGG) data were
acquired simultaneously, but fNIRS predictive features out-
performed EGG predictive features. Another use of fNIRS
is in psychological studies. Bandara et al. [262] reported
a CNN with Long Short Term Memory (LSTM) to ana-
lyze spatiotemporal oxy- and deoxy- hemodynamics data
from the prefrontal cortex for classifying human emotions
and achieved 77% accuracy using both oxy- and deoxy-
hemoglobin data and 1-s time steps. These results demon-
strate that spatiotemporal features are desired for fNIRS
based classification tasks, and the DL methods excel in fea-
ture exaction in such high dimensional data sets. However,
all the reported studies followed well defined protocols that
are prevalent in neuroimaging studies but are not always
conducive for real-word applications.

Another thrust in fNIRS study is to evaluate mental work-
load from Human Computer Interaction (HCI) in scenar-
ios, such as driving, air traffic control, and surgery. Ben-
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erradi et al. [263] reported a CNN for classifying mental
workload using fNRIS data from HCI tasks and achieved an
accuracy of 72.77% for 2 classes and 49.53% for 3 classes.
The CNN was benchmarked against logistic regression and
SVM, but no particular improvements were noted. Gao et
al. [264] reported a BRAIN-Net to predict surgical skill lev-
els within the Fundamental of Laparoscopic Surgery (FLS)
program environment, demonstrating a ROC-AUC of 0.91
in predicting the FLS Score using fNIRS data collected on
the prefrontal cortex of medical students performing the
FLS pattern cutting task. BRAIN-Net outperformed clas-
sical ML techniques, including Kernel Partial Least Squares
(KPLS), nonlinear SVM and Random Forest, when the data
was larger than 600 samples. These results demonstrated the
potential of DL for behavior prediction as reported by well-
established metrics with freely mobile and unconstrained
subjects performing challenging bimanual tasks. Hence, DL-
enabled fNIRS methods have the potential for impacting
real-world applications. In this regard, one of the most ex-
citing applications of neuroimaging is BCI.

Brain computer interface. DL is expected to advance
BCI [265]. To date, DL methods for BCI have mainly fo-
cused on EGG and to a lesser extent to Magnetic resonance
imaging (MRI) or Electromyography (EMG). About 70% of
the current work use CNN as discriminative models, 20%
use Recurrent neural network (RNN) [107], while generative
models (e.g. GAN or VAE) are rarely employed. Impressive
results have been reported for real time control of a robot
arm using DL-based BCI [266]. Following these trends, a
few studies have been reported on DL-enabled fNIRS BCI.
Hennrich et al. [267] reported a DNN that offered similar ac-
curacy as compared to conventional methods in mental task
classification. Dargazany et al. [268] implemented a CNN to
recognize activity response in fNIRS data for 5 different ac-
tivities and reported a 77-80% accuracy in classifying these
tasks. Trakoolwilaiwan et al. [269] developed a CNN to clas-
sify between rest, right- and left- hand motor execution tasks
and achieved classification accuracy within 82-99% depend-
ing on the specific subject, which was 6.49% more accurate
than SVM and 3.33% more accurate than ANN. As BCI is
a challenging task due to noisy data, one current research
direction is the implementation of multimodal systems, espe-
cially EGG-fNIRS systems, for improved performance. Saa-
dati et al. [270] reported a DNN for processing multimodal
input from the variation of oxy- and deoxy-hemoglobin from
fNIRS and the event-related desynchronization (ERD) from
EGG, achieving the highest accuracy when compared to
methods using a single biomarker and 92% accuracy for the
word generation task compared to 86% for SVM.

Denoising and fast data processing. Data prepro-
cessing in optical neuroimaging is critical and includes
dynamic range correction, transforming light attenuation
to chromophore concentration, regressing shallow hemody-
namic response to increase the sensitivity to cortical tissues,
identifying and removing noise, especially motion artefacts.
These steps typically require user inputs and are computa-
tionally intensive. Gao et al. [271] demonstrated a DNN for
suppressing motion artifacts in raw fNIRS signals and iden-

tified 100% of the motion artefacts almost in real time. Poon
et al. [272] reported a DNN in DCS that was 23× faster in
estimating the tissue blood flow index compared to the tra-
ditional nonlinear fitting method. Hence, DL methodologies
may facilitate the adoption of DCS for neuroimaging studies
by enabling real-time and accurate tissue blood flow quan-
tification in deep tissues.

Future directions and associated challenges. DL
methods herald the potential for subject specific classifica-
tion on the fly, leading to fast and direct feedback based on
real-time monitoring of brain functions. It also has poten-
tial for neuro-feedback in numerous therapeutic scenarios or
cognitive/skill learning programs. In addition, DL has been
largely adopted in brain connectivity studies [273], which has
become prevalent for deciphering the brain circuitry [274]
and diagnostic purposes [275]. Similar to MRI [276], DL is
expected to play a critical role in next generation functional
brain connectivity studies [277]. Still, numerous challenges
lie ahead to implement full end-to-end solutions in data pro-
cessing and classification.

One main challenge is the size of the population needed for
generating the data sets. As we are still far from being able
to model the complexity of brain functions and dynamics,
this challenge is complicated by the need to train and vali-
date neuroimaging DL approaches with experimental data.
In numerous fNIRS and DCS studies, subject recruitment
is limited and no public database is readily available. Such
limitations have been recognized in all existing work. For
such emerging methodologies, great care should be directed
to appropriate cross-validation of the DL methods. Hence,
validation methods such as k-fold and/or leave-one-out (one
refers to one subject out, one trial out, or one day out, etc.)
are essential to convey confidence of the usefulness of the
methodology [278].

In addition, numerous applications of optical neuroimag-
ing involve environments and tasks that cannot be fully con-
trolled and/or restricted. Thus, brain cortical activations
and connectivity can reflect response to complex stimuli in
which “ground truth” can be challenging to establish. For
example, it would be ideal to use a standardized and accred-
ited metric (i.e., the FLS score) in various neuro-based appli-
cations. However, such objective standards do not exist and
labeling of the data can be problematic. These challenges
also limit the potential of DL for discovery and mapping
of the brain circuitry. If DL were to become preponderant
in functional connectivity studies, it also faces the current
challenge of being primarily employed in the brain at rest,
which does not offer insight into active states of interest.

CHALLENGES AND OPPORTUNITIES ACROSS
MULTIPLE IMAGING DOMAINS

Challenges

Data availability and bias. Most DL models for
biomedical optics rely on “supervised learning” that are
trained on domain- and/or task-specific datasets, which need
to be carefully curated to ensure high-quality predictions.
As a result, there are several inherent challenges in the data
generation process that need to be addressed, including data



DEEP LEARNING IN BIOMEDICAL OPTICS 17

availability and data bias [279]. For many applications, it
is often difficult and costly to acquire a large-scale dataset.
Novel techniques that can better leverage small-scale dataset
while still providing high-quality models are needed, such as
unsupervised, semi-supervised, and self-supervised learning,
transfer learning, and domain adaptation. In addition to the
overall scale of the dataset, the data may also be skewed or
biased [280] because it may be difficult to acquire data with
a balanced distribution for each sub-group, such as gender,
ethnicity, etc. DNNs trained on biased dataset can result
in erroneous predictions in particular for under-represented
populations and diseases. These obstacles may be mitigated
to some extent with careful planning and data collection.
However, there is a need to also identify and reduce data
biases in the modeling step, such as data augmentation and
balanced loss function design.

Interpretability. A common challenge of DL models
is that they are generally “black-boxes” and their predic-
tions typically cannot be precisely explained. This is par-
ticularly problematic in health applications. To address this
issue, “interpretable/explainable” DL techniques [281, 282]
are needed. To this end, there are two general approaches
that are actively being researched in the field [283]. The
first is to develop an interpretable computational structure
instead of DNNs [284,285], so that the predictions are made
based on the crafted logic in the DL model. The second
approach is to provide post hoc model prediction interpreta-
tion, such as attention mechanism [42,286] and uncertainty
quantification [20, 287, 288], while keeping the same DNN
structure.

Prospective and real-world validation. In general,
there is a need for prospective evaluations of DL-based sys-
tems in real clinical settings. The performance of DL mod-
els are commonly evaluated post hoc using metrics often
not directly translatable to improving patient care. To criti-
cally evaluate the performance and move to clinical impact,
these gaps must be bridged. First and foremost, large-scale
prospective testing is needed, ideally with multiple sites,
users, and instruments. Secondly, it is also important to de-
velop quantitative metrics to relate those commonly used in
DL model development to those most pivotal in improving
the management of disease.

Opportunities

Exploiting multimodal data. DNNs provide pow-
erful frameworks for integrating multimodal and multi-
dimensional data [15]. Biomedical optics systems often ac-
quire measurements that augment traditional visualization
or span a wide range of resolutions, imaging speeds, and
sources of contrast. A fundamental barrier to the clinical
translation of these technologies is that their benefit must
outweigh the cost of additional training and time required to
interpret and monitor these data. DL models can efficiently
analyze these data together and transform them to action-
able representations, reducing these training barriers while
increasing the diagnostic power of multimodal imaging.

Lowering costs. First, as shown in many examples
herein, DL can enable new imaging capabilities that im-
prove resolution, acquisition speed, FOV, and DOF often

with minimal hardware modifications. This means that high-
quality measurements can increasingly be made using rela-
tively simple and lower cost systems. Second, DL technolo-
gies can enable more efficient workflows in healthcare and
research, such as digital staining/labeling of tissues to re-
duce the cost and time associated with sample preparation.

Deskilling procedures. Automated data processing
and interpretation by DL may reduce the level of skill needed
to obtain measurements and provide a diagnosis. A major
benefit of DL based processing is that it is “end-to-end”.
This means that once the DNN is trained, it enables auto-
mated reconstruction without any additional manual param-
eter tuning, potentially making it more generalizable and
robust than classical approaches. This advantage must be
balanced with great care and heightened responsibility to
ensure ethical usage and unbiased outputs of these end-to-
end DNN algorithms.

Increasing access to high-quality health care. The
ability of DL to lower cost and training requirements for
diagnostic technologies holds tremendous potential for in-
creasing access to high-quality health care in low-resource
settings.

SUMMARY AND OUTLOOK

DL-based techniques have shown promise in addressing var-
ious technical challenges for developing novel biomedical
optics systems, such as overcoming physical trade-offs, as
well as enabling novel capabilities beyond existing solutions.
Successful examples are available across multiple imaging
domains, including microscopy, fluorescence lifetime imag-
ing, in vivo microscopy, widefield endoscopy, optical coher-
ence tomography, photoacoustic imaging, diffuse tomogra-
phy, and functional optical brain imaging. Techniques are
vast and varied, ranging from providing microscopic sub-
cellular information to localizing image sources and offer-
ing macroscopic biomarkers. With the advances of DL tech-
niques in many different biomedical optics domains, there
are also some outstanding challenges that must be addressed
in order to fully realize the impact of these techniques. As we
are rapidly seeing across multiple biomedical optics modali-
ties, DL techniques have promising potential to lower system
costs, reduce required skill levels to carry out measurements,
and ultimately increase the quality, affordability, and acces-
sibility of health care.
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