
Linear Regression with Mismatched Data:
A Provably Optimal Local Search

Algorithm

Rahul Mazumder(B) and Haoyue Wang

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{rahulmaz,haoyuew}@mit.edu

Abstract. Linear regression is a fundamental modeling tool in statis-
tics and related fields. In this paper, we study an important variant of
linear regression in which the predictor-response pairs are partially mis-
matched. We use an optimization formulation to simultaneously learn
the underlying regression coefficients and the permutation correspond-
ing to the mismatches. The combinatorial structure of the problem leads
to computational challenges, and we are unaware of any algorithm for
this problem with both theoretical guarantees and appealing computa-
tional performance. To this end, in this paper, we propose and study
a simple greedy local search algorithm. We prove that under a suitable
scaling of the number of mismatched pairs compared to the number of
samples and features, and certain assumptions on the covariates; our
local search algorithm converges to the global optimal solution with a
linear convergence rate under the noiseless setting.

Keywords: Linear regression · Mismatched data · Local search
method · Learning permutations

1 Introduction

Linear regression and its extensions are among the most useful models in statis-
tics and related fields. In the classical and most common setting, we are given n
samples with features xi ∈ Rd and response yi ∈ R, where i denotes the sample
indices. We assume that the features and responses are perfectly matched i.e.,
xi and yi correspond to the same record or sample. An interesting twist to this
problem—also the focus of this paper—is when the feature-response pairs are
partially mismatched due to errors in the data merging process [6,7,10]. Here,
we consider a mismatched linear model with responses y = [y1, ..., yn] ∈ Rn and
covariates X = [x1, ..., xn]! ∈ Rn×d satisfying

P ∗y = Xβ∗ + ε (1.1)

Supported by grants from the Office of Naval Research: ONR-N000141812298 (YIP)
and National Science Foundation: NSF-IIS-1718258.

c© Springer Nature Switzerland AG 2021
M. Singh and D. P. Williamson (Eds.): IPCO 2021, LNCS 12707, pp. 443–457, 2021.
https://doi.org/10.1007/978-3-030-73879-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73879-2_31&domain=pdf
http://orcid.org/0000-0003-1384-9743
http://orcid.org/0000-0002-5191-8044
https://doi.org/10.1007/978-3-030-73879-2_31

444 R. Mazumder and H. Wang

where β∗ ∈ Rd are the regression coefficients, ε = [ε1, ..., εn]! ∈ Rn is the
noise term, and P ∗ ∈ Rn×n is an unknown permutation matrix. We consider
the setting where n > d and X has full rank; and seek to estimate both β∗

and P ∗ based on the n observations {(yi, xi)}n1 . The main computational diffi-
culty arises in learning the unknown permutation. Linear regression with mis-
matched/permuted data (model (1.1)) has a long history in statistics dating
back to 1960s [6].

Recently, this problem has garnered significant attention from the statistics
and machine learning communities. A series of recent works [1–5,7–12,14] have
studied the statistical and computational aspects of this model. To learn the
coefficients β∗ and the matrix P ∗, one can consider the following natural opti-
mization problem:

min
β,P

‖Py − Xβ‖2 s.t. P ∈ Πn (1.2)

where Πn is the set of permutation matrices in Rn×n. Solving problem (1.2)
is difficult as there are combinatorially many choices for P ∈ Πn. Given P , it
is easy to estimate β via least squares. [12] shows that in the noiseless setting
(ε = 0), a solution (P̂ , β̂) of problem (1.2) equals (P ∗,β∗) with probability one
if n ≥ 2d and the entries of X are i.i.d. from a distribution that is absolutely
continuous with respect to the Lebesgue measure. [5,8] studies the recovery of
(P ∗,β∗) under the noisy setting.

It is shown in [8] that Problem (1.2) is NP-hard for d ≥ 2. A polynomial-
time approximation algorithm appears in [5] for a fixed d, though this does not
appear to result in a practical algorithm. Several heuristics have been proposed
for (1.2): Examples include, alternating minimization [4,14], Expectation Max-
imization [1] but they lack theoretical guarantees. [10] uses robust regression
methods to approximate solutions to (1.2) and discuss statistical properties of
the corresponding estimator when the number of mismatched pairs is small.

Problem (1.2) can be formulated as a mixed integer program (MIP) with
O(n2) binary variables. Solving this MIP with off-the-shelf MIP solvers (e.g.,
Gurobi) becomes computationally expensive for even a small value of n (e.g.
n ≈ 50). To our knowledge, there is no computationally practical algorithm that
provably solves the original problem (1.2) under suitable statistical assumptions.
Addressing this gap is the main focus of this paper: We propose and study a
novel greedy local search method for Problem (1.2). Loosely speaking, our algo-
rithm at every step swaps a pair of indices in the permutation in an attempt
to improve the cost function. This algorithm is typically efficient in practice
based on our preliminary numerical experiments. Suppose r denotes the number
of mismatched pairs i.e., the Hamming distance between P ∗ and the identity
matrix In. We establish theoretical guarantees on the convergence of the pro-
posed method, under the assumption that r is small compared to n (we make
this notion precise later), an assumption appearing in [10] (see also references
therein). We consider the noiseless setting (i.e., ε = 0) and establish that under
some assumptions on the problem data, our local search method converges to
an optimal solution of Problem (1.2).

Local Search Method for Mismatched Linear Regression 445

Notation and Preliminaries: For a vector a, we let ‖a‖ denote the Euclidean
norm, ‖a‖∞ the $∞-norm and ‖a‖0 the $0-pseudo-norm (i.e., number of nonzeros)
of a. We let ! ·!2 denote the operator norm for matrices. Let {e1, ..., en} be the
natural orthogonal basis of Rn. For an interval [a, b] ⊆ R, we let |[a, b]| = b − a.
For a finite set S, we let #S denote its cardinality. For any permutation matrix
P , let πP be the corresponding permutation of {1, 2,, n}, that is, πP (i) = j
if and only if e!

i P = e!
j if and only if Pij = 1. For two different permutation

matrices P and Q, we define the distance between them as

dist(P,Q) = # {i ∈ [n] : πP (i) '= πQ(i)} . (1.3)

For any permutation matrix P ∈ Πn, we define its support as:

supp(P) := {i ∈ [n] : πP (i) '= i} . (1.4)

For a real symmetric matrix A, let λmax(A) and λmin(A) denote the largest and
smallest eigenvalues of A, respectively.

For two positive scalar sequences {an}, {bn}, we write an = Õ(bn) or equiv-
alently, an/bn = Õ(1), if an/bn is bounded by a polynomial (of finite degree) in
log(n). In particular, we view any value that can be bounded by a polynomial
of log(n) as a constant.

2 A Local Search Method

Here we present our local search method for (1.2). For any fixed P ∈ Πn, by min-
imizing the objective function in (1.2) with respect to β, we have an equivalent
formulation

min
P

‖Py − HPy‖2 s.t. P ∈ Πn (2.1)

where H = X(X!X)−1X!. To simplify the notation, denote H̃ := In −H, then
Problem (2.1) is equivalent to

min
P

‖H̃Py‖2 s.t. P ∈ Πn . (2.2)

For a given permutation matrix P , define the R-neighbourhood of P as

NR(P) :=
{
Q ∈ Πn : dist(P,Q) ≤ R

}
. (2.3)

It is easy to check that N1(P) = {P}, and for any R ≥ 2, NR(P) has more than
one element. Algorithm 1 introduces our proposed local search method with
search width R, which is an upper bound on the number of mismatched pairs.

446 R. Mazumder and H. Wang

Algorithm 1. Local search method with search width R for Problem (2.2).
Input: Initial permutation P (0) = In. Search width R.
For k = 0, 1, 2,

P (k+1) ∈ argmin
{

‖H̃Py‖2 : P ∈ N2(P
(k)) ∩ NR(In)

}
. (2.4)

If ‖H̃P (k+1)y‖2 = ‖H̃P (k)y‖2, output P (k).

Algorithm 1 uses an explicit constraint on the search width at every step.
When R ≥ n, we perform local search without any constraint on the search width
or neighborhood size. In this paper, we focus on the case where the underlying
P ∗ is close to In, i.e., r) n. Under this assumption, it is reasonable to set
R = cr) n for some constant c > 1. See Sect. 3 for more details.

Let us examine the per-iteration cost of (2.4). The cardinality of N2(P (k)) is
upper bounded by O(n2). Furthermore, we note that

‖H̃Py‖2 = ‖H̃(P − P (k))y + H̃P (k)y‖2

= ‖H̃(P − P (k))y‖2 + 2〈(P − P (k))y, H̃P (k)y〉 + ‖H̃P (k)y‖2 . (2.5)

For each P ∈ N2(P (k)), the vector (P −P (k))y has at most two nonzero entries.
So the computation of the first term in (2.5) costs O(1) operations. As we retain
a copy of H̃P (k)y in memory, computing the second term in (2.5) also costs
O(1) operations. Therefore, computing (2.4) using the procedure outlined above
requires O(n2) operations.

3 Theoretical Guarantees for Local Search

In this section, we present theoretical guarantees for Algorithm 1. Our theory
is based on the assumption that the data X is “well-behaved” (See Assumption
1). In particular, we assume that the projection matrix H̃ satisfies a “restricted
eigenvalue condition” (RE). (We caution the reader that despite nomencla-
ture similarities, our notion of RE is different than what appears in the high-
dimensional statistics literature [13]). To give an example, our RE condition is
satisfied with high probability, when the rows of X are independent draws from
a well-behaved multivariate distribution and when the sample size n is suffi-
ciently large—see Sect. 3.1 for details. Under this RE condition, our analysis
is completely deterministic in nature. The RE assumption on H̃ allows us to
relate the objective function ‖H̃P (k)y‖2 to a simple function ‖(P (k) − P ∗)y‖2.
Then our analysis reduces to an analysis of the local structure of Πn in terms
of minimizing ‖(P (k) − P ∗)y‖2.

3.1 A Restricted Eigenvalue (RE) Condition

A main building block of our analysis is a RE property of H̃. Define

Bm := {w ∈ Rn : ‖w‖0 ≤ m} . (3.1)

Local Search Method for Mismatched Linear Regression 447

We say that H̃ satisfies a RE condition with parameter (δ,m) (denoted by the
shorthand RE(δ,m)) if the following holds true

RE(δ,m) : ‖H̃u‖2 ≥ (1 − δ)‖u‖2 ∀ u ∈ Bm. (3.2)

To provide some intuition on the RE condition, we show (cf Lemma 1) that
this condition is satisfied with high probability when the rows of X are drawn
independently from a mean-zero distribution with finite support and a well-
conditioned covariance matrix.

Lemma 1. (Restricted eigenvalue property) Suppose x1, . . . , xn are i.i.d. zero-
mean random vectors in Rd with covariance matrix Σ ∈ Rd×d. Suppose there
exist constants γ, b, V > 0 such that λmin(Σ) ≥ γ, ‖xi‖ ≤ b and ‖xi‖∞ ≤ V
almost surely. Given any τ > 0, define

δn := 16V 2
(d

nγ
log(2d/τ) +

dm

nγ
log(3n2)

)
.

Suppose n is large enough such that
√

δn ≥ 2/n and
√
3b2 log(2d/τ)/(n ! Σ!2)

≤ 1/2. Then with probability at least 1 − 2τ , condition RE(δn,m) holds true.

The proof of this lemma is presented in Appendix 5.1. For simplicity, we state
Lemma 1 for bounded xi’s; though this can be generalized to sub-Gaussian xi’s.

Lemma 1 implies that: given a pre-specified probability level (e.g., 1 − 2τ =
0.99), RE parameters δ,m, and other data parameters d, b, γ,Σ, we can choose
n = Õ(dm/δ) such that RE(δ,m) holds with high probability. In the following,
while presenting the scaling of (n, d, r) in the guarantees for Algorithm 1, when
we say that data is generated from the setting of Lemma 1, we make the default
assumption that there exist universal constants c̄ > 0 and C̄ > 0 such that the
parameters (γ, V, b,!Σ!2, τ) in Lemma 1 satisfy c̄ ≤ γ, V, b,!Σ!2, τ ≤ C̄.

In Algorithm1, we use a constraint on the search width, i.e., P (k) ∈ NR(In).
Suppose r = dist(P ∗, In)) n and we set R = cr for some constant c > 1, then
it holds that dist(P (k), P ∗) ≤ (c + 1)r. This implies P (k)y − P ∗y ∈ B(c+1)r. In
the noiseless setting with ε = 0, we have H̃P ∗y = 0, and hence ‖H̃P (k)y‖2 =
‖H̃(P (k)−P ∗)y‖2. Suppose the RE(δn, (c+1)r) condition in (3.2) holds, because
P (k)y − P ∗y ∈ B(c+1)r, we have

(1 − δn)‖(P (k) − P ∗)y‖2 ≤ ‖H̃P (k)y‖2 ≤ ‖(P (k) − P ∗)y‖2 (3.3)

where, the second inequality is because !H̃!2 ≤ 1. In light of (3.3), when δn
is small, the objective function ‖H̃P (k)y‖2 can be approximately replaced by a
simpler function ‖(P (k) − P ∗)y‖2. In what follows, we analyze the local search
method on this simple approximation.

3.2 One-Step Decrease

We prove elementary lemmas on the one-step decrease property. Recall that for
a given permutation matrix P , supp(P) = {i ∈ [n] : πP (i) '= i}.

448 R. Mazumder and H. Wang

Lemma 2. Given y ∈ Rn and a permutation matrix P ∈ Πn, there exists a
permutation matrix P̃ ∈ Πn such that dist(P, P̃) = 2, supp(P̃) ⊆ supp(P) and

‖Py − y‖2 − ‖P̃ y − y‖2 ≥ (1/2)‖Py − y‖2∞ .

The proof of Lemma2 is presented in Sect. 5.2. Applying Lemma 2 with y
replaced by P ∗y and P replaced by P (P ∗)−1, we have the following corollary.

Corollary 1. Given y ∈ Rn and P, P ∗ ∈ Πn, there exists a permutation matrix
P̃ ∈ Πn such that dist(P̃ , P) = 2, supp(P̃ (P ∗)−1) ⊆ supp(P (P ∗)−1) and

‖Py − P ∗y‖2 − ‖P̃ y − P ∗y‖2 ≥ (1/2)‖Py − P ∗y‖2∞ .

Corollary 1 provides a lower bound on the change of the (approximate) objective
value as one moves from permutation P to P̃ , and will be used in the analysis
of the local search algorithm. When Py − P ∗y is sparse, Corollary 1 translates
to a contraction in the $2-norm of Py − P ∗y, as shown below.

Corollary 2. Let y ∈ Rn and P, P ∗ ∈ Πn; and suppose ‖Py − P ∗y‖0 ≤ m. Let
P̃ ∈ Πn be the permutation matrix appearing in Corollary 1. Then

‖P̃ y − P ∗y‖2 ≤ (1 − 1/(2m)) ‖Py − P ∗y‖2 . (3.4)

Proof. Since ‖Py −P ∗y‖0 ≤ m, it holds ‖Py −P ∗y‖2 ≤ m‖Py −P ∗y‖2∞. Using
Corollary 1, we have:

‖Py − P ∗y‖2 − ‖P̃ y − P ∗y‖2 ≥ (1/2)‖Py − P ∗y‖2∞ ≥ (1/(2m))‖Py − P ∗y‖2 ,

which results in the conclusion (3.4). ./

3.3 Main Results

Here we state and prove the main theorem on the convergence of Algorithm1.
We first state the assumptions used in our proof. Recall that r = dist(P ∗, In).

Assumption 1. (1.)We consider a linear model (1.1) with noise term ε = 0.
(2). There exist constants U > L > 0 such that U ≥ |(P ∗y)i − yi| ≥ L for all

i ∈ supp(P ∗).
(3). In Algorithm1, we set R = 10C1rU2/L2 + 4 for some constant C1 > 1.
(4). For some δn < 1/(4(r +R)) the condition RE(δn, R+ r) holds.

Note that the lower bound in Assumption 1 (2) ensures that any two mis-
matched responses are not too close. Assumption 1 (3) requires that R be set to a
constant multiple of r. This constant can be large (≥ 10U2/L2), and is an artifact
of our proof techniques. Our numerical experience however, suggests that this
constant can be much smaller in practice. Assumption 1 (4) is a restricted eigen-
value condition. This property holds true under the settings stated in Lemma 1
when n ≥ Cdr2 for some constant C > 0.

We first present a technical result used in the proof of Theorem 1.

Local Search Method for Mismatched Linear Regression 449

Lemma 3. Suppose Assumption 1 holds. Let {P (k)}k be the permutation matri-
ces generated by Algorithm1. Suppose ‖P (k)y − P ∗y‖∞ ≥ L for some k ≥ 1. If
for all t ≤ k − 1, at least one of the two conditions holds: (i) t ≤ R/2 − 1; or
(ii) supp(P ∗) ⊆ supp(P (t)), then for all t ≤ k − 1, we have

‖P (t+1)y − P ∗y‖2 − ‖P (t)y − P ∗y‖2 ≤ −L2/5 . (3.5)

We omit the proof of Lemma3 due to space constraints. Lemma 3 is used for
technical reasons. In our analysis, we make heavy use of the one-step decrease
condition in Corollary 2. Note that if the permutation matrix at the current
iteration, denoted by P (k), is on the boundary i.e. dist(P (k), In) = R, it is not
clear whether the permutation found by Corollary 2 is within the search region
NR(In). Lemma 3 helps address this issue (See the proof of Theorem1 below for
details).

We now state and prove the linear convergence of Algorithm1.

Theorem 1. Suppose Assumption 1 holds with R being an even number. Let
{P (k)} be the permutation matrices generated by Algorithm1. Then

1) For all k ≥ R/2, we have that supp(P ∗) ⊆ supp(P (k)).
2) For any k ≥ 0,

‖H̃P (k)y‖2 ≤
(
1 − 1

4(R+ r)

)k

‖H̃P (0)y‖2 .

Proof. Part 1) We show this result by contradiction. Suppose that there exists
a k ≥ R/2 such that supp(P ∗) '⊆ supp(P (k)). Let T ≥ R/2 be the first iteration
such that supp(P ∗) '⊆ supp(P (T)), i.e.,

supp(P ∗) '⊆ supp(P (T)) and supp(P ∗) ⊆ supp(P (k)) ∀ R/2 ≤ k ≤ T − 1 .

Let i ∈ supp(P ∗) but i /∈ supp(P (T)), then by Assumption 1 (2),

‖P (T)y − P ∗y‖∞ ≥ |e!
i (P

(T)y − P ∗y)| = |e!
i (y − P ∗y)| ≥ L.

By Lemma 3, we have ‖P (k+1)y − P ∗y‖2 − ‖P (k)y − P ∗y‖2 ≤ −L2/5 for all
k ≤ T − 1. Summing up these inequalities, we have

‖P (T)y − P ∗y‖2 − ‖P (0)y − P ∗y‖2 ≤ −TL2/5 ≤ −RL2/10 (3.6)

where the last inequality follows from our assumption that T ≥ R/2. From
Assumption 1 (2) and noting that P (0) = In, we have

‖P (0)y − P ∗y‖2 = ‖y − P ∗y‖2 ≤ rU2, (3.7)

where we use that (y − P ∗y) is r-sparse. Using (3.6) and (3.7), we have:

‖P (T)y−P ∗y‖2 ≤ rU2−RL2/10
(a)
≤ rU2−L2

10
10C1rU2

L2
= (1−C1)U2

(b)
< 0, (3.8)

450 R. Mazumder and H. Wang

where above, the inequality (a) uses R = 10C1rU2/L2 +4; and (b) uses C1 > 1.
Note that (3.8) leads to a contradiction, so such an iteration counter T does not
exist; and for all k ≥ R/2, we have supp(P ∗) ⊆ supp(P (k)).

Part 2) By Corollary 2, there exists a permutation matrix P̃ (k) ∈ Πn such that
dist(P̃ (k), P (k)) ≤ 2, supp(P̃ (k)(P ∗)−1) ⊆ supp(P (k)(P ∗)−1) and

‖P̃ (k)y − P ∗y‖2 ≤
(
1 − 1

2‖P (k)y − P ∗y‖0

)
‖P (k)y − P ∗y‖2 .

Since ‖P (k)y − P ∗y‖0 ≤ dist(P (k), In) + dist(P ∗, In) ≤ r +R, we have

‖P̃ (k)y − P ∗y‖2 ≤
(
1 − 1

2(R+ r)

)
‖P (k)y − P ∗y‖2. (3.9)

Note that H̃P ∗y = H̃Xβ∗ = 0 and !H̃!2 ≤ 1, so we have

‖H̃P̃ (k)y‖2 = ‖H̃(P̃ (k)y − P ∗y)‖2 ≤ ‖P̃ (k)y − P ∗y‖2 . (3.10)

In the following, we use the shorthand notation R̃ = R+r. Combining (3.9) and
(3.10) we have

‖H̃P̃ (k)y‖2 ≤ ‖P̃ (k)y − P ∗y‖2 ≤ (1 − (2R̃)−1)‖P (k)y − P ∗y‖2. (3.11)

By Assumption 1 (4), we have ‖H̃(P (k) − P ∗)y‖2 ≥ (1 − δn)‖(P (k) − P ∗)y‖2.
Combining this with (3.11) we have

‖H̃P̃ (k)y‖2 ≤ (1 − δn)−1(1 − (2R̃)−1)‖H̃(P (k) − P ∗)y‖2

= (1 − δn)−1(1 − (2R̃)−1)‖H̃P (k)y‖2, (3.12)

where the last line uses H̃P ∗y = 0. Since δn ≤ 1/(4R̃), we have

(1 − δn)−1(1 − (2R̃)−1) ≤ 1 − (4R̃)−1

which when used in (3.12) leads to:

‖H̃P̃ (k)y‖2 ≤ (1 − (4R̃)−1)‖H̃P (k)y‖2. (3.13)

To complete the proof, we will make use of the following claim, the proof of this
claim is presented in Appendix 5.3.

Claim. For any k ≥ 0 it holds P̃ (k) ∈ NR(In) ∩ N2(P (k)). (3.14)

Starting with the definition of P (k+1), we have the following inequalities:

‖H̃P (k+1)y‖2 = min
P∈N2(P (k))∩NR(In)

‖H̃Py‖2
(a)
≤ ‖H̃P̃ (k)y‖2

(b)
≤ (1 − (4R̃)−1)‖H̃P (k)y‖2,

Local Search Method for Mismatched Linear Regression 451

where, (a) makes use of the above claim P̃ (k) ∈ NR(In)∩N2(P (k)); and (b) uses
inequality (3.13). Therefore, we have:

‖H̃P (k+1)y‖2 ≤ (1 − (4R̃)−1)‖H̃P (k)y‖2,

which leads to the conclusion in part 2. ./

Theorem1 shows that the sequence of objective values generated by Algorithm1
converges to zero (the optimal objective value of (2.2)) at a linear rate. The
parameter for the linear rate of convergence depends upon r = dist(P ∗, In) and
the search width R. The proof is based on the assumption that the RE condition
holds (Assumption 1 (4)) with some δn ≤ 1/(4(R+ r)). This RE condition holds
under the setting of Lemma1 when n ≥ Cdr2 for some constant C > 0 (See
Sect. 3.1). The sample-size requirement is more stringent than that needed in
order for the model to be identifiable (n ≥ 2d) [12]. In particular, when n/d =
Õ(1), the number of mismatched pairs r needs to be bounded by a constant.
While our theory appears to suggest that n needs to be quite large to learn P ∗,
numerical evidence presented in Sect. 4 suggests that one can recover P ∗ with a
smaller sample size.

4 Experiments

We numerically study the convergence performance of Algorithm1. We consider
the noiseless setup P ∗y = Xβ∗ where entries of X ∈ Rn×d are iid N(0, 1); all
coordinates of β∗ ∈ Rd are iid N(0, 1) (β∗ is independent of X). To generate P ∗,
we fix r ≥ 1 and select r coordinates uniformly from {1, . . . , n}, then generate a
uniformly distributed random permutation on these r coordinates1.

We test the performance of Algorithm1 with different combinations of
(d, r, n). We simply set R = n in Algorithm1. Even though this setting is not
covered by our theory, in practice when r is small, the algorithm converges to
optimality with the number of iterations being bounded by a small constant
multiple of r (e.g., for r = 50, the algorithm converges to optimality within
around 60 iterations). We set the maximum number of iterations as 1000. For
the results presented below, we consider 50 independent trials and present the
averaged results.

Figure 1 presents the results on examples with n = 500, d ∈ {20, 50, 100, 200},
and 40 roughly equispaced values of r ∈ [10, 400]. In Fig. 1 [left panel], we plot
the Hamming distance of the solution P̂ computed by Algorithm 1 and the
underlying permutation P ∗ (i.e. dist(P̂ , P ∗)) versus r. In Fig. 1 [right panel],
we present error in estimating β versus r. More precisely, let β̂ be the solution
of computed by Algorithm1 (i.e. β̂ = (X!X)−1X!P̂ y), then the “beta error”
is defined as ‖β̂ − β∗‖/‖β∗‖. For each choice of (r, d), the point on the line is
the average of 50 independent replications, and the vertical error bar shows the
1 This permutation P ∗ may not satisfy dist(P ∗, In) = r, but dist(P ∗, In) will be close
to r.

452 R. Mazumder and H. Wang

standard deviation of the mean (the error bars are small and hardly visible in
the figures). As shown in Fig. 1, when r is small, the underlying permutation
P ∗ can be exactly recovered, and thus the corresponding beta error is also 0.
As r becomes larger, Algorithm1 fails to recover P ∗ exactly; and dist(P ∗, P̂)
is close to the maximal possible value 500. In contrast, the estimation error
of β∗ behaves in a continuous way: As the value of r increases, the value of
‖β̂ − β∗‖/‖β∗‖ increases continuously. We also observe that the recovery of P ∗

depends upon the number of covariates d. This is consistent with our analysis
that the performance of our algorithm depends upon both r and d.

Figure 2 presents similar results where we exchange the roles of r and d. It
shows examples with n = 500, r ∈ {20, 50, 100, 200}, and 40 different values of
d ranging from 10 to 400. When d is small, Algorithm1 is able to recover P ∗

exactly. But when d exceeds a certain threshold, dist(P̂ , P ∗) increases quickly.
The threshold for larger r is smaller. From Fig. 2 [left panel], it is interesting
to note a non-monotone behavior of the Hamming distance as d increases. In
contrast, the beta error increases continuously as d increases (see Fig. 2 [right
panel]).

In terms of the speed of Algorithm 1, we note that for an instance with
n = 500, d = 100 and r = 50, Algorithm1 outputs the solution within around 60
iterations and 0.25 s on the Julia 1.2.0 platform. The total computational time
scales approximately as O(n2r) when exact recovery is achieved.

Fig. 1. Left: values hamming distance dist(P̂ , P ∗) versus r. Right: values of beta error
‖β̂ − β∗‖/‖β∗‖ versus r.

5 Appendix: Proofs and Technical Results

Lemma 4. Suppose rows x1, ..., xn of the matrix of covariates X are i.i.d. zero-
mean random vectors in Rd with covariance matrix Σ ∈ Rd×d. Suppose ‖xi‖ ≤ b
almost surely. Then for any t > 0, it holds

P
(

! 1
n
X!X − Σ!2 ≥ t ! Σ !2

)
≤ 2d exp

(
− nt2 ! Σ!2

2b2(1 + t)

)
.

See e.g. Corollary 6.20 of [13] for a proof.

Local Search Method for Mismatched Linear Regression 453

Fig. 2. Left: values of hamming distance dist(P̂ , P ∗) vs r. Right: values of beta error
‖β̂ − β∗‖/‖β∗‖ vs r.

5.1 Proof of Lemma 1

Proof. It suffices to prove that for any u ∈ Bm (cf definition (3.1)),

‖Hu‖2 = ‖X(X!X)−1X!u‖2 ≤ δn‖u‖2 . (5.1)

Take tn :=
√

3b2 log(2d/τ)/(n ! Σ!2). When n is large enough, we have tn ≤
1/2, then from Lemma4 and some simple algebra we have

! 1
n
X!X − Σ!2 ≤ tn ! Σ!2 (5.2)

with probability at least 1 − τ . When (5.2) holds, we have

λmin(X!X)/n ≥ (1 − tn)λmin(Σ) ≥ (1 − tn)γ ≥ γ/2

where, we use tn ≤ 1/2. Hence we have λmax((X!X)−1) ≤ 2/(nγ) and

! X(X!X)−1!2 =
√

λmax((X!X)−1) ≤
√

2/(nγ) . (5.3)

Let Bm(1) := {u ∈ Bm : ‖u‖ ≤ 1}, and let u1, ..., uM be an (
√

δn/2)-
net of Bm(1), that is, for any u ∈ Bm(1), there exists some uj such that
‖uj − u‖ ≤

√
δn/2. Since the (

√
δn/2)-covering number of Bm(1) is bounded

by (6/
√

δn)m
(n
m

)
, we can take

M ≤ (6/
√

δn)m
(
n

m

)
≤ (3n)mnm = (3n2)m

where the second inequality is from our assumption that
√

δn ≥ 2/n. By Hoeffd-
ing inequality, for each fixed j ∈ [M], and for all k ∈ [d], we have

P
(

1√
n

∣∣e!
k X

!uj
∣∣ > t

)
≤ 2 exp

(
− nt2

2‖uj‖2U2

)
.

454 R. Mazumder and H. Wang

Therefore, for any ρ > 0, with probability at least 1 − ρ, we have
∣∣e!

k X
!uj

∣∣ /
√
n ≤

√
2 log(2d/ρ)/nV ‖uj‖ ≤ V

√
2 log(2d/ρ)/n ,

where the second inequality is because each uj ∈ Bm(1). As a result,

1√
n

‖X!uj‖ =
(d∑

k=1

(
|e!

k X
!uj |/

√
n
)2)1/2

≤ V
√
2d log(2d/ρ)/n .

Take ρ = τ/M , then by the union bound, with probability at least 1−τ , it holds

‖X!uj‖/
√
n ≤ V

√
2d log(2dM/τ)/n ∀ j ∈ [M] . (5.4)

Combining (5.4) with (5.3), we have that for all j ∈ [M],

‖X(X!X)−1X!uj‖ ≤ ! X(X!X)−1 !2 ·‖X!uj‖

≤2V
√
(d/nγ) log(2dM/τ) .

(5.5)

Recall that M ≤ (3n2)m, so we have

2V
√
(d/nγ) log(2dM/τ) ≤ 2V

(d

nγ
log(2d/τ) +

dm

nγ
log(3n2)

)1/2
≤

√
δn
2

.

where the last inequality follows the definition of δn. Using the above bound
in (5.5), we have

‖X(X!X)−1X!uj‖ ≤
√

δn/2.

For any u ∈ Bm(1), there exists some j ∈ [M] such that ‖u − uj‖ ≤
√

δn/2,
hence

‖X(X!X)−1X!u‖ ≤ ‖X(X!X)−1X!uj‖ + ‖X(X!X)−1X!(u − uj)‖
≤

√
δn/2 + ‖u − uj‖2 ≤

√
δn . (5.6)

Since both (5.2) and (5.4) have failure probability of at most τ , we know that
(5.6) holds with probability at least 1 − 2τ . This proves the conclusion for all
u ∈ Bm(1). For a general u ∈ Bm, u/‖u‖ ∈ Bm(1), hence we have

‖Hu‖ = ‖X(X!X)−1X!u‖ ≤
√

δn‖u‖

which is equivalent to what we had set out to prove (5.1). ./

5.2 Proof of Lemma 2

Proof. For any k ∈ [n], let k+ := πP (k). Let i be an index such that
(
yi+ − yi

)2 = ‖Py − y‖2∞ .

Local Search Method for Mismatched Linear Regression 455

Without loss of generality, we can assume yi+ > yi. Denote i0 = i and i1 = i+.
By the structure of a permutation, there exists a cycle that

i0
P−→ i1

P−→ · · · P−→ it
P−→ · · · P−→ iS = i0 (5.7)

where q1
P−→ q2 means q2 = πP (q1). By moving from yi to yi+ , the first step in

the cycle (5.7) “upcrosses” the value (yi + yi+)/2. Since the cycle (5.7) returns
to i0 finally, there must exist one step that “downcrosses” the value (yi+yi+)/2.
In other words, there exists j ∈ [n] with (j, j+) '= (i, i+) such that yj+ < yj and
(yi + yi+)/2 ∈ [yj+ , yj]. Define P̃ as follows:

πP̃ (i) = j+, πP̃ (j) = i+, πP̃ (k) = πP (k) ∀k '= i, j .

We immediately know dist(P, P̃) = 2 and supp(P̃) ⊆ supp(P). Since

yi+ − yi = ‖Py − y‖∞ ≥ yj − yj+ ,

there are 3 cases depending upon the ordering of yi, yi+ , yj , yj+ . We consider
these cases to arrive at the final inequality in Lemma 2.

Case 1: (yj ≥ yi+ ≥ yj+ ≥ yi) In this case, let a = yj − yi+ , b = yi+ − yj+ and
c = yj+ − yi. Then a, b, c ≥ 0, and

‖Py − y‖2 − ‖P̃ y − y‖2 = (yi − yi+)
2 + (yj − yj+)

2 − (yi − yj+)
2 − (yj − yi+)

2

= (b+ c)2 + (a+ b)2 − a2 − c2

= 2b2 + 2ab+ 2bc .

Since (yi + yi+)/2 ∈ [yj+ , yj], we have

b = yi+ − yj+ ≥ yi+ −
yi + yi+

2
=

yi+ − yi
2

,

and hence

‖Py − y‖2 − ‖P̃ y − y‖2 ≥ 2b2 ≥
(yi+ − yi)2

2
=

1
2
‖Py − y‖2∞ .

Case 2: (yi+ ≥ yj ≥ yi ≥ yj+). In this case, let a = yi+ − yj , b = yj − yi and
c = yi − yj+ . Then a, b, c ≥ 0, and

‖Py − y‖2 − ‖P̃ y − y‖2 = (yi − yi+)
2 + (yj − yj+)

2 − (yi − yj+)
2 − (yj − yi+)

2

= (a+ b)2 + (b+ c)2 − a2 − c2

= 2b2 + 2ab+ 2bc .

Since (yi + yi+)/2 ∈ [yj+ , yj], we have

b = yj − yi ≥
yi + yi+

2
− yi =

yi+ − yi
2

,

456 R. Mazumder and H. Wang

and hence

‖Py − y‖2 − ‖P̃ y − y‖2 ≥ 2b2 ≥
(yi+ − yi)2

2
=

1
2
‖Py − y‖2∞ .

Case 3: (yi+ ≥ yj ≥ yj+ ≥ yi). In this case, let a = yi+ − yj , b = yj − yj+ and
c = yj+ − yi. Then a, b, c ≥ 0, and

‖Py − y‖2 − ‖P̃ y − y‖2 = (yi − yi+)
2 + (yj − yj+)

2 − (yi − yj+)
2 − (yj − yi+)

2

= (a+ b+ c)2 + b2 − a2 − c2

= 2b2 + 2ab+ 2bc+ 2ac .

Note that ‖Py−y‖2∞ = (yi−yi+)2 = (a+b+c)2. Because (yi+yi+)/2 ∈ [yj+ , yj],
we know that a ≤ (a+ b+ c)/2 and c ≤ (a+ b+ c)/2. So we have

‖Py − y‖2 − ‖P̃ y − y‖2 ≥ w‖Py − y‖2∞ ,

where

w := min
{2b2 + 2ab+ 2bc+ 2ac

(a+ b+ c)2
: a, b, c ≥ 0; a, c ≤ (a+ b+ c)/2

}
.

This is equivalent to

w = min
{
2b2 + 2ab+ 2bc+ 2ac : a, b, c ≥ 0; a, c ≤ 1/2; a+ b+ c = 1

}

= min
{
2b+ 2ac : a, b, c ≥ 0; a, c ≤ 1/2; a+ b+ c = 1

}

= min
{
2(1 − a − c) + 2ac : a, c ≥ 0; a, c ≤ 1/2

}

= min
{
2(1 − a)(1 − c) : a, c ≥ 0; a, c ≤ 1/2

}

= 1/2

./

5.3 Proof of Claim (3.14) in Theorem1

Proof. To prove this claim, we just need to prove that P̃ (k) ∈ NR(In), i.e.
dist(P̃ (k), In) ≤ R. If k ≤ R/2 − 1, because dist(P (t+1), P (t)) ≤ 2 for all t ≥ 0
and P (0) = In, we have dist(P (k), In) ≤ 2k ≤ R − 2. Hence

dist(P̃ (k), In) ≤ dist(P̃ (k), P (k)) + dist(P (k), In) ≤ R .

We consider the case when k ≥ R/2. By Part (1) of Theorem 1, it holds
supp(P ∗) ⊆ supp(P (k)). We will show that supp(P̃ (k)) ⊆ supp(P (k)). Equiv-
alently, we just need to show that for any i /∈ supp(P (k)), we have i /∈
supp(P̃ (k)). Let i /∈ supp(P (k)), then e!

i P
(k) = e!

i . Since supp(P ∗) ⊆ supp(P (k)),
we also have e!

i P
∗ = e!

i . So it holds e!
i P

(k)(P ∗)−1 = e!
i or equivalently

i /∈ supp(P (k)(P ∗)−1). Because supp(P̃ (k)(P ∗)−1) ⊆ supp(P (k)(P ∗)−1), we
have i /∈ supp(P̃ (k)(P ∗)−1), or equivalently e!

i P̃
(k)(P ∗)−1 = e!

i . This implies
e!
i P̃

(k) = e!
i P

∗ = e!
i , or equivalently, i /∈ supp(P̃ (k)). ./

Local Search Method for Mismatched Linear Regression 457

References

1. Abid, A., Zou, J.: Stochastic EM for shuffled linear regression. arXiv preprint
arXiv:1804.00681 (2018)

2. Dokmanić, I.: Permutations unlabeled beyond sampling unknown. IEEE Signal
Process. Lett. 26(6), 823–827 (2019)

3. Emiya, V., Bonnefoy, A., Daudet, L., Gribonval, R.: Compressed sensing with
unknown sensor permutation. In: 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 1040–1044. IEEE (2014)

4. Haghighatshoar, S., Caire, G.: Signal recovery from unlabeled samples. IEEE
Trans. Signal Process. 66(5), 1242–1257 (2017)

5. Hsu, D.J., Shi, K., Sun, X.: Linear regression without correspondence. In: Advances
in Neural Information Processing Systems, pp. 1531–1540 (2017)

6. Neter, J., Maynes, E.S., Ramanathan, R.: The effect of mismatching on the mea-
surement of response errors. J. Am. Stat. Assoc. 60(312), 1005–1027 (1965)

7. Pananjady, A., Wainwright, M.J., Courtade, T.A.: Denoising linear models with
permuted data. In: 2017 IEEE International Symposium on Information Theory
(ISIT), pp. 446–450. IEEE (2017)

8. Pananjady, A., Wainwright, M.J., Courtade, T.A.: Linear regression with shuffled
data: statistical and computational limits of permutation recovery. IEEE Trans.
Inf. Theory 64(5), 3286–3300 (2017)

9. Shi, X., Li, X., Cai, T.: Spherical regression under mismatch corruption with appli-
cation to automated knowledge translation. J. Am. Stat. Assoc., 1–12 (2020)

10. Slawski, M., Ben-David, E., Li, P.: Two-stage approach to multivariate linear
regression with sparsely mismatched data. J. Mach. Learn. Res. 21(204), 1–42
(2020)

11. Tsakiris, M.C., Peng, L., Conca, A., Kneip, L., Shi, Y., Choi, H., et al.:
An algebraic-geometric approach to shuffled linear regression. arXiv preprint
arXiv:1810.05440 (2018)

12. Unnikrishnan, J., Haghighatshoar, S., Vetterli, M.: Unlabeled sensing with random
linear measurements. IEEE Trans. Inf. Theory 64(5), 3237–3253 (2018)

13. Wainwright, M.J.: High-Dimensional Statistics: A Non-asymptotic Viewpoint, vol.
48. Cambridge University Press, Cambridge (2019)

14. Wang, G., et al.: Signal amplitude estimation and detection from unlabeled binary
quantized samples. IEEE Trans. Signal Process. 66(16), 4291–4303 (2018)

http://arxiv.org/abs/1804.00681
http://arxiv.org/abs/1810.05440

	Preface
	Conference Organization
	Contents
	Improving the Approximation Ratio for Capacitated Vehicle Routing
	1 Introduction
	1.1 Formal Problem Description
	1.2 Outline
	1.3 Related Work
	1.4 Review of the Classical Algorithms

	2 Difficult Instances
	3 Vehicle Routing with Target Groups
	4 Clustering Algorithm
	5 Weak Fractional Solutions
	6 Solving Vehicle Routing with Target Groups
	References

	Online k-Taxi via Double Coverage and Time-Reverse Primal-Dual
	1 Introduction
	1.1 Related Work and Known Results
	1.2 Our Contribution

	2 Preliminaries
	3 LP Formulations
	3.1 Dual Transformation

	4 The k-Taxi Problem on HSTs
	4.1 Constructing the Dual Solution
	4.2 Finalizing the Analysis for k-Taxi on HSTs

	5 The k-Taxi Problem on Weighted Trees
	References

	Approximating the Discrete Time-Cost Tradeoff Problem with Bounded Depth
	1 Introduction
	2 Results and Outline
	3 The Vertex Cover LP
	4 Rounding Fractional Vertex Covers in d-Partite Hypergraphs
	5 Inapproximability
	6 Reducing Vertex Deletion to Constant Depth
	References

	Sum-of-Squares Hierarchies for Binary Polynomial Optimization
	1 Introduction
	1.1 The Sum-of-Squares Hierarchy on the Boolean Cube
	1.2 A Second Hierarchy of Bounds
	1.3 Asymptotic Analysis for Both Hierarchies
	1.4 Related Work
	1.5 Overview of the Proof

	2 Sketch of Proof
	2.1 The Polynomial Kernel Technique
	2.2 Fourier Analysis on Bn and the Funk-Hecke Formula
	2.3 Optimizing the Choice of the Univariate Polynomial u
	2.4 The Inner Lasserre Hierarchy and Orthogonal Polynomials

	3 Concluding Remarks
	References

	Complexity, Exactness, and Rationality in Polynomial Optimization
	1 Introduction
	2 Existence of Rational Feasible Solutions
	3 NP-Hardness of Determining Existence of Rational Feasible Solutions
	4 Short Certificate of Feasibility: An Almost Feasible Point
	References

	On the Geometry of Symmetry Breaking Inequalities
	1 Introduction
	2 Preliminaries
	3 The Geometric Structure of Fundamental Domains
	4 Generalized Dirichlet Domains
	4.1 The Lex-Max Fundamental Domain

	5 Overrepresentation of Orbit Representatives
	6 Future Work
	References

	Affinely Representable Lattices, Stable Matchings, and Choice Functions
	1 Introduction
	2 The QF-Model
	3 Affine Representability of the Stable Matching Lattice
	4 Algorithms
	5 The Convex Hull of Lattice Elements: Proof of Theorem2
	References

	A Finite Time Combinatorial Algorithm for Instantaneous Dynamic Equilibrium Flows
	1 Introduction
	1.1 Our Contribution and Proof Techniques
	1.2 Related Work

	2 Model and the Extension-Algorithm
	3 Finite IDE-Construction Algorithm
	4 Computational Complexity of IDE
	5 Conclusion
	References

	A Combinatorial Algorithm for Computing the Degree of the Determinant of a Generic Partitioned Polynomial Matrix with 22 Submatrices
	1 Introduction
	2 Matchings, Potentials, and Min-Max Formulas
	2.1 Matching Concepts
	2.2 Minimax Theorems
	2.3 Elimination

	3 Augmenting Path
	3.1 Definition
	3.2 Finding an Augmenting Path

	4 Augmentation
	4.1 Base Case: R= P0 and P0 Is a Path
	4.2 General Case

	References

	On the Implementation and Strengthening of Intersection Cuts for QCQPs
	1 Introduction
	1.1 Literature Review

	2 Maximal Quadratic-Free Sets and Cut Computations
	2.1 Case 1: I0 = 0 and = 0
	2.2 Case 2: I0 = 0 and > 0
	2.3 Case 3: I0 = 0 and < 0
	2.4 Case 4: I0 =0
	2.5 Implied Quadratics in an Extended Space

	3 Strengthening Procedure
	4 Computational Experiments
	5 Final Remarks
	References

	Lifting Convex Inequalities for Bipartite Bilinear Programs
	1 Introduction
	1.1 Generating Strong Cutting Planes Through Lifting
	1.2 Goal of This Paper
	1.3 Main Contributions
	1.4 Notation and Organization of the Paper

	2 Main Results
	2.1 Sufficient Conditions Under Which Seed Inequalities Can Be Lifted
	2.2 A Framework for Sequence-Independent Lifting
	2.3 A Seed Inequality from a ``Minimal Covering Set''
	2.4 Lifting the Bilinear Cover Inequality (4)

	3 Future Directions
	References

	A Computational Status Update for Exact Rational Mixed Integer Programming
	1 Introduction
	2 Numerically Exact Mixed Integer Programming
	3 Extending and Improving an Exact MIP Framework
	4 Computational Study
	References

	New Exact Techniques Applied to a Class of Network Flow Formulations
	1 Introduction
	2 Network Flow Formulations
	3 Column Generation
	4 Variable Fixing Based on Reduced Costs
	5 A Variable-Selection Method Based on Arcs
	5.1 Advantages of Branching Based on Arc Flow Variables
	5.2 Variable-Selection Based on Arcs
	5.3 Examples of Arc Families

	6 A Solution Method for Network Flow Formulations
	7 An Application to the Cutting Stock Problem
	8 Computational Experiments
	9 Conclusions
	References

	Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets
	1 Introduction
	2 A Dominance Relation
	3 Multi-cover Inequalities
	4 Antichain Multi-cover Inequalities
	5 Facet-Inducing MCI
	6 Conclusion
	References

	Semi-streaming Algorithms for Submodular Matroid Intersection
	1 Introduction
	2 Preliminaries
	3 The Local Ratio Technique for Weighted Matroid Intersection
	3.1 Local-Ratio Technique for Weighted Matching
	3.2 Adaptation to Weighted Matroid Intersection
	3.3 Analysis of Algorithm 1

	4 Making the Algorithm Memory Efficient
	5 More Than Two Matroids
	References

	Pfaffian Pairs and Parities: Counting on Linear Matroid Intersection and Parity Problems
	1 Introduction
	2 Pfaffian Pairs and Pfaffian Parities
	2.1 Preliminaries
	2.2 Pfaffian Pairs and Parities

	3 Combinatorial Examples
	3.1 Perfect Matchings of Pfaffian Graphs
	3.2 Shortest Disjoint S-T-U Paths on Undirected Graphs

	4 Algorithms
	4.1 Counting on Unweighted Pfaffian Pairs and Parities
	4.2 Counting on Weighted Pfaffian Parities

	References

	On the Recognition of {a,b,c}-Modular Matrices
	1 Introduction
	1.1 Our Results

	2 Notation and Preliminaries
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Proof of Theorem 3
	References

	On the Power of Static Assignment Policies for Robust Facility Location Problems
	1 Introduction
	1.1 Our Contributions

	2 Warm-Up: Uncapacitated Robust Facility Location
	2.1 Problem Formulation
	2.2 Static Assignment Policy

	3 Soft-Capacitated Robust Facility Location
	3.1 Problem Formulation
	3.2 An O (logk loglogk)-Approximation Algorithm

	4 Conclusion
	References

	Robust k-Center with Two Types of Radii
	1 Introduction
	2 Detailed Description of Our Approach
	2.1 CGK's Approach and Its Shortcomings
	2.2 Our Idea
	2.3 Discussion

	3 Approximating Well-Separated Robust 2-NUkC
	4 The Main Algorithm: Proof of Theorem 1
	References

	Speed-Robust Scheduling
	1 Introduction
	2 Speed-Robust Scheduling with Infinitesimal Jobs
	2.1 General Speeds
	2.2 Speeds in 0,1

	3 Speed-Robust Scheduling with Discrete Jobs
	4 Speed-Robust Scheduling with Equal-Size Jobs
	4.1 General Speeds
	4.2 Speeds in 0,1

	References

	The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs
	1 Introduction
	2 Advanced Hardness for Quadratic Congruences
	3 Reduction from the Quadratic Congruences Problem
	4 Runtime Bounds for 2-Stage Stochastic ILPs Under ETH
	References

	Fast Quantum Subroutines for the Simplex Method
	1 Introduction
	2 Comparison with the Existing Literature
	3 Overview of the Simplex Method
	4 Quantum Implementation: Overview
	5 Technical Discussion
	References

	Maximum Weight Disjoint Paths in Outerplanar Graphs via Single-Tree Cut Approximators
	1 Introduction
	1.1 A Single-Subtree Cut Sparsifier and Related Results

	2 Single Spanning Tree Cut Approximator in Outerplanar Graphs
	2.1 Converting Flow-Sparsifiers in Outerplanar Graphs to Distance-Sparsifiers in Trees
	2.2 An Algorithm to Build a Distance-Sparsifier of a Tree

	3 Maximum Weight Disjoint Paths
	3.1 Required Elements
	3.2 Proof of the Main Theorem

	4 Conclusions
	References

	A Tight Approximation Algorithm for the Cluster Vertex Deletion Problem
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison to Previous Works
	1.3 Other Related Works
	1.4 Overview of the Proof

	2 Finding 2-good Induced Subgraphs
	2.1 Restricting to Chordal, 2P3-free Neighborhoods
	2.2 The Twin-Free Case
	2.3 Handling True Twins in G[N[v0]]
	2.4 Putting Things Together

	3 Conclusion
	References

	Fixed Parameter Approximation Scheme for Min-Max k-Cut
	1 Introduction
	1.1 Results
	1.2 Outline of Techniques

	2 Tools for the Fixed-Parameter Algorithm
	3 Fixed-Parameter Algorithm Parameterized by k and Solution Size
	4 Conclusion
	References

	Computational Aspects of Relaxation Complexity
	1 Introduction
	2 Computable Bounds on the Relaxation Complexity
	3 Computational Complexity in Dimension 2
	4 Discrete Rectangular Boxes
	5 Numerical Experiments
	References

	Complexity of Branch-and-Bound and Cutting Planes in Mixed-Integer Optimization - II
	1 Introduction
	1.1 Framework for Mathematical Analysis
	1.2 Our Results

	2 Proofs
	2.1 Proof of Theorem 1
	2.2 Proof of Theorem 2
	2.3 Proofs of Theorems 5 And 6

	References

	Face Dimensions of General-Purpose Cutting Planes for Mixed-Integer Linear Programs
	1 Introduction
	2 Computing the Dimension of a Face
	3 Measuring the Strength of a Single Inequality
	4 Computational Study
	A Additional Plots
	References

	Proximity Bounds for Random Integer Programs
	1 Introduction
	2 Main Result and Notation
	2.1 Notation
	2.2 Definition of dist(A)
	2.3 Definition of dist()
	2.4 An Asymptotic Version of dist()
	2.5 Main Result

	3 A Theorem of Schmidt
	4 Typical Cramer's Rule Ratios
	4.1 The Real Grassmannian
	4.2 Probability Spaces
	4.3 Cramer's Rule Ratios

	5 Proof of Main Result
	References

	On the Integrality Gap of Binary Integer Programs with Gaussian Data
	1 Introduction
	1.1 Techniques
	1.2 Relation to Branch and Bound
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Basic Notation
	2.2 The Dual Program, Gap Formula and the Optimal Solutions
	2.3 Gaussian and Sub-Gaussian Random Variables
	2.4 A Local Limit Theorem
	2.5 Rounding to Binary Solutions

	3 Properties of the Optimal Solutions
	4 Properties of the 0 Columns
	5 Proof of Theorem1
	References

	Linear Regression with Mismatched Data: A Provably Optimal Local Search Algorithm
	1 Introduction
	2 A Local Search Method
	3 Theoretical Guarantees for Local Search
	3.1 A Restricted Eigenvalue (RE) Condition
	3.2 One-Step Decrease
	3.3 Main Results

	4 Experiments
	5 Appendix: Proofs and Technical Results
	5.1 Proof of Lemma1
	5.2 Proof of Lemma2
	5.3 Proof of Claim (3.14) in Theorem1

	References

	A New Integer Programming Formulation of the Graphical Traveling Salesman Problem
	1 Introduction
	2 Basic Formulations
	2.1 Symmetric TSP
	2.2 Symmetric GTSP

	3 New Constraints
	3.1 Enforcing Even Degree Without Disjunctions
	3.2 Spanning Tree Constraints

	4 A New Mixed IP Formulation
	4.1 Proving the Formulation
	4.2 Addressing the Naddef Challenge

	5 Relaxations and Steiner Nodes
	5.1 Symmetric GTSP with Steiner Nodes
	5.2 Preventing the Half-z Path Without Spanning Trees
	5.3 Removing Steiner Nodes

	6 Computational Results
	References

	Implications, Conflicts, and Reductions for Steiner Trees
	1 Introduction
	1.1 Contribution
	1.2 Preliminaries and Notation

	2 From Implications to Reductions
	2.1 The Bottleneck Steiner Distance
	2.2 A Stronger Bottleneck Concept
	2.3 Bottleneck Steiner Reductions Beyond Edge Deletion

	3 From Reductions to Conflicts
	3.1 Node Replacement
	3.2 Edge Replacement

	4 From Steiner Distances and Conflicts to Extended Reduction Techniques
	4.1 The Framework
	4.2 Reduction Criteria

	5 Exact Solution
	5.1 Branch-and-cut
	5.2 Computational Results

	6 Outlook
	References

	Author Index

