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Abstract—Bayesian optimization (BO) has been widely applied
to several modern science and engineering applications such as
machine learning, neural networks, robotics, aerospace engineer-
ing, experimental design. BO has emerged as the modus operandi
for global optimization of an arbitrary expensive to evaluate
black box function f. Although BO has been very successful
in low dimensions, scaling it to high dimensional spaces has been
significantly challenging due to its exponentially increasing statis-
tical and computational complexity with increasing dimensions.
In this era of high dimensional data where the input features are
of million dimensions scaling BO to higher dimensions is one of
the important goals in the field. There has been a lot of work in
recent years to scale BO to higher dimensions, in many of these
methods some underlying structure on the objective function is
exploited. In this paper, we review recent efforts in this area.
In particular, we focus on the methods that exploit different
underlying structures on the objective function to scale BO to
high dimensions.

I. INTRODUCTION

Several modern science and engineering applications such
as machine learning, neural networks, robotics, aerospace
engineering, experimental design, require optimization of un-
known, expensive to evaluate, black box function within a
constrained budget of time and power. Bayesian optimization
(BO) is a popular strategy to optimize these expensive to eval-
uate functions as it provides a sample efficient framework for
global optimization as compared to other alternatives such as
DIRECT [36], simulated annealing [46], latin hypercubes [62].
More formally, the goal of BO is to optimize an expensive to
evaluate, black box objective function f : X — R, which can
be mathematically formulated as follows:

max f(x)
where domain X C R and typically D < 20. BO has been
widely applied in a variety of optimization applications such
as hyperparameter tuning [48,68,78], circuit optimization [57],
gait learning in robotics [9,59], aerospace engineering [50],
gene design [22], chemical design [24], and animation design
[8].

The standard BO algorithm consists of two main compo-
nents [17]: a statistical model, usually a Gaussian Process
(GP) [72], from which the black box objective function
is assumed to be sampled, and an acquisition function to
efficiently navigate (sample) through the given input space.
The key advantages of BO include (i) Sample efficient op-
timization of expensive to evaluate functions, (ii) Black box
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Fig. 1. A flow graph for Bayesian Optimization.

optimization which requires minimal knowledge of the func-
tion, (iii) Derivative free optimization unlike gradient descent.
A comprehensive review of BO was done by Shahriari et al.
[76], and Brochu et al. [7]. The extensions of standard BO
with derivative information [14,95], multi-fidelity optimization
[32,38,39,41,44,81], trust region based BO [15], and neural
network architecture search [40,48] have also been studied.

Although BO has been very successful in moderate to
low dimensions, scaling BO to high dimensional space is
significantly challenging due to its exponentially increasing
statistical and computational complexity with increasing di-
mensions. More specifically, (i) As the dimensionality of
the objective function increases, number of points (queries)
required to cover the input space increases exponentially.
(ii)) BO mandates finding the maximizer of the acquisition
function, which in itself is a non-convex optimization problem
over the input space that requires exponentially increasing
computational power with increasing dimensionality. These
factors inhibit the direct adoption of BO to high dimensional
optimization.



Algorithm 1 Bayesian Optimization

1: Place a Bayesian prior on f (Typically Gaussian)

2: Observe f at ng > 0 points.

3: Set n =ng, Dy, = {(x1,91), -+, (Xn, Yn)}

4: while n < N do

5. Compute the posterior f|D,, using Bayes Theorem

6:  Compute the acquisition function a,(x) based on the
posterior.

7. Find x,,11 = argmax,c y an(X).
Observe Y41 = f(Xnt+1) + €nt1- (€ %N(O,nz))

© Dny1 =Dn U{(Xn+1,Yn+1)}

10:  increment n

11: end while

12: Return the point x; with largest y;

Scaling BO to high dimensions is gaining more attentions
in the field because in this age of high dimensional data and
increasingly complex systems, high dimensional optimization
problems are ubiquitous. For example, large scale hyper-
parameter tuning of neural networks [90], biology [22], com-
putational astrophysics [69], and computer vision [5]. There
has been a lot of effort in recent years to extend BO to higher
dimensions, most of these works assume some underlying
structure on the objective function. The structural assumptions
constitute of two types: (i) Intrinsic low dimensionality of the
objective function (ii) Additive structure i.e., decomposition of
the objective function into sum of low dimensional functions.
In this paper, we perform a comprehensive review of the
existing approaches for high dimensional BO. In particular,
we focus on the methods that exploit different underlying
structures on the objective function to scale BO to high
dimensions.

The rest of the paper is organized as follows, in Section
IT we present an overview of Bayesian Optimization (BO),
followed by challenges and methods to scale BO to high
dimensions in section III and IV. Section V discusses the
applications of BO, and the conclusion in section VI.

II. OVERVIEW OF BAYESIAN OPTIMIZATION

Bayesian Optimization is a sequential optimization tech-
nique with two key components: (i) a Bayesian statistical
model for modeling the objective function f, and (ii) an
acquisition function to decide where to sample next in the
domain X'. Algorithm 1 above gives an overview of a typical
BO procedure.

A. Bayesian Statistical Model - Gaussian Process

The statistical model translates the information gained from
previous observations onto the entire domain of the function
by forming a posterior over the objective function conditioned
over the data. The posterior is updated every time the function
is evaluated (queried). Typically, Gaussian processes (GP) are
the go to statistical model for modeling objective function f,
as GP offers flexibility in terms of it providing closed form
solutions while evaluating the posterior distribution. Formally,

f~GP (), 5(-1))-
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Fig. 2. A pictorial overview of Bayesian Optimization. The posterior mean
(black curve) and the standard deviation from the GP regression is used to
formulate the acquisition function (green curve). As the iterations increase,
it can be observed that BO attempts to reach the maxima of the objective
function f. Image source: https://distill.pub/2020/bayesian-optimization/.

where the GP is completely given by its mean p(.) and
covariance «(.,.) functions. Let D,, : {(Xx1,91) ... (Xn,¥n)}
be the initial set of data samples (noisy observations) of the
true objective function f. The posterior of the function f
on the observed data D,, is also Gaussian. i.e. f(x)|D, ~
N (pn(x),02(x)), where the mean ju,(x) and covariance
o2 (x) are given as follows:

pn (%) = p(x) + kT (K + 02 L) 7Y
02 (x) = r(x,x) — kT (K +n?I,) "'k

n

Here, Y is the vector of observations, k£ is a vector with
k; = r(x,%;). The matrix K is such that K; ; = x(x;,X;)
i,7 € {1,...,n}. Choice of covariance kernel function mainly
depends on the degree of smoothness warranted for the
modeled function and is most often selected to be square
exponential (SE) kernel or Matérn kernel.

B. Acquisition Function

Acquisition function utilizes the information from previ-
ously observed data to navigate through the domain. Typical
choice of acquisition function includes Upper Confidence
Bound (UCB) [2,79] and Expected Improvement (EI) [63].The
acquisition functions quantify the potential of finding a max-
imizer of the objective function in the entire domain. Hence,
in every iteration of BO the function f is queried at that
maximizer of the acquisition function. Acquisition function
is usually formulated based on the parameters of the posterior
distribution. The Upper confidence Bound (UCB) is defined
as follows:

an(X) = pn(x) + 51/2‘711()()

Here, (3 is a hyperparameter that controls the trade-off between
exploration - Domain of f where f has high variance o,,(x)?
and exploitation - Domain of f where f has a high mean
tn(x). Figure 2 demonstrates the BO algorithm. As it can be
observed, the acquisition function provides the samples from
the domain of f that either provide the maximum information



(high uncertainty) about the function or is close to optimal
(high mean). The maximization of acquisition function is
assumed to be an inexpensive task and is optimized using
off the shelf methods such as Dividing Rectangles (DIRECT)
algorithm [36], CMA-ES [27], L-BFGS [56]. In the following
section we will look at the challenges in scaling BO to high
dimensions.

III. CHALLENGES IN SCALING BO TO HIGH DIMENSIONS

BO has been a successful approach for finding the global
optima of an unknown function f when the dimensionality of
domain of is moderate or low. However, scaling it to higher
dimensions is challenging due to its increasing statistical and
computational complexity with increase in dimensions. The
reasons for this are discussed in detail below:

1) Coverage of the Domain: To ensure that the global
optimum is found, we require good coverage of the domain
of f, but as dimensionality D increases, the number of
evaluations needed to effectively cover the domain increase
exponentially.

2) Computation and Storage Cost: The computation of
posterior requires the computation of the inverse of the ker-
nel matrix, whose size depends on the number of function
evaluations made so far i.e., O(N?), where N is the number
of evaluations. Hence, as the number of evaluations of the
function increase exponentially with increase in dimensions,
computational and storage costs for computing posterior dis-
tribution also increases exponentially with dimensions.

3) Maximizing the Acquisition Function: Acquisition func-
tion is maximized by using standard global optimization
algorithms such as DIRECT or L-BFGS. These methods
have query complexity that exponentially depends on the
dimensions D i.e., it requires O(¢~P) iterations to maximize
the function within ¢ accuracy. Hence, these algorithms work
efficiently only when the input space is moderate or low
dimensional. However, increase in dimensionality of the input
leads to slower convergence.

4) Function Estimation: Non-parametric regression be-
comes difficult in high dimensions. Provable lower bounds in
[26] demonstrate the exponential dependence on the dimension
D. This is often referred to as curse of dimensionality for non-
parametric regression problems.

IV. METHODS TO SCALE BO TO HIGH DIMENSIONS

There has been a lot of effort in recent years to scale BO to
high dimensions. In this section we’ll look at these methods
that overcome the said challenges either by exploiting the
structure of the objective function or by trading off between
convergence and computational complexity.

A. Exploiting Structure

BO can be scaled to higher dimensions by imposing rea-
sonable structural assumptions on the objective functions such
as low dimensionality or additive structure.
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Fig. 3. The function in D=2 dimensions only has one effective (active)
dimension. Hence performing BO on the random embedding can still find
the optimum [89].

1) Intrinsic Low Dimensionality: In many applications, the
objective function depends only on low dimensional subspace,
examples include hyperparameter optimization for neural net-
works [4] and automatic configuration of a mixed integer linear
programming solver [33].

Wang et al. [89] laid the foundations for BO with random
linear embeddings and came up with an algorithm 2 random
embedding Bayesian Optimization (REMBO) that exploits the
low effective dimensionality of the objective function. The
intuition behind the algorithm lies mainly in proving that there
exists a low dimensional vector y* € R? with probability 1
such that f(x*) = f(Ay™) for a random projection matrix
A € RP*4 This allows BO to be performed in the low
dimensional subspace to identify the next point of evaluation
which is then projected back to original dimensions using a
random projection matrix to evaluate the objective function.

Although REMBO performs well, it can sometimes per-
form poorly even for some synthetic problems due to over-
exploration of boundary and distortions in embedding due to
projections from low dimensions to high dimensions lying
outside the box bounds. Letham et al. [52] addressed these
drawbacks and presents a new algorithm called adaptive linear
embedding Bayesian Optimization (ALEBO) which defines an
embedding matrix that re-projects the points from embedded
space to original space and uses the pseudo inverse to project
the bounds in the original space to the embedded space,
thereby, avoiding the distortions from clipping of projected
points.

Some other works that exploit the low dimensionality
to scale BO include: (i) Subspace Identification Bayesian
Optimization (SI-BO) [12] which involves estimation of the
subspace on which the function is supported using low rank
matrix recovery [87] and executes BO on the learned subspace.
(ii) Sliced Inverse Regression Bayesian Optimization (SIR-
BO) [102] which utilizes sliced inverse regression technique
for dimension reduction [53] to find the effective subspace and
performs BO on the learned effective subspace, this method is
also extended to nonlinear dimension reduction using kernel
trick. (iii) Hashing enhanced Subspace BO (HeSBO) [67]
performs BO on the low dimensional space and uses two hash
functions [10] to construct the inverse subspace embedding to
recover the vector in original space from the low dimensional



Algorithm 2 REMBO

1: Generate a random matrix A
Place a Gaussian prior on g(y) = f(Ay)
Choose the domain ) such that y € )
forn=1,2,... do
Compute the posterior f|D,,
Find y,, 11 € R? such that y, 11 = argmaxcy, a,(y).
Pn+1 = Dn U{(yi+1, [(Ayi41))}
increment n
end for

R A A S ol

vectors. (iv) Non linear embedding method [65] that learns the
nonlinear embedding using the feed forward neural network to
reduce the dimensionality of the input, applies BO with man-
ifold Gaussian Process in the embedding space and then uses
the reconstruction mapping generated using multi-output GP
to project back to the original space for function evaluation.

2) Additive Structure: A promising alternative to scale
BO to high dimension that can also model richer class of
functions as compared to low dimensionality assumption was
proposed by Kandasamy et al. [37] which adopts to the
method introduced by Duvenaud et al. [13]. Here, the objective
function f : X — R wlog X = [0,1]P with additive
structure decomposes as the sum of independent low dimen-
sional functions each of which depends on disjoint subset of
dimensions 1i.e.,

F(x) = fOED) 4 fO @y 4.4 fOD (D) (1)

where, each x\9) € XU) = [0,1]% are disjoint low dimen-
sional components (groups) and &/ < d <« D. Each of
these low dimensional function ) is assumed to be sampled
from a Gaussian Process, GP(u(7), kU)) where the fU)’s are
independent. This implies that f itself is sampled from a
Gaussian Process, GP(u, k) where,

u(x) = /L(l)(x(l)) R M(M)(X(]\/[))
K(x,x") = K(l)(x(l),x(l)’) b gD (X(JV[)’X(ZM)/).

Given the above structure, the paper [37] proposes an alter-
native acquisition function Additive Gaussian Process Upper
Confidence Bound (ADD-GP-UCB) which applies to additive
kernel and is defined as follows:

M
(%) = pn(x) + 812 )" 0P (x9). @)
j=1
This can further be written as a sum of functions on orthog-
onal domains: a,(x) = 3, P (x9)) where @y (x@) =
p$ (x0)) + 51/2053) (x9)). Hence, @, can be maximized by
maximising each @’ separately on X'().

The ADD-GP-UCB algorithm (Algorithm 3) has two main
components. First, compute the posterior for each f(), then
maximize an atmost d dimension GP-UCB like acquisition
function on each low dimensional GP to construct the next
query point. Though this approach models the richer class
of functions, it is still restrictive in terms of requiring the
decomposition to be axis aligned. Li et al. [54] addressed this

Algorithm 3 ADD-GP-UCB
1: Kernels £, ..., k), Decomposition (X))
2: Place a Gaussian prior on each ) ~ GP(0,x())
3: forn=1,2,... do
forj=1,.... M do
5 Compute the posterior f()|D,
6 xif)rl = arg max, ¢ y( a (x))
7:  end for
8
9

AN

_ M )
Xnt1 = U X5

C Vo1 = f(Xny1) + €nta
10: Dyt1 =Dy U{(Xn+1,Yn+1}
11:  increment n
12: end for

by considering the additive model on the projected data
[21]. Hence, generalizing the additive assumption to projected
additive assumption [28].

The performance of the mentioned additive model based
algorithms depend on the knowledge of the groups of de-
composition and learning them is computationally challeng-
ing. [37,54] learn the decomposition by randomly sampling
the decompositions and selecting the one that maximizes
the marginal likelihood, whereas [19,91] introduce efficient
approaches to learn decompositions based on Gibbs sampling
and Markov Chain Monte Carlo (MCMC) methods respec-
tively.

The additive model with disjoint decomposition was further
generalized to have the overlapping groups by Rolland et al.,
[73] and Hoang et al., [31] where the overlapping decompo-
sition is represented by a dependency graph or sparse factor
graph and acquisition function is optimized by using message
passing protocol. Further work to improve on additive models
include batched BO techniques by [91,92], and deterministic
fourier feature approximation of the stationary kernel for
efficient optimization by [66].

B. Non-Structure based Methods

Li et al. [55] explored dropout strategy (similar to the
dropout strategy used in neural network hyperparameter tun-
ing) to scale BO to high dimensions, wherein BO is performed
over randomly selected d out of D dimensions in every
iteration, and rest of the dimensions are filled using different
strategies such as random values, values from the best found
solution so far and a mixture of random and best values.
The theoretical analysis and experimental results show that
the regret gap increases with the increase in the number of
parameters dropped. Hence, this algorithm trades off between
computational complexity and convergence to the optimal
solution.

Gupta et al. [25] proposed a method on the similar idea as
that of dropout strategy [55], wherein the acquisition function
is maximized over the restricted space consisting of multiple
low dimensional subspaces of the high dimensional space.
Theoretical analysis of the algorithm shows that the bounds on
the cumulative regret gets tighter as the number of subspaces
increase, in turn increasing the computational complexity.



Rana et al. [70] proposed an elastic Gaussian Process model
to efficiently traverse through zero gradient regions while
optimizing acquisition function in high dimensions. Though
this gives an improved solution for acquisition optimization,
it still does not tackle other scalability issues of BO.

V. APPLICATIONS IN MACHINE LEARNING AND OTHER
AREAS

Bayesian Optimization has been employed in several ap-
plications including machine learning, deep learning, au-
tonomous vehicles, biomedical and radar. In the following we
briefly describe select applications of BO with the emphasis
on machine learning.

1) Machine Learning: While machine learning algorithms
have been covered in survey papers [77,80] and text books
[3,6,83,85], our coverage here focuses specially on methods
where BO is part of the model hyperparameter estimation
process.

More specifically we concentrate on hyperparameter tuning
in machine learning and deep learning applications. For exam-
ple, [78] discussed the automatic tuning of hyperparameter in
the BO framework, where the generalization performance of
machine learning or deep learning algorithm can be viewed as
a black box function with hyperparameters as the input. The
application of BO to this function leads to finding an optimal
set of hyperparameters to better generalize the model. Figure
4 shows flow graph of application of BO for hyperparameter
tuning. [48] proposed a fast hyperparameter tuning method that
uses multi task BO technique [81] on SVM and CNN models
to select the hyperparameters and also subset of entire data that
yields the most information about the performance of the given
algorithm configuration on entire data. This reduces the model
training time which in turn reduces overall hyperparameter
tuning time. [11] provided a guide for using BO techniques
in machine learning. They also apply BO for tuning hyper-
parameters of CNN for image classification and show that
BO outperforms the random search over the parameter space.
[96] applied BO to random forests and neural networks, and
empirically show the superior performance of BO as compared
to random search and brute force methods. [94] proposed a
promising strategy for network architecture search using BO
coupled with neural predictor. Some other machine learning
applications of BO include accelerated hyperparameter search
[68,82], automated hyperparameter tuning [88], tuning of
network security based machine learning models [35], and
hyperparameter optimization in computer vision architecture
[5].

2) Circuit Design: Circuit design / optimization involves
simulation of multiple circuits which are computationally
intensive for large scale complicated circuits. [57] proposed
a weighted expected improvement based BO for automated
circuit optimization. [86] utilized BO techniques to meet or
exceed design specifications of high performance systems.
[103] proposed a neural net based BO for analog circuit
synthesis.
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Fig. 4. A flow graph of hyperparameter tuning of machine learning model
using BO.

3) Robotics: Many optimization problems in robotics can
be tackled with BO framework. For example, [9] utilized BO
for gait design and control, [59] proposed BO approach for
online path planning for optimal sensing, and [60] applied
BO with kernel functions for active policy search for robot
control.

4) Health Related Applications: Chemical / drug synthesis
involves various optimization tasks which typically require
numerous experiments to obtain the optimal formulation, and
we can reduce the number of experiments required using BO
framework. [75] introduced application of BO for drug synthe-
sis, [49] proposed ChemBO: a BO framework for generating
and optimizing organic molecule with desired properties, [24]
used constrained BO along with variational auto-encoders for
automatic chemical design, [30] used BO to tune the param-
eters of the deep convolutional neural network (DCNN) for
computer aided diagnosis scheme for distinguishing between
benign and malignant masses.

5) Other Applications: Some other applications of BO
include synthetic gene design [22], design of aerospace en-
gineering systems [50], animation design [8], computational
astrophysics [69], Transformer language models for speech
recognition [98], material design [16], and experimental De-
sign [23,34].

More reading and bibliography on applications of BO is
given in the following: solar energy [71,93], autonomous
vehicles [18], radar systems [51,97], data science [1,47], Inter-
net of Things [42,58], sensors [20,101], health and wearable
[43,45], stochastic optimization with adaptive restarts [61],
multi-fidelity modelling in global optimization approaches
[99], surveillance [29,84], environmental systems [64,74].

VI. CONCLUSION

In this review, we present an overview of Bayesian Op-
timization(BO) a sample efficient framework for optimizing
expensive to evaluate black box objective function and it’s
increasing applications in recent years. We also briefly discuss
the statistical and computational challenges faced in scaling
BO to high dimensions and focused on recent efforts to over



come the said challenges. Further, we discuss various algo-
rithms that exploit structure, dwelling more into the details of
REMBO that exploits intrinsic low dimensionality and, ADD-
GP-UCB which exploits additive structure for the objective
function. We also give brief description of the algorithms that
do not assume any structure on the objective function instead
trade convergence for computational complexity to scale BO to
higher dimensions. Finally, we conclude by describing select
real world applications of BO with emphasis on machine
learning applications.

Some possible directions of future work in this field are:
(i) Exploiting graph structure to scale BO to high dimensions
which would be useful under scenarios where the objective
function has an underlying graph structure. Examples of such
functions include traffic patterns as a function of road network.
(i1) High dimensional multi-output BO, where few of the ideas
from high dimensional BO can be applied to scale multi-output
Bayesian Optimization to higher dimensions.
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