Mathematical Programming (2019) 176:279-310
https://doi.org/10.1007/s10107-019-01370-7

FULL LENGTH PAPER

Series B ")

Check for
updates

Computation of the maximum likelihood estimator
in low-rank factor analysis

Koulik Khamaru' - Rahul Mazumder?

Received: 18 January 2018 / Accepted: 2 February 2019 / Published online: 2 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Abstract

Factor analysis is a classical multivariate dimensionality reduction technique popularly
used in statistics, econometrics and data science. Estimation for factor analysis is often
carried out via the maximum likelihood principle, which seeks to maximize the Gaus-
sian likelihood under the assumption that the positive definite covariance matrix can
be decomposed as the sum of a low-rank positive semidefinite matrix and a diagonal
matrix with nonnegative entries. This leads to a challenging rank constrained non-
convex optimization problem, for which very few reliable computational algorithms
are available. We reformulate the low-rank maximum likelihood factor analysis task
as a nonlinear nonsmooth semidefinite optimization problem, study various structural
properties of this reformulation; and propose fast and scalable algorithms based on
difference of convex optimization. Our approach has computational guarantees, grace-
fully scales to large problems, is applicable to situations where the sample covariance
matrix is rank deficient and adapts to variants of the maximum likelihood problem with
additional constraints on the model parameters. Our numerical experiments validate
the usefulness of our approach over existing state-of-the-art approaches for maximum
likelihood factor analysis.

Keywords Low-rank constraint - Maximum likelihood factor analysis - Difference of
convex optimization - Semidefinite optimization - Spectral functions - Sparsity

Mathematics Subject Classification 90-08 - 90C22 - 90C30

B Rahul Mazumder
rahulmaz @mit.edu

Koulik Khamaru
koulik @berkeley.edu
Department of Statistics, University of California Berkeley, Berkeley, USA

MIT Sloan School of Management, Operations Research Center and Center for Statistics,
Massachusetts Institute of Technology, Cambridge, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-019-01370-7&domain=pdf
http://orcid.org/0000-0003-1384-9743

280 K. Khamaru, R. Mazumder

1 Introduction

Factor analysis (FA) [2,7,26], a generalization of principal component analysis, is a
classical dimensionality reduction technique for multivariate data that was introduced
more than a hundred years ago. FA is popularly used to understand the correlation
structure among a collection of observed random variables, in terms of a smaller num-
ber of common factors. In a typical FA model, we assume that the (mean centered)
observed random vector x € %t”*! may be expressed in the form: x = Lf + u, where,
L := ((¢;j)) € RP*" is a matrix of factor loadings, f € N1 is a random vector of
scores and u € MP*! is a vector of uncorrelated variables. We assume that f and u
have zero means, are uncorrelated; and without loss of generality, we set the covari-
ance matrix of f as the identity matrix (of size r x r) Cov(f) = I. This leads to the
following decomposition:

Cov(x) ;=X =LL" + W, 1)

where, Cov(u) := ¥ = diag(y, ..., ¥p) is a diagonal matrix with entries {1//i}f.
Decomposition (1) suggests that the population covariance matrix X := ((0j;)), can
be written as the sum of a low-rank positive semidefinite (PSD) matrix and a diag-
onal matrix ¥ with nonnegative entries. In particular, this implies that the variance
of x; (i.e., Var(x;)) can be decomposed as Var(x;) = o;; = Z,’czl Zizk + ;. In this
decomposition, Y _, Zl.zk represents the (part of the) variance of x; which is shared
with other variables via the common factors (this is called the communality); and ;
represents the (part of the) variance of x; that is not shared with the other variables
(this is known as specific or unique variance).

One of the most popular FA estimation methods is the Gaussian maximum like-
lihood (ML) procedure [2,7,26]. Given n multivariate samples x;,i = 1,...,n,
assumed to be mean-centered, the task is to minimize the negative log-likelihood
with respect to the parameter X that is of the form (1). This leads to the following
optimization problem:

minimize L(X):= -—log det(T™H + tr(Z7'S)
st. T=W4+LLT 2
¥ = diag(Y¥1, ..., ¥p) = €l

where, S = % > x,-xiT is the sample covariance matrix, I is the identity matrix
(of size p x p); W € RP*P L. € NP> and X are the optimization variables and
the notation A > B means that A — B is PSD. Here, € is a small positive constant
specified a-priori, that satisfies € < min;—p ., s;;. To gain further intuition regarding
this choice, note that if n is sufficiently large, then s;; =~ 0;; = Vi + ZZ:] Zizk > Yy,

for all i. In addition, a lower bound on ;s ensures that Problem (2) is bounded below.!

! Indeed, ¥ > el implies that £ = €I > 0. Thus, — logdet(X 1) > plog(e) and tr ():*IS) > 0 which

shows that Problem (2) is bounded below. Note that Problem (2) with € = 0 need not have a finite solution,
i.e., the ML solution need not exist. Note that if for some i, we have ¥; — oo then L(X) — o0, a similar
argument applies if LLT becomes unbounded. Thus the infimum of Problem (2) is attained when € > 0.

@ Springer

Maximum likelihood factor analysis 281

We note that Problem (2) can be rewritten using a new variable @ = LLT € ;rx»
o minimize £(X)
sit. X=v+0
rank(®@) < r 3)
0 >0,
¥ = diag(Y¥r1, ..., ¥p) > €l

where, the optimization variables are ©, ¥, X. Due to the presence of the rank con-
straint in formulation (3), in what follows, we will often refer to Problem (2) as a rank
constrained optimization problem. Observe that Problem (2) is nonconvex since (a)
the objective function £(X) is not convex in X [11] and (b) the equality constraint
¥ = W + LL" is nonconvex.

Related work There is a significant body of work in FA, a concept that originated more
than a hundred years ago [36]. Here, we present a selective overview that is relevant
for this work—important contributions in FA have been nicely documented in [2,5,
7,26]. Despite being a problem of fundamental importance in statistical estimation,
not much is known about the computational properties of FA. Many popular off-
the-shelf implementations for ML factor analysis (e.g., the routinely used algorithms
available in Matlab and R) are quite unstable.> These algorithms are based on rather
ad hoc computational methods, and often lead to negative variance estimates which
are highly problematic from a statistical inference viewpoint. This is perhaps not
surprising, given that the basic problem underlying ML factor analysis is a difficult
(nonconvex) optimization problem and there has been limited work in developing
mathematical optimization based algorithms for this problem. We note that it is also
difficult to generalize existing algorithms to address variants of the ML factor analysis
problem, with the inclusion of additional problem-specific constraints. Anderson and
Lawley and Maxwell [2,23] present a nice overview of classical algorithms used for
ML factor analysis. Some of the current state-of-the-art computational approaches
for ML factor analysis are based on the seminal contribution of [19]. This approach
assumes that S is of full rank and L has rank exactly equal to r. It is based on an ad hoc
gradient descent based algorithm on an objective function that is locally differentiable.
Recently, the authors of [31] provide necessary and sufficient conditions for existence
of asolution of Problem (2) with e = 0, however, they do not discuss any computational
algorithms. Another popular approach for ML factor analysis is based on the EM
algorithm [9,33]. Some publicly available implementations of the EM-type methods
apply to cases where S need not be of full rank.

Not all methods in FA are based on the ML framework. In other approaches, one
seeks to estimate a matrix ¥ of the form £ = W 4+ LLT, which is close to the sample
covariance matrix S, in terms of the Frobenius norm or some weighted variant of this
norm. Some popular methods in the literature are the minimum residual FA, principal
axis method, principal component method, minimum trace FA, among others—see
[7,8,35] for more description on these approaches. Fairly recently [8], propose a spatial

2 We have observed this in our experiments and they are reported in our section on numerical experiments.

@ Springer

282 K. Khamaru, R. Mazumder

branch and bound method for minimizing the squared Frobenius norm ||S — X II%
where, X is of the form (1) with an additional constraint S — ¥ > 0. Saunderson
et al. [34] studies the noiseless decomposition for the FA problem, using nuclear norm
relaxations of the rank constraint on ® := LLT. The aforementioned line of work is
different from the ML criterion in FA, as the data-fidelity measure is different. In this
paper, our focus is on the computational properties of the ML problem (2).

Contributions The main contributions of this paper can be summarized as follows:

1. We propose a new computational framework for the task of (Gaussian) maximum
likelihood estimation in factor analysis—a problem central to classical and modern
multivariate statistical learning. The associated optimization problem is challeng-
ing: it is given by the minimization of a nonconvex function subject to a rank
constraint and additional semidefinite constraints. We reformulate the problem as
the minimization of a nonsmooth nonconvex function containing eigenvalues of a
positive semidefinite matrix, subject to (simple) convexity constraints.

2. Using (convexity) properties of spectral functions, we show that the objective func-
tion can be expressed as a difference of convex functions; and is hence amenable to
computational techniques in difference of convex optimization. The computational
bottleneck of our algorithm is a low-rank singular value decomposition (SVD) of
a p X p matrix, that needs to be performed for every iteration. Exploiting problem
structure, we show that this can be computed with cost O (min{n, p}? max{n, p}).
When compared to other publicly available implementations, an important advan-
tage of our proposal is that it applies to the case where the sample covariance
matrix is rank deficient.

3. We explore computational guarantees of our proposed algorithm in terms of reach-
ing a first order stationary point. We demonstrate that on a series of numerical
examples (including both real and synthetic datasets), our method significantly
outperforms commonly used approaches for ML factor analysis in terms of (i)
reduced computation time, (ii) obtaining a solution with better objective value; and
(iii) superior numerical stability of the algorithm. To our knowledge, our proposal
is one of the most scalable computational mathematical optimization approaches
for ML factor analysis. Our approach also generalizes to instances of ML factor
analysis where, W is not necessarily diagonal.

Notation For a real symmetric matrix A, ,, we will denote its eigenvalues by
Ai(A),i = 1,..., p with 4;(A) > A;+1(A) for all i; we will use the shorthand
notation A(A) to denote the vector of eigenvalues of A. For a real postive semidefinite
(PSD) matrix A, we use AZ to denote its symmetric square root. If A is invertible
and PSD, we use A™2 to denote the square root of A~!. Given a nonnegative inte-
ger m, we denote 1,...,m by [m]. For a vector x € R4 and scalars «, y (with
o < y), we define [«, y]d ={x:a < x; < y,i € [d]}; similarly, we define
(a, y]d = {x:a < x; <y,i € [d]}. For any vector a € 0i”, we use diag(a) to
denote a p x p diagonal matrix with its diagonal entries being the coordinates of a;
whereas, for a p x p square matrix A, diag(A) denotes the diagonal matrix with diag-
onal entries same as the diagonal entries of A. For any matrix A = ((a;;)) € RP>*P
and nonnegative integers 0 = pg < p1 < --- < p» = p (we will use the notation

@ Springer

Maximum likelihood factor analysis 283

p to denote the vector (p;)iL)) and b > 1, we use Blkdiagp (A) and Banded;(A) to
denote the following two p X p matrices:

' _Jaij if pr—1 < i, j < pi forsome k € [m]
[Blkdlagp(A)]i i {0 otherwise,)
. if i — j| <b,i
[Banded;,(A)];; = {gu ;ﬂlllerWi]Je_ i €[p])

We let I denote the identity matrix and 1 a vector of all ones (with dimension determined
from the context). For a vector a, we use the notation a > 0 to denote component-
wise inequality; for a matrix A, we use the notation A > 0 (or > 0) to denote that the
matrix A is positive semidefinite (respectively, positive definite). We will assume that
all diagonal entries of the sample covariance matrix S are strictly greater than zero.

2 Methodology

We state a simple result (the proof of which is omitted) regarding the eigenvalues of
the product of two matrices—a property that is used throughout the paper.
Proposition 1 For any two real symmetric matrices A, B € RP*P we have A (AB) =
A (BA).

We present below a simple corollary of the above, that is used widely in the paper:

Corollary 1 For any PSD matrix ®, we have:
1 1 1 1
x(qnsqn)=x(s<1>)=x(<I>S)=x<Sz<I>Sz>. 6)

2.1 Reformulations

In this section, we present a reformulation of the rank constrained optimization Prob-
lem (2) to one that does not involve an explicit rank constraint: Proposition 2 presents
a reformulation of Problem (2) as an optimization problem that only involves ¥. The
resulting problem (7) is amenable to efficient optimization techniques based on dif-
ference of convex optimization. Proposition 3 provides bounds on an optimal solution
of Problem (7). Recall that in Problem (2), we assume € < min;¢[p] Si;-

Proposition 2 (a) Problem (2) is equivalent to:

.
minimize {logdet(¥) + tr (S*) + Z (log(max{1, A}}) — max{1, A} + 1)
i=1
s.t. W =diag(y,...,¥p) = €l 7

%S\Il*%; and the

where, A\] > A} > --- >)»’; denote the eigenvalues of S* := W
optimization variables are ¥, S* and {1} };>1.

@ Springer

284 K. Khamaru, R. Mazumder

(b) Suppose W is a minimizer ofProblem (7) and L = \112 [Z] Z, ..., ir] where,

2

71,72, ...,17, are eigenvectors of W 2S\Il corresponding to its top r eigenvalues

irie [r] with |12]% = max {1, ,\;f} A foralli € [r]. Then (W, L) is a minimizer
of Problem (2).

Proof Part (a): We first minimize Problem (2) with respect to L for a fixed W. A simple
application of the Sherman Woodbury formula with some rearrangement gives:

s = (\1: JFLLT)_1
—w e L (LT L) LT
— v W ILA LTI L) T LT ek 8)
Writing L* = W2L in the last line of display (8), we get:
> w4 (TR) Te s,
The above implies that:
w(Z71S) = tr(W!S) — tr (\p—%L* (I + (L*)TL*)_I (L*)T\p—%s)
— r(U2SWT) — 1 <(L*)T\1:—%s\1:—5L* (I 1 (L*)TL*)1> 9)
= tr(S%) — tr <(L*)TS*L* (I n (L*)TL*)_I) (Using, S* = W~ 2SW2)

where, in the second and third lines of display (9) we (repeatedly) used the fact that
tr(AB) = tr(BA). In addition, note that:

— logdet(2™!) = logdet(¥) = logdet(¥ + LL")
— log det(W¥) + log det (I T L*TL*> . (10)

We denote the objective in Problem (2) by 4 (¥, L) := log det(LLT +W)+tr(LLT +
W) ~!S). Using (9), (10) in the objective function of Problem (2), we get the following
equivalent reformulation of Problem (2):

minimize logdet(¥) + log det (I + L*TL*> + tr (S¥)
—1
—tr (L*TS*L* (1+1717) >
s.t. W =diag(y,...,¥p) > €l (11

@ Springer

Maximum likelihood factor analysis 285

where, recall that we use the notation: L* = wIL and S* = \I”%S\Il’% . The
optimization variables in Problem (11) are ¥, L (and consequently, L*, §*). Note that
h (¥, L) = h(¥, LU) for any orthogonal matrix U. So we can substitute L by LU in
Problem (11). We choose U such that the columns of L* are orthogonal or zero vectors.
Note that the partial derivative of 7(W, L) = logdet(LLT + W) +tr(LLT + W¥)~'S)
w.r.t. L is given by:

oh(¥, L)

oL

Using ¥ = W +LLT > 0, we note that 3(¥, L) /0L = 0iff L = S(W + LL ")~ 'L.
Algebraic manipulations (using (8)) show that this condition is equivalent to the fol-
lowing (see Sect. A.2):

=23 l(x-8) =L (12)

S*L* = L* (I + L*TL*) . (13)

Note that when y; < s;; for all i € [p] (such a ; is feasible for Problem (2) as
€ < min;¢[p) i), the diagonal entries of S* satisfy sl?ki = sii/¥; > 1 forall i. Since
A1(S*) > tr(S*)/p > 1—the largest eigenvalue of S* is larger than one. Since we
choose the columns of L* to be pairwise orthogonal or zero vectors, it follows that
I+L*TL* is a diagonal matrix with every diagonal entry greater than or equal to one.
This means that (13) is a collection of eigenvector equations for the matrix S*. Since
A1(S*) > 1, it follows that the system (13) has at least one nonzero solution in L*.

Let us denote the columns of L* by z;, i € [r]. The part of the function (¥, L) in
display (11), that depends upon L* is given by:

r

.
@ =Y (tog(1 427z — 255 (14)
P 1 +ZlTZi

Since z;s are pairwise orthogonal or zero vectors, it follows from equation (13) that
S*z; =piz; and Bi=1+4z'z, iclrl (15)

Note that in the above equation, either ; = 1 withz; = 0 or ; > 1 and B; equals
some eigenvalue of S* with eigenvector z;—thus (14) becomes

g(L*) = (log(B) — i+ 1). (16)

i=1

Note that 8 +— log(B) — B + 1 is strictly decreasing for all 8 > 1. So it is easy to
see that (16) is minimized for §; = max{l,)Lf} fori e [r] where, AT > .-+ > ¥
are the top r eigenvalues of S*. The optimal choice of z; is given by: z; = 0 when
Bi = 1; when B; > 1, z; is an eigenvector of S* with eigenvalue A and we have that
z;—zi = max{l, A]} — L.

Finally, we note that

min AW, L) = min {min h(\Il,L)}. a7
W>el L Vel L

@ Springer

286 K. Khamaru, R. Mazumder

Substituting the value of L that minimizes the inner minimization problem above (in
the right hand side of the above display), into the objective function 2(W¥, L), we obtain
formulation (7).

Part (b): The proof of this part is a consequence of the proof of Part (a). O

The method of minimizing the objective function w.r.t. L. with ¥ held fixed, is
inspired by the classical work of [19,21,22]—this line of work however, assumes S to
be of full rank. Since we do not assume S to have full rank, our derivation is different.
Robertson and Symons [31] investigate the existence of ML solutions for a general
S—however, no computational algorithms are presented. Note that the expression (7)
does not appear in [31]. Formulation (7) plays a key role in developing algorithms for
Problem (2), a main focus of this paper.

Proposition 3 shows that any solution of Problem (7) is bounded above. Recall that
we assume € < min;g[p] Si;-

Proposition 3 Let W be a solution of Problem (7). Then we have s;; > @i > € forall
i €[pl

Proof Consider W > ¢l that is feasible for Problem (7).
Setting (12) to zero and with some simplification we get (see (59) in Sect. A.2)

L=su L (I+LT\II‘1L>71. (18)

Since (13) has a nontrivial solution in L*, it follows that (18) has a nontrivial solution
in L. Moreover, using (8) in place of £ !, the expression S ! simplifies as:

Syl —sw! - (sw‘L(HLT\If‘L)_l) (LT\V‘)

=S¥ —LLTw™! (Using expression of L from rhs of (18))
=Su ! (z-—w)w! (Since, ¥ = LL" + W)
=Sy 3wl 41 (19)

Note that we have the following expression for £~! (£ —S) T~

-9z l=x"T-_3x sz
—y !l _x! (sqr‘ —zy! +1)

— ():—ls) vl !
— (q:—ls —v s 4+ I) vl !
=v !l (ZT-Sw (20)

where, the second line follows by using the expression for SX~! from (19); and the
fourth line follows by using the same expression for ¥ ~'S = (S~ T.

@ Springer

Maximum likelihood factor analysis 287

Since dh(L, W) /0y = diag(X~! (X — S) £~1), using the last line of display (20),
the expression for the ith entry of oA (L, W) /0 is given by:

oh(L, W) (oii — sii)
v v:o

21

We consider two cases, depending upon whether an optimal solution I/A/i satisfies:
Vi > eor Y = €. If ¥; > e, then dh(L, W)/dy; = O: hence 6;; = s;; which
implies that s;; > 1% > € (since, 0j; = Z,Czl K?k + ;). Otherwise, if I/A/i = ¢ then
dh(L, W) /0y < 0: this leads to s;; > 1/},' = €. This completes the proof. O

Corollary 2 presents another equivalent representation of Problem (7) by a sim-
ple change of variables ® := W1, Below, for notational convenience, we use the

shorthand @ := diag (41, ..., ¢p) and ¢ = (¢1,.... ¢p).

Corollary 2 Problem (7) is equivalent to the following optimization problem in ¢:

P
minimize f(¢) := Z (—log ¢i + sii i)

i=1

+ Z (log (max{1, 1f}) — max{1, A]} + 1) (22)
i=1

1
s.t. 0 < @ =diag(¢y,...,¢p) < -1,
€

where, A}, i € [r] are the top r eigenvalues of S* = <I>%S<I>%. If\il is a solution to

~ ~—1 ~
Problem (7), then ¥ = ® where, ® is a solution to Problem (22).

Remark 1 Problem (7) (and Problem (22)) is a minimization problem in ¥ (respec-
tively, @), unlike the rank constrained Problem (2) with variables L. and W¥. Note that
Problem (22) is nonconvex due to the nonconvex objective function, though the con-
straints are convex. Corollary 3 shows that the objective function f(¢) appearing in
Problem (22) is neither convex nor concave, but it can be written as a difference of
two simple convex functions.

2.2 Expressing Problem (22) as a difference of convex functions

Here we show via Propositions 4 and 5 that the objective function in Problem (22)
can be written as a difference of two convex functions (Corollary 3). This observation
makes it possible to use algorithms based on difference of convex optimization, to get
good solutions to Problem (22). Proposition 6 shows that when S is of full rank, the
objective function in Problem (22) can be expressed purely in terms of the eigenvalues
of S*.

@ Springer

288 K. Khamaru, R. Mazumder

Let y(1) > -+ > y(p) be an ordering of {y;}] € [0, 00)? and define:

r

H, (y) := Z (log (max{1, y)}) — max{1, y;)} + 1). (23)

i=1
The following proposition shows that y — H,(y) is concave ony > 0.

Proposition 4 For any r € [p], the function H,(y) as defined in (23), is concave on
y=>0.

Proof We first establish that H, (y) admits the following representation:

p
H,(y) = min A (w: y) :=) wi (log (max{1, yi}) — max{l, yi} + 1)
i=1

P
s.t. Zwi =r, 0<w; <1,i €[p], (24

i=1

where, the objective function is the linear functional w +— H (w; y). To see why this is
true, note that the scalar function y — log (max{1, y}) —max{1, y} 4 1 is decreasing
on y > 0. Hence the sum Z,P=1 w; (log (max{l, y;}) — max{1, y;} + 1) will be mini-
mized for a choice: w; = 1 whenever y; is one of the top r elements among y1, ..., ¥p;
and w; = 0 for all other choices of i € [p]. This justifies representation (24).

For any 9t > y > 0, note that y +— log (max{1, y}) — max{l, y} + 1 is concave.
Hence, for every fixed i” > w > 0, the function

p
31> - yp) = Y w; (log (max({1, y;}) — max{1, y;} + 1)

i=1

is concave on 'y > 0. Since the point-wise infimum of a family of concave functions
is concave [11], y — H,(y) is concave ony > 0. O

Proposition 5 For any r € [p], the function
r
¢ h(g) = Z (log (max{1, A}}) — max{1, A7} + 1) (25)
i=1
is concave on ¢ > 0; where, {Af}f are the eigenvalues of S*.
Proof Note A (S*) = A (S% <I>S%) (cf Corollary 1). By a classical result due to Davis
and Lewis [13,25], the following mapping
r
1 1
S2@S2 >) (log (max{1, Af}) — max{1, A} + 1) (26)

i=1

@ Springer

Maximum likelihood factor analysis 289

. PR R
is concave in S2 @S2 if and only if the function (23) is symmetric® and concave in y
ony > 0. Itis easy to see that the function in (23) is symmetric; and concavity follows

from Proposition 4. So we conclude that the map in (26) is concave in S2®S7. The
linearity of the map ¢ — s> <I>S% implies that 4 (¢) is concave in ¢ on ¢ > 0. This
completes the proof of the proposition. O

Corollary3 For any ¢ > 0, f(p) can be written as the difference of two convex

functions, fi(§),i = 1,2 thatis: f(p) = f1(d) — fo(P), where,

P
fi@) =) (—logd; +si¢i) and

i=1
r

f2(¢) == (log(max{1, }}) — max{1, Af} +1).

i=1
Proof The convexity of f](¢) is easy to see. Proposition 5 implies that f(¢) is convex.
O

When S is full rank i.e., S > 0, then Problem (22) can be rewritten purely as a function
of the eigenvalues {1 };>1—this is established in Proposition 6. Such a representation
does not seem to be available when S is rank deficient.

Proposition 6 If'S > 0 then Problem (22) is equivalent to the following problem:

)4 r
minimize Z (—loghf +21f) + Z (log(max{1, A}}) — max{l, A]} + 1)
i=1

i=1 @7
s.t. 0 < ® = diag(¢1, ..., ¢p) < 1L,
where, {A;.*}f are the eigenvalues 0f<I>%S<I>%.
Proof Problem (22) is equivalent to minimizing f(¢) := —logdet(S) + f(¢) over
0<d< éI. The function f(¢) can be expressed as:
B P
f(@)=>" (—log; + siipi) — log det(S)
i=1
+ Z (log (max{1, 1]}) — max{1, A]} + 1) (28)

i=1

= — log det(S*) + tr(S*) + Z (log (max{l, Af}) —max{l, A7} + 1) (29)

i=1

P r
= Z (—loghf + 1) + Z (log (max{1, A7}) — max{1,]} + 1) (30)

i=1 i=1

3 A function gyt yp) : RP — N is said to be symmetric in its arguments if, for any permutation 7
of the indices {1, ..., p}, we have g(yq, ..., yp) = &a(1)ys > Yr(p))-

@ Springer

290 K. Khamaru, R. Mazumder

where, line (29) follows from (28) by observing that

P

Z(— log(¢i) + sii¢i) — logdet(S) = — logdet(®) + tr(S®) — log det(S)

i=1 (31)
= — logdet(S®) + tr(SP)
= — logdet(S¥) + tr(S¥),

where, S* = ® 7 S<I>% ; and the last equality in (31) made use of Corollary 1. Moreover,
as S is of full rank and @ > 0, all the eigenvalues A} > 0,i € [p]. This completes the
proof. O

Proposition 6 provides an interesting alternative characterization of the formulation
presented in Corollary 3—this helps us gain additional understanding of the optimiza-
tion problem for ML factor analysis when S > 0.

2.3 Algorithm based on difference of convex optimization

Problem (22) is a nonconvex optimization problem with semidefinite constraints and
obtaining a global minimum for a general r is quite challenging. We thus focus on
developing efficient computational procedures for obtaining good (feasible) solutions
to Problem (22). By Corollary 3, Problem (22) is equivalent to the following nonconvex
optimization problem:

minimize (@) = fi1($) — fo(p) st. peC:={p:1>¢; >0,ie[pl}. (32)

We use a sequential linearization procedure: at every iteration, we linearize the function
f>(¢) (leaving f1(-) as is) and solve the resultant convex problem. This is an instance
of the well-known framework used for optimization of difference of convex problems
[18,30,37]. In the machine learning community, these methods are popularly referred
to as the convex concave procedure [38,39]. These algorithms have gained significant
traction in the wider optimization community due to their pervasive use in practice—
some excellent recent works on this topic include [1,14,27,29] (see also references
therein).

Let us formally describe the algorithm. If $¥) € C denotes the value of ¢ at the
kth iteration, we linearize f>(¢) at ¢*) with f;(¢) unchanged; and obtain a convex
approximation of f(¢), denoted by F(¢; ¢*):

F&~ @) = (2 (89) + (Vi - 9P)) = Figi 6@, (33)

where, V. is a subgradient of f,(¢) at ¢(k) (see Sect. 2.3.1 for details). We note that
F(¢: ¢®) is an upper bound to f(¢) for any o® . we compute ¢*tD ag:

@ Springer

Maximum likelihood factor analysis 291

¢(k+l> € argmin F(¢; ¢(k))
L=¢i>0,ielp]
p
= argmin) (—logdi +sidi — Viidi) (34)

1>¢;>0.ielp] =1
where, Vi ; is the ith coordinate of V; € i”. The ith entry of ¢**D is given by:

1 1
¢t = min {— -} for i€ [pl.
sii — Vi €

The updates continue till some stopping criterion is satisfied. This can be in terms
of the relative change in the successive objective values:* f @®) — F@*tD) <
n|f(¢(k+1))| or relative change in successive iterate values: ||¢(k+1) — ¢(k)||2 <
nll¢®|12; where, n > 0 denotes a pre-specified tolerance level. We summarize the
algorithm below.

Algorithm 1: An algorithm for Problem (32).
Initialize with ¢ € C and update ¢(k) using (34) until some stopping criterion

like f(¢®) — F(@* D) < | f(@*TD)] is met.

2.3.1 Computing subgradients

Here, we study the computation of (sub)gradients [32] of the functions f;(¢) and
f2(¢). Note that f1(¢) is differentiable, hence its subgradient is the same as its gradient.
However, the convex spectral function® f»(¢) is not differentiable. A subgradient of
f2(¢) can be computed following the work of [24] on differentiability of spectral
functions of Hermitian matrices. To this end, consider the representation of H, (y)
in (24) and define the function g(y) = log (max{1, y}) —max{1, y}+1ony > 0. Let
us denote H,(y) = —H,(y) and note that H,(y) is a convex function iny. If 9 H,(y)
is a subgradient of H, (y), then it can be computed by using Danskin’s theorem:

p
AH,(y) = — Z Wi Vg(yi),

where, W is a minimizer of the inner optimization task in Problem (24); and V g(yl-) S
N7 is the gradient of g(y;), with ith coordinate given by V;g(y;) = min{O 1 1},
and V;g(y;) = 0 for all j # i. The function H, (y) is differentiable at y 1ff W is
unique.® The set of all subgradients of H (y) is given by

P
Conv <: Z Vg(y;) : wis a minimizer of Problem (24), i.e., H,(y) = ﬁ(VAV; y)]) .

4 We note that the objective values are decreasing f (¢(1‘+1)) </f (¢(k)) for all k (See Proposition 7).
5 We call f2(¢) a spectral function as it is a function of the eigenvalues (or spectral values) {}‘?}f .

6 We note that non-differentiability occurs if g(yi41)) = §((r))-

@ Springer

292 K. Khamaru, R. Mazumder

Let us consider a matrix A > 0, with eigen decomposition A = Vdiag(X)VT; and
consequently consider the spectral convex function g,(A) := — > 7, g(%;). Using
properties of subgradients of spectral functions [24], we have that a subgradient of
A +— g,(A) is given by:

9g-(A) = Vdiag(dH, L))V " (35)

where, Bﬁ, () is a subgradient of A — ﬁ, Q).
Let ®2S®2 — Udiag(AT, ...,)\;‘,)U—r be the eigen decomposition of 187, By
the chain rule, 9 f>(¢) is given by

3 f> (¢) = diag (<1>*%UD1UT<1>%S) , (36)

where, D; = diag (81, ..., §,) with

i

_L . .
Sizimax{o,l k*]lflfzfr 37)

otherwise.

2.4 Computational guarantees for Algorithm 1

We present herein, computational guarantees for Algorithm 1 in terms of: the num-
ber of iterations required to deliver an approximate first order stationary point and
asymptotic convergence to a first order stationary point. Towards this end, we recall
certain standard definitions of first order stationary conditions for Problem (32) (see
for example, [30]). We say that 65 € C is a first order stationary point of Problem (32),
if the following condition holds:

¢ cargmin F(¢;) = f1(d) — (3/2(8), ¢ — @)
¢ (38)
st. ¢peC=|p:11>¢>0},

for some choice of a subgradient 0 f (¢). From standard optimality conditions of
convex functions [10,32], the above condition is equivalent to saying that

3f2(@) € VFi(d) +N(g; 0), (39)

where, A(¢; C) is the normal cone to the convex set C at the point ¢. Recall that
N (¢: C) is the convex cone of all vectors d € R such that (d, ¢ — @) < 0 for all
¢ eC .~In (39), the right~ hand side denotes the standard Minkwoski sum of a vector
(V f1(¢)) and a set (N (¢; C)).

Proposition 7 shows that the sequence {¢*'}; leads to a decreasing sequence of
objective values where, the amount of decrease is lower bounded by the squared norm

of successive difference of the iterates {¢(k)}.

@ Springer

Maximum likelihood factor analysis 293

Proposition 7 Ler ¢ be a sequence generated via Algorithm 1. Then, there exists
p > €2 such that for every k > 1:

oY) _ (k+1) Poak+1) _ 4 (k)2
F(80) = £ (0457) = Ziptt — g2, (40)
Proof From convexity of f>(¢) we have that

£(850) 2 12 (60) + (042 (47) 00 — ¢0) (41

where, 0 f> (¢) is a subgradient of f>(¢). Note that the function fi(¢) is separable
across the coordinates and V2 fi (¢) > €21 for all ¢ € (0, %]p. If we denote p (> €2)

to be a coefficient of strong convexity for the function f(¢) on (0, é]p then:

Fi(89) = i (6%4) + (8% —g*D. v 1y (¢44)) + SpgteD — @2
. 9 2 9
(42)
where, V f1(¢) is the derivative of f](¢). By standard optimality conditions [10] of
Problem (34), we have:

min {(VF@*D:9®) ¢ - g4 0): 1z g >0} =0, @

where, VF(¢%TD: %) = V(%) — 3 ,(¢™) is the derivative of ¢ >
F(¢: ¢®) evaluated at ¢ ¥+, Adding (42) and (41), and rearranging terms we get:

fi(8%0) = 12 (647) = 71 (6) = 12 () = ZUp+D — 02
+ <¢<k+1> —¢® v <¢(k+1)) —0f (¢<k>>>

<0

= £1(69) = 12 (e®) - LD — g2,

Here, the last line follows by setting ¢ = ¢® in (43). O

The above proposition says that f(¢*’) is a decreasing sequence—being bounded
below, it converges to f , say. By the definition of a first order stationary point (38), the
quantity ||¢*TD — ¢® || dictates the proximity of ¢*’ to a first order stationary point
and an approximate first order stationary point. We have the following proposition,
formalizing the rate at which the sequence ¢® approaches a first order stationary
point.

Proposition 8 The sequence f(¢®) is decreasing and converges to f . The finite time
convergence rate is given by:

(k+1) _ ¢(k)||2 <

(re™-7). (44)

LS

min
15k§l€p|l¢

@ Springer

294 K. Khamaru, R. Mazumder

Proof The proof uses (40). If Ag := 5[¢*+D — ¢®)||2 then:

Klﬁ?mAkng i{ (¢(k)) (¢(k+1))}S f(¢“))—f, 45)

where, the second inequality uses (40); and the final inequality used the fact that
f (¢(k)) J f. The result (44) follows from combining the left and right parts of the
inequality (45). O

The above proposition states that for any tolerance 6 > 0, there is an integer
K = O(3) such that for some k € [K], the following holds: [|p* ™1 — ¢® |12 < 5.

Since the optimization problem is nonconvex, f may depend upon the initialization
¢ The following proposition shows that all limit points of the sequence {¢*'}; are
first order stationary points.

Proposition 9 Any limit point of the sequence ¢* is a first order stationary point for
Problem (32).

Proof The proof is deferred to Appendix A.1. O

2.5 Computational cost of Algorithm 1

We discuss the computational cost of Algorithm 1 and techniques for computational
scalability to large problems. We consider different cases, depending upon the relative
sizes of n, p.

When n > p: The main computational cost of Algorithm 1 stems from computing
a subgradient of f>(¢) which requires a low-rank eigen decomposition of S*. When
p is small relative to n, it is convenient to form and work with the p x p matrix S*.
Creating S from X costs O (n? p) (this operation can be done once offline). Computing
S* from S costs O(p?). A direct low-rank eigen-decomposition of §* using dense
matrix factorization methods [16] costs O(p?). This approach applies to problems
with p up to a few thousand (p ~ 3000, for example). Note that this cost is of the
same order as obtaining the unrestricted maximum likelihood estimate of £ !, which
is given by S~! (assuming S is invertible).

When p > n: In several applications of interest, n is smaller than p—a situation that
occurs commonly in the modern highdimensional regime (in genomics applications
for example, n is often a few hundred and p is in the order of tens of thousands). In
such cases, obtaining a rank r eigen decomposition of $* will cost O (n?p), which is
linear in p if n < p. This follows by observing that S = %XTX (where, X is mean-

centered) and an eigen decomposition of S*, i.e., <I>%S<I>% = (JLZXQ%)T(\/LEXQ%)
can be obtained via a SVD of the n x p matrix %ﬁXQ%—this SVD costs O (n?p).

In addition, there are certain costs associated with matrix multiplications. Indeed,
a careful book-keeping allows us to operate with matrices that are of low-rank—we
never need to create or form a dense p x p matrix. This is beneficial from a memory

@ Springer

Maximum likelihood factor analysis 295

standpoint and enables us to scale up the computations to instances where, p is of
the order of tens of thousands (as long as n is sufficiently small). First of all, note
that the computation of X®? costs O(np). In addition, one needs to compute the
diagonal entries of T := (I>_%UD1UT<I>%S as in (36). Note that 7" is a p X p matrix;
however, its diagonal entries can be computed without explicitly creating the matrix
T. This follows by observing that 7' can be written as the product of two low-rank
matrices: T = T,T>, where, T| = <I>_%UD1 and T, = UT<I>%S.N0te that: T} € RP*",
T, € WP and r < n. Hence, one can compute the diagonal entries of 7 with a cost
O (pr). It is important to note that 7> has to be computed with care, since we do
not want to create/store the matrix S—to this end, observe that 7> = 71X with
T = %UT(<I>%XT) € N and X € N"*P—we can thus compute 7> without
forming S.

When both p, n are large: When both r, p are large, the direct SVD factorization meth-
ods outlined above, will become computationally expensive. We will need to resort
to approximate schemes for large scale low-rank SVD decompositions. Approximate
rank r eigen decompositions can be computed using techniques in [12]; or meth-
ods based on the Lanczos method [20] or block power iterations [16]. This will cost
O(p?r), which can be significantly smaller than O(p3) forr <« p~n.

2.6 Obtaining solutions to Problem (2) when ¢ ~ 0
The conventional version of the ML factor model optimization problem is given by:

minimize — logdet(X~!) +tr(Z~'S)

(46)
st. T=W+LL', ¥ =diag¥,...,¥,) > 0,
which may be interpreted as a limiting version of Problem (2) with € — 04-. We note
that there are technical difficulties with Problem (46) as it may be unbounded from
below and hence a ML estimator need not exist. [31] discusses necessary and sufficient
conditions for boundedness of Problem (46). Problem (46) is bounded below under the
following conditions: (a) If S has full rank or (b) If S is rank deficient, thenr < s — 1
where, s denotes the number of nonzero coordinates in the sparsest nonzero vector
(i.e., a nonzero vector with the maximum number of coordinates that are zero) in the
null space of S. Unfortunately, computing the sparsest nonzero vector in a subspace is a
combinatorially difficult problem. However, note that if the sample covariance matrix
corresponds to that of a continuous random variable, then Problem (46) is bounded
below with probability one. Even if Problem (46) is bounded below, the minimum may
not be attained—the infimum may correspond to some coordinates of ¥ being set to
zero. These are known as Heywood cases [31]—they are infamously known to create
numerical difficulty from a computational viewpoint and may also lead to misleading
statistical inference.

If \ilE is a solution to Problem (2), then a limiting value of ‘ile ase | 04 will give a
solution to Problem (46) (provided a limit exists). This inspires a simple continuation
scheme: we consider a sequence of e-values that converge to a small number ¢’ (e.g.,

@ Springer

296 K. Khamaru, R. Mazumder

€ | € with € := 1078, say); and use Algorithm 1 with warm-start continuation.
Suppose, there is a subset of indices M C {1, ..., p} such that, 1/},~ =¢'foralli € M,
and 1&,- > ¢’ for all i ¢ M. We can obtain a good solution to Problem (46) by fixing
Y; = € for all i € M and optimizing over the remaining v;, i ¢ M values. This can
be performed by a simple modification to Algorithm 1: in (34), we update only the ¢;
values (recall that ¢; = wi_l for all i) corresponding to i ¢ M and set the remaining
¢; values to 1/¢’.

2.7 Ridge regularization

Instead of considering a direct lower bound on ; as in Problem (2), we can also
consider a ridge regularized version of Problem (46) which leads to the following
variant of Problem (22):

P
minimize f(¢) + Z y¢l-2 s.t. ¢ = diag(¢y,...,¢p) >0, 47)

i=1
for some regularization parameter y > 0. Algorithm 1 can be adapted to Problem (47)

by changing update (34) as:

#00 —argmin 3 {~loggi +sudi +v9l = Veiti]. G9)
“0 el

where, Vi ;’s can be computed as in Sect. 2.3.1. The ith coordinate of oD is given
by:

1 .
o = - (vk,i —sig (i — Vi)? + Sy) Cielpl @9
4

Note that s;; — Vi ; is the ith diagonal entry of the matrix S— @~ : UD,U" ® > S, which
can be rearranged as:

o> (q>%s<1>% _ UDIUT<1>%S<1>%) & =@ 2 (UT)UT) ® > (50
where, Disa diagonal matrix with diagonal entries given by

~)1 ifl<i<randif>1
"7 | Af otherwise.

This implies that the matrix in (50) is positive semidefinite; and in particular, the
diagonal entries are nonnegative: s;; — Vi ; > O foralli € [p]. This implies from (49)

that: wi(kﬂ) = (nglﬂ) > /2y. Hence ridge regularization keeps the estimated 1/;

values bounded a\lJvay from zero. A continuation scheme similar to that described in
Sect. 2.6 can be used with y | y’ (with y’ = 1078, say) to get a good solution to
Problem (46).

@ Springer

Maximum likelihood factor analysis 297

3 Computational experiments

We present computational experiments demonstrating the performance of Algo-
rithm 1, which we name FACTMLE. We compare its performance versus other popular
approaches for ML factor analysis on synthetic and real data examples. All computa-
tions were done in Matlab on a standard Mac desktop with 32 GB RAM.

3.1 Comparison across different methods

Competing methods: We compared our proposed method: Algorithm 1 (FACTMLE)
with the following leading algorithms for ML factor analysis:

1. Factoran: This is the widely used, native implementation of ML factor analysis
in Matlab; and this code is based on the seminal work of [19].

2. Emfact: This is a popular EM algorithm based method presented in [4].

3. Fa: This is an EM algorithm based technique for factor analysis based on [9].”
Of the above three methods, Factoran and Emfact apply only when n > p—thus
we restrict our attention to Fa as the only competitor of FACTMLE for examples where
n < p. We do not include the method of [8] in our comparisons, since it optimizes
a different criterion (not the maximum likelihood objective). In terms of scalability
considerations, the method of [8] is less scalable (since it requires performing the
eigen-decomposition of an unstructured p x p matrix) than FACTMLE. The standard
implementation of Factoran uses correlation matrices; hence, we perform a post-
processing of the results obtained from Factoran to facilitate comparison with other
algorithms.

Synthetic data generation: We generated (the true) L0 € S:7*"0 (with rg < p) with
entries drawn iid from N(u, o'2). For examples with n > p, shown in Fig. 1, we
set 4 = 10 and 6> = 1. The (true) unique variances vl = diag(llf?, 1//3, Sl wg)
were generated independently from an exponential distribution with mean 10. Once
W0 and LO were generated, we created £° = W0 + LO(L%)T. We generated X, »
as n independent samples from a multivariate Gaussian distribution with mean 0 and
covariance £°. We performed ten replications of the experiments.

Performance measures: All algorithms are compared in terms of the quality of
solution obtained (i.e., the objective value): we consider the negative log-likelihood
E(f)) = —logdet(f_l) + tr(ﬁ_1S) where, ¥ = W + LLT, assuming that the
estimates are feasible.

In addition, we consider the run-times of the different algorithms. This may depend
upon the different convergence criteria employed by the different algorithms (see
below); and the quality of solution obtained. We note that the quality of solutions (in
terms of objective value) can be different across the algorithms since the optimization
problem is nonconvex. Thus the run-time of an algorithm is interpreted along with the
quality of the available solution.

7 This function is available as a part of Matlab’s PRML toolbox https://www.mathworks.
com/matlabcentral/fileexchange/55883-probabilistic- pca-and-factor-analysis ?focused=6047050&
tab=function.

@ Springer

https://www.mathworks.com/matlabcentral/fileexchange/55883-probabilistic-pca-and-factor-analysis?focused=6047050&tab=function
https://www.mathworks.com/matlabcentral/fileexchange/55883-probabilistic-pca-and-factor-analysis?focused=6047050&tab=function
https://www.mathworks.com/matlabcentral/fileexchange/55883-probabilistic-pca-and-factor-analysis?focused=6047050&tab=function

298 K. Khamaru, R. Mazumder

-G~ FACTMLE -G~ FACTMLE
-~ 600 -+ Fa -+ Fa
Q/ Emfact 15} Emfact
- —[F Factoran —[F Factoran
8 500
< %) o
= 1] RS = ESEoE S NN g
£ 400 £ S pTATE
= A & -8 -&--0--8—--—+ o
& Y £
o A EE = 5r
o 300 fi\\/; e ~
‘3 \\ 5}" =
a0 O e ek {
g 200 B -0--0--0-0-—0 0*&+-$==6f$f3-$-§-g-—97
0 5 10 15 20 0 5 10 15 20
Number of factors Number of factors
ZoomedPlot: FACTMLE vs Fa ZoomedPlot:FACTMLEvs Fa
—_ 600 &:\\ -G FACTMLE warm —G- FACTMLE warm
< N33R ~+ Fa -+ Fa
< \Q\ —/- FACTMLE cold 17 |-A FACTMLE cold
g 500 3
<]
=
3 2
= 400 2 05f
T £
R g
o 300 i oF
2 L
5 ol bbb =8 ==8]
2 200
0 5 10 15 20 0 5 10 15 20
Number of factors Number of factors

Fig. 1 Figure showing performances of different ML methods for factor analysis for synthetic data with
(n, p) = (2200, 200). [Top panel] we compare the performance of Fa, FACTMLE, Factoran and Emfact
in terms of negative log-likelihood and run-time. We see that our method FACTMLE outperforms all the other
competing methods, both in terms of run-time and negative log-likelihood value (for different values of
r shown along the horizontal axes). In some cases, Emfact produces negative estimates of ®—in those
cases, we have not plotted the result obtained from Emfact. [Bottom panel] shows a zoomed-in version
of Fa (the best competitor of FACTMLE) versus FACTMLE with warm-start continuation across different r
values (denoted by “warm”) and without warm-start (this is denoted by “cold”). We see that the performance
of FACTMLE (with or without warm-start) is better than that of Fa. FACTMLE timings are found to improve
marginally in the presence of warm-starts. Results are averaged over ten replications and the bands represent
point-wise one standard error bars (the error bars for FACTMLE are quite narrow, and seem to overlap with
the average line)

Finally, we note that Algorithm 1 can readily incorporate warm-starts—they may
be useful if one desires a sequence of solutions to Problem (2) for different values of
r =1,2,.... Other algorithms like: Fa, Factoran and Emfact do not allow for
warm-start specification—so we used their default initialization strategy.

Summary of comparisons and observations: We first consider a synthetic dataset
with n > p. Figure 1 shows the performances of different methods for synthetic data
generated as above, with p = 200, n = 2200, ro = 8, and different choices of r.

For FACTMLE, the tolerance level n (for convergence based on objective value
difference, as explained in Sect. 2.3) was set to 10~4; we set the maximum number
of iterations to be 1000. For all other algorithms (Fa, Factoran and Emfact)

@ Springer

Maximum likelihood factor analysis 299

we choose their default convergence criteria with maximum number of iterations set
to 1000. Figure 1 suggests that the performance of FACTMLE, measured in terms
of the objective value, is significantly better than all the other algorithms—thereby
suggesting that it does well in the task it was set to accomplish. The performance of
Emfact, in terms of negative log-likelihood, is comparable to FACTMLE when r is
small. However, Emfact often encounters numerical difficulties (especially when r
is large) and produces negative estimates of ®—this violates the condition ® > 0 and
is highly undesirable. This suggests that one should be cautious while using Emfact
in practice. An attractive feature of FACTMLE is the timings. The number of iterations
required by Fa, Emfact and Factoran (to converge) is usually much larger than
that of FACTMLE. For example, for p = 200, r = 6 the (average) number of iterations
for Fa, Emfact,Factoran were around 1000 (i.e., the maximal iteration limit), but
for FACTMLE it was less than twenty. Note that in addition to a slow convergence speed,
the competing algorithms seem to get stuck in suboptimal local solutions. We observe
that the differences among FACTMLE and its competitors are more pronounced for
larger values of r. In terms of timings, FACTMLE is a clear winner. The performance
Fa seems to be better than Factoran and Emfact; and seems to be the only
competitor to FACTMLE.

We compare the performance of Fa with FACTMLE for two different types of initial-
izations: with warm start and with random initialization—see Fig. 1 (bottom panel).
We observe that for both types of initializations, FACTMLE outperforms Fa in terms
of the quality of solution obtained and also run-times. The timings of FACTMLE with
warm start is found to be slightly better than FACTMLE with cold start (as expected).
In addition to the examples reported here, we also took some other values of (n, p, r);
but the results were found to be quite similar—hence we do not report them here.

3.1.1 Further comparisons with Fa

We systematically observed that among Fa, Factoran and Emfact; Fa emerged as
a winner (see also Fig. 1) in terms of numerical stability, quality of solutions delivered
and run-times. We also note that Fa is the only method among the three which applies
for both the cases: n > p and n < p. Hence, we perform a more detailed comparison
between Fa and our proposed method: FACTMLE. We consider six additional datasets
(see Table 1) in our experiments: three synthetic and three real—this includes both the
cases n > p and p > n. For all the numerical examples in this section, we used the
same convergence criterion for both Fa and FACTMLE. We ran both Fa and FACTMLE
for a maximum of 2000 iterations and tolerance threshold of = 108 (in terms
of relative change in successive objective values). Let f;(alg) denote the objective
value (negative log-likelihood) for method alg € {Fa, FACTMLE} at iteration k.
We obtain the best objective value across all the methods and set it to f,.. We then
study the first time at which an algorithm “alg” reaches a tolerance level of “Tol”:
(fk(alg) — fo) /| f«| < Tol.

We consider the following datasets in our experiments.

Example a (Simulated Data), (p > n): We consider 3 synthetic datasets where, the
number of covariates p is larger than the number of samples n. We took: (n, p) =

@ Springer

300 K. Khamaru, R. Mazumder

Table 1 Performance of FACTMLE and Fa for different real and synthetic datasets as described in the text

Time (in s) Time (in s)

Tol Fa FACTMLE Tol Fa FACTMLE

Synthetic data (n = 500, p = 5000) Synthetic Data (n = 150, p = 1()4)
1072 >%83.142 (4.174) 4.497 (0.041) 1072 >*48.489 (4.605) 1.680 (0.027)
1073 >*107.713 (2.148) 7.702 (2.508) 1073 >%90.445 (1.601) 1.920 (0.048)
1074 >*112.145 (1.157) 18.490 (5.706) 1074 >%93,004 (0.774) 4.393 (0.592)
1073 >*112.146 (1.157) 29.369 (6.154) 1073 >%93.004 (0.773) 6.662 (0.764)
Synthetic data (n = 50, p = 104) Phoneme Data (n = 4509, p = 256)
1072 >*43.794 (1.160) 0.558 (0.097) 1072 3.038 (0.385) 0.125 (0.006)
103 >%*50.798 (0.712) 0.882 (0.228) 1073 >%23.902 (1.624) 0.187 (0.007)
104 >%*52.669 (0.362) 1.901 (0.375) 1074 >%29.635 (1.430) 0.433 (0.008)
1075 >*52.959 (0.296) 3.798 (0.496) 1079 >*37.035 (1.245) 0.679 (0.008)

ZipCode data (n = 1858, p = 249) Cancer data (n = 144, p = 16063)
1072 1.558 (0.060) 0.111 (0.007) 1072 1.055 (0.016) 3.816 (0.014)
1073 5.822 (0.099) 0.171 (0.008) 1073 12.021 (0.099) 5.346 (0.040)

10~4 >*8.673 (0.100) 0.445 (0.010) 1074 >*81.979 (0.355) 8.516 (0.050)
1073 >*10.803 (0.099) 0.648 (0.012) 1073 >%94.586 (0.357) 12.431 (0.060)

We show the times (s) taken by different algorithms to compute the entire path of solutions for different
values of r, as specified in the text. In all the above examples, a symbol “>*" means that the corresponding
algorithm did not converge to the specified tolerance level for multiple values of (for multiple replications).
This may be due to the algorithm being stuck in a suboptimal local solution (compared to a better solution
obtained by FACTMLE) and/or due to slow convergence behavior. For additional details (e.g., the choice
of problem parameters) see the main text. FACTMLE is seen to be a clear winner across all instances. The
results are averaged over 10 replications with standard errors in parenthesis

(500, 5000), (n, p) = (50, 10%) and (n, p) = (150, 10*). The data was simulated as
per the setup mentioned in Sect. 3.1, with the entries ¢? drawn iid from an exponential
distribution with mean 1. We set rp = 5. We considered a sequence of solutions for
the ML factor analysis problem for 15 equi-spaced values of r € [1, 18].

Example b (Phoneme Data), (n > p): The data were extracted from the TIMIT
database, a widely used resource for research in speech recognition. The data was
downloaded from the companion website® of the textbook [17]—it consists of
4509 log-periodograms of length 256-here, (n, p) = (4509, 256). We considered
a sequence of solutions for the ML factor analysis problem for 18 equi-spaced values
of r € [1, 27]. The sample covariance matrix S was poorly conditioned. The condition
number of S was ~ 3.9 x 10°.

Example ¢ (ZipCode Data), (n > p): This is the well-known ZipCode dataset’ which
was generated by scanning normalized handwritten digits by the U.S. Postal Service.

8 Available at: https://web.stanford.edu/~hastie/ElemStatLearn/datasets/phoneme.data.
9 Available at https://web.stanford.edu/~hastie/ElemStatLearn/datasets/zip.test.gz.

@ Springer

https://web.stanford.edu/~hastie/ElemStatLearn/datasets/phoneme.data
https://web.stanford.edu/~hastie/ElemStatLearn/datasets/zip.test.gz

Maximum likelihood factor analysis 301

These are 16 x 16 grayscale images corresponding to digits (0-9) that are normal-
ized/deslanted. The images were vectorized, and we created a data matrix comprising
of digits 0 and 6. The data matrix X, , had dimensions (1, p) = (1858, 249). We con-
sidered a sequence of solutions for the ML factor analysis problem for 15 equi-spaced
values of r € [1, 17]. The condition number of S here was ~ 3.8 x 1017.

Example d (Cancer Data), (p > n): This is a highdimensional microarray dataset
available from'? the companion website of [17]. It consists of gene expression mea-
surements for p = 16063 genes from n = 144 individuals. We considered a
sequence of solutions for the ML factor analysis problem for 15 equi-spaced values
of r € [1, 22]. The condition number of S here was ~ 1020,

For the synthetic dataset (Example a), we took € = 1073 (in Problem (2)). For
Examples b,c,d, the condition number of S was quite high—we took ¢ = 10~10
and Algorithm 1 was provided with this choice of €. For Algorithm 1, we did not
use the continuation strategy as described in Sect. 2.6. Algorithm 1 for » = 1 was
initialized by drawing entries from a uniform [0, 1] distribution; and we used warm-
start continuation to compute solutions for the other r values. For Fa we used its
default initialization scheme since it does not allow for warm-starts.

For all cases with n < p, the low-rank SVD step in Algorithm 1 was performed
according to the description given in Sect. 2.5 (for the case p > n). Forn > p, we
used the low-rank SVD method of Sect. 2.5 (for the case n > p).

Table 1 shows the results for all the four examples. We observe that FACTMLE
clearly works extremely well in terms of obtaining a good objective value in much
smaller run-times, compared to Fa. What is most important however, is that FACTMLE
is numerically robust—in fact, much more stable and reliable than Fa which often
encounters problems with convergence. In many cases (across multiple replications
and multiple values of) Fa is found to be trapped in poor fixed points with suboptimal
objective values. These are referred to by the moniker “>*"in Table 1. For the synthetic
datasets, the problem with convergence occurs even for small values of r (less than
5), and the issue is aggravated whenever r becomes larger than 5. Recall that the true
rank rg in the underlying model is 5; and in our experiments, the largest value of r we
took was 18. For the real datasets, the nonconvergence of Fa commonly occurs across
both small and large values of » > 1 (recall that the largest values of for the Zipcode,
Phoneme and Cancer datasets were 17, 27 and 22 respectively). We observe problems
with convergence as soon as the precision level becomes higher (denoted by the first
column ‘Tol’ in Table 1)—indicating that Fa rarely gets solutions as accurate as those
available from FACTMLE. We note that all the real datasets have a sample covariance
matrix with a very large condition number, making these problems computationally
challenging—however, we expect to often encounter datasets of this form in real-life
settings—thus, having a good robust algorithm is of paramount importance. In this
respect, FACTMLE seems to have a clear edge over the classical method Fa.

10 Data available at http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/ 1 4cancer.info.

@ Springer

http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/14cancer.info

302 K. Khamaru, R. Mazumder

4 Generalizing beyond a diagonal ¢

Here we discuss how our proposed framework can be adapted to handle more general
convex constraints (not necessarily diagonal) on ®. Towards this end, we have the
following remark:

Remark 2 For any r € [p] and any ® > 0 (not necessarily diagonal) the function

P > Fr(®) = Z (log (max{l, A;k}) —max{l, 1]} + 1)
i=1

. . . 1 1 . .
is concave in ® > 0; where, {A;‘}f are the eigenvalues of S2 ®S2. This follows via an
argument similar to that used in Proposition 5.

When @ > 0 lies in a convex set X, Problem (32) gets modified to:
minimize H(®) := F{(®) — Fo(®) st. & >0,PeX on

where, F|(®) := —logdet(®) + tr(®S) and F>(®) is as defined above (Remark 2).
Note that F;(®) and F>(®) are convex in ®. In a FA model, ® € X may encode
structure beyond a simple diagonal matrix. Note that @ is the precision matrix (inverse
covariance matrix) of the error vector u (cf display (1)) and a structure on @ is a
statement regarding the conditional (in)dependence structure [17] in u (assuming u
follows a Gaussian distribution). For example, @ can be block-diagonal, banded or
have entries with a small ¢;-norm.!!

The difference of convex optimization procedure described in Sect. 2.3 can also be
applied to Problem (51). To this end, note that step (34) in Algorithm 1 gets modified
to:

®**+) ¢ arg min [F1(<I>) —(0F @0, @) : ® e X, ® > 0} . (52)

Clearly, the efficiency of this procedure depends upon how easily subproblem (52)
can be solved—this depends upon X. In general, we expect the cost of solving (52)
and hence the cost of obtaining a good solution to Problem (51) to be higher than the
case where @ is diagonal. If @ is banded, block-diagonal, or has small £;-norm; X can
be described by a simple polyhedral set. Note also that the log-det barrier appearing
in F1(®) will implicitly enforce @ > 0.

Below, we illustrate two special cases:

e ® is block-diagonal (i.e., of the form (4) for a-priori specified block structure)
e @ is banded (i.e., of the form (5) with a-priori specified bandwidth b).

T Note that additional assumptions may be needed to ensure a unique decomposition of X into its com-
ponents ¥ and ® = LLT. However, the optimization task is well defined even in the absence of such
identifiability constraints.

@ Springer

Maximum likelihood factor analysis 303

For the above cases, a subgradient d F>(®) can be calculated as follows:

Blkdiag, (S%VDIVTS%) if ® is block-diagonal

IF2(®) = b radd o
Banded,, <S2VD1V S2) if @ is b-banded,

where, S% <I>S% = Vdiag(A7, ...,)\;)VT is an eigen-decomposition; and the diagonal
matrix Dy is given by equation (37). Note that when the matrix @ is block-diagonal,
the convex optimization problem (52) has a closed form solution. Concretely, we have

—1
oK+ — [Blkdiagp(S) - 3F2(q’(k))] ' Y

Notice that this inverse can be calculated efficiently by utilizing the block-diagonal
structure of the matrix. For instance, if the matrix Blkdiagp(S) —3F(®®) is a
block-diagonal matrix with m-blocks of equal sizes, the total cost of the inversion
in equation (53) will be O(p?/m?), whereas the cost of inverting a dense p x p
matrix is O (p?).

If @ is banded, Problem (52) will involve solving a semidefinite optimization prob-
lem where @ is of the form (5). This problem can be solved with off-the-shelf solvers
(e.g, we can use standard modeling tools like cvx, the SCS solver [28], etc) for
small/moderate scale problems. We used our own implementation of a gradient descent
algorithm to solve Problem (52). Our algorithm is a special instance of the determin-
istic algorithm presented in [3] for the graphical lasso problem [15]. Concretely, let
G (@) denote the objective function of Problem (52). Note that the gradient of G (®) is
locally Lipschitz: if ® ~ ®’ (and both are positive definite) then the following holds
IVG(®) — VG(®')|| < L||® — ®'| (where, the norm is the Frobenius norm) for
L ~ A\ (<I>’2). At every iteration ¢ (of the gradient descent method) we compute L
based on the previous estimate of ®. We use a step-size « = tv/L where, we take the
largest value of T € {0.5™ : m = 1,2, ...} to ensure a decrease in the value of the
objective function.

Another regularization scheme on € might be to constrain the £1-norm of its entries.
This can be imposed by adding an £1-norm penalty on the elements of ®, in the
objective function (51). In this case, Problem (52) will be given by the graphical lasso
[6,15] problem12 and can be solved via standard solvers [3,15].

We note that the framework outlined above, will not apply if the structure on ®
admits a complicated, nonconvex description—this may arise for example, if one
imposes a banded structure on ¥—this will lead to a nonconvex description of ®.

4.1 Computational experiments

We present some computational experiments for the cases when @ is not diagonal. In
our first example, we consider the case when ® > 0 is block-diagonal; in the second

12 This encourages a conditional independence structure among the variables in u (assuming u follows a
multivariate normal distribution).

@ Springer

304 K. Khamaru, R. Mazumder

example, we consider ® > 0 to be tri-diagonal (i.e., a banded matrix with b = 1 or a
1-banded matrix). Finally, we present run-time comparisons across ® being diagonal,
block-diagonal or tri-diagonal.

Synthetic data generation: Our data generation scheme is similar to Sect. 3.1. We
generated (the true) L0 € \P>70 (with ry = 8 for tri-diagonal case, and ryp = 10
for block-diagonal case) with entries drawn iid from N (1, 1). For the block-diagonal
case, the diagonal blocks of the matrix ®° were generated as follows: we first generate
square matrices A;, i = 1, 2 with entries drawn iid from an exponential distribution
with mean 1. We next generate square matrices <I>? = A,-Al.T and then create the
(true) block-diagonal matrix ®° with diagonal blocks <I>(1) and <I>(2). For the tri-diagonal
example, we first simulate a vector b = (by, ..., b,_1) with entries taken to be the
absolute value of an independent Gaussian distribution with mean O and standard
deviation 5. We then define the tri-diagonal matrix ®° as follows:

al bl 0
b
0= |"!
by

0...bp—1 ap
where, the vector a = (ay, az, ..., ap) is simulated in such a way that matrix oY is
diagonally dominant—thereby ensuring that the matrix ®° is PSD and tri-diagonal.
Concretely, in our simulation, the scalar a; satisfies @; = b;j_1 + b; + v;, where

byp = by = 0 and each v; is set to be the absolute value of an independent Gaus-
sian distribution with mean O and standard deviation 5. Finally, we define the (true)
covariance matrix X0 = (<I>O)_1 + LOLOT and generate the data matrix X,,x , with
rows corresponding to n independent samples from a multivariate Gaussian distri-
bution with mean 0 and covariance X°. For the block-diagonal case, we consider
(n, p) = (2000, 40) and in the tri-diagonal case we took (n, p) = (10, 000, 100).

Run-times for block-diagonal and tri-diagonal instances: We initialize our algo-
rithms with a random diagonal matrix, where the diagonal entries are drawn form the
uniform distribution in [0, 1]. We did not use warm-start continuation across different
r values—we expect that warm-starts might speed-up the overall computation time.
For our algorithm, we set the tolerance level n (for convergence based on objective
value difference, as explained in Sect. 2.3) to 10_4; and we set the maximum number
of iterations to be 1000. For the banded case, the inner semidefinite optimization prob-
lem (52) was solved to a tolerance of 10~ (based on relative difference in successive
objective values).

The result for the block-diagonal example is shown in Table 2 and the banded case
is shown in Table 3. We study the performance of our proposed algorithm based on
two criteria: (a) the objective value and (b) the run-time of the algorithm. Note that due
to the nonconvexity of Problem (51), the solution obtained will have a dependence on
the initialization. In these examples, the dependence on initialization was found to be
more pronounced than the case where ® was diagonal. Tables 2 and 3 show the best

@ Springer

Maximum likelihood factor analysis 305

Table 2 Table showing performance of our proposed algorithm when @ is block-diagonal (here, (n, p) =
(2000, 40))

Rank () Reference objective FACTMLE objective Time (in secs)
2 1091.23 449.30 (0.00) 0.01 (0.00)
4 857.90 443.84 (0.17) 0.31 (0.02)
6 512.29 440.71 (0.12) 0.37 (0.02)
8 462.80 438.48 (0.14) 0.39 (0.02)

“Reference objective” corresponds to the objective value based on the true underlying generative model (as
explained in the text). “FACTMLE objective” refers to the objective value obtained by our algorithm (best
solution obtained across 50 initializations)—it is smaller than the reference objective—showing that our
algorithm reaches a good solution, despite the highly nonconvex landscape of the optimization problem.
Time (in secs) denotes the average time across the replications, no warm-start continuation is used across
different r-values. Numbers within parenthesis denote the standard errors

Table 3 This table is similar to Table 2, but considers the case when @ is banded (here, (1, p) =
(10, 000, 100))

Rank (r) Reference objective FACTMLE objective Time (in s)
1 3771.57 117.11 (0.00) 0.64 (0.02)
3 2040.21 95.03 (0.18) 4.48 (0.17)
5 757.19 63.45 (0.07) 9.97 (0.31)
7 189.16 21.17 (0.09) 15.85(0.55)

Once again, we see that our proposed algorithm does a good job in obtaining good solutions. The times are
seen to increase with r—mnote that for every r, we use a random diagonal initialization for our algorithm,
as described in the text (no warm-start continuation is used across different r values)

Table 4 Table showing run-time comparisons to obtain a solution to Problem (51), when @ is specified to
be diagonal, block-diagonal or tri-diagonal—the algorithm run-times are denoted by Diag, Blk-diag and
Tri-diag, respectively

P Time ratio (example 1) Time ratio (example 2) Time ratio (example 3)
Blk-diag Tri-diag Blk-diag Tri-diag Blk-diag Tri-diag
Diag Diag Diag Diag Diag Diag

100 1047 (0.39) 66233 (39.05) 7.41(0.28) 149.02 (12.11) 141 (0.06) 1419.31 (20.98)
300 5.47(0.18) 1017.70 (55.55) 7.90 (0.11) 389.42(17.97) 1.31(0.01) 1379.07 (9.86)
S00 4.48(0.05) 1362.04(59.22) 8.64(0.10) 642.78 (15.66) 1.94(0.02) 1940.98 (23.97)

The cells display the run-time ratios averaged across replications (with standard errors within parenthesis).
For further details see text

objective value obtained among 50 replications (for every value of), and we also
mention the standard deviation across the objective values obtained. We are not aware
of any publicly available implementation for Problem (51). Hence, for reference, we
show the value of the negative log-likelihood based on the true underlying model. Note
that when rg > r the matrix X° is not a feasible solution for Problem (51). We compute
the objective value (i.e., the negative log-likelihood) at ¥ = W% 4 LLT, where L is the
best r rank approximation of L?. Observe that in both the examples (Tables 2 and 3),

@ Springer

306 K. Khamaru, R. Mazumder

our algorithm demonstrates good performance both in terms of total run-time and the
negative log-likelihood (objective value). The time taken for the banded case is longer
than the block-diagonal case partly because the value of p is larger.

Timing comparisons (diagonal versus non-diagonal): We compare algorithm run-
times for different structures on @ (diagonal, non-diagonal) on synthetic datasets (as
above) where, the underlying ®° is either diagonal, block diagonal or tri-diagonal. We
study the examples:

e example 1: we let ®° be block-diagonal (with 2 blocks of equal sizes), as discussed
earlier in Sect. 4.1.

e example 2: we set ® to be a diagonal matrix with diagonal entries set to those of
the matrix used in example 1.

e example 3: we let ®° be a tri-diagonal matrix, as discussed earlier in Sect. 4.1.

We set rop = 10, draw n = 10, 000 samples (as above) and take different values
of p € {100, 200, 500}. For every example, we consider three versions of our algo-
rithm: “FACTMLE- DIAG”, “FACTMLE- BLK- DIAG” and “FACTMLE- TRI- DIAG”—they
correspond to ® in Problem (51) being diagonal, block-diagonal (with 2 blocks) and
tri-diagonal, respectively. This setup allows us to study the run-time of our algorithms
under model misspecification in @, unlike the synthetic examples considered earlier.
We study the times taken by the algorithms to obtain a stationary point of Prob-
lem (51). For every algorithm, we consider the total time'® taken by it to compute
a path of solutions for r € {1, ..., 10} using warm-start continuation across r. For
r = 1, we initialize with a diagonal matrix with entries drawn independently from a
uniform distribution on [0, 1]. We perform 15 replications for every problem. Other
algorithm specifications are taken as before. Table 4 compares the algorithms: we

present two ratios—(a) Bl:;g:g denoting the ratio of the times taken by FACTMLE-
BLK- DIAG and FACTMLE- DIAG; and (b) Tr[i)'iiigag denoting the ratio of the times taken

by FACTMLE- TRI- DIAG and FACTMLE- DIAG. The average ratios and standard errors
are shown in Table 4. FACTMLE- DIAG is found to take between 0.05-1.3 seconds
(approx.), with the longest corresponding to example 3 (p = 500). Run-times of all
algorithms are found to increase with p. The run-time for FACTMLE- TRI- DIAG is
consistently higher than FACTMLE- BLK- DIAG and FACTMLE- DIAG—this is due to
the inner semidefinite optimization problem for which no closed form solution exists
(unlike the cases where @ is diagonal or block-diagonal). FACTMLE- BLK- DIAG and
FACTMLE- DIAG seem to have comparable run-times under model-misspecification
(example 3); in all other cases, FACTMLE- DIAG is found to be faster (approx. 4-11
times) than FACTMLE- BLK- DIAG.

Note that when p is of the order of a few thousands, FACTMLE- TRI- DIAG will
become prohibitely expensive. FACTMLE- BLK- DIAG will also be expensive if the
block-sizes become large. FACTMLE- DIAG can still be computationally feasible if n
is small (cf Sects. 2.5 and 3).

13 We declare convergence if the relative change in successive objective values is smaller than 1074,

@ Springer

Maximum likelihood factor analysis 307

5 Conclusions

In this paper, we present a new algorithmic framework for the well-known Gaussian
ML factor analysis problem. This is a challenging rank constrained nonconvex opti-
mization problem, for which very few reliable computational algorithms exist. A key
ingredient of our approach is a reformulation, where we minimize a continuous (non-
differentiable) nonconvex objective function including spectral functions, subject to
simple convex constraints. We employ an algorithm based on difference of convex
optimization and use structured SVD computations (involving the SVD of an x p
matrix) for scalability to large problems. Contrary to many standard FA algorithms,
where S is assumed to be of full rank, our approach applies to settings where S is rank
deficient—making it useful for highdimensional applications where, n can be much
smaller than p. Our approach is found to perform better than existing algorithms
for ML factor analysis, in terms of obtaining high-quality solutions in significantly
smaller runtimes. Compared to existing algorithms, our approach appears to have a
significant advantage when: (a) S is full rank and the number of factors is not too small
(b) S is rank deficient or S is of full rank but poorly conditioned. In this paper, we do
not discuss how to obtain dual bounds or certificates of global optimality (e.g., based
on mixed integer optimization methods as in the work of [8])—this is an interesting
direction for future research. We also discuss how to extend our framework to address
the case where ® is not diagonal, but is allowed to lie in a simple convex set. The
cost of this method depends upon how well we can solve Problem (52)—developing
specialized solvers for this problem (that apply to more general structures on X) is an
important direction for future research.

Acknowledgements The authors will like to thank the Editors and the anonymous Reviewers for their
helpful feedback and detailed comments that helped improve this manuscript. Rahul Mazumder was partially
supported by ONR-N000141512342, ONR-N000141812298 (YIP) and NSF-11S1718258. The authors will
also like to thank Columbia University (Statistics department) for hosting Koulik Khamaru as a summer
intern, when this work started.

A Appendix

Proposition 10 (See Sect. 6 in [10]) Suppose the function g : E +— (—00, 00) is
convex, and the point x lies in interior of dom(g) with E C RW". Let x", x € E and V"
be a subgradient of g evaluated at x” forr > 1. If x" — x and V" — v asr — oo,
then v is a subgradient of g evaluated at x.

A.1 Proof of Proposition 9

Note that the objective function f(¢) (see (22)) is unbounded above when ¢; — 0 for
any i € [p]—see also Proposition 3. This implies that there exists a « > 0 such that
¢® € [a, %]t” for all k. The boundedness of the sequence o® implies the existence

of a limit point of ¢, say, ¢*. Let ¢*/) be a subsequence such that ¢ — ¢*.

@ Springer

308 K. Khamaru, R. Mazumder

Note that for every k, ¢**1 € arg mingc F(¢; ¢®)) is equivalent to

(VA —0£00). 8- ¢ D)= 0 vpec. (54)

Now consider the sequence ¢&) ask j — oo. Using the fact that oD _¢® 0,
it follows from the continuity of V f(-) that: V f1 (¢*/*D) — V f1(¢*) as k; — oc.

Note that 8f2(¢(kf)) (see (36)) is bounded as ¢(kf) € la, %]p. Passing onto a
further subsequence {k}} if necessary, it follows that o f2(¢(k})) — ¥ (say). Using

Proposition 10, we conclude that ¢ is a subgradient of f; evaluated at ¢*. As k;. — 00,
the above argument along with (54) implies that:

(V1" —0f2(¢%).¢ —¢*) =0 V$ €C, (55)

where, 9 f2(¢*) is a subgradient of f> evaluated at ¢*. (55) implies that ¢* is a first
order stationary point.

A.2 Representing 8h(W, L)/6L =0

Note that dh(W, L)/dL = 0 is equivalent to setting (12) to zero, which leads to
L = SX~'L. By applying Sherman Woodbury formula on (¥ + LLT)~!, we have
the following:

L=Sx"'L
—1
_ (\11—‘ —w L (I n LTW—‘L) LT\II_1> L (56)
—1
=S\Il'L—S\Il‘L((I+LT\Il‘L) LT\II‘L) (57)
1
—SU'L—sw L <1 - (I n LT\II—IL)) (58)
~1
- S\II_IL(I—i-LT\II_lL) , (59)

where, Eqn (56) follows from (8); Eqn (58) follows from (57) by using the observation
that for a PSD matrix B, we have the following identity: I+ B)" !B =T1— (I +B)~!
(this can be verified by simple algebra).

Finally, we note that (13) follows by using the definition of L* and S* in (59) and
doing some algebraic manipulations.

References

1. Ahn, M., Pang, J.-S., Xin, J.: Difference-of-convex learning: directional stationarity, optimality, and
sparsity. SIAM J. Optim. 27(3), 1637-1665 (2017)
2. Anderson, T.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley, New York (2003)

@ Springer

Maximum likelihood factor analysis 309

13.

14.

15.

16.
17.

18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.

35.

. Atchadé, Y.F., Mazumder, R., Chen, J.: Scalable computation of regularized precision matrices via

stochastic optimization (2015). arXiv preprint arXiv:1509.00426

. Bai,], Li, K.: Statistical analysis of factor models of high dimension. Ann. Stat. 40(1), 436-465 (2012)
. Bai, J., Ng, S.: Large dimensional factor analysis. Found. Trends Econom. 3(2), 89—163 (2008)
. Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood

estimation for multivariate gaussian or binary data. J. Mach. Learn. Res. 9, 485-516 (2008)

. Bartholomew, D., Knott, M., Moustaki, I.: Latent Variable Models and Factor Analysis: A Unified

Approach. Wiley, London (2011)

. Bertsimas, D., Copenhaver, M.S., Mazumder, R.: Certifiably optimal low rank factor analysis. J. Mach.

Learn. Res. 18(29), 1-53 (2017)

. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)
10.
1.
12.

Borwein, J., Lewis, A.: Convex Analysis and Nonlinear Optimization. Springer, New York (2006)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl.
415(1), 20-30 (2006)

Davis, C.: All convex invariant functions of hermitian matrices. Archiv der Mathematik 8(4), 276-278
(1957)

Dinh, T.P,, Le T., Hoai A.: Recent advances in dc programming and DCA. In: Transactions on Com-
putational Intelligence XIII, pp. 1-37. Springer, New York (2014)

Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso.
Biostatistics 9, 432-441 (2007)

Golub, G., Van Loan, C.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Second Edition: Data
Mining, Inference, and Prediction (Springer Series in Statistics). Springer, New York (2009)
Hiriart-Urruty, J-B.: Generalized differentiability/duality and optimization for problems dealing with
differences of convex functions. In: Convexity and duality in optimization, pp. 37-70. Springer, New
York (1985)

Joreskog, K.G.: Some contributions to maximum likelihood factor analysis. Psychometrika 32(4),
443-482 (1967)

Larsen, R.M.: PROPACK-Software for large and sparse SVD calculations (2004). http://sun.stanford.
edu/rmunk/PROPACK

Lawley, D.N.: the estimation of factor loadings by the method of maximum likelihood. Proc. R. Soc.
Edinb. 60(01), 64-82 (1940)

Lawley, D.N.: Some new results in maximum likelihood factor analysis. Proc. R. Soc. Edinb. 67(01),
256-264 (1967)

Lawley, D.N., Maxwell, A.E.: Factor Analysis as a Statistical Method, 2nd edn. Butterworth, London
(1971)

Lewis, A.: Derivatives of spectral functions. Math. Oper. Res. 21(3), 576-588 (1996)

Lewis, A.S.: Convex analysis on the hermitian matrices. SIAM J. Optim. 6, 164-177 (1996)

Mardia, K., Kent, J., Bibby, J.: Multivariate Analysis. Academic Press, London (1979)

Nouiehed, M., Pang, J.-S., Razaviyayn, M.: On the pervasiveness of difference-convexity in optimiza-
tion and statistics (2017). arXiv preprint arXiv:1704.03535

O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and homo-
geneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042-1068 (2016)

Pang, J.-S., Razaviyayn, M., Alvarado, A.: Computing b-stationary points of nonsmooth dc programs.
Math. Oper. Res. 42(1), 95-118 (2016)

Pham Dinh, T., Ngai, H.V., Le Thi, H.A.: Convergence analysis of dc algorithm for dc programming
with subanalytic data (2013) (preprint)

Robertson, D., Symons, J.: Maximum likelihood factor analysis with rank-deficient sample covariance
matrices. J. Multiv. Anal. 98(4), 813-828 (2007)

Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, New York (2009)

Rubin, D.B., Thayer, D.T.: Em algorithms for ml factor analysis. Psychometrika 47(1), 69-76 (1982)
Saunderson, J., Chandrasekaran, V., Parrilo, P., Willsky, A.: Diagonal and low-rank matrix decom-
positions, correlation matrices, and ellipsoid fitting. SIAM J. Matrix Anal. Appl. 33(4), 1395-1416
(2012)

Shapiro, A., Ten Berge, J.: Statistical inference of minimum rank factor analysis. Psychometrika 67,
79-94 (2002)

@ Springer

http://arxiv.org/abs/1509.00426
http://sun.stanford.edu/rmunk/PROPACK
http://sun.stanford.edu/rmunk/PROPACK
http://arxiv.org/abs/1704.03535

310 K. Khamaru, R. Mazumder

36. Spearman, C.: “General Intelligence,” objectively determined and measured. Am. J. Psychol. 15, 201-
293 (1904)

37. Tuy, H.: Dc optimization: theory, methods and algorithms. In: Handbook of Global Optimization, pp.
149-216. Springer, New York (1995)

38. Vangeepuram, S., Lanckriet, G.R.G.B.: On the convergence of the concave-convex procedure. In:
Advances in Neural Information Processing Systems, (NIPS), vol. 22. MIT Press (2009)

39. Yuille, A., Rangarajan, A.: The concave-convex procedure (cccp). Neural Comput. 15,915-936 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Computation of the maximum likelihood estimator in low-rank factor analysis
	Abstract
	1 Introduction
	2 Methodology
	2.1 Reformulations
	2.2 Expressing Problem (22) as a difference of convex functions
	2.3 Algorithm based on difference of convex optimization
	2.3.1 Computing subgradients

	2.4 Computational guarantees for Algorithm 1
	2.5 Computational cost of Algorithm 1
	2.6 Obtaining solutions to Problem (2) when εapprox0
	2.7 Ridge regularization

	3 Computational experiments
	3.1 Comparison across different methods
	3.1.1 Further comparisons with Fa

	4 Generalizing beyond a diagonal
	4.1 Computational experiments

	5 Conclusions
	Acknowledgements
	A Appendix
	A.1 Proof of Proposition 9
	A.2 Representing h(Ψ,L)/L=0

	References

