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Abstract. The L0-regularized least squares problem (a.k.a. best subsets) is central to sparse
statistical learning and has attracted significant attention across the wider statistics, machine
learning, and optimization communities. Recentwork has shown thatmodernmixed integer
optimization (MIO) solvers can be used to address small to moderate instances of this
problem. In spite of the usefulness of L0-based estimators and generic MIO solvers, there is a
steep computational price to pay when compared with popular sparse learning algorithms
(e.g., based on L1 regularization). In this paper, we aim to push the frontiers of computation
for a family of L0-regularized problems with additional convex penalties. We propose a new
hierarchy of necessary optimality conditions for these problems.We develop fast algorithms,
based on coordinate descent and local combinatorial optimization, that are guaranteed to
converge to solutions satisfying these optimality conditions. From a statistical viewpoint, an
interesting story emerges. When the signal strength is high, our combinatorial optimization
algorithms have an edge in challenging statistical settings. When the signal is lower, pure L0
benefits from additional convex regularization. We empirically demonstrate that our family
of L0-based estimators can outperform the state-of-the-art sparse learning algorithms in
terms of a combination of prediction, estimation, and variable selection metrics under
various regimes (e.g., different signal strengths, feature correlations, number of samples
and features). Our new open-source sparse learning toolkit L0Learn (available on CRAN
and GitHub) reaches up to a threefold speedup (with p up to 106) when compared with
competing toolkits such as glmnet and ncvreg.
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Supplemental Material: The supplementary material is available at https://doi.org/10.1287/
opre.2019.1919.
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1. Introduction
The ongoing surge in high-dimensional data has
drawn a lot of attention to sparse learning across
several scientific communities. Indeed, sparsity can be
very effective in high-dimensional settings as it leads
to compact models that can be easier to interpret
(Bühlmann and van de Geer 2011, Hastie et al. 2015).
We consider the usual linear regression setup with
y � Xβ + ε, where y ∈ Rn is the response, X ∈ Rn×p is
the model matrix, β ∈ Rp is the vector of regression
coefficients, and ε ∈ Rn is a noise vector. We will
assume that the columns of X are standardized to
have a unit L2-norm, and we ignore the intercept
term to simplify the presentation. Our goal is to es-
timate β under the assumption that it is sparse
(i.e., has few nonzeros)—a common desiderata in the

high-dimensional learning framework with p � n
(Bühlmann and van de Geer 2011, Hastie et al. 2015).
A natural and direct way to obtain such a sparse
estimator is by minimizing the least squares loss with
an L0-norm1 penalty on β (Miller 2002). Statistical
(optimality) properties of this estimator have been
extensively studied (Greenshtein 2006, Raskutti et al.
2011, Zhang and Zhang 2012, Zhang et al. 2014).
Many appealing alternative sparsity-inducing esti-
mators have been proposed in the literature based on
Lasso (Tibshirani 1996), stepwise regression, continu-
ous nonconvex regularization (Hastie et al. 2015),
etc.—each with different operating characteristics.
Our focus in this paper is on the algorithmic aspects
of L0-based estimators. Recent work (Hastie et al.
2017, Mazumder et al. 2017) has brought to light an
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intriguing phenomenon: in low signal-to-noise-ratio
(SNR) regimes, the vanilla version of L0 penalization
suffers from overfitting. One way to mitigate this
problem is by considering a larger family of estima-
tors that includes (in addition to the L0 penalty) an L1-
or L2-norm regularization (Mazumder et al. 2017). In
this paper, we consider the following extended family
of L0-based estimators—that is, L0Lq-regularized re-
gression problems of the form:

β̂ ∈ argmin
β∈Rp

1
2
‖y − Xβ‖22 + λ0‖β‖0 + λq‖β‖qq, (1)

where q ∈ {1, 2} determines the type of the additional
regularization (i.e., L1 or L2). The regularization pa-
rameter λ0 controls the number of nonzeros (i.e., se-
lected variables) in β̂, and λq controls the amount of
shrinkage induced by Lq regularization. In many re-
gimes (and under suitable choices of λ0, λq), estimators
from problem (1) exhibit superior statistical proper-
ties (variable selection, prediction, and estimation)
compared with computationally friendlier alterna-
tives (e.g., based on Lasso or stepwise regression)—see,
for example, Raskutti et al. 2011, Zhang and Zhang
2012, Zhang et al. 2014, Bertsimas et al. 2016,
Bertsimas and Van Parys 2017, and Mazumder et al.
2017. In spite of its potential usefulness, problem (1)
is NP-hard (Natarajan 1995) and poses computa-
tional challenges. Recent work by Bertsimas et al.
(2016) has shown that high-quality solutions can be
obtained for the cardinality-constrained least squares
problem via mixed integer optimization (MIO), in the
order of minutes when p ∼ 1000. However, efficient
solvers for the Lasso (e.g., glmnet; Friedman et al.
2010) can address much larger problems within a
second. Our goal is to bridge this gap in computation
time by developing fast solvers that can obtain high-
quality (approximate) solutions to problem (1) for
large and challenging instances (e.g., p ∼ 106 and
small n). This will allow performing systematic large-
scale experiments to gain a deeper understanding of
the statistical properties of L0-based estimators and
their differences with the state of the art. Such an
understanding is currently limited as a result of com-
putational considerations.

Our approach is based on two complementary algo-
rithms: (i) cyclic coordinate descent (CD) for quickly
finding solutions to problem (1) and (ii) novel combi-
natorial search algorithms, which help improve solu-
tions from (i). In particular, the solutions obtained by
(ii) cannot be improved bymaking small changes to their
support. We establish novel convergence guarantees
for our algorithms. We also address delicate imple-
mentation aspects of our algorithms and provide
L0Learn: an open-source and efficient R/C++ toolkit
available on CRAN at https://CRAN.R-project.org/

package=L0Learn and on GitHub at https://github
.com/hazimehh/L0Learn.

1.1. Current Landscape and Related Work
Our main focus is on the computational aspects of
problem (1).We contextualize our contributionwithin
the rather large and impressive literature on algo-
rithms for sparse regression—see, for example, Beck
and Eldar (2013) and Bertsimas et al. (2016) for an
overview. We broadly categorize the main existing
algorithms into two categories:
• Proxy algorithms and heuristics: Proxy algorithms

use a proxy/surrogate to the L0 norm, for example,
L1-norm or nonconvex penalties such as the minimax
concave penalty (MCP) and smoothly clipped abso-
lute deviation (SCAD) (Tibshirani 1996, Fan and Li
2001, Zhang 2010). Fast solvers have been devised for
these proxies (e.g., Friedman et al. 2010, Breheny and
Huang 2011, Mazumder et al. 2011)—they typically
result in good solutions (though not optimal for non-
convex problems). Another approach is to use heuris-
tics to find approximate solutions to problem (1) with
λq � 0. Popular methods include (greedy) stepwise
regression (Hastie et al. 2015), iterative hard thresh-
olding (IHT) (Blumensath andDavies 2009, Bertsimas
et al. 2016), greedy CD (Beck and Eldar 2013), and
randomized CD (Patrascu and Necoara 2015).
• Exact algorithms: These approaches exactly solve

anoptimizationproblem involving theL0 norm. Bertsimas
et al. (2016) use MIO to compute near-optimal solu-
tions for least squares with a cardinality constraint
for p ≈ 1000. Bertsimas and Van Parys (2017) propose
a cutting plane method for a similar problem, which
works well with mild sample correlations and a
sufficiently large n. Mazumder and Radchenko (2017)
use mixed integer linear optimization for solving an
L0-variant of the Dantzig selector.
In spite of their usefulness, exact algorithms are

usually accompanied by a steep increase in compu-
tational cost, placing them at a disadvantage com-
pared with faster alternatives (Hastie et al. 2017). To
this end, our approach borrows the computational
strengths of the proxy algorithms while maintaining
a notion of “local combinatorial exactness”—that is,
making small perturbations to the support of the
solution cannot improve its objective. Similar to the
proxy algorithms, we employ cyclic CD as one of our
main workhorses. We note that standard results on
the convergence of cyclic CD (Tseng 2001) donot apply
for our problem, and one of our contributions is rigor-
ously establishing its convergence. A novelty of our
work is the use of local combinatorial search to obtain
high-quality solutions. Our attention to the delicate
computational aspects make our proposed algorithms
comparable (and at times faster) in speed to the fastest
proxy algorithms (e.g., glmnet and ncvreg).
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1.2. Contributions
We summarize our key contributions below:

1. We introduce a new family of necessary opti-
mality conditions for problem (1), leading to a hier-
archy of classes of local minima. Classes higher up in
the hierarchy are of better quality.

2. We propose new algorithms based on cyclic CD
and local combinatorial search to obtain these local
minima. We present a novel convergence analysis of
the algorithms. We formulate the local combinatorial
search problems as structured MIO problems and
develop efficient solvers for special cases. Our local
search algorithms can run in seconds to minutes
when p is in the order of 103–106.

3. Our open-source R/C++ toolkit, L0Learn, often
runs faster than state-of-the-art toolkits (e.g., glmnet
and ncvreg). Typical speedups (of a version of our
algorithm) range from 25% to 300% for p up to 106

and n ≈ 103.
4. Experiments on real and synthetic data sets

suggest that our algorithms do a good job in opti-
mizing problem (1), with solutions often found to be
similar to that of exact MIO methods but with sig-
nificantly shorter run times. In terms of statistical
performance, our algorithms are found to be superior
in terms of a combination of metrics (estimation, pre-
diction, and variable selection) compared with state-
of-the-art methods for sparse learning.

1.3. Notation
We use the following notation throughout paper. We
denote the set {1, 2, . . . , p} by [p], the canonical basis
for Rp by e1, . . . , ep, and the standard Euclidean norm
by ‖ · ‖. Similarly, ‖ · ‖q denotes the standard Lq norm
with q ∈ {0, 1, 2,∞}. For any θ ∈ Rp and i ∈ [p], we
define θ̃i � 〈y −∑

j 
�i Xjθj,Xi〉. For any vector u ∈ Rk,
we define sign(u) ∈ Rk as a vector whose ith compo-
nent is given by sign(ui) � ui/|ui| if ui 
� 0and sign(ui) ∈
[−1, 1] if ui � 0. We denote the support of β ∈ Rp

by Supp(β) � {i : βi 
� 0, i ∈ [p]}. For S ⊆ [p], we let βS ∈
R|S| denote the subvector of β with indices in S.
Similarly, XS denotes the submatrix of Xwith column
indices S. We use US to denote the p × pmatrix whose
ith column is ei if i ∈ S and 0 otherwise. Thus, (USβ)i �
βi if i ∈ S and (USβ)i � 0 if i /∈ S.

Proofs of lemmas and theorems are included in the
supplementary material.

2. Necessary Optimality Conditions
We present a family of necessary optimality condi-
tions for problem (1), leading to different classes of
local minima.2 Our methodology is centered on the
following problem:

min
β∈Rp

F β
( ) �def f β

( ) + λ0‖β‖0, (2)

where f (β) is the least squares term with additional
convex regularizers:

f β
( ) �def 1

2
‖y − Xβ‖2 + λ1‖β‖1 + λ2‖β‖22. (3)

We will use the following shorthand notations:
(i) (L0L2) to denote problem (2) with λ1 � 0 and λ2 > 0,
(ii) (L0L1) to denote problem (2) with λ1 > 0 and λ2 � 0,
and (iii) (L0) to denote problem (2) with λ1 �λ2 � 0. Un-
less otherwise specified, we will assume that λ0 > 0.
Next, we present an overview of the different classes

of local minima (minima for short) that we study; this
is then followed by a more formal treatment.
• Stationary solutions: Solutions where the direc-

tional derivative is nonnegative in any direction.
• Coordinate-wise (CW) minima: Solutions where

optimizing with respect to one coordinate at a time
(while keeping others fixed) cannot improve the
objective.
• Partial swap-inescapable minima of order k (PSI(k)

minima): These are stationary solutions where (i) re-
moving any subset (of size at most k) from the sup-
port, (ii) adding any subset (of size at most k) to the
support, and (iii) optimizing over the newly added
subset cannot improve the objective.
• Full swap-inescapable minima of order k (FSI(k)

minima): These are similar to PSI(k) minima except
that in step (iii), if we optimize over the whole new
support, the objective does not improve.
• IHT minima: These are fixed points arising from

the popular IHT algorithm.
We also establish the following hierarchy among

the different classes introduced above:

FSI(k) PSI(k)
Hierarchy: ⊆

Minima Minima

CW IHT Stationary
⊆ ⊆ ⊆ (4)

Minima Minima Solutions

In the above hierarchy, stationary solutions are the
weakest. As wemove from the right to left, the classes
become smaller (i.e., satisfy more restrictive neces-
sary optimality conditions) until reaching the most
restrictive class: FSI(k) minima. Moreover, for suffi-
ciently large k, FSI(k) and PSI(k) minima coincide with
the class of global minimizers of problem (2). We now
present a formal treatment of the classes of minima
introduced above.

2.1. Stationary Solutions
Fora functiong : Rp → R andavectord ∈ Rp, we denote
the (lower) directional derivative (Bertsekas 2016) of g
at β in the direction d by g′(β; d) �def lim infα↓0(g(β +
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αd) − g(β))/α. Directional derivatives play an important
role in describing necessary optimality conditions for
continuous optimization problems (Bertsekas 2016).
Although F(β) is not continuous, it is insightful to use
the notion of a directional derivative to arrive at a
basic definition of stationarity for problem (2).

Definition 1 (Stationary Solution). A vector β∗ ∈ Rp is a
stationary solution for problem (2) if for every direction
vector d ∈ Rp, the lower directional derivative satisfies
F′(β∗; d) ≥ 0.

Let ∇f (β) ∈ Rp denote a subgradient of f (β). If β has
a support S, the notation ∇S f (β) refers to the com-
ponents of ∇f (β) restricted to S. Lemma 1 gives an
alternative characterization of Definition 1.

Lemma 1. Let β∗ ∈ Rp with support S; β∗ is a stationary
solution for problem (2) iff ∇S f (β∗) � 0.

Note that ∇S f (β∗) � 0 can be explicitly written as

β∗i � sign β̃∗i
( ) ⃒⃒̃β∗i ⃒⃒ − λ1

1 + 2λ2
and

⃒⃒̃
β∗i
⃒⃒
> λ1

for all i ∈ Supp β∗
( )

, (5)
where we recall that β̃∗i �def 〈y −∑

j
�i Xjβ∗j ,Xi〉. Charac-
terization (5) suggests that a stationary solution β∗
does not depend on λ0 and does not impose any re-
striction on the coordinates outside the support. More-
over, it can be readily verified that a stationary solution
to problem (2) satisfies the traditional definition of a
local minimum in nonlinear optimization; that is, if
β∗ is a stationary solution, then there exists a δ > 0
such that F(β∗) ≤ F(β) for any β satisfying ‖β − β∗‖ < δ.

2.2. CW Minima
We consider a class of stationary solutions inspired
by coordinate-wise algorithms (Tseng 2001, Beck and
Eldar 2013, Bertsekas 2016).

Definition 2 (CW Minimum). A vector β∗ ∈ Rp is a CW
minimum for problem (2) if for every i ∈ [p], β∗i is a
minimizer of F(β∗) with respect to the ith coordinate
(with others held fixed); that is,

β∗i ∈ argmin
βi∈R

F β∗1, . . . , β
∗
i−1, βi, β

∗
i+1, . . . , β

∗
p

( )
. (6)

As every column of X has a unit L2 norm, β∗i is given
by the following thresholding operator T̃:

T̃ β̃∗i , λ0, λ1, λ2

( )
�def argmin

βi∈R
1 + 2λ2

2
βi − β̃∗i

1 + 2λ2

( )2{

+ λ1|βi| + λ01 βi 
� 0
[ ]}

, (7)

where {λi}20 and β̃∗i are fixed, and the set T̃(̃β∗i , λ0, λ1, λ2)
is described below.

Lemma 2. Let T̃ be the thresholding operator defined in (7).
Then,

T̃ β̃∗i , λ0, λ1, λ2

( )
�

sign β̃∗
i

( ) |β̃∗i |−λ1

1+2λ2

{ }
if |β̃

∗
i |−λ1

1+2λ2
>

̅̅̅̅̅̅
2λ0

1+2λ2

√
{0} if |β̃

∗
i |−λ1

1+2λ2
<

̅̅̅̅̅̅
2λ0

1+2λ2

√
0, sign β̃∗i

( ) |β̃∗i |−λ1

1+2λ2

{ }
if |β̃

∗
i |−λ1

1+2λ2
�

̅̅̅̅̅̅
2λ0

1+2λ2

√
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Lemma 3 presents an alternative characterization of
CW minima.

Lemma 3. A vector β∗ ∈ Rp is a CWminimum if and only if

β∗i � sign β̃∗i
( ) |β̃∗i |−λ1

1+2λ2
and |β∗i | ≥

̅̅̅̅̅̅̅̅
2λ0

1+2λ2
,

√
for every i ∈ Supp β∗

( )
and |β̃∗i |−λ1

1+2λ2
≤

̅̅̅̅̅̅
2λ0

1+2λ2

√
for every i /∈ Supp β∗

( )
.

(8)

Comparing (8) with (5), we see that the class of sta-
tionary solutions contains the class of CW minima,
and the containment is strict (in general).

2.3. Swap-Inescapable Minima
We now introduce stationary solutions that further
refine the class of CW minima, using notions from
local combinatorial optimization. Given a CW mini-
mum β∗, one might obtain a better solution by the
following “swapping” operation: we set some non-
zeros in β∗ to 0 and allow some entries from outside
the support of β∗ to be nonzero. Then, we optimize
over the new support using one of the following rules:
(a) partial optimization, where we optimize only with
respect to the coordinates added from outside the
support, or (b) full optimization, where we optimize
with respect to all the coordinates in the new support.
This may lead to a solution with a smaller objective
value. If the current solution cannot be improved
using the swapping operation, we call β∗ a swap-
inescapableminimum. Our proposal is inspired by the
work of Beck and Eldar (2013) for the cardinality-
constrained problem, where the authors suggest a
special case of partial swap optimization involving
one coordinate. However, the problem studied here
is different: we consider L0 penalization (versus an
L0 constraint) and a nonsmooth f (β). Furthermore, we
allow multiple coordinates to be swapped at once via
partial or full optimization.
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2.3.1. PSI Minima. We formally define PSI minima,
arising from the partial optimization step outlined
above. Recall that for any L ⊆ [p], the ith coordinate of
the vector (ULβ) is βi if i ∈ L and 0 otherwise.

Definition 3 (PSI Minima). Let k be a positive integer.
A vector β∗ with support S is a PSI minimum of order k,
denoted by PSI(k), if it is a stationary solution and for
every S1 ⊆ S, S2 ⊆ Sc, with |S1| ≤ k, |S2| ≤ k, the fol-
lowing holds:

F(β∗) ≤ min
βS2

F β∗ −US1β∗ +US2β
( )

.

The following lemma characterizes PSI minima of
order 1, PSI(1).

Lemma 4. A vector β∗ ∈ Rp is a PSI(1) minimum if and
only if

β∗i � sign β̃∗i
( ) |β̃∗i |−λ1

1+2λ2
and

|β∗i | ≥max
̅̅̅̅̅̅
2λ0

1+2λ2

√
, max
j/∈Supp β∗( )

|β̃∗ij |−λ1

1+2λ2

{ }
, for i ∈ Supp β∗

( )
and |β̃∗i |−λ1

1+2λ2
≤

̅̅̅̅̅̅
2λ0

1+2λ2

√
, for i /∈ Supp β∗

( )
where β̃∗ij � 〈y −∑

l
�i,j Xlβl,Xj〉.

Lemmas 3 and 4 suggest that PSI(1) minima impose
additional restrictions on the magnitude of nonzero
coefficients when compared with CW minima. The
class of CWminima contains PSI(k) minima for any k.
Furthermore, as k increases, the class of PSI(k) minima
becomes smaller till it coincides with the class of global
minimizers of problem (2).

2.3.2. FSI Minima. We formally define FSI minima,
arising from the full optimization step outlined above.

Definition 4 (FSI Minima). Let k be a positive integer.
A vector β∗ with support S is an FSI minimum of order
k, denoted by FSI(k), if for every S1 ⊆ S and S2 ⊆ Sc,
such that |S1| ≤ k and |S2| ≤ k, the following holds:

F β∗
( ) ≤ min

β(S\S1 )∪S2
F β∗ −US1β∗ +U(S\S1)∪S2β
( )

.

We note that for a fixed k, the class of PSI(k) minima
contains FSI(k) minima, justifying a part of the hier-
archy displayed in (4). As k increases, the class of
FSI(k) minima becomes smaller till it coincides with
the set of global minimizers of problem (2). Sec-
tions 3.2.1 and 3.2.2 introduce algorithms to obtain
PSI(k) minima and FSI(k) minima, respectively.

2.4. Stationarity Motivated by IHT
Proximal gradient algorithms such as IHT are pop-
ularly used for L0-penalized least squares problems

(Blumensath and Davies 2009). It is insightful to
consider the class of stationary solutions associated
with IHT and study how they compare with CW
minima. Let fd(β) :� 1

2 ‖y − Xβ‖2 + λ2‖β‖2. The gradient
of fd(β) is Lipschitz continuous with parameter L;
that is, ‖∇fd(β) − ∇fd(α)‖ ≤ L‖β − α‖ for all β, α ∈ Rp.
IHT applied to problem (2) performs the following
updates:

βk+1∈argmin
β∈Rp

1
2τ

β− βk−τ∇fd βk
( )( )⃦⃦⃦⃦ ⃦⃦⃦⃦2{

+λ1‖β‖1+λ0‖β‖0
}
, (9)

where τ > 0 is a constant step size. We say that α ∈ Rp

is a fixed point of update (9) if βk � α leads to βk+1 � α.
This suggests another notion of stationarity (see
Definition 5) for problem (2). To this end, consider
Theorem 1 establishing the convergence of βk to a
fixed point of update (9).

Theorem 1. Let L be defined as above. The sequence {βk}
defined in (9) converges to a fixed point β∗ of update (9) for
any τ < 1

L. Note that β∗ is a fixed point if and only if

β∗i � sign β̃∗i
( ) |β̃∗i |−λ1

1+2λ2
and |β∗i | ≥

̅̅̅̅̅̅̅
2λ0τ

√
for i ∈ Supp β∗

( )
and |β̃∗i |−λ1

1+2λ2
≤

̅̅̅̅̅̅̅̅̅̅
2λ0

(1+2λ2)2τ
√

for i /∈ Supp β∗
( )
(10)

Definition 5. A vector β∗ is an IHT minimum for prob-
lem (2) if it satisfies (10) for τ < 1

L.

The following remark shows that the class of IHT
minima contains the family of CW minima.

Remark 1. Let M be the largest eigenvalue of XTX and
take L � M + 2λ2. By Theorem 1, any τ < 1

M+2λ ensures
the convergence of updates (9). Because the columns of
X are normalized, we haveM ≥ 1. Comparing (10) with
(8), we see that the class of IHT minima includes
CW minima. Usually, for high-dimensional problems,
M � 1—making the class of IHT minima much larger
than CW minima (see Section 5.2 for numerical
examples).

We have now explained the full hierarchy among
the classes of local minima presented in (4). Section 3
discusses algorithms to obtain solutions that belong
to these classes.

3. Algorithms
Section 3.1 presents a cyclic CD algorithm that
converges to CW minima, and Section 3.2 discusses
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local combinatorial optimization to obtain PSI(k)/
FSI(k) minima.

3.1. Cyclic Coordinate Descent
Our main workhorse is cyclic CD (Bertsekas 2016)
with full minimization in every coordinate—we also
include some additional tweaks for reasons we dis-
cuss shortly.With initialization β0, we update the first
coordinate (with others fixed) to get β1, and we con-
tinue the updates according to a cyclic rule. Let βk

denote the solution obtained after performing k co-
ordinate updates. Then, βk+1 is obtained by updating
the ith coordinate (with others held fixed) via

βk+1i ∈ argmin
βi∈R

F βk1, . . . , β
k
i−1, βi, β

k
i+1, . . . , β

k
p

( )
, (11)

where i � (k + 1)mod (p + 1). Recall that the operator
T̃(̃βi, λ0, λ1, λ2) (defined in (7)) describes solutions of
problem (11). Specifically, it returns two solutions

when |β̃i |−λ1
1+2λ2

�
̅̅̅̅̅̅
2λ0

1+2λ2

√
. In such a case, we consistently

choose one of these solutions3—namely, the nonzero
solution. Thus, we use the new operator (note the use
of T instead of T̃):

T β̃i, λ0, λ1, λ2

( )
�def

sign β̃i
( ) |β̃i |−λ1

1+2λ2
if |β̃i |−λ1

1+2λ2
≥

̅̅̅̅̅̅
2λ0

1+2λ2

√
0 if |β̃i |−λ1

1+2λ2
<

̅̅̅̅̅̅
2λ0

1+2λ2

√⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(12)

for update (11). In addition to the above modifica-
tion, we introduce “spacer steps” that are occasion-
ally performed during the course of the algorithm to
stabilize its behavior4—spacer steps are commonly
used in the context of continuous nonlinear optimi-
zation problems (e.g., see Bertsekas 2016). We per-
form a spacer step as follows. Let C be an a priori fixed
positive integer. We keep track of the supports en-
countered so far, and when a certain support—say,
S—appears for Cp-many times, we perform one pass
of cyclic CD to minimize the continuous function
βS �→ f (βS). This entails updating every coordinate in S
via the operator T(̃βi, 0, λ1, λ2) (see Subroutine 1).

Algorithm 1 summarizes the above procedure.
Count[S] is an associative array that stores the
number of times a support S appears—it takes S as a
key and returns the number of times S has appeared
so far. Count[S] is initialized to 0 for any S that ap-
pears for the first time during the course of the al-
gorithm. Note that in the worst case, storing Count[]
may require an exponential (in p) amount of memory.
However, in practice, only one or a few supports
appear for Cpmany times and need to be maintained
in Count[].

Algorithm 1 (Coordinate Descent with Spacer Steps)

Input: Initial Solution β0, Positive Integer C
k ← 0
while Not Converged do

for i in 1 to p do
βk+1 ← βk

βk+1i ← argminβi∈R F(βk1, . . . , βi, . . . , βkp) using (12)
// Nonspacer Step

k ← k + 1
Count[Supp(βk)] ← Count[Supp(βk)] + 1
if Count[Supp(βk)] � Cp then
βk+1 ← SpacerStep(βk) // Spacer Step
Count[Supp(βk)] = 0
k ← k + 1

Subroutine 1 (SpacerStep(β))

Input: β
for i in Supp(β) do
βi ← argminβi∈R f (β1, . . . , βi, . . . , βp) using (12)
with λ0 � 0

return (β)

3.1.1. Why Cyclic CD? Cyclic CD has been practically
shown to be among the fastest algorithms for Lasso
(Friedman et al. 2010) and continuous nonconvex
regularizers (e.g., MCP, SCAD) (Breheny and Huang
2011, Mazumder et al. 2011). Coordinate updates in
cyclic CD have low cost and exploit sparsity via
sparse residual updates and active set convergence
(Friedman et al. 2010). This makes it well suited for
high-dimensional problems with p � n and p of the
order of tens of thousands to millions. On the other
hand, methods requiring evaluation of the full gra-
dient (proximal gradient descent, greedy coordinate
descent, etc.) can have difficulty in scaling with p
(Nesterov 2012). For example, proximal gradient de-
scentmethodsdonot exploit sparsity-based structure as
well as CD-based methods (Friedman et al. 2010,
Nesterov 2012). We also note that, based on our ex-
periments, random CD (proposed by Patrascu and
Necoara 2015 for a problem similar to ours) exhibits
slower convergence in practice (see Section 5.2)—see
also related discussions in Beck and Tetruashvili
(2013) for convex problems. We have also observed
empirically that cyclic CD has an edge over com-
peting algorithms, in terms of both optimization ob-
jective (see Section 5.2) and statistical performance
(see Sections 5.3, 5.4, and 5.6).

3.1.2. Convergence Analysis. We analyze the con-
vergence behavior of Algorithm 1—in particular, we
prove a new result establishing convergence to a CW
minimum (the limit point depends on the initializa-
tion). Moreover, we show that the linear rate of con-
vergence of CD that holds for minimization of a
smooth convex function (Beck and Tetruashvili 2013)
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extends to our nonconvex problem (in an asymptotic
sense). We note that if we avoid full minimization
and use a conservative step size, the proofs of conver-
gence become straightforward by virtue of a sufficient
decrease of the objective value after every coordinate
update.5 However, using CDwith a conservative step
size for problem (2) can have a detrimental effect on
the solution quality. By examining the fixed points, it
can be shown that a conservative step size leads to a
class of stationary solutions that contains CW min-
ima. Cyclic CD has been studied in earlier work with
nonconvex but continuous regularizers (Tseng 2001,
Breheny andHuang 2011, Mazumder et al. 2011) with
a least squares data fidelity term. However, to our
knowledge, a convergence analysis of cyclic CD for
problem (2) is novel.

We present a few lemmas describing the behavior
of Algorithm 1 (some additional technical lemmas
are in the supplementary material). Theorem 2 es-
tablishes convergence, and Theorem 3 presents an
asymptotic linear rate of convergence of Algorithm 1.

The following lemma states that Algorithm 1 is a
descent algorithm.

Lemma 5. Algorithm 1 is a descent algorithm, and F(βk) ↓
F∗ for some F∗ ≥ 0.

For the remainder of the section, we will make the
following minor assumptions to establish the conver-
gence of Algorithm 1 for the (L0) and (L0L1) problems.
These assumptions are not needed for problem (L0L2).
Assumption 1. Let m � min{n, p}. Every set of m columns
of X is linearly independent.

Assumption 2 (Initialization). If p > n, we assume that the
initial estimate β0 satisfies

• in the (L0) problem, F(β0) ≤ λ0n; and
• in the (L0L1) problem, F(β0) ≤ f (β	1) + λn, where

f (β	1) � minβ
1
2 ‖y − Xβ‖2 + λ1‖β‖1.

The following remark demonstrates that Assump-
tion 2 is rather minor.

Remark 2. Suppose p > n and Assumption 1 holds. For
the (L0) problem, let S ⊆ [p] such that |S| � n. If β0 is
defined such that β0S is the least squares solution on the
support S with β0Sc � 0, then F(β0) � λ0n (because the
least squares loss is 0). This satisfies Assumption 2.
For the (L0L1) problem, we note that there always
exists an optimal Lasso solution β̂ such that ‖β̂‖0 ≤ n
(e.g., see Tibshirani 2013). Therefore, β̂ satisfies As-
sumption 2.

In what follows, we assume that Assumptions 1
and 2 hold for the (L0) and (L0L1) problems. Lemma 6
shows that in the (L0) and (L0L1)problems, the support
size of any βk obtained by Algorithm 1 cannot exceed
min{n, p}.

Lemma 6. For the (L0) and (L0L1) problems, {βk} satisfies
‖βk‖0 ≤ min{n, p} for all k.

The following theorem establishes the convergence
of Algorithm 1.

Theorem 2. The following holds for Algorithm 1:
(1) The support of {βk} stabilizes after a finite number of

iterations; that is, there exists an integer m and a
support S such that Supp(βk) � S for all k ≥ m.

(2) The sequence {βk} converges to a CW minimum B
with Supp(B) � S.

Theorem 3 presents an asymptotic linear rate of
convergence for Algorithm 1: we make use of part (1)
of Theorem 2 and the convergence rate of cyclic CD
(for smooth and strongly convex functions) (Beck and
Tetruashvili 2013). Note that in Theorem 3, full cycle
refers to a single pass of vanilla CD over all the co-
ordinates in S, and βK refers to the iterate generated
after performing K full cycles of CD.

Theorem 3 (Adaptation of Beck and Tetruashvili 2013,
theorem 3.9). Let {βK} be the full-cycle iterates generated
by Algorithm 1, and let B be the limit with support S. Let mS
andMS denote the smallest and largest eigenvalues of XT

SXS,
respectively. Then, there is an integer N such that for all
K ≥ N, the following holds:

F βK+1
( )

− F(B) ≤ 1− mS + 2λ2

2(1+2λ2) 1+|S| MS+2λ2
1+2λ2

( )2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· F βK

( )
− F(B)

( )
. (13)

3.2. Local Combinatorial Optimization Algorithms
We present algorithms to obtain solutions belonging
to the classes of swap-inescapableminima introduced
in Section 2.3.

3.2.1. Algorithms for PSI Minima. We introduce an
iterative algorithm that leads to a PSI(k)minimum. In
the 	th iteration, the algorithm performs two steps:
(1) runs Algorithm 1 to get a CW minimum β	 and
(2) searches for a “descent move” by solving the fol-
lowing combinatorial optimization problem:

min
β,S1,S2

F β	 −US1β	 +US2β
( )

s.t. S1 ⊆ S, S2 ⊆ Sc, |S1| ≤ k, |S2| ≤ k, (14)
where S � Supp(β	). Note that if there is a feasible
solution β̂ to problem (14) satisfying F(β̂) < F(β	), then
β̂maynot be aCWminimum. In this case, Algorithm1
can be initialized with β̂ to obtain a better solution for
problem (2). Otherwise, if such a β̂ does not exist, then
β	 is a PSI(k)minimum (by Definition 3). Algorithm 2
(a.k.a. CD-PSI(k)) summarizes the algorithm.
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Algorithm 2 (CD-PSI(k))

β̂0 ← β0

for 	 � 0, 1, . . . do
β	+1 ← Output of Algorithm 1 initialized with β̂	

if problem (14) has a feasible solution β̂ satisfying
F(β̂) < F(β	+1) then
β̂	+1 ← β̂

else
Terminate

Theorem4. Let {β	} be the sequence of iterates generated by
Algorithm 2. For the (L0) and (L0L1) problems, suppose that
Assumptions 1 and 2 hold. Then, Algorithm 2 terminates
in a finite number of iterations, and the output is a PSI(k)
minimum.

As indicated in Theorem 4, Algorithm 2 terminates
in a finite number of iterations (which depends on the
number of swaps that improve the objective value).
In our experiments, Algorithm 2 typically terminates
in fewer than 20 iterations. Each iteration involves a
call to Algorithm 1 (which is quite fast) followed by
solving a feasibility problem (i.e., finding β̂ as de-
scribed in Algorithm 2). As we discuss next, for
moderate p (e.g., 103–104), this feasibility problem can
be handled efficiently usingMIO solvers. When k � 1,
we propose a specialized algorithm for solving this
feasibility problem that can easily scale to problems
with p � 106.

3.2.1.1. MIO Formulation for Problem (14). Problem (14)
admits an MIO formulation given by

min
θ,β,z

f (θ) + λ0
∑
i∈ p[ ]

zi (15a)

s.t. θ � β	 −∑
i∈S

eiβ	i (1 − zi) +
∑
i∈SC

eiβi (15b)
−}zi ≤ βi ≤ }zi, ∀i ∈ Sc (15c)∑
i∈Sc

zi ≤ k (15d)∑
i∈S

zi ≥ |S| − k (15e)
βi ∈ R, ∀i ∈ Sc (15f)
zi ∈ {0, 1}, ∀i ∈ p

[ ]
, (15g)

where the optimization variables are θ ∈ Rp, βi, i ∈ Sc,
and z ∈ {0, 1}p. In formulation (15), S � Supp(β	),
where β	 is fixed, and} is a Big-M parameter (a priori
specified) controlling the L∞ norm of βSc . Any suffi-
ciently large value of } will lead to a solution for
problem (14); however, a tight choice for} affects the
run time of theMIO solver—see Bertsimas et al. (2016)
for additional details. We note that the ‖θ‖1 term in-
cluded in f (θ) can be expressed via linear inequal-
ities using auxiliary variables. Thus, problem (15) is
amixed integer quadratic optimization (MIQO)problem.

We now explain the constraints in problem (15) and
how they relate to problem (14). To this end, let S1 and
S2 be subsets defined in (14). Letθ � β	 −US1β	 +US2β,
and this relation is expressed in (15b). Let us consider
any binary variable zi where i ∈ S. If zi � 0, then β	i is
removed from S, and we have θi � 0 (see (15b)). If
zi � 1, then β	i is not removed from θ, and we have
θi � β	i 
� 0 (see (15b)). Note that |S1| � ∑

i∈S(1 − zi) �
|S| −∑

i∈S zi. The condition |S1| ≤ k is thus encoded in
the constraint

∑
i∈S zi ≥ |S| − k in (15e). Thus we have

that ‖θS‖0 � ∑
i∈S zi.

Now consider any binary variable zi where i ∈ Sc.
If zi � 1, then by (15c) we observe that βi is free to vary
in [−},}]. This implies that θi � βi. If zi � 0, then
θi � βi � 0. Note

∑
i∈Sc zi � |S2|, and the constraint |S2| ≤

k is expressed via
∑

i∈Sc zi ≤ k in (15d). It also follows
that ‖θSc‖0 � ∑

i∈Sc zi. Finally, we note that the func-
tion appearing in the objective (15a) is F(θ), because
λ0

∑
i∈[p] zi � λ0‖θ‖0.

Remark 3. Problem (15) has a smaller (combinatorial)
search space compared with an MIO formulation for
the full problem (2)—solving (15) for small values of k is
usually much faster than problem (2). Furthermore, an
MIO framework can quickly deliver a feasible solution
to problem (15) with a smaller objective than the current
solution—this is usually much faster than establishing
optimality via dual bounds. Note that the MIO frame-
work can also certify (via dual bounds) if there is no
feasible solution with a strictly smaller objective value.

Section 5 presents examples where problem (15)
leads to higher-quality solutions—from both the op-
timization and statistical performance viewpoints.
We now present an efficient algorithm for solving the
special case of problem (14) with k � 1.

Subroutine 2 (Vanilla Implementation of Problem (14)
with k � 1)
S ← Supp β	

( )
for i ∈ S do

for j ∈ Sc do

v∗j ← argmin
vj∈R

F β	 − eiβ	i + ejvj
( ) (16)

F∗j ← F β	 − eiβ	i + ejv∗j
( )

(17)
ϑ ← argmin

j∈Sc
F∗j (18)

if F∗ϑ < F β	
( )

then

β̂ ← β	 − eiβ	i + eϑv∗ϑ (19)
Terminate

3.2.1.2. An Efficient Algorithm for Computing PSI(1)
Minima. Subroutine 2 presents an algorithm for prob-
lem (14) with k � 1. That is, we search for a feasible
solution β̂ of problem (14) satisfying F(β̂) < F(β	).
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The two “for” loops in Subroutine 2 can run for a total
of (p − ‖β	‖0)‖β	‖0 iterations, where every iteration
requires O(n) operations to perform the minimiza-
tion in (16) and evaluate the new objective in (17).
Therefore, Subroutine 2 entails an overall cost of
O(n(p− ‖β	‖0)‖β	‖0). However, we show below that a
careful implementation can reduce the cost by a fac-
tor of n, leading to a cost of O((p − ‖β	‖0)‖β	‖0)-many
operations.

A solution v∗j of problem (16) is given by

v∗j � sign β̄j
( ) |β̄j |−λ1

1+2λ2
if |β̄j |−λ1

1+2λ2
≥

̅̅̅̅̅̅
2λ0

1+2λ2

√
0 otherwise

{
(20)

where

β̄j � r + Xiβ
	
i ,Xj

〈 〉 � r,Xj
〈 〉 + Xi,Xj

〈 〉
β	i , (21)

and r � y − Xβ	. We note that in Algorithm 2, solving
(14) is directly preceded by a call to Algorithm 1. The
quantities 〈r,Xj〉 and 〈Xi,Xj〉 appearing on the right-
hand side of (21) can be stored during the call to
Algorithm 1 (these two quantities are computed by
CD as part of the “covariance updates”—see Section 4
for details). By reusing these two stored quantities,we
can compute every β̄j (and consequently, v∗j ) in O(1)
arithmetic operations.

Furthermore, the following equivalent represen-
tations hold:

argmin
j∈Sc

F∗j ⇐⇒ argmax
j∈Sc

|v∗j | (22)
F∗ϑ < F βl

( )
⇐⇒ |v∗ϑ| > |βli|. (23)

Thus, we can avoid the computation of the objective
F∗j in (17) and replace (18) with ϑ ← argmaxj∈Sc |v∗j |.
Furthermore, we can replace F∗ϑ < F(β	) (before Equa-
tion (19)) with |v∗ϑ| > |βli|. We summarize these changes
in Subroutine 3, which is the efficient counterpart of
Subroutine 2. Note that Subroutine 3 has a cost of
O((p − ‖βl‖0)‖βl‖0) operations.
Subroutine 3 (Efficient Implementation of Problem (14)
with k � 1)

S ← Supp(β	)
for i ∈ S do

for j ∈ Sc do
Compute v∗j in O(1) using (20)

ϑ ← argmax
j∈Sc

|v∗j |
if |v∗ϑ| > |β	i | then

β̂ ← β	 − eiβ	i + eϑv∗ϑ

Terminate

Remark 4. Because CD-PSI(1) (Algorithm 2 with k � 1)
is computationally efficient, in Algorithm 2 (with k > 1),
CD-PSI(1) may be used to replace Algorithm 1. In our

numerical experiments, this is found to work well in
terms of lower run times and also in obtaining higher-
quality solutions (in terms of objective values). This
modification also guarantees convergence to a PSI(k)
minimum (as the proof of Theorem 4 still applies to this
modified version).

3.2.2. Algorithm for FSI Minima. To obtain an FSI(k)
minimum, problem (14) needs to be modified—we
replace optimization with respect to the variable
US2β by that of U(S\S1)∪S2β. This leads to the following
problem:

min
β,S1,S2

F β	 −US1β	 +U(S\S1)∪S2β
( )

s.t. S1 ⊆ S, S2 ⊆ Sc, |S1| ≤ k, |S2| ≤ k, (24)
where S � Supp(βl). Similarly, Algorithm 2 gets mod-
ified by considering problem (24) instead of prob-
lem (14). By the same argument used in the proof of
Theorem 4, this modification guarantees that Algo-
rithm 2 converges in a finite number of iterations to an
FSI(k) minimum.
We present an MIO formulation for problem (24).

We write θ � β	 −US1β	 +U(S\S1)∪S2β and use a binary
variable wi, i ∈ S to indicate whether i ∈ S1 or not: we
set wi � 0 iff i ∈ S1. We use another binary variable
zi, i ∈ [p] to indicate the number of nonzeros in θ
(i.e., zi � 0 ⇒ θi � 0). This leads to the following MIO
problem:

min
θ,w,z

f (θ) + λ0
∑
i∈ p[ ]

zi (25a)

−}zi ≤ θi ≤ }zi, ∀i ∈ p
[ ] (25b)

zi ≤ wi, ∀i ∈ S (25c)∑
i∈Sc

zi ≤ k (25d)∑
i∈S

wi ≥ |S| – k (25e)
θi ∈ R, ∀i ∈ p

[ ] (25f)
zi ∈ {0, 1}, ∀i ∈ p

[ ] (25g)
wi ∈ {0, 1} ∀i ∈ S. (25h)

In (25b), for every i ∈ [p], the binary variable zi � 1 if
i ∈ Supp(β), and } is a sufficiently large constant
(similar to that in (15)). The second term in the ob-
jective (25a) stands for λ0

∑
i zi � λ0‖θ‖0. In (25c) we

enforce the condition that if wi � 0, then zi � 0, im-
plying that θi � 0. If wi � 1, then i /∈ S1. Coordinates in
S \ S1 (i.e., those with wi � 1) are free to be inside or
outside of Supp(θ). We enforce |S1| ≤ k and |S2| ≤ k
via (25e) and (25d), respectively.

Remark 5. Formulation (25) has a larger search space
compared with formulation (15) of PSI minima, as a
result of the additional number of continuous and
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binary variables. Although this leads to increased
run times compared with problem (15), it can still be
solved faster than an MIO formulation for the full
problem (2) (for the same reasons as in Remark 3).

In Section 5.5, we present experiments where we
compare the quality of FSI(k) minima, for different
values of k, to the other classes of minima.

4. Efficient Computation of the
Regularization Path

Wedesigned L0Learn:6 an extensible C++ toolkit with
an R interface that implements most of the algorithms
discussed in this paper. Our toolkit achieves lower
running times7 compared with other popular sparse
learning toolkits (e.g., glmnet and ncvreg) by utilizing
a series of computational tricks and heuristics. These
include an adaptive grid of tuning parameters, con-
tinuation, active set updates, greedy cyclic ordering of
coordinates, correlation screening, and a careful ac-
counting of floating point operations—some of these
heuristics (as specified below) appear in prior work
for deriving highly efficient algorithms for the Lasso
(e.g., glmnet). Below, we provide a detailed account
of the aforementioned strategies that are also found to
result in high-quality solutions.

4.1. Adaptive Selection of Tuning Parameters
We use continuation on a grid of λ0 values: λ1

0 > λ2
0 > · · ·

> λm
0 and use the solution obtained from λk

0 as a warm
start for λk+1

0 . The choice of λi
0’s requires care, so we

present a new method to select this sequence. If two
successive values of the λ0 sequence are far apart, one
might miss good solutions. However, if these suc-
cessive values are too close, the corresponding so-
lutions will be identical. To avoid this problem, we
derive conditions on the choice of λ0 values that en-
sure that Algorithm 1 leads to different solutions. To
this end, we present the following lemma, wherein
we assume that λ1, λ2 are a priori fixed.

Lemma 7. Suppose β(i) is the output of Algorithm 1 with
λ0 � λi

0. Let S � Supp(β(i)), let r � y − Xβ(i) denote the
residual, and let

Mi � 1
2(1 + 2λ2)max

j∈Sc
|〈r,Xj〉| − λ1
( )2. (26)

Then, running Algorithm 1 for λi+1
0 < λi

0 initialized at
β(i) leads to a solution β(i+1) satisfying β(i+1) 
� β(i) if λi+1

0 <
Mi and β(i+1) � β(i) if λi+1

0 ∈ (Mi, λi
0].

Lemma 7 suggests a simple scheme to compute a
sequence {λi

0} that avoids duplicate solutions. Sup-
pose we have computed the regularization path up
to λ0 � λi

0; then λi+1
0 can be computed as λi+1

0 � αMi,
where α is a fixed scalar in (0, 1). Moreover,wenote that
Mi (defined in (26)) can be computed without explicitly

calculating 〈r,Xi〉 for every i ∈ Sc, as these dot products
can be maintained in memory while running Algo-
rithm 1 with λ0 � λi

0. Therefore, computing Mi, and
consequently λi+1

0 , requires only O(|Sc|) operations.
4.2. (Partially) Greedy Cyclic Order
Suppose Algorithm 1 is initialized with a solution β0,
and let r0 � y − Xβ0. Before running Algorithm 1,
we reorder the coordinates based on sorting the
quantities |〈r0,Xi〉| for i ∈ [p] in descending order.8 In
practice, we perform partial sorting, in which only the
top t (e.g., t � 5000 and p is much larger) coordinates
are sorted,whereas the restmaintain their initial order.
This is typically faster and equally effective compared
with sorting all coordinates. Note that this ordering is
performed once before the start of Algorithm 1—this is
different from the greedy CD that finds the maximal
correlation at every coordinate update. Our experi-
ments in Section 5.2 indicate that (partially) greedy
cyclic order performs significantly better than a va-
nilla cyclic order or random order.

4.3. Correlation Screening
When using continuation, we perform a screening
method inspired by Tibshirani et al. (2012).9 We re-
strict the updates of Algorithm 1 to the support of the
warm start in addition to a small portion (e.g., top 103)
of other coordinates that are highly correlated with
the current residuals—these coordinates are readily
available as a byproduct of the (partially) greedy
cyclic ordering rule, described above. After conver-
gence on the screened support, we check whether
any coordinate from outside the support violates the
conditions of a CWminimumand rerun the algorithm
if needed. Typically, the solution obtained from the
screened set turns out to be a CWminimum, and only
one pass is done over all the coordinates.

4.4. Active Set Updates
As in prior work (Friedman et al. 2010), active set
methods are found to be very useful in our context as
well. From an empirical standpoint, the iterates generated
by Algorithm 1 can typically achieve support stabili-
zation in fewer than 10 full cycles.10 This is further
supported by Theorem 2, which establishes finite-
time stabilization of the support. If the support
does not change acrossmultiple consecutive full cycles,
we restrict the updates of Algorithm 1 to the current
support. After convergence on this support, we check
whether any coordinate from outside the support vio-
lates the conditions of a CW minimum and rerun the
algorithm if needed.

4.5. Fast Coordinate Updates
Following Friedman et al. (2010), we present tech-
niques for efficiently computing the coordinate updates;
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these are also found to be useful for our implementation
of PSI(1).

Let βk be the current iterate inAlgorithm 1, and let rk

be the residuals. To compute β̃i � 〈rk,Xi〉 + βki , one can
use one of the following rules that exploit sparsity
(Friedman et al. 2010):

i. Residual updates: We maintain the residuals rk

throughout the algorithm and compute β̃i using O(n)
operations. Once βk+1i is computed, we update rk+1
with cost O(n) operations. Because βk is sparse, many
of the coordinates remain at 0 during the algorithm
implying that rk+1 � rk.

ii. Covariance updates: This appears in Friedman
et al. (2010) for updating β̃i without using the pre-
computed rk. Note that Algorithm 1 precomputes
〈y,Xi〉 for all i ∈ [p]. If a coordinate 	 enters the support
for the first time, we compute and store the covariance
terms: 〈X	,Xj〉 for all j ∈ [p] with cost O(np). In itera-
tion k + 1, we compute β̃i using these covariances and
exploiting the sparsity of βk—this costs O(‖βk‖0) op-
erations. This costs less than computing β̃i using rule i
if ‖βk‖0 < n.

Scheme ii is useful when the supports encountered
by Algorithm 1 are small with respect to n. It is also
useful for an efficient implementation of the PSI(1) al-
gorithm as it stores the dot products required in (21).
However, when the supports encountered by CD are
relatively large compared with n (e.g., 10% of n), then
scheme i can become significantly faster because the
dot product computations can be accelerated using
calls to the Basic Linear Algebra Subprograms (BLAS).

5. Computational Experiments
In this section, we investigate both the optimization and
statistical performances of our proposed algorithms
and compare them to other popular sparse learning
algorithms. For convenience, we provide a road map
of this section. Section 5.2 compares the optimization
performance of our proposed algorithms and other
variants of CD and IHT. Section 5.3 empirically studies
the statistical properties of estimators available from
our proposed algorithms versus others for varying
sample sizes. Section 5.4 provides a similar study for
varying SNR. Section 5.5 performs an in-depth in-
vestigation among the PSI(k)/FSI(k) algorithms for
different values of k. Section 5.6 presents timing and
statistical performance comparisons on some large-
scale instances, including real data sets. Additional
experiments are placed in the supplementarymaterial.

5.1. Experimental Setup
5.1.1. Data Generation. We consider a series of ex-
periments on synthetic data sets for a wide range
of problem sizes and designs. We generate a multi-
variate Gaussian data matrix Xn×p ∼ MVN(0,Σ). We
use a sparse coefficient vector β† with k† equispaced

nonzero entries, each set to 1. We then generate the
response vector y � Xβ† + ε, where εi ∼iid N(0, σ2) is
independent of X. We define the SNR by SNR �
Var(Xβ†)
Var(ε) � β†TΣβ†

σ2 . An alternative to the SNR is the
“proportion of variance explained” or R2 for the true

model: R2 � 1− Var(y−Xβ†)
Var(y) � SNR

SNR+1.
We consider the following instances of Σ :� ((σij)):
• Constant correlation: We set σij � ρ for every i 
� j

and σii � 1 for all i ∈ [p].
• Exponential correlation:We set σij � ρ|i−j| for all i, j,

with the convention 00 � 1.
We select the tuning parameters by minimizing the

prediction error on a separate validation set, which is
generated under the fixed design setting as y′ �
Xβ† + ε′, where ε′i ∼iid N(0, σ2). In the supplementary
material, we also include alternative validation strat-
egies. In particular, we include the results of the ex-
periments in Sections 5.3 and 5.4 based on both oracle
and random design tuning (following Hastie et al.
2017). The results are found to be quite similar.

5.1.2. CompetingAlgorithms and Parameter Tuning. In
addition to our proposed algorithms, we compare the
following state-of-the-art methods in the experiments:
• Lasso: We use our own implementation, and in

the figures we denote it by “L1.”
• Relaxed Lasso: We use the Relaxed Lasso version

suggested in Hastie et al. (2017), defined as βrelaxed �
γβlasso + (1 − γ)βLS, where βlasso is the Lasso estimate,
the nonzero components of βLS are given by the least
squares solution on the support of βlasso, and γ ∈ [0, 1]
is a second tuning parameter (in addition to the tuning
parameter for the Lasso). We use our own implementa-
tion for relaxed lasso and denote it by “L1Relaxed.”
• Elastic net: This uses a combination of the L1 and

L2 regularization (Zou and Hastie 2005). We use the
implementation of glmnet and refer to it as “L1L2.”
• MCP: This is the MCP penalty of Zhang (2010).

We use the implementation provided in ncvreg
(Breheny and Huang 2011).
• Forward stepwise: We use the implementation of

Hastie et al. (2017) and denote it by “FStepwise.”
• IHT: We use our implementation for IHT for the

(L0) problem with a step size of M−1, where M is
defined in Remark 1.
For all the methods involving one tuning parameter,

we tune over a grid of 100 parameter values, except for
forward stepwise selection, which we allow to run for
up to 250 steps. For the methods with two parameters,
we tune over a two-dimensional grid of 100 × 100
values. For our algorithms, the tuning parameter λ0 is
generated according to Section 4. For the (L0L2)
problem, we sweep λ2 between 0.1λ∗

2 and 10λ∗
2, where

λ∗
2 is the optimal regularization parameter for ridge
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regression (based on validation over 100 grid points
between 0.0001 and 1,000). For (L0L1), Lasso, relaxed
Lasso, and elastic net, we sweepλ1 from ‖XTy‖∞ down
to 0.0001 × ‖XTy‖∞. For relaxed Lasso and elastic net,
we sweep their second parameter between 0 and 1.
For MCP, the range of the first parameter λ is chosen
by ncvreg, and we sweep the second parameter γ
between 1.5 and 25.

5.1.3. Performance Measures. We use several metrics
to evaluate the quality of, say, an estimator β̂. In
addition to the objective value, the number of true
positives (TP), false positives (FP), and support size, we
consider the following measures:

• Prediction error: This is the same measure used in
Bertsimas et al. (2016) and is defined by ‖Xβ̂ − Xβ†‖2/
‖Xβ†‖2.The prediction error of a perfect model is 0 and
that of the null model (β̂ � 0) is 1.

• L∞ norm: This is the estimation error measured in
terms of the L∞ norm: ‖β̂ − β†‖∞.

• Full support recovery: We study whether the sup-
port of β† is completely recovered by β̂ (i.e., 1[Supp(β†) �
Supp(β̂)]); we look at the average of this quantity
acrossmultiple replications, leading to an estimate for
the probability of full support recovery.

We would like to point out that SNR alone does not
dictate how difficult the underlying statistical prob-
lem is (e.g., in terms of variable selection, estimation,
or prediction error). The situation is rather subtle: in
addition to SNR, the matrix X and choices of n, p, and
k† influence the statistical performance. For example,
consider two instanceswith p � 100and p � 105, where
we set k† � 10,Σ� I,n� 100, and SNR � 1. For p � 100,
it is possible to obtain a model with estimation error
smaller than the null model (with high probability),
but this may not be possible for p � 105. Similarly,
for the case of constant correlation, a problem with
ρ � 0 and SNR � 1 may be statistically easier than
onewith ρ � 0.5 and SNR � 100 (with suitable choices

of n, p, and k†). The experiments that follow are
intended to provide a solid understanding of how
support recovery, sparsity, estimation error, and
prediction error vary under different problem set-
tings. We also seek to understand (i) when our al-
gorithms can achieve full support recovery—a topic
of considerable importance in high-dimensional statistics
(Wainwright 2009, Gamarnik and Zadik 2017)—and
(ii) when pure L0 starts to overfit (a deeper statistical
understanding of this seems to be in a nascent stage).

5.2. Comparison Among CD Variants and IHT:
Optimization Performance

We investigate the optimization performance of the
different algorithms for the (L0) problem. In partic-
ular, we study the objective values and the number of
iterations till convergence for IHT and the following
variants of CD:
• Cyclic CD: This is Algorithm 1with default cyclic

order.
• Random CD: This is a randomized version of CD,

where the coordinates to be updated are chosen
uniformly at random from [p]. This has been con-
sidered in Patrascu and Necoara (2015).
• Greedy cyclic CD: This is our proposed Algori-

thm 1 with a partially greedy cyclic ordering of co-
ordinates, described in Section 4.
We generated a data set with exponential correla-

tion, ρ � 0.5, n � 500, p � 2000, SNR � 10, and a sup-
port size k† � 100. We generated 50 random initiali-
zations each with a support size of 100, where the
nonzero indices are selected uniformly at random in 1
to p and assigned values that are drawn from Uni-
form(0, 1). For every initialization, we ran cyclic CD,
greedy cyclic CD, and IHT and recorded the value of
the objective function of the solution along with the
number of iterations (here, one full pass over all p
coordinates is defined as one iteration) till conver-
gence. For random CD, we ran the algorithm 10 times

Figure 1. (Color online) Box Plots Showing the Distribution of the Objective Values and the Number of Iterations (Here, One
Full Pass over All p Coordinates Is Defined as One Iteration) till Convergence for Different Variants of CD and IHT

Notes. For each algorithm, we used 50 random initializations (as described in Section 5.2). The ticks of the box plots represent 1.5 times the
interquartile range.
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for every initialization and averaged the objective
values andnumber of iterations. For all the algorithms
above, we declare convergence when the relative
change in the objective is less than < 10−7. Figure 1
presents the results: the objective values resulting
from greedy cyclic CD are significantly lower than the
other methods; on average, we have roughly a 12%
improvement in the objective from random CD and
55% improvement over IHT. This finding can be
partially explained in the light of our discussion in
Section 2.4, where we observed that the Lipschitz
constant L controls the quality of the solutions returned
by IHT. In this high-dimensional setting, L ≈ 11, which
is far from 1, and thus IHT can get stuck in relatively
weak local minima. The number of iterations till con-
vergence is also in favor of greedy cyclic CD, which
requires roughly 28% fewer iterations than randomCD
and 75% fewer iterations than IHT.

5.3. Statistical Performance for Varying
Sample Sizes

We study how the different statistical metrics change
with the number of samples, whereas the other factors
(p, k†, SNR,Σ) are fixed. We seek to empirically vali-
date our hypothesis that under difficult statistical set-
tings (e.g., high correlation or a small value of n), advanced
optimization techniques such as combinatorial search can
lead to significantly improved statistical performance.

We consider Algorithms 1 and 2 (with k � 1) for the
(L0), (L0L1), and (L0L2) problems, in addition to the
competing penalties discussed in Section 5.1. In Ex-
periments 1 and 2, we swept n between 100 and 1,000,
and for every value of n, we generated 20 random
training and validation data sets having exponential
correlation, p � 1000, k† � 20, and SNR = 5. All the
results we report here are based on validation set
tuning. In the supplementarymaterial, we include the
results for oracle and random design tuning.

5.3.1. Experiment 1: HighCorrelation. Here, we choose
ρ � 0.9 (exponential correlation)—this is a difficult
problem because of the high correlations among fea-
tures in the sample. Figure 2 summarizes the results.
In the top panel of Figure 2, we show the results of
Algorithm 2 applied to the (L0) and (L0L2) problems
versus the other competing algorithms. In the bottom
panel, we present a detailed comparison among Al-
gorithms 1 and 2 for all the three problems: (L0), (L0L1),
and (L0L2).

From the top panel (Figure 2), we can see that
Algorithm 2 applied to the (L0L2) problem overall
achieves the best performance in terms of different
measures across all values of n. Algorithm 2 (L0) and
Algorithm 2 (L0L2) perform similarly for n ≥ 300. The
probability of full recovery for Algorithm 2 increases

with n and becomes 1 at about n � 900. Note that the
slight variation in the recovery probability values for
our methods are solely due to the validation pro-
cedure (the oracle tuning presented in the supple-
mentary material eliminates this wiggly behavior).
Lasso, relaxed Lasso, and elastic net do not achieve
full support recovery for any n; the corresponding
lines are alignedwith the horizontal axis. The L1-based
methods also lead to large support sizes—as ex-
pected, L1L2 leads to supports that are denser than
Lasso (Zou and Hastie 2005). Because of shrinkage,
tuning parameter selection based on prediction error
makes the Lasso select models with many nonzero
coefficients—this leads to suboptimal variable selec-
tion. The relaxed Lasso attempts to undo the shrinkage
effect of the Lasso leading to models with fewer non-
zeros. In addition, we note that shrinkage of Lasso also
interfereswith variable selection—a shortcoming that is
inherited by the relaxed Lasso—as seen in the panel
displaying recovery probability.
Moreover, MCP, FStepwise, and IHT have a prob-

ability of recovery about 0.3 even when n � p �
1000—suggesting that they fail to do correct sup-
port recovery in this regime. A similar phenomenon
occurs for the prediction error and the L∞ norm,
where Algorithm 2 is seen to dominate.
The bottom figure shows that Algorithm 2 can sig-

nificantly outperform Algorithm 1 (which performs
no swaps). It seems that in this highly correlated
setting, our local combinatorial optimization proce-
dures have an edge in performance.

5.3.2. Experiment 2: Mild Correlation. In this experi-
ment, we keep the same setup as the previous ex-
periment, but we reduce the correlation parameter ρ
to 0.5. In Figure 3, we show the results for Algorithm 1
applied to (L0) and Algorithm 2 applied to (L0L2)
versus the other competing methods. We note that
our other algorithms have a similar profile (we do not
include their plots for space constraints). This setup is
easier from a statistical perspective, when compared
with Experiment 1, where ρ � 0.9. Thus, we expect all
the methods to perform better (overall) and display a
phase transition (for recovery probability) at a smaller
sample size (comparedwith Experiment 1). Indeed, as
shown in Figure 3, Algorithm 1 (L0) and Algorithm 2
(L0L2) have roughly the same profiles, and they out-
perform the other methods; they fully recover the
true support using roughly 300 samples. The swap
variants of our methods in this case do not seem to
lead to significant improvements over the nonswap
variants, and this further supports our hypothesis: when
the statistical problem is relatively easy, Algorithm 1
works quite well—more advanced optimization
(e.g., using swaps) do not seem necessary. MCP and
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Figure 2. (Color online) Performance Measures as the Number of Samples n Varies Between 100 and 1,000

Notes. The top panel compares two of our methods (Algorithm 2 for the (L0) and (L0L2) problems) with other state-of-the-art algorithms. The
bottom panel compares Algorithms 1 and 2 for all three problems. Algorithm 2 performs significantly better than Algorithm 1 and the other
methods because it does a better job at optimization.
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FStepwise also exhibit good performance, but they
start doing full support recovery for much larger
values of n; MCP does not seem to be robust. Lasso in
this case never recovers the true support, and this
property is inherited by relaxed Lasso, which requires
at least 900 samples to match our methods in terms of
support recovery.

5.4. Statistical Performance for Varying SNR
We present two experiments studying the role of vary-
ing SNR values on the different performance measures.
In each experiment, we vary the SNR between 0.01 and
100. For every SNR value, we generated 20 random data
sets over which we averaged the results. We observe
that for low SNR values, ridge regression (L2) works
very well in terms of prediction performance. Hence
we include L2 in our results. We do not include the
results for IHT in this case as its run times are sub-
stantially longer compared with competing algo-
rithms. The results are based on validation set tuning,
and those for oracle and random design tuning are
included in the supplementary material.

5.4.1. Experiment 1: Constant Correlation. We gener-
ated data sets with constant correlation, ρ � 0.4, n �
1000, p � 2000, and k† � 50. We report the results for
Algorithm 2 applied to the (L0) and (L0L2) problems
along with all the other state-of-the-art algorithms in
Figure 4.
Figure 4 suggests that full support recovery is

difficult for all methods (suggesting that constant
correlation leads to a difficult problem). At SNR� 100,
(L0L2) fully recovers the support, whereas (L0) has a
recovery probability of about 0.3; this suggests that
the additional L2 regularization aids the optimization
performance of Algorithm 2. However, none of the
other consideredmethods does full recovery, even for
high SNR. Algorithm 2 (L0L2) generally exhibits ex-
cellent performance in terms of all measures across
the whole SNR range. Pure (L0) tends to overfit
quickly (as SNR becomes smaller) because of the lack
of shrinkage (Mazumder et al. 2017), and it selects
small support sizes (such as “FStepwise”). Additional
shrinkage (L0L2) seems to help alleviate this problem.
The elastic net (L1L2) performs similarly to (L0L2) in

Figure 3. (Color online) Performance Measures as the Number of Samples n Varies Between 100 and 1,000

Notes. The figure compares two of our methods (Algorithm 2 (L0L2) and Algorithm 1 for (L0)) with other state-of-the-art algorithms.
Algorithms 1 and 2 perform similarly in this case (in contrast to the highly correlated setting in Figure 2). Adding L1 or L2 regularization to
(L0) does not help in this case.
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terms of prediction error but at the cost of very dense
supports—in fact, its support size can reach up to 90%
of p for SNR ∼ 1, which is undesirable from the
viewpoint of having a parsimonious model. We note
that for low SNR values, (L0L2)’s prediction error is
comparable with that of L2 (for SNR = 0.01, L2 has the
best predictive performance); however, (L0L2) leads to
much sparser models and hence has an advantage.

5.4.2. Experiment 2: Exponential Correlation. We
generated data sets having exponential correlation
with ρ � 0.5, n � 1000, p � 5000, and k† � 50. We re-
port the results in Figure 5. We observe that this setup
is relatively easier (from a statistical viewpoint) than
the constant correlation experiment in Section 5.4.1.
Thus, we observe less significant differences among
the algorithms when compared with the first exper-
iment (see Figures 4 and 5). Algorithm 2 (L0L2) again
seems to dominate across different measures and for all
SNR values. Algorithm 2 (L0) and Algorithm 2 (L0L2)
exhibit similar performance for high SNR. For low
SNR, Algorithm 2 (L0L2), L2, and L1L2 have the best
predictive performance, though (L0L2) leads to the
most compact models. We note that even in this
relatively easy case, Lasso and elastic net never fully

recover the support—MCP and relaxed Lasso also
suffer in terms of full support recovery.

5.5. Comparing PSI(k) vs. FSI(k)
Here, we examine the differences among the various
classes of minima introduced in the paper (i.e., CW,
PSI(k), and FSI(k) minima) for the (L0) problem. To
understand the differences, we consider a relatively
difficult setting with constant correlation where
ρ � 0.9, n � 250, p � 1000, and k† � 25. We set SNR �
300 to allow for full support recovery. We generated
10 random training data sets under this setting and
ran Algorithm 1 and the PSI and FSI variants of
Algorithm 2 for k ∈ {1, 2, 5}. All algorithms were ini-
tialized with a vector of zeros. For Algorithm 2, we
used Gurobi (v7.5) to solve the MIQO subproblems
(15) and (25) when k > 1.
Figure 6 presents box plots showing the distribu-

tion of objective values, true positives, and false
positives recorded for each of the algorithms and 10
data sets. PSI(1) and FSI(1) minima lead to a signifi-
cant reduction in the objective when compared with
Algorithm 1 (which results in CW minima). We do
observe further reductions as k increases, but the gains
are less pronounced. In this case, CWminima contain

Figure 4. (Color online) Performance Measures as the SNR Is Varied Between 0.01 and 100

Notes. The figure compares two of our methods (Algorithm 2 applied to the (L0) and (L0L2) problems) with other state-of-the-art algorithms. For
low SNR levels, (L0L2) performs much better than (L0) (as the latter overfits in these settings).
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on average a large number of false positives (> 35)
and few true positives; this is perhaps due to high
correlations among all features, which makes the op-
timization task arguably very challenging. Both PSI
and FSI minima increase the number of true positives
significantly. A closer inspection shows that FSI
minima do a better job in having fewer false positives
when compared with PSI minima. This comes at the

cost of solving relatively more difficult optimization
problems but within reasonable computation times.
In the supplementary material, we present an ex-

periment studying the evolution of the intermediate
solutions before Algorithm 2 reaches an FSI(k) min-
imum. We observe that CD is effective at increasing
the true positives, whereas local combinatorial search
significantly reduces the false positives.

Figure 5. (Color online) Performance Measures as the SNR Is Varied Between 0.01 and 100

Notes. The figure compares two of our methods (Algorithm 2 applied to the (L0) and (L0L2) problems) with other state-of-the-art algorithms. For
SNR ≤ 1, (L0L2) performs significantly better than (L0); this performance improvement vanishes for larger SNR values.

Figure 6. (Color online) Box Plots Showing the Distribution of Objective Values, Number of True Positives, and Number of
False Positives for the Different Classes of Local Minima
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5.6. Large High-Dimensional Experiments
5.6.1. Synthetic Experiments. Here, we investigate the
performance of the different algorithms when p � n.
We ran two experiments with a large number of fea-
tures under the following settings:

• Setting 1: Exponential correlation, ρ � 0.5, n �
1000, p � 105/2, k† � 100, and SNR � 10.

• Setting 2: Constant correlation, ρ � 0.3, n � 1000,
p � 105, k† � 50, and SNR � 100.

Every experiment is performed with 10 replica-
tions, and the results are averaged. We report the
results for settings 1 and 2 in Table 1.

In Table 1, Algorithm 1 for the (L0L1) and (L0L2)
problems fully recovers the true support and attains
the lowest prediction error. None of the other methods
were able to do full support recovery; Lasso and re-
laxed Lasso capture most of the true positives but
include a very large number of false positives. MCP
comes in the middle between (L0L1)/(L0L2) and Las-
so—it captures all the true positives and includes few
false positives. We also note that in such high SNR
settings, we do not expect shrinkage (arising from the
L1/L2 penalties) to lead to major statistical im-
provements. Thus, the difference in performance be-
tween (L0) and (L0L1)/(L0L2) seems to be due to the
continuous regularizers that help in optimization.

5.6.2. Timings and Out-of-Sample Performance. We
ran Algorithm 1 using our toolkit L0Learn, and we
compared the running time and predictive perfor-
mance versus glmnet and ncvreg on a variety of real
and synthetic data sets. For the real data sets, there

is no ground truth—we study predictive perfor-
mance vis-à-vis model sparsity.We note that L0Learn,
glmnet, and ncvreg are solving different optimization
problems—the run times provided herein are meant
to demonstrate that a main workhorse for our pro-
posed framework is competitive when compared
with efficient state-of-the-art implementations for
sparse learning. Belowwe provide some details about
the data sets:
• House Prices: p � 104, 000 and n � 200. We added

pairwise interactions to the popular Boston House Prices
data set (Harrison and Rubinfeld 1978) to get 104 fea-
tures. Then, we added random “probes” (a.k.a. noisy
features) by appending to the datamatrix 1,000 random
permutations of every column. The validation and
testing sets have 100 and 206 samples, respectively.
• Amazon Reviews: p � 17, 580 and n � 2500. We

used theAmazonGrocery andGourmet Food data set
(He and McAuley 2016) to predict the helpfulness of
every review (based on its text). Specifically, we
calculated the helpfulness of every review as the ratio
of the number of up votes to that of down votes, and
we obtained X by using scikit-learn’s TF-IDF trans-
former (while removing stopwords) (Pedregosa et al.
2011). The validation and testing setshave500and1,868
samples, respectively. We also created an augmented
version of this data set where we added random probes
by appending to the data matrix nine random permu-
tations of every column to get p � 174, 755.
• U.S. Census: p � 55, 537 and n � 5000.We used 37

features extracted from the 2016U.S. Census Planning
Database to predict the mail-return rate11 (Erdman
and Bates 2014). We appended the data matrix with
1,500 random permutations of every column, and we
randomly sampled 15,000 rows, evenly distributed
between the training, testing, and validation sets.
• Gaussian 1M: p � 106 and n � 200.We generated a

synthetic data set with independent standard normal
entries.Weset k† � 20 and SNR=10, andweperformed
validation and testing as described in Section 5.1.
For all real data sets, we tuned and tested on sep-

arate validation and testing sets. The timings were
performed on amachine with an i7-4800MQCPU and
16 GB RAM running Ubuntu 16.04 and OpenBLAS
0.2.20. For all methods, we report the training time
required to obtain a grid of 100 solutions. For (L0L2),
(L0L1), andMCP,we provide the time for afixedλ2,λ1,
and γ, respectively (these parameters have been set to
the optimal values obtained via validation set tuning
over 10 values of the tuning parameter). Table 2 pres-
ents run times for all the four methods.
The results presented in Table 2 show the following:

L0Learn is faster than glmnet and ncvreg on all
the considered data sets (e.g., more than twice as fast
on the Amazon Reviews data set). The speedups can
be attributed to the careful design of L0Learn

Table 1. Performance Measures for the Different
Algorithms Under Settings 1 and 2

Setting 1 (n � 1000, p � 105/2, ρ � 0.5)
Method = ‖β‖0 TP FP PE ×102

Alg. 2 (L0) 160 ± 24 79 ± 9 81 ± 33 5 ± 1.6
Alg. 1 (L0L2) 100 ± 0 100 ± 0 0 ± 0 0.97 ± 0.05
Alg. 1 (L0L1) 100 ± 0 100 ± 0 0 ± 0 1 ± 0.05
L1 808 ± 7 95 ± 1 712 ± 7 7.9 ± 0.17
L1Relaxed 602 ± 40 95 ± 1 508 ± 41 7.9 ± 0.19
MCP 102 ± 1 100 ± 0 2.3 ± 1 0.97 ± 0.05
FStepwise 216 ± 17 64 ± 7 152 ± 23 8.9 ± 1.3

Setting 2 (n � 1000, p � 105, ρ � 0.3)
Method = ‖β‖0 TP FP PE×103

Alg. 2 (L0) 69 ± 18 47 ± 3 22 ± 22 1.6 ± 1
Alg. 1 (L0L2) 50 ± 0 50 ± 0 0 ± 0 0.5 ± 0.02
Alg. 1 (L0L1) 50 ± 0 50 ± 0 0 ± 0 0.5 ± 0.02
L1 478 ± 11 50 ± 0 428 ± 11 4.7 ± 0.1
L1Relaxed 385 ± 12 50 ± 0.2 335 ± 13 4.4 ± 0.2
MCP 65 ± 3 50 ± 0 15 ± 3 3.5 ± 0.13
FStepwise 75 ± 2 50 ± 0 25 ± 2 1.1 ± 0.07

Notes. TP, FP, and PE denote the true positives, false positives, and
prediction error, respectively. The standard error of the mean is
reported next to every value. The best metrics are in bold.
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(as described in Section 4) and because of the nature
of L0 regularization, which generally selects sparser
supports than those obtained by L1 or MCP regula-
rization. Moreover, L0Learn, for both the (L0L2) and
(L0L1) problems, provides much sparser supports and
competitive testing mean squared error (MSE) com-
pared with the other toolkits. Finally, we note that
prediction errors for our methods can be potentially
improved by using Algorithm 2, at the cost of slightly
increased computation times.

6. Conclusion
We proposed new algorithms for problem (1), based
on a combination of cyclic coordinate descent and
local combinatorial search, and studied their con-
vergence properties. Our algorithms are inspired by
a hierarchy of necessary optimality conditions for
problem (1), with solutions higher up the hierarchy
being of higher quality. In terms of optimization
performance, Algorithm 1 leads to better solutions
and is faster than IHT and random CD. Our local
optimization algorithms (Algorithm 2) often lead to
further improvements over Algorithm 1. In many
difficult settings, solutions from Algorithm 2 match
those of global MIO solvers for problem (1) while
running much faster.
Our algorithms shed interesting insights into the

statistical properties of high-dimensional regression—
in terms of variable selection, estimation error, and
prediction error vis-à-vis problem parameters (n, p,
SNR, β†, and Σ). There is no overall winner among the
vanilla versions of Lasso, stepwise, or L0 across dif-
ferent settings—modifications such as problem (1) or
relaxed Lasso (Hastie et al. 2017) seem necessary. In
low signal settings (e.g., low SNR or small n), where
recovery (in terms of a small estimation error or full
support recovery) seems impossible, one can hope to
get a good predictive model that is also sparse. In
these regimes, (L0L2), elastic net, and ridge typically
achieve the best predictive performance, with (L0L2)
selecting much smaller support sizes. We observe
that estimators arising from problem (1) typically
outperform the state-of-the-art sparse learning al-
gorithms in terms of a combination of metrics (pre-
diction, variable selection, and estimation) across a
wide range of settings; these estimators promise to be
an appealing alternative to the relaxed Lasso (Hastie
et al. 2017). Our proposed algorithms allow us to
uncover regimes (previously unseen because of com-
putational limitations) where there are important dif-
ferences between L0-based estimators and existing
popular algorithms (based on L1, stepwise selection,
IHT, etc.). We provide an open-source implementa-
tion of the algorithms through our toolkit L0Learn,
which achieves up to a 3× speedup when compared
with competing toolkits.
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Endnotes
1The L0 (pseudo) norm of β—that is, ‖β‖0 counts the number of
nonzeros in β.
2As we argue in Section 2.1, these also satisfy the usual notion of a
local minimizer in nonlinear optimization.

Table 2. Training Time (in Seconds), Out-of-Sample MSE,
and the Corresponding Support Sizes for a Variety of High-
Dimensional Data Sets

Amazon Reviews
(p � 17, 580, n � 2500)

Toolkit Time MSE ×102 ‖β‖0
glmnet (L1) 7.3 4.82 542
L0Learn (L0L2) 3.3 4.77 159
L0Learn (L0L1) 2.8 4.79 173
ncvreg (MCP) 10.9 6.71 1,484

Amazon Reviews (+ Probes)
(p � 174, 755, n � 2500)

Toolkit Time MSE ×102 ‖β‖0
glmnet (L1) 49.4 5.11 256
L0Learn (L0L2) 31.7 5.18 37
L0Learn (L0L1) 29.5 5.20 36
ncvreg (MCP) 67.3 5.33 318

U.S. Census
(p � 55, 537, n � 5000)

Toolkit Time MSE ‖β‖0
glmnet (L1) 28.7 61.3 222
L0Learn (L0L2) 19.6 60.7 15
L0Learn (L0L1) 19.5 60.8 11
ncvreg (MCP) 32.7 62.02 16

House Prices
(p � 104, 000, n � 200)

Toolkit Time MSE ‖β‖0
glmnet (L1) 2.3 100 112
L0Learn (L0L2) 1.8 94 59
L0Learn (L0L1) 1.8 104 74
ncvreg (MCP) 3.9 102 140

Gaussian 1M
(p � 106, n � 200)

Toolkit Time MSE ‖β‖0
glmnet (L1) 22.5 4.55 185
L0Learn (L0L2) 16.5 4.64 11
L0Learn (L0L1) 16.7 5.12 15
ncvreg (MCP) 36.5 4.85 147

Note. The training time is for obtaining a regularization pathwith 100
solutions. The best metrics are in bold.
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3This convention is used for a technical reason in the context of our
proof of Theorem 2.
4The spacer steps are introduced for a technical reason, and our proof
of convergence of CD relies on this to ensure the stationarity of the
algorithm’s limit points.
5This observation also appears in establishing convergence of IHT-
type algorithms—see, for example, Beck and Eldar (2013), Lu (2014),
and Bertsimas et al. (2016).
6Available on CRAN at https://CRAN.R-project.org/package=L0Learn
and on GitHub at https://github.com/hazimehh/L0Learn, accessed
September 12, 2019.
7Problem (2) usually leads to solutions with fewer nonzeros com-
pared with Lasso and MCP-penalized regression. This also con-
tributes to reduced run times.
8Because the columns of X have a unit L2 norm, updating index
argmaxi|〈r0,Xi〉| will lead to the maximal decrease in the objective
function.
9Our approach differs from Tibshirani et al. (2012), who derive
screening rules for convex problems.
10Recall that one full cycle refers to updating all the p coordinates in a
cyclic order.
11We thank Dr. Emanuel Ben David, U.S. Census Bureau, for help on
preparing this data set.
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