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Abstract—Recent progress in deep learning techniques
enabled collaborative edge training, which usually deploys
identical neural network models globally on multiple
devices for aggregating parameter updates over distributed
data collection. However, as more and more heterogeneous
edge devices are involved in practical training, the identical
model deployment over collaborative edge devices cannot
be guaranteed: On one hand, the weak edge devices with
less computation resources may not catch up stronger ones’
training progress, and appropriate local model training
customization is necessary to balance the collaboration. On
the other hand, a particular local edge device may have
specific learning task preference, while the global identical
model would exceed the practical local demand and cause
unnecessary computation cost. Therefore, we explored the
collaborative learning with heterogeneous convolutional
neural networks (CNNs) in this work, expecting to address
aforementioned real problems. Specifically, we proposed a
novel decentralized collaborative training method by de-
coupling a training target CNN model into independently
trainable sub-models correspond to a sub-set of learning
tasks for each edge device. After sub-models are well-
trained on edge nodes, the model parameters for individual
learning tasks can be harvested from local models on every
edge device and ensemble the global training model back
to a single piece. Experiments demonstrate that, for the
AlexNet and VGG on the CIFAR10, CIFAR100 and KWS
dataset, our decentralized training method can save up to
11.8x less computation load while achieve central sever
test accuracy.

I. INTRODUCTION

Promoted by the evolution of artificial intelligence and
deep learning, more and more intelligent applications
have emerged on edge devices. These applications keep
collecting new and sensitive data from different users
while being expected to have the ability to continually
train the embedded neural network model on these newly
collected data. Traditionally, neural network model are
trained by powerful server machines, which requires
sending collected data from the edge device to the
server. As security threats to edge computing systems

increase, server dependence needs to be reduced [1].
Thus, distributed training has been applied on edge
devices to collaboratively update a global neural network
model by averaging the parameter of local models.
This collaboration strategy distributes the data processing
workload over multiple edge devices, which will train
identical neural network models with the same learning
task and model structure. (e.g., Federated Learning [2].)

However, this distributed training approach cannot
well adapt to vast heterogeneous edge devices with
limited computation resources as well as specific learn-
ing task preference: The computation capacity of edge
devices still cannot satisfy with the heavy computation
workload of neural network model training. The weak
edge devices with less computation resources may not
catch up stronger ones’ training progress, and appro-
priate training model local customization is necessary
to balance the collaboration. Also, a particular local
edge device may have unique data domains or different
cognitive tasks [3], [4]. The global identical model would
exceed the practical local demand and cause unnecessary
computation cost [S5]-[7].

To effectively adapt distributed neural network models
to the aforementioned heterogeneity in practical utiliza-
tion, we explored decentralized neural network training
by harvesting lightweight independently trainable sub-
models’ learning tasks/model structures across decen-
tralized edge nodes. Our decentralized collaboration can
divide a large target convolutional neural network (CNN)
model into independent functionality structures corre-
sponding to individual learning tasks (e.g., classification
targets). By selectively combining several functionality
structures, a trainable CNN sub-model can be composed
and trained to an edge node. Compared to the origi-
nal model, these sub-models have significantly smaller
sizes, and can be parallelly trained on edge nodes with
minimum computation and communication requirement.
To build decentralized training collaboration across edge
nodes, partially overlapped training tasks are deployed
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between neighbor edge nodes. By aggregating corre-
sponding functionality structures, parameter consensus
can be achieved in a chain manner across edge nodes.
Such a collaboration consequently enhances the global
convergence when training these sub-models in the de-
centralized setting. Eventually, with optimal computation
and communication efficiency, the target CNN model
parameter for all training tasks can be harvested from
sub-models trained on edge nodes.

We implemented our decentralized collaboration
method with AlexNet and VGG neural network on the
CIFAR10, CIFAR100 and KWS speech dataset. Exper-
iments shows that, we can save up to 11.8x less com-
putation load while achieve central sever test accuracy.

II. DECENTRALIZED COLLABORATIVE TRAINING

In previous distributed edge training schemes, dif-
ferent nodes are assumed to have integrated training
datasets and learn identical CNN model structures. Col-
laboration between nodes is implemented by a straight-
forward parameter average of each identical local mod-
els. However, this identical model setting causes high
burden for edge computing and vulnerability to local
task and data heterogeneity. To address these problems,
we propose a decentralized collaborative training method
with heterogeneous sub-models. Figure. 1 illustrates the
main components in our method, including Heteroge-
neous Model Initialization, and Decentralized Train-
ing with collaboration. An overview of our method is
illustrated Fig. 1.

a) Heterogeneous Model Initialization: We first
propose a task-oriented CNN model decoupling scheme
to exploit the task learning exclusiveness of different
neurons in a pre-trained model. As shown in the Figure. 1
(a), our method can decouple a pre-trained CNN model
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into two parts: the “shared layers” and the decoupled
functionality structures. Recent works on CNN interpre-
tation have shown that the CNN neurons in the shallow
layers (“shared layers”) act as basic feature extractor
to extract universal features for all classification tasks.
While the neurons in the deep layers can be activated
by specific classification task [8], [9]. Therefore, by
removing unnecessary connections between neurons with
different task learning exclusiveness, we can decouple
the CNN model into multiple independent functionality
structures, each of which is associated with a learning
task and works independently for it (e.g., a particular im-
age class in ImageNet dataset) (Figure. 1 (a) decoupling).
Based on the investigation of the task-oriented model
decoupling from pre-trained CNN models, we further
propose a heterogeneous model initializing scheme to
compose functionality structures into task-specific and
trainable CNN sub-models: Each edge node can select
individual or composed multiple sub-model structures
based on its computation capacity and local heteroge-
neous tasks (Figure. 1 (a) initialization). By adding a
shared layer structure to the selected functionality struc-
tures, each edge node can initialize a heterogeneous sub-
model for local training. Such a model decomposition
can significantly reduce the learning tasks for each node
and therefore the computation and communication work-
load. By assigning all learning tasks with corresponding
sub-models into nodes, a thorough model parallelism is
achieved for collaborative learning.

b) Decentralized Training with Collaboration:
Then, we construct a decentralized collaborative training
method to minimize global training loss while preserving
global consensus. To enable decentralized collaboration
for parameter consensus, partially overlapped learning
tasks are deployed between neighbor edge nodes. The
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sub-model on each node is constructed by deploying
decoupled functionality structures of the general CNN
model in accordance with allocated learning tasks. Local
nodes with overlapped tasks are connected to exchange
parameters for task-identical structures. An underlying
mechanism is specifically applied for global synchro-
nization of “shared layers”. As shown in in Figure. 1
(b), the adjacent 3 edge nodes collaboratively learns 3
different tasks, each trains for 2 local tasks.

When a specific amount of local training is fin-
ished, connected neighbor edge nodes with partially
overlapped learning tasks will synchronize with each
other to exchange the parameters of the task-identical
model structures. After sending and receiving these
parameters, individual edge node will aggregate the
parameters with its local ones and resume training with
local data. Thus, neighbor edge nodes’ CNN models
can achieve consensus on their parameters of the shared
tasks. Considering the highly interconnected structures,
all parameters for shared tasks will reach consensus after
decentralized communication. After all the sub-models
are well-trained, each individual sub-model can fulfill its
specific inference tasks independently. Meanwhile, the
original target CNN model can be also recomposed if
necessary, by collecting parameters from all edge nodes.
As shown in in Figure. 1 (b), the new shared layers
will be generated through the average of all the shared
layer parameters. The new functionality structure for one
specific task will be generated from the average of all
corresponding functionality structures.

III. EXPERIMENT

a) Experiment Setup: We adopt two CNNs for
evaluation: AlexNet and VGG16. Two image classifi-
cation datasets CIFAR10, CIFAR100 and one keyword
spotting (KWS) speech dataset [10] are evaluated to
demonstrate the generality of our proposed decentralized
training method.

For the AlexNet model implementation, the last 3 con-
volutional layers are decoupled, and each independent
functionality structure preserves 10% of total number of

neurons (e.g. filters). For the VGG-16 model, the last
6 layers are decoupled, and the preserved neurons are
optimized for different dataset, i.e., we preserve 10%
(52), 10% (52), 1% (5) of total number of neurons for
the CIFAR10, KWS, and CIFAR100 datasets.

In our decentralized training, one requirement is the
collaborative topology has to be one graph. As shown
in Fig. 2, Ring topology requires the minimum con-
nection, which should achieve our lower-bound con-
vergence performance. By contrast, Mesh topology en-
ables a fully-connected connection scheme which should
achieve the upper-bound performance. In practice, the
fully-connected topology can hardly be established with
high scalability. In this preliminary work, we mainly
implemented the Ring collaborative topology.

b) Convergence Speed Evaluation: In this part,
we demonstrate the local and global convergence of
our collaborative training method. Figure. 3 (a) and
(b) show the training accuracy of local sub-models and
global model versus communication rounds. The training
configuration for the Ring topology on CIFARIO is
“4N_5Cls”, which means that each local model learns
5 classification targets. For example, the classification
target index of “9,0,1,2,3”, “2,3,4,5,6”, ©5,6,7,8,9”, and
“8,9,0,1,2” in the CIFARI10, are deployed on 4 edge
nodes, respectively. The parameters of task-identical
model structures corresponding overlapped classification
targets are averaged during the training.

As shown in the Figure. 3 (a) and (b), both local model
and global model will converge as collaborative training
proceeds. Each local model reaches very good accuracy
alone, which means that our parameter sharing scheme
is safe to local convergence. Also, we can observe that,
the accuracy of our method reached that of centralized
training methods, which proves the effectiveness of our
method under this setting.

¢) Collaborative Topology Evaluation: In this part,
we analyze the performance of Ring topology under
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Fig. 3. Decentralized Convergence Evaluation on CIFAR10.
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Fig. 4. Ring Collaborative Topology with Different Task Overlap.

different task-overlap settings. Noted that, in our experi-
ments with Ring topology, the global task set is repeated
twice across the whole system. As shown in the Figure. 4
(a) and (b), the “n Overlap” means that each edge node
shares n tasks with either neighbor. If residue exists in
task allocation, it will be allocated to the last device as
extra work load, which doesn’t impact the performance
of collaboration very much.

We can see that the accuracy of our global model
drops when task-overlap decreases. For KWS dataset,
the global model trained under the vanilla setting of
“10 Overlap” reached the accuracy of centrally trained
model, which proved the effectiveness of our method.
The model trained with “2 Overlap” showed poor perfor-
mance, since each sub-model can only reach consensus
with very few sub-models on neighbor devices. On
CIFAR100 dataset, the accuracy of model trained with
setting “25 Overlap” approached that of centrally trained
models. From these experiment with Ring topology, we
can find that the number of tasks each device has a
significant impact on the accuracy of global model.
Allocating half of global tasks on each device and
working with 4 device is suggested when we want to
train a model with better accuracy.

d) Computation Cost Evaluation: In this part, we
evaluate the computation cost reduction when the VGG
model is decoupled into sub-models for local training. As
shown in the Figure. 5, the red portion in each collab-
oration configuration indicates the aggregation overhead
caused by aggregating the parameters of “shared layers”
and the task-identical sub-models between local nodes.
We can see that, with less learning tasks deployed, the
computation load could be reduced by 7.8 x in CIFAR10,
8.5x in CIFARI00 and 11.8x in KWS. Such results
indicate that the proposed model decoupling can effec-
tively resolve the edge training workload with optimal
model training accuracy.
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IV. CONCLUSION

In this paper, we explored the decentralized collab-
oration in heterogeneous edge training. Given a pre-
defined CNN model structure, it can be configured into
any specialized sub-models for dedicated edge tasks.
The computation cost of the specialized sub-models can
be significantly reduced. Based on this, we construct a
collaborative learning method where global consensus is
reached through exchanging the overlapped sub-models
parameters for shared tasks between edge nodes. Ex-
periments demonstrate that, our decentralized training
method can save up to 11.8x less computation load
while achieve central sever test accuracy.
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