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Abstract: Galactic dynamo models take as input certain parameters of the interstellar turbulence, most
essentially the correlation time τ, root-mean-square turbulent speed u, and correlation scale l. However,
these quantities are difficult, or, in the case of τ, impossible, to directly observe, and theorists have mostly
relied on order of magnitude estimates. Here we present an analytic model to derive these quantities in
terms of a small set of more accessible parameters. In our model, turbulence is assumed to be driven
concurrently by isolated supernovae (SNe) and superbubbles (SBs), but clustering of SNe to form SBs can
be turned off if desired, which reduces the number of model parameters by about half. In general, we
find that isolated SNe and SBs can inject comparable amounts of turbulent energy into the interstellar
medium, but SBs do so less efficiently. This results in rather low overall conversion rates of SN energy into
turbulent energy of ∼ 1–3%. The results obtained for l, u and τ for model parameter values representative
of the Solar neighbourhood are consistent with those determined from direct numerical simulations. Our
analytic model can be combined with existing dynamo models to predict more directly the magnetic field
properties for nearby galaxies or for statistical populations of galaxies in cosmological models.

Keywords: turbulence; galaxies: ISM; ISM: kinematics and dynamics; dynamo; galaxies: spiral; galaxies:
magnetic fields

1. Introduction

Turbulence affects a wide range of physical processes in the interstellar medium (ISM) of spiral
galaxies, including the turbulent dynamo. Its spectrum extends over a wide range of scales [1,2], apparently
maintained by diverse physical effects. Turbulent flows are characterized by certain physical parameters,
which are defined through some sort of averaging. These include the velocity correlation scale (or
integral scale) l, which is similar to, but smaller than, the scale of the force driving the turbulence, the
root-mean-square (RMS) turbulent speed u, and the turbulent correlation time τ.

In this work, our aim is to obtain scaling relations for the turbulence parameters l, u and τ in terms
of other quantities like gas density, sound speed, and supernova rate density. The latter parameters are
often readily computed from observations or models, so such relations can provide a missing link. We
are motivated by one application in particular: the galactic dynamo, which is responsible for amplifying
a galaxy’s magnetic field up to an energy comparable with that of the turbulence. The properties of the
magnetic field as it evolves and saturates are predicted to depend on the values of the parameters u, τ and
l [3–7].
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Stellar feedback probably contributes most of the energy injected into turbulence, at least in the Milky
Way and in nearby star-forming galaxies [8–10]. This energy is mainly supplied by supernovae (SNe), as
this source generally dominates over other stellar contributions like winds [e.g. 11,12] and the expansion
of HII regions due to radiation pressure and ionized gas pressure [e.g. 13]. However, in some cases sources
of interstellar turbulence other than SNe are likely to be important [8,9,14–18]. Galaxies accrete gas—if gas
were not replenished in this way then star formation would be quenched too early to explain observations.
Accretion onto the galactic disc could predominantly occur in the disc outer region, but inward flows can
transport this gas to smaller radii [e.g. 19]. This potential source of turbulence can be difficult to estimate,
but could dominate in some cases [8,9]. Spiral arms may also contribute to driving turbulence through
various proposed mechanisms, but this contribution is likely subdominant [8,15]. The magnetorotational
instability could also drive interstellar turbulence, tapping energy from galactic differential rotation. This
mechanism may be important in the outer disc where the star formation rate is small [20], but is otherwise
likely to be subdominant [8,10,14]. For simplicity, we will assume in this work that the turbulence is driven
exclusively by SNe.

To derive the correlation scale l, we first estimate the turbulence driving (or injection) scale. The
driving scale is usually assumed to be of the order of the typical size of a supernova remnant (SNR).
However, this assumption ignores that SNe tend to be clustered together in OB associations, leading to the
formation of much larger structures known as superbubbles (SBs), which can drive turbulence on larger
scales [e.g. 21].

The ISM has a multi-phase structure, with a cold phase concentrated into dense clouds near the
midplane, a more diffuse warm phase, and a transient low density hot phase. For simplicity, our model
treats the ISM as a uniform medium, neglecting its various phases. As such, the turbulence parameters we
derive can be interpreted as volume- and time-averaged quantities.

There have been quite a few observational studies attempting to measure various length scales
associated with turbulence, be it in the Milky Way or nearby galaxies, using differing methodologies
and assumptions [e.g. 22–27]. However, interpreting such observations to extract particular physical
scales used in theoretical models, and the dependence of these scales on other parameters, is still very
challenging, and estimates are prone to large uncertainties.

Modeling the dependence of the RMS turbulent speed u on parameters like the SN rate density (which
can be related to the star formation rate surface density) is desirable. Some progress along these lines
has recently been made. For example, to estimate the magnetic field strength as a function of gas density,
star formation rate density and gas scale height, Schober et al. [28] assume proportionality between the
turbulent magnetic and kinetic energy densities. To estimate the turbulent kinetic energy density, they
derive an expression for the turbulent velocity by assuming equal injection and dissipation rate densities
of turbulence. To compute the injection rate, they introduce the parameter fSN, which is the fraction of SN
energy converted into turbulence. To compute the dissipation rate, a turbulent length scale is required,
which they assume to be equal to the gas scale height. Our approach is similar to that of Schober et al. [28],
but we calculate the fraction of SN energy converted into turbulence, rather than treating it as a parameter,
and we model the turbulent correlation scale using the similarity solutions of SNRs and SBs.

A detailed analytic model that includes the calculation of the turbulent velocity was presented by
Krumholz et al. [9]. In addition to turbulence driving by SNe, their model includes driving by gravity,
whereby potential energy of radially inflowing gas is converted into turbulent energy. Net radial inflow is
initiated by torques exerted by non-axisymmetric structures, that are in turn formed due to gravitational
instability in the disc. However, they find that this driver tends to be subdominant for local spirals and
dwarfs, though it tends to dominate for high-redshift galaxies and local ultraluminous infrared galaxies
(ULIRGs). In their model, they compute the 1D turbulent velocity dispersion that can be sustained from
star formation feedback alone, by balancing energy injection rate and dissipation rate surface densities.
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Like Schober et al. [28], they express the dissipation by setting the turbulent scale equal to the gas scale
height (see Bacchini et al. [10] for another, very recent, model which takes the turbulent scale to be twice
the scale height). To express the injection rate surface density, Krumholz et al. [9] assume a momentum
injection per unit mass of stars formed, which is based, in part, on results from simulations of single SNe,
and assume that the injection happens once motions driven by stellar feedback slow to be comparable to
the overall ambient velocity dispersion. Again, the main difference in our approach is that we compute
the turbulent scale and SN energy injection using the SNR and SB similarity solutions.1

The quantity u, or, more precisely, its 1D counterpart, can in principle be directly observed as a velocity
dispersion [e.g 30–32]. However, disentangling the contribution to line broadening due to turbulence from
other contributions, such as thermal broadening and cloud-cloud dispersions, introduces uncertainty [33].
Assuming the turbulence to be isotropic, values for the 1D velocity dispersion can be multiplied by

√
3,

which typically yields estimates in the range 10–30 km s−1 for the warm gas.
Also elusive is a reliable estimate of the turbulent correlation time τ, which cannot be observed

directly since it is of order 10 Myr. It is usually assumed to be equal to the eddy turnover time τe ' l/u.
But this assumption is not justified when the time scale for the flow to renovate τr is smaller than τe, in
which case one would expect τ ' τr [e.g. Ch. VI of Reference 3]. This scenario occurs if the SN rate density
is sufficiently high that, on average, successive SN or SB shocks pass through a random point in the ISM
before a typical energy-carrying eddy has had a chance to undergo significant distortion.

A possible remedy is to estimate these parameters from simulations [34–37]. De Avillez and
Breitschwerdt [34] present hydrodynamic and magnetohydrodynamic (MHD) simulations of the
multi-phase ISM in the Solar neighbourhood. In their models, turbulence is driven by SN explosions,
50–60% of them clustered, and they observe SBs of up to 500 pc in size. The correlation scale of the
turbulent motions in the ISM is about 75 pc in their models.

More recently Hollins et al. [37] conducted MHD ISM simulations in a shearing periodic box, with
parameters suitable for the Solar neighbourhood, but without SN clustering. For the warm gas at the
galactic midplane, they obtain a velocity correlation scale of l ≈ 60 pc and an RMS turbulent speed of
u = 8 km s−1, which corresponds to an eddy turnover time of τe ' l/u ≈ 7 Myr. If no phase separation
is applied they find l ≈ 74 pc, u ≈ 13 km s−1 and τe ≈ 6 Myr. Away from the midplane, at height
|z| = 0.4 kpc, they find l ≈ 87 pc and u ≈ 3 km s−1 for the warm phase, and l ≈ 117 pc and u ≈ 4 km s−1

for all the gas, unseparated by phase. These lead to much larger values of τe ≈ 30 Myr at |z| = 0.4 kpc than
at the midplane, but they compute the correlation time as τ ≈ 5 Myr, finding it to be almost independent
of |z|.

Although such studies are valuable, their underlying setups can differ in important but subtle ways,
and they are too expensive to be able to probe a large swath of parameter space, and, ideally, flesh out
relations between turbulence parameters and other galaxy parameters. Thus, there is a need for transparent
calculations that improve upon order-of-magnitude estimates [3,6,38,39], and this is the gap we strive to
fill, to some extent, in this work.

The paper is organized in the following way. In Section 2 we present our main calculation of the
turbulence parameters, along with the necessary theoretical background. We then explore the parameter
space in Section 3. In Section 4, we discuss the results of models that assume that all SNe are isolated or all
SNe reside in SBs. We go on to briefly consider a variation of the model that places more emphasis on the

1 Elstner and Gressel [29] used MHD simulations of the local ISM to obtain empirical scaling relations for certain turbulent
transport coefficients, with independent parameters being the star formation rate surface density, midplane gas density, and
angular velocity of gas about the galactic centre. These could potentially be combined with standard analytic expressions for the
turbulent transport coefficients to obtain scaling relations for τ and u.
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Table 1. The underlying ISM parameters with adopted values. ‘Usage’ designates whether the parameter is
needed to model isolated SN driving or SB driving. (If either SBs or isolated SNe are neglected, then fSB = 0
or fSB = 1, respectively.) The range suggests plausible values for Milky Way-like galaxies, but the model is
not restricted to this range. The fiducial values refer to typical estimates for the Solar neighbourhood of the
Milky Way, averaged across the Galactic disc [40].

Usage Symbol Unit Range Fiducial
Ambient sound speed SN & SB cs km s−1 10–20 10
Ambient gas number density SN & SB n cm−3 0.1–1 0.1
SN rate per unit volume SN & SB ν kpc−3 Myr−1 25–100 50
Initial SN energy SN & SB E0 erg 1050–1051 1051

Factor used in estimate of integral scale SN & SB C – 3/8–1 3/4
Fraction of SNe clustered into OB associations SN & SB fSB – 0.5–0.75 0.75
Disk scale height SB H kpc 0.2–1 0.4
Number of SNe residing in an SB SB NSB – 102–103 102

Fraction of the SB energy that is mechanical SB η – 0.05–0.1 0.1
SB horiz. radius at blowout, as fraction of H SB ξ – 1

3 –1 1

thin cloud layer in Section 5. In Section 6, we discuss the limitations of our model and opportunities for
extending it. Finally, we summarize and conclude in Section 7.

2. Estimation of Interstellar Turbulence Parameters

Our approach for calculating the turbulence parameters l, u, and τ is summarized as follows. Using a
standard scaling relation for the outer radius and speed of an SNR, and assuming that the SNR injects
its energy into the ISM once it slows to the ambient sound speed, we derive a scaling relation for the
injection scale lSN of turbulence driven by isolated SNe. We then repeat this procedure for SBs, which have
their own standard scaling relation, to obtain an injection scale lSB; however, we in addition include the
possibility that the SB blows out of the disc before it can slow to the ambient sound speed. Combining
driving by SNe and SBs additively allows us to write down the energy injection rate density. We then
assume a simple form for the spectrum which allows us to compute analytically the integral scale l. Given
l, we can write the spectral energy transfer rate density, equal to the turbulent energy dissipation rate
density, in terms of the turbulent velocity u. We next balance energy injection and dissipation rates, and
solve for u to obtain a scaling relation for the latter. The next step is to estimate the correlation time τ,
which we take to be equal to the smaller of the eddy turnover time τe and the average time for the flow
at a given position to renovate due to the passage of an SN or SB blast wave, τr. Table 1 summarizes
the independent parameters used in our scaling relations. These are free to take on any values, but we
have included a rough range. If desired, our model can be further simplified by including only one of the
driving channels, either isolated SNe or SBs.

2.1. Similarity Solutions

2.1.1. SNRs

Toward the end of its life, an SNR experiences a momentum-conserving snowplough (MCS) phase,
such that its shell expands according to [41,42]

RSN ' Ata and ṘSN ' aAta−1, (1)
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where A = R1−a
0 (Ṙ0/a)a, a = 1/4, R0 ≡ R(t0), Ṙ0 ≡ Ṙ(t0), the subscript ‘0’ denotes the onset of the

MCS, when the interior has cooled, and t � t0 has been assumed. Using the Sedov–Taylor similarity
solution (RSN ∝ t2/5) and a prescription for radiative cooling, Woltjer [41] (see also Reference [42])
estimates t0 = 0.036 Myr E4/17

51 n−9/17
1 , R0 = 21 pc E5/17

51 n−7/17
1 , and Ṙ0 = 2.3 × 102 km s−1 E1/17

51 n2/17
1 ,

where E51 = E0/(1051 erg) is the initial energy of the SN explosion in units of 1051 erg and n1 = n/(1 cm−3)

is the ambient gas number density in cm−3 [see also Ch. 7 of Reference 43]. Then, with t1 = t/(1 Myr),
we have

RSN = 54 pc E4/17
51 n−19/68

1 t1/4
1 and ṘSN = 14 km s−1 E4/17

51 n−19/68
1 t−3/4

1 . (2)

Cioffi et al. [44] argue that while the MCS phase is approached asymptotically at late times, the
SNR will typically merge with the ISM before entering a full-fledged MCS phase. They derive a slightly
different solution, valid for t > t0 = 0.013 Myr E1/14

51 n−4/7
1 , corresponding to R0 = 14 pc E2/7

51 n−3/7
1 and

Ṙ0 = 4.1 × 102 km s−1 E1/14
51 n1/7

1 . For t � t0 this leads to the relations

RSN = 56 pc E31/140
51 n−9/35

1 t3/10
1 and ṘSN = 16 km s−1 E31/140

51 n−9/35
1 t−7/10

1 , (3)

which are very similar to equations (2). Below we choose to adopt equations (2), but it is trivial to replace
these with equations (3), with a = 3/10. This leads to only minor differences in the results.

The ISM contains magnetic fields and is multi-phase, hence inhomogeneous; these details are
neglected in our model. Kim and Ostriker [45] simulated the expansion of a radiative SNR into a uniform
medium or a two-phase ambient medium containing cold clouds embedded in a warm neutral medium.
For the former, they also considered the case where the environment was filled with an initially uniform
magnetic field. They found that magnetic fields do not affect the evolution of the SNR unless the field is
very strong (plasma β ∼ 0.1). Further, they found that the radial momentum injection by the SNR into the
environment is only 5% smaller for a two-phase medium than for a uniform medium with the same mean
density. Meanwhile, Martizzi et al. [46] found that the asymptotic radial momentum of an SNR is typically
smaller by about 30% in an inhomogeneous medium compared to a homogeneous medium of the same
mean density. This decrement is caused by extra cooling due to the inter-mixing of cold clouds and hot
shocked gas. As these differences are relatively small, we model the ambient medium as being of uniform
density. These studies do suggest, however, that it is important to include the different ISM phases in
estimates of n, and in our model, n could be thought of as a volume-averaged value in the galactic disc.

2.1.2. SBs

Following Mac Low and McCray [47], we use the similarity solution of Weaver et al. [48] and Weaver
et al. [49] to model the evolution of an SB in a homogeneous medium:

RSB = Ãtα = 0.27 kpc L1/5
38 n−1/5

1 t3/5
10 and ṘSB = 16 km s−1L1/5

38 n−1/5
1 t−2/5

10 , (4)

where Ã = (125LSB/154πρ)1/5, α = 3/5, and ρ = (14/11)mHn has been assumed to allow for helium.
Further, t10 = t/(10 Myr) and L38 = LSB/(1038erg s−1), where LSB is the equivalent mechanical luminosity
of the SNe in the OB association,

LSB = η
NSBE0

tSB
, (5)

and where NSB is the number of SNe contributing to the SB over its lifespan tSB and η is the fraction of the
injected energy converted into bulk kinetic energy of the SB.

A detailed discussion of the features and applicability of the above similarity solution is given by
Mac Low and McCray [47] and Breitschwerdt et al. [39]. In particular, radiative cooling of the SB interior
can be neglected for the Milky Way parameter values but may be important in denser media, thicker
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discs, or smaller OB associations. We have included an efficiency factor η ≤ 1 to account for the fact that
not all of the energy from SNe ends up as mechanical energy of the SB. The value of η is currently not
well-constrained. Yadav et al. [50] compare 3D and 1D simulations of varying resolution. They conclude
that η (which in their definition is the ratio of the total combined thermal and bulk kinetic energy to
energy injected by SNe) increases with resolution and is not converged at the highest resolutions. They
attribute this to the exclusion in the simulations of explicit diffusion processes needed to obtain radiative
layers thick enough to be resolved. Nevertheless, their work suggests that η is a decreasing function of the
ambient density n and time since the onset of SB expansion. These results are generally consistent with
those of El-Badry et al. [12], who use 1D simulations and analytical solutions to model the evolution of
an SB. To model mixing of hot and cold gas due to 3D hydrodynamic instabilities, which would affect
cooling in the shell-bubble interface, they include an explicit diffusion term with adjustable diffusivity.2

We adopt η = 0.1 as a fiducial value for an ambient density of n = 0.1 cm−3, and η = 0.05 for n = 1 cm−3.
These values are generally consistent with simulations, and are also comparable to mechanical efficiencies
estimated for isolated SNe (e.g., Ch. 7 of Dyson and Williams 43, and Section 4 below).

The solutions presented above have been obtained for a homogeneous ambient medium, and, strictly
speaking, they do not apply when RSB becomes comparable to the pressure scale height. We address
this limitation below by considering the case where the SB blows out of the disc. In 3D MHD numerical
simulations with a realistic stratification of the ambient medium and an imposed magnetic field, Stil et al.
[52] find that the above self-similarity solution approximates the SB evolution rather accurately. On the
other hand, Ntormousi et al. [53] simulate two SBs colliding within a turbulent ISM. While the expected
RSB ∝ t3/5 expansion is reproduced without magnetic fields or for a mean magnetic field that is parallel to
the collision axis, they find that the presence of a mean magnetic field component perpendicular to the
collision axis can result in a flatter SB expansion with time. Furthermore, Breitschwerdt et al. [39] argue,
using MHD simulations of the local ISM, that analytical solutions are rather inadequate for modeling SB
evolution in a multi-phase ISM. In this work we choose, for simplicity and tractability, to treat the ISM as a
uniform medium and to ignore the effects of magnetic fields.

2.2. Energy Injection Scales

2.2.1. SNRs

An SNR merges with the ISM at t ≈ tSN
s , where tSN

s is the time at which the expansion velocity of the
SNR shell equals the ambient sound speed cs.3 Then we obtain

tSN
s =

(
aA

cs

)1/(1−a)

= 3.5 Myr E16/51
51 n−19/51

0.1 c−4/3
10 , (6)

2 Fierlinger et al. [51] performed 1D simulations of SN explosions of massive single stars in a dense ambient medium ∼ 100 cm−3,
and found that the preceding wind-blown bubble phase leads to a strong overall reduction in radiative cooling losses. Consistent
with the works mentioned above, they find that the importance of cooling depends on resolution, and argue that numerical
diffusive mixing in their simulations approximates mixing by turbulent diffusion in nature.

3 Alternatively, we could have assumed that SNRs and SBs break up when their expansion velocity reduces to u. This would
complicate the model by introducing an additional feedback, and is not expected to lead to important differences, since u/cs is of
order unity (Section 3). As such, we leave this idea for future work.
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where n0.1 = n/0.1 cm−3 and c10 = cs/(10 km s−1). The turbulent driving scale can be taken to be of order
the SNR radius at that time,

lSN ≈ RSN(t
SN
s ) =

(
aA1/a

cs

)a/(1−a)

= 141 pc E16/51
51 n−19/51

0.1 c−1/3
10 . (7)

2.2.2. SBs

Similarly, the time tSB
s when the expansion speed of an SB reduces to the ambient sound speed,

and hence it comes into pressure balance with the surrounding medium, follows from the second of
equations (4), assuming ṘSB = cs. Unlike a typical SNR, an SB may be able to blow out of the disc at some
time tSB

b < tSB
s . Then the SB time scale appropriate to the turbulent flow in the disc is given by tSB

b rather
than tSB

s . For the mechanical luminosity LSB, this leads to

LSB = η
NSBE0

min(tSB
s , tSB

b )
. (8)

The self-similar solution presented above yields, from ṘSB(t
SB
s ) = cs,

tSB
s = 31 Myr η1/3

0.1 N1/3
100 E1/3

51 n−1/3
0.1 c−5/3

10 , (9)

where η0.1 = η/0.1 and N100 = NSB/100. This corresponds to

RSB(t
SB
s ) = 0.53 kpc η1/3

0.1 N1/3
100 E1/3

51 n−1/3
0.1 c−2/3

10 . (10)

The evolution of an SB in a stratified ISM [54] is discussed by Mac Low and McCray [47] (see also
Refs. [55] and [56]). These authors identify the time when an SB blows out of the disc with the moment
when its shell begins to accelerate away from the midplane. They suggest that this occurs when the SB
radius at the midplane is about equal to the gas density scale height H, and the SB extends to a height
z ≈ 3H above the galactic midplane. Mac Low and McCray [47] adopt H = 500 pc, their estimate of the
scale height of the Lockman layer of neutral hydrogen. They argue convincingly that it is this diffuse
layer, rather than the thinner cloud layer with scale height ∼ 100 pc, that has the more important influence
on the dynamics of the SB. More recent estimates of the local scale height of the Lockman layer suggest
300–400 pc [40], and we adopt H = 400 pc as our fiducial value.

As with turbulence driven by isolated SNe, we identify the injection scale of turbulence with the final
radius reached by an SB near the midplane,

lSB = min
[

RSB(t
SB
s ), ξH

]
, (11)

where the second case corresponds to blowout, and ξ is a parameter of order unity. The scale ξH is the
turbulent driving scale in the case that the SB blows out of the disc. Note that the vertical size of the
SB when it blows out is not required, though it is expected to be equal to a few × H [47]. Below we set
ξ = 1 for simplicity and because this is consistent with the horizontal extents of SBs at blowout in the
simulations of Mac Low and McCray [47], but we return to consider the case ξ = 1/3 in Section 5.
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Hence, lSB = RSB(t
SB
s ) is replaced by lSB = ξH if the time to attain blowout tSB

b is less than the time to
slow to the ambient sound speed tSB

s . For a flared disc, we might have H ∼ 0.2 kpc near the disc centre,
and H ∼ 1 kpc near the outskirts of the star-forming disc. Since RSB(t

SB
b ) = ξH, we then have

tSB
b =

(
ξH

Ãb

)1/α

= 15 Myr η−1/2
0.1 N−1/2

100 E−1/2
51 n1/2

0.1 ξ5/2H5/2
400 , (12)

where H400 = H/(0.4 kpc). For the equivalent mechanical luminosity LSB, we then obtain

L38 =

{
0.10η2/3

0.1 N2/3
100 E2/3

51 n1/3
0.1 c5/3

10 , if tSB
s ≤ tSB

b ;

0.21η3/2
0.1 N3/2

100 E3/2
51 n−1/2

0.1 ξ−5/2H−5/2
400 , if tSB

s > tSB
b ,

(13)

which is close to the values typically assumed.
We assume that most of the energy is injected into the ISM once the SNR or SB reaches its maximum

radius, respectively lSN or lSB, and fragments. The mass of the outer shell is equal to that swept up from
the ambient medium. A fraction fSB of SNe are assumed to contribute to SBs, so that

νSN = (1 − fSB)ν, (14)

where ν is the rate per unit volume for all SNe in the galaxy. The rate per unit volume of SBs is then

νSB =
fSBν

NSB
. (15)

Higdon and Lingenfelter [57] estimate that the fraction of SNe occurring in OB associations is ∼ 3/4 for
the Milky Way, and we adopt this as our fiducial value for fSB.

If the SB blows out, we assume that it immediately loses pressure support and slows to the ambient
sound speed in the disc. The energy injected is assumed to be equal to the bulk kinetic energy of swept up
ambient matter ∼ 2

3πρξ3H3c2
s . Likewise, the SB would have injected ∼ 2

3πρR3
SB(t

SB
s )c2

s had it been able to
decelerate to the sound speed and break up without blowing out. Therefore, the efficiency of conversion
of SN energy to turbulent energy in the disc by SBs is reduced by the factor ξ3H3/R3

SB(t
SB
s ). This implies

that the value of the scale height can be critical in determining the efficiency of energy conversion.

2.3. Energy Conversion Efficiency

The efficiency of turbulent energy injection is given by

ε =
Ėi

νE0
, (16)

where Ėi is the rate of turbulent energy injection per unit volume and νE0 is the rate of total energy per
unit volume released by SNe. The injection rate Ėi is given by the sum of the contributions from isolated
SNe and SBs,

Ėi = Ėi
SN + Ėi

SB =
2π
3

ρc2
s ν

[
(1 − fSB)l

3
SN +

fSB

NSB
l3
SB

]
. (17)

where the swept up material is assumed to have the same average density ρ for both isolated SNe and SBs.
While SBs expand to larger heights, where the ambient density is smaller, it is the lateral expansion within
the disc that is most relevant for our calculation, so we regard this assumption as reasonable. For fiducial
parameter values this gives Ėi ∼ 2.5 × 1037erg s−1 kpc−3, which leads to an overall efficiency ε = 0.016, or
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3.4 × 1037erg s−1 kpc−3 and 0.022 if we instead adopt n0.1 = 10. This value of ε is still a few times lower
than the value ≈ 0.1 obtained by Thornton et al. [58]. The latter could be an overestimate because their
simulations end long before the shell velocity has reduced to the ambient sound speed [51]. However, the
values obtained in our model agree closely with those obtained by Bacchini et al. [10], who quote a median
SN efficiency, for the galaxies modeled, of ∼ 0.015 in the warm atomic gas, and a range of ∼ 0.01–0.03.

2.4. Energy input into an outflow

When an SB blows out, the part of its mechanical energy that is not deposited into the ISM is, in
principle, available for driving a galactic outflow. This may take the form of a galactic wind if the gas
escapes, or fountain flow if it returns to the disc. Thus, we estimate the power per unit volume of the ISM
made available to drive outflows as

Ėout =





0, if tSB
s ≤ tSB

b ;

2π
3

ρ

[(
ṘSB(t

SB
b )
)2

− c2
s

]
ν

fSB

NSB
(ξH)3 =



(

ṘSB(t
SB
b )

cs

)2

− 1


 Ėi

SB, if tSB
b < tSB

s .
(18)

where ṘSB(t
SB
b ) (Equation 4, right) is the SB expansion speed at the time at which blowout occurs, tSB

b
(Equation 12), and where we have made use of Equation (11) for lSB. For our fiducial values, we obtain
ṘSB(t

SB
b ) = 15 km s−1 and Ėout = 1.3 × 1037erg s−1 kpc−3, which is equal to about half the value deposited

into the ISM by isolated SNe and SBs, and about 1.25 times the value deposited by SBs alone. The estimate
is sensitive to the degree of SN clustering, disc thickness (and, hence, galactocentric distance) among other
parameters. We leave further exploration of the outflow properties for future work.

2.5. Relative Contribution from Isolated SNe and SBs

The ratio of the rates of energy per unit volume injected by the two mechanisms is

Ėi
SN

Ėi
SB

=
l3
SNνSN

l3
SBνSB

=





0.63
(

3(1− fSB)
fSB

)
η−1

0.1 E−1/17
51 n−2/17

0.1 c10, if tSB
s ≤ tSB

b ;

1.47
(

3(1− fSB)
fSB

)
N100E16/17

51 n−19/17
0.1 c−1

10 ξ−3H−3
400, if tSB

b < tSB
s .

(19)

Thus, for typical parameter values isolated SNe and SBs inject comparable amounts of energy, but the
ratio can vary rather strongly between and within galaxies. Likewise, Norman and Ferrara [21] find that
SBs and isolated SNe contribute about equal energies (see their Figure 1 and discussion following their
Equation (3.13)). Their model, however, is for highly supersonic turbulence, obtained for the case where
heating of the ISM by turbulent dissipation is negligible. Turbulence in the warm phase of the ISM is
known to be transonic [e.g. 59–61].

2.6. Turbulent Correlation Scale

We are now in a position to estimate the correlation or integral scale l. We adopt a simplified spectral
model with constant spectral index −γ. The energy per unit volume injected at scale l0 with wavenumber
k0 = 2π/l0 is given by

E =
∫

∞

0
Ẽ(k)dk = Ẽ0

∫
∞

k0

(
k

k0

)−γ

dk, (20)



Version August 18, 2020 submitted to Galaxies 10 of 27

where the spectral energy distribution Ẽ(k) = Ẽ0(k/k0)
−γ for k ≥ k0 and Ẽ(k) = 0 for k < k0, and Ẽ0 is

a constant. We have assumed that Ẽ(k) → 0 abruptly for k < k0 and we also assume that γ > 0, so the
integral converges. Defining k̃ ≡ k/k0 we then have

E = k0Ẽ0

∫
∞

1
k̃−γdk̃. (21)

Applying these expressions individually to the spectrum of turbulence driven by SBs or isolated SNe, and
assuming each spectrum to have the same spectral index −γ, gives

ESB = ẼSB

∫
∞

kSB

(
k

kSB

)−γ

dk = kSBẼSB

∫
∞

1
k̃−γdk̃ (22)

and

ESN = ẼSN

∫
∞

kSN

(
k

kSN

)−γ

dk = kSNẼSN

∫
∞

1
k̃−γdk̃. (23)

Here, ẼSB and ẼSN are constants, kSB = 2π/lSB, kSN = 2π/lSN, and the injection scales lSB and lSN, with
lSN < lSB, can be estimated from equations (11) and (7), respectively. Since the total energy density is
simply equal to the sum of the two contributions, it follows from Equation (20) and the first equalities of
equations (22) and (23) that

Ẽ(k) =





0, if k < kSB;

ẼSB

(
k

kSB

)−γ

, if kSB ≤ k < kSN;

ẼSB

(
k

kSB

)−γ

+ ẼSN

(
k

kSN

)−γ

, if k ≥ kSN.

(24)

The correlation scale for the overall spectrum can be approximated as

l = 2πC

∫
∞

kSB

k−1Ẽ(k)dk

∫
∞

kSB

Ẽ(k)dk
, (25)

with C a dimensionless parameter of order unity. For solenoidal (zero divergence) turbulence, Monin and
Yaglom [62] (Chapter 12) obtain C = 3/8 and 3/4 for longitudinal and transverse correlations, respectively.
For potential (zero curl) turbulence, they obtain C = 0 and 3/8 for longitudinal and transverse correlations,
respectively. Interstellar turbulence is in reality expected to contain potential (or compressible) modes as
well as solenoidal modes, with the latter modes containing about twice as much energy as the former [63],
and they are coupled to one another [see, e.g. Reference 15, for a discussion]. We choose C = 3/4 as our
fiducial value but also provide some examples which use C = 3/8.

To make progress, we need an expression that relates ẼSN and ẼSB. It follows from comparison of
equations (22) and (23) that

ẼSN

ẼSB
=

lSN

lSB

ESN

ESB
. (26)

In a steady state, the energy injection and dissipation rates balance, and can be assumed to be equal to the
spectral energy transfer rate. If we assume that this holds separately for energy injected by isolated SNe
and SBs, we can write Ėi

SN ∼ ESN/τe and Ėi
SB ∼ ESB/τe. Thus, we assume that the ratio of the turbulent
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energy densities supplied by isolated SNe and SBs is equal to the ratio of the energy injection rate densities,
i.e. ESN/ESB = Ėi

SN/Ėi
SB. Then from Equation (26) we obtain

ẼSN

ẼSB
=

lSN

lSB

Ėi
SN

Ėi
SB

, (27)

where the ratio Ėi
SN/Ėi

SB is obtained from Equation (19).
Below we assume γ > 1. Evaluating the integrals in Equation (25) assuming the spectral energy

distribution (24) we obtain

∫
∞

kSB

k−1Ẽ(k)dk =
ẼSB

γ

(
1 +

lSN

lSB

Ėi
SN

Ėi
SB

)
and

∫
∞

kSB

Ẽ(k)dk =
kSBẼSB

γ − 1

(
1 +

Ėi
SN

Ėi
SB

)
, (28)

where we have made use of Equation (27). Substituting the evaluated integrals into Equation (25), we
obtain

l =

(
γ − 1

γ

)
ClSB

(
1 + (lSN/lSB)Ėi

SN/Ėi
SB

1 + Ėi
SN/Ėi

SB

)
. (29)

Henceforth we choose γ = 5/3, appropriate for Kolmogorov turbulence. 4 With the choice γ = 5/3, we
have (γ − 1)/γ = 2/5, l → 2

5 ClSB as Ėi
SN → 0 or lSN → lSB, and l → 2

5 ClSN as Ėi
SN → ∞. For our fiducial

values, Equation (29) with γ = 5/3 and C = 3/4 gives l = 74 pc.
In Figure 1, we plot an example of the energy spectrum using the fiducial parameter values of Table 1

and γ = 5/3. SB and isolated SNe spectra are shown by dashed curves, with the combined spectrum
shown by a solid curve. The top panel shows the simple energy spectrum (24). By construction, the ratio
of the areas under the isolated SNe and SB spectra is equal to Ėi

SN/Ėi
SB. On the bottom we illustrate the

more realistic modified von Karman spectrum employed by Wilkin et al. [66],

Ẽ(k) = Ẽ0

(
k

k0

)4
[

1 +
(

k

k0

)2
](−γ−4)/2

e−k2/2k2
d , (30)

where the dissipative wave number kd is chosen, arbitrarily, as 104 kpc−1, and γ = 5/3. The form of
the spectrum at k → 0, Ẽ ∝ k4, is characteristic of both solenoidal and potential velocity fields [p. 52 in
Reference 62]; this part of the spectrum has negligible effect on the results. (For the von Karman spectrum,
the ratio of the areas differs only slightly from Ėi

SN/Ėi
SB in the fiducial case.) In each panel of Figure 1, the

integral scale of turbulence l is represented by a vertical solid line.

4 The arguments can be adapted to other spectra. One possibility is to model the spectrum as a broken power law with a different
spectral index, say γ = 2, for scales larger than the sonic scale ls, and γ = 5/3 for scales smaller than ls [64,65]. However, the
effect on the estimates provided would be rather negligible, particularly considering the myriad of other uncertainties and
assumptions on which our model relies.
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Figure 1. Top: The simple idealized spectrum of Equation (24) normalized to the peak value for isolated
SNe, E(k) ≡ Ẽ(k)/ẼSN. Bottom: The modified von Karman spectrum of Equation (30), with dissipation
scale chosen as kd = 104 kpc−1, and represented by a vertical dotted line. Long-dashed curves show
individual spectra of isolated SNe and SBs, while the solid curve shows the total spectrum. Fiducial
parameter values of Table 1 have been used, along with γ = 5/3. Dotted horizontal lines reference the
peaks of the isolated SN and SB spectra, and vertical dashed lines their respective injection scales lSN and lSB.
The wavelength corresponding to the correlation scale of turbulence, 2π/l, with l given by Equation (29)
with C = 3/4, is marked by a vertical solid line.
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2.7. RMS Turbulent Velocity

We now estimate the RMS turbulent velocity. The energy dissipation rate per unit volume is equal to
the spectral energy transfer rate,5

Ėd =
1
2 ρu2

τe =
ρu3

2l
, (31)

where the eddy turnover time (comparable to the lifetime of the largest eddies) is estimated as the ratio of
the integral scale and RMS turbulent speed,

τe =
l

u
. (32)

Assuming a statistical steady state, equating the injection rate per unit volume from Equation (17) and
dissipation rate per unit volume from Equation (31), and solving for u, we obtain

u =

(
2lĖi

ρ

)1/3

=

[
4π
3

lc2
s ν

(
(1 − fSB)l

3
SN +

fSB

NSB
l3
SB

)]1/3
, (33)

where the right-hand side is independent of the density. This result is consistent with that obtained by,
for example, Schober et al. [28], who also obtain the scaling u ∝ ν1/3. Krumholz et al. [9] compute the 1D
turbulent velocity dispersion that can be sustained by star formation feedback (SNe) alone. Multiplying
the approximate range they obtain by

√
3, assuming isotropy, gives u ∼ 10–17 km s−1. Their no-transport

models assume that turbulence is driven by star formation feedback alone, and that this is dominated by
SN feedback, as assumed in our model. Assuming the star formation rate surface density to be proportional
to ν,6 their fixed star formation efficiency per free-fall time no-transport model predicts u to be independent
of ν, while their fixed Toomre Q no-transport model predicts u ∝ ν1/2. The power law index of our model
(1/3) thus lies in between that of those models (0 and 1/2). We caution that in our model u ∝ ν1/3 only
assuming that certain other parameters, like cs, are independent of ν.

For the fiducial parameter values Equation (33) gives u = 12 km s−1. Note that if we instead assumed
that all SN explosions lead to isolated SNRs, then we would have fSB = 0 and we would obtain u =

[(8πC/15)c2
s νl4

SN]
1/3 = 13 km s−1 for the fiducial parameter values, whereas if all SNe resided in SBs

( fSB = 1), we would obtain u = [(8πC/15)c2
s νl4

SB/NSB]
1/3 = 12 km s−1.

2.8. Correlation Time

We estimate the correlation time τ as the minimum of the turnover time τe of energy-carrying eddies,
and the time τr for the flow to renovate due to the passage of an SN or SB blast wave,

τ = min(τr, τe). (34)

This prescription guarantees that the Strouhal number, which we define here as St = τ/τe, will be less
than or equal to 1 in our model.

5 An extra factor greater than 1 and . 1.5 could be included in the numerator to account for the expectation that some of the
injected energy is converted to magnetic energy via dynamo action. Given that we have so far neglected magnetic fields, we
neglect this factor here; it would have the mild effect of reducing u by at most about 10%.

6 The proportionality constant would depend on the stellar mass function and contain the scale height of the SN distribution.
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The renovation rate is equal to the sum of the rates from isolated SNe and SBs,

τr =

(
1

τr
SN

+
1

τr
SB

)−1
. (35)

We take τr
SN to be equal to the average time between successive SNR shells (blast waves) passing through

a given point x. In a statistical steady state, the rate at which blast waves cross x is equal to the rate of
isolated SN explosions within a sphere of radius lSN = A(tSN

s )a, since more distant SNRs will break up
before reaching x. We then obtain

4
3
πl3

SNνSNτr
SN = 1,

or, solving for τr
SN,

τr
SN =

(
4
3
πl3

SNνSN

)−1
= 6.8 Myr

(
1

4(1 − fSB)

)
ν−1

50 E−16/17
51 n19/17

0.1 c10, (36)

where ν50 = ν/(50 kpc−3 Myr−1) and we have made use of equations (7) and (14) in the last equality.
The same result can be obtained by computing how long it takes for SNRs to fill the volume, neglecting
overlapping. Using the same approach to estimate the renovation time due to SBs, we find

τr
SB =

(
4
3
πl3

SBνSB

)−1
=





4.3 Myr
(

fSB
3/4

)−1
ν−1

50 η−1
0.1 E−1

51 n0.1c2
10, if tSB

s ≤ tSB
b ;

9.9 Myr
(

fSB
3/4

)−1
ν−1

50 N100ξ−3H−3
400, if tSB

s > tSB
b ,

(37)

where we have made use of equations (11) and (15). For the fiducial parameter values, tSB
b < tSB

s , so
τr

SB = 9.9 Myr, and τr = [1/(6.8 Myr)+ 1/(9.9 Myr)]−1 = 4.0 Myr. On the other hand, τe = l/u = 5.9 Myr
for fiducial parameter values. In this case τ = τr since τr

< τe.

2.9. Graphical Example

We illustrate the fiducial case (Table 1) in Figure 2, where we plot solutions as functions of H. Solid
curves show the full solutions, while dashed and dotted curves show the contributions from SBs and
isolated SNe, respectively. The breaks in the curves at H = 0.53 kpc are caused by the transition from
SBs blowing out of the disc when the disc is thin, to being unable to blow out when the disc is thick. In
Figure 2f, there is a second break at H = 0.30 kpc where τ = min(τr, τe) transitions from τ = τe for a
thinner disc to τ = τr for a thicker disc.

3. Exploration of the Parameter Space

We plot several example solutions in Figure 3, and refer to rows and columns by number starting
from top left. Panels show a given turbulence parameter as a function of disc scale height H (see the figure
caption for a detailed description). The fiducial case is illustrated by the solid black curves of the left-hand
column, at H = 0.4 kpc.

The correlation scale l (top row) lies in the range 20 pc < l < 175 pc. It increases with scale height
if H is small enough that SBs blow out, and is otherwise independent of H. The dependence is stronger
than linear because of the term Ėi

SN/Ėi
SB ∝ H−3 in the denominator of Equation (29) (the same ratio is

suppressed by the factor lSN/lSB in the numerator, so is less consequential there). Since l is independent
of the SN rate density ν, dashed-dotted red and solid black curves overlap, as do short-dashed blue and
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Figure 2. Results for the fiducial parameter values of Table 1 (n = 0.1 cm−3, cs = 10 km s−1, ν =

50 kpc−3 Myr−1, NSB = 100, η = 0.1 and C = 3/4) plotted against gas scale height H (fiducial values
quoted in the text assume H = 0.4 kpc). Dashed curves show the solution obtained if only the SB component
is included, dotted lines show the solution obtained if only the isolated SN component is included (whose
evolution is independent of H in the model), and solid curves show the solution obtained by including
both SB and isolated SN components.

long-dashed orange curves. Since l ∝ C, its value is somewhat sensitive to the choice of C (compare first
and fourth columns).

The turbulent velocity u (second row) is found to occupy the range 3 km s−1 ≤ u ≤ 23 km s−1, but
u ≥ 7 km s−1 for n = 0.1 cm−3. These values are in good agreement with observations and simulation
results [e.g. Reference 36]. If other sources of turbulence, in addition to SNe, were important, then there
would be additional contributions to Ėi, so Ėi would increase. If, further, such contributions injected
energy on similar or larger scales compared to SNe, so that l remained roughly the same or larger, then,
from the first equality in Equation (33), we would expect u to increase. Therefore, if additional sources of
turbulence were important, our model would predict a larger value of u. Gravitationally-driven inward
radial transport is one such source that is likely to be important, at least at high cosmological redshift
[9]. The lower end of the range of u corresponds to dense gas (compare third and fifth columns), mainly
owing to smaller lSN and lSB. The upper end of the range corresponds to large H, which prevents or delays
blowout, allowing more power to be deposited into the ISM. Also, u increases with ν since more power is
deposited (u ∝ ν1/3). Note that doubling the sound speed from 10 km s−1 to 20 km s−1 can actually lead to
a slight reduction in u because expanding SBs slow to the ambient sound speed earlier (compare first and
second columns). If all SNe were to reside in SBs, and the SBs did not blow out, then l ∝ lSB and we would
have u ∝ c−2/9

s . If all SNe were isolated, then we would have l ∝ lSN and u ∝ c2/9
s . On the other hand, at

small H, SBs blow out and the injection scale from SBs is independent of cs, while the injected energy from
SBs scales as c2

s , so u always increases with cs in this case.
For the correlation time (third row), we find 1 Myr ≤ τ ≤ 13 Myr, and τ ≤ 6 Myr for n = 0.1 cm−3,

which agrees with order-of-magnitude estimates [6] and simulations [37]. The smallest values of τ are
obtained for large values of ν, and the largest values of τ are obtained for large values of n. In the fourth
row, we plot St = τ/τe, which is ≤ 1 by design in our model. This quantity is found to lie in the range
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Figure 3. Turbulence parameters estimated for various choices of the model parameters in Table 1. The
horizontal axis is the density scale height. From the top to bottom row, the vertical axis shows (i) the
correlation scale l, (ii) the RMS turbulent velocity u, (iii) the correlation time scale τ = min(τe, τr), (iv)
the Strouhal number St = τ/τe = τu/l, (v) the ratio of energy density per unit time injected by SBs and
isolated SNe Ėi

SB/Ėi
SN, and (vi) the efficiency of converting SN energy to turbulent energy ε = Ėi/(νE0).

Each column corresponds to a different set of values for the parameters c10, n0.1, η0.1 and C, with values
indicated on the top row plots. In each panel, four cases are shown: ν50 = 1 and NSB = 100 (solid black),
ν50 = 1 and NSB = 1000 (long-dashed orange), ν50 = 2 and NSB = 100 (dashed-dotted red), and ν50 = 2
and NSB = 1000 (short-dashed blue). The solid black curve in the leftmost column with H = 0.4 kpc
corresponds to our fiducial case.
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0.2–1, which implies that τr and τe are generally comparable to one another. At small scale height τe
< τr

since the expansion of SBs, and hence the renovation rate, is reduced by blowout. For large values of
ν, τr

< τe is more likely. As n increases, τr/τe also increases, leading to τ = τe for the examples with
n = 1 cm−3. Our results suggest that the common assumption that the correlation time is equal to the
eddy turnover time is generally reasonable to within a factor of 2–4.

It is worth pointing out that separate relations would exist between the underlying parameters of our
model. For example, ν and H are likely to be inversely related. Firstly, for a flared disc H is larger in the
disc outer region, where the SN rate surface density is low. Secondly, the SN rate volume density decreases
with H for a given SN rate surface density. Likewise H and n are expected to be inversely related, and ν

would be expected to increase with n.
We next turn to the ratio of energies injected by SBs and isolated SNe, Ėi

SB/Ėi
SN, plotted in the fifth

row. As this ratio can be less than or greater than unity, both types of driving can be important. The ratio
is independent of the overall supernova rate ν, but depends on the fraction fSB of SNe contributing to
SBs, from Equation (19). In the case where H is small enough that SBs blow out, Ėi

SN/Ėi
SB varies linearly

with NSB and approximately linearly with E0. This is because the more energetic the SB, the fraction of its
energy that is “wasted” when the supernova blows out of the disc increases. In particular, for NSB = 1000,
n = 0.1 cm−3, and H < 0.5 kpc, isolated SNe strongly dominate the energy injection. This becomes clearer
by computing the efficiency ε of conversion of SN energy into turbulent energy, shown in the bottom
row. For the examples plotted, the efficiency ranges between about 1% and 4%, and is smaller when SBs
experience blowout.

4. Relative Importance of Isolated SNe and SBs and Effect of SN Clustering

It is interesting to consider how the results change if all SNe are assumed to be isolated, or conversely,
if all SNe are assumed to reside in SBs. Thus, in Figure 4 we adopt the same underlying parameter values
as for Figure 3, but now we plot the cases fSB = 0 (thin lines) and fSB = 1 (thick lines).

The correlation scale l is considerably smaller for the pure isolated SN case (top row), generally in the
range 20–50 pc (in this case the thin lines coincide in each panel as l does not depend on NSB or ν). For the
pure SB case, l increases linearly with H (Equation 11) at small enough H such that blowout occurs, and
can reach values as large as 300 pc.

The value of u (second row) is similar for the pure SB and pure SNR cases, u ∼ 10–20 km s−1 for
n = 0.1 cm−3 and u ∼ 5–7 km s−1 for n = 1 cm−3, if blowout is avoided in the SB case. However if
blowout does take place, values of u can be much smaller in the pure SB case (as low as 2 km s−1 for
H = 200 pc and NSB = 1000), due to inefficient energy conversion from SNe to turbulence. The pure SB
low H case is not very realistic though, because if even a small fraction of SNe were isolated, that channel
could dominate the energy injection, raising u to values closer to the thin lines, as can be seen in Figure 3
where 1/4 of SNe are isolated.

The correlation time, like the correlation scale, is much smaller in the pure isolated SN case as
compared to the pure SB case, as seen in the third row. In the fourth row, we see that τ is sometimes
equal to τe, and sometimes to τr, but for large cs or large n, usually τ = τe. The correlation time increases
with stronger clustering of SNe (compare solid black to long-dashed orange and dash-dotted red to
short-dashed blue), and with reduced SN rate ν (compare red with black and blue with orange).7

7 Note that we ignore possible correlations between the underlying parameters of the model.
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Figure 4. Similar to Figure 3 but showing the cases where all SNe are isolated SNe (thin lines) or all SNe
reside in SBs (thick lines).
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The ratio of injected energies for the pure isolated SN and pure SB cases, shown in the fifth row, are
similar to those shown in Figure 3, except lower by a factor of three. This is because in the model plotted
in Figure 3, fSB/(1 − fSB) = 3 times more SNe reside in SBs compared to those that are isolated.

In the bottom row we see that the conversion efficiency ε of SN energy to turbulent energy is very
low for the case fSB = 1 if H is small. The efficiency for fSB = 1 becomes larger with increasing H, but
even neglecting blowout, SBs are less efficient than isolated SNe in transferring SN energy to turbulence.
Hence, clustering of SNe leads to less efficient turbulence driving in our model. The efficiencies obtained
for the pure isolated SN case ( fSB = 0) are generally consistent with the estimate of 4% made by Dyson
and Williams [43, Ch. 7].

If we ignore clustering of SNe ( fSB = 0) so that all SNe are isolated, we obtain, for fiducial parameter
values, l = 42 pc, u = 13 km s−1, τ = τr = 2 Myr and ε = 0.037, whereas if all SNe are assumed to reside
in SBs ( fSB = 1) we obtain l = 120 pc, u = 12 km s−1, τ = τr = 7 Myr and ε = 0.008. If instead we
retain fSB = 3/4 but only the isolated SNe are assumed to drive turbulence and those residing in SBs are
neglected, l and ε are unchanged from the fSB = 0 case but u = 8 km s−1 and τ = τe = 5 Myr, whereas if
isolated SNe are neglected and only the SBs are assumed to drive turbulence, l and ε are unchanged from
the fSB = 1 case but u = 11 km s−1 and τ = τr = 10 Myr.

5. Varying the Parameter ξ

In our estimates above we parameterized the driving scale of an SB that blows out as ξH, with H

the gas scale height. We then made the choice ξ = 1, since an SB which blows out has expanded to a
horizontal scale ∼ H, according to simulations of Mac Low and McCray [47] (c.f. their figure 8). Those
authors made use of a two-component density model from Lockman et al. [54] which consists of a diffuse
exponential component of scale height H (the Lockman layer) and a thin Gaussian cloud layer with scale
height a few times smaller than H. They found in their simulations that while the vertical extent of an SB
at blowout is a few times larger than H, it experiences a pinch due to the greater density at the midplane
so that its horizontal expanse is roughly equal to H. In this section we consider adopting a smaller value
of ξ, corresponding to a more severe pinch near the midplane. In Equation (11) it is implied that an SB
cannot expand to a horizontal scale > ξH because once it reaches that scale it blows out. Before blowout,
SB expansion is independent of ξ, so a smaller ξ causes SBs to blow out earlier.

5.1. Motivation for Reducing ξ

It appears to violate self-consistency that turbulence can be driven in our model at a scale a few times
larger than the cloud layer, since it would seem that the cloud layer would then be disrupted by such
turbulence. However, the current understanding of interstellar clouds is still fragmentary, and it is possible
that they are transient and formed by compressions in the SN-shocked transonic gas [e.g 14,18]. In any
case, the entrainment of clouds by SBs can lead to enhanced cooling in the SB interior. Cloud evaporation
in the SB interior can occur through thermal conduction, while mixing between clouds and hot gas can
lead to radiative cooling. These processes cause a reduction in the interior pressure of the SB [47,67,68].
Since SBs interact energetically with the thin cloud layer, which has a scale height h ∼ 130 pc in the Solar
neighbourhood [40,69], the driving scale could plausibly be capped at h ∼ 1

3 H by setting ξ to be ∼ 1/3
instead of 1. In this scenario an SB would experience a more severe pinch than predicted by Mac Low
and McCray [47], presumably leading to narrower chimneys, as seen in simulations by de Avillez and
Breitschwerdt [70], where the horizontal size of the chimneys of hot gas produced by clusters of SNe in the
local ISM is about 150–200 pc.
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Figure 5. Similar to Figure 3 but for the case ξ = 1/3.
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5.2. Results

With this in mind, we present results of a model that is the same as that presented in Sections 2 and 3
except that ξ = 1/3 instead of 1. Results of this alternative small-ξ model are shown in Figure 5, which is
otherwise similar to Figure 3. The efficiency ε is lower in the ξ = 1/3 model (bottom row) as compared
to the ξ = 1 model because SBs blow out early in their expansions and thus transfer very little energy to
the ISM. In fact, the results are very similar to those obtained if turbulence driving by SBs is completely
neglected, but fSB = 3/4 is still assumed. This case has not been plotted, but it is just the H → 0 limit of
the plots. When blowout occurs, the differences between the ξ = 1/3 and ξ = 1 cases are more significant
for larger values of H, where energy injected by SBs is a larger fraction of the total injected energy. Only
in the last column of Figure 5, where n = 1 cm−3, can blowout be suppressed at large H due to the high
ambient density.

Adopting ξ = 1/3 generally leads to smaller l due to the reduction in large-scale driving, and smaller
u due to the reduction in energy input and in l, compared to ξ = 1. The value of τ is not greatly affected.
For ξ = 1/3 these quantities depend only weakly on H and NSB, since these parameters only affect
SBs. The values obtained when ξ = 1/3 and other parameters fiducial are l ≈ 42 pc, u ≈ 9 km s−1,
τ = τe ≈ 5 Myr and ε ≈ 0.009 (first column solid black at H = 0.4 kpc), as compared with l ≈ 74 pc,
u ≈ 12 km s−1, τ = τr ≈ 4 Myr and ε ≈ 0.016 for ξ = 1 (Figure 3).

5.3. Two-layer Model

A further possibility would be to generalize the model to consist of two distinct gas layers, namely
the cloud and Lockman layers, each with a different set of properties. This treatment would allow for the
possibility that average turbulence parameters vary with distance from the midplane |z|. Naturally l (and
ξ) would increase with |z| because SBs would bulge out into the more tenuous outer layer. However, in a
two-layer model one would need to consider how SN energy gets divided between the two layers. One
would also need to consider the possibility of individual SNe blowing out of the thin layer and into the
thick layer. Another possibility is to include explicitly the stratification of the ISM.

6. Limitations and Opportunities for Extending the Model

On account of keeping the model reasonably simple, certain details have necessarily been omitted.
Expanding SN shocks may reflect off of interstellar clouds to produce secondary shocks [71]. The
distribution function P(µ) of secondary shocks with Mach number ≥ µ was calculated by Bykov and
Toptygin [72], who assumed secondary shocks to be weak. The distribution function derived diverges
unphysically for µ → 1, which leads to a vanishing renovation time (Equation 36). Clearly τr would
decrease if secondary shocks were included, but including them would require a new model that remains
valid as µ → 1, which is beyond the scope of our simple treatment here. On the other hand, we have also
neglected mutual isolated SNe-SNe, isolated SNe-SB or SB-SB interactions, as we have assumed that every
spherical shock propagates independently of neighbouring shocks. Such interactions probably make shock
expansion less efficient and would thus lead to an increase in τr, which could help to offset the omission
of secondary shocks.

We have also chosen to omit the possible influence of galactic shear on the correlation time. In their
galactic dynamo model, Zhou and Blackman [73] adopt τ−1 = (τe)−1 + qΩ, where Ω(r) is the large-scale
angular velocity of gas at radius r, and q(r) = −d ln Ω/d ln r. Here q = 1 corresponds to a locally flat
rotation curve. In the vicinity of the Solar neighbourhood, Ω ∼ 20–30 km s−1 kpc−1, which translates to a
shearing timescale of ∼ 30–50 Myr. This is large compared to our estimates for τ, so shear would not cause
an important reduction in τ. However, this effect might be important for parts of the phenomenologically
relevant parameter space.
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A more detailed model would also allow for a distribution of NSB, rather than considering only the
extreme case of isolated SNe and SBs each containing the same number of SNe, as we have done here
[74–76]. Whereas we have treated isolated SNe and SBs as different kinds of object with different similarity
solutions governing their evolutions, there would in reality be a transition from one type to the other as
NSB is increased from 1 to larger values.

Another possibility is to include effects of the magnetic field on the expansion of SBs [e.g. 77], which
would provide nonlinear feedback in a dynamo model.

We have assumed that SB blowout occurs instantaneously when RSB = ξH, with ξ = 1 for our fiducial
model. At this time, the SB merges with the ISM, driving turbulence. A more sophisticated treatment
would model the blowout phase from the time the SB begins to lose pressure support to the time it breaks
up near the midplane. Using the similarity solution for the SB temperature as a function of radius [47], we
compute the sound crossing time for the SB at blowout to be ∼ 4 Myr for our fiducial parameter values, as
compared with tSB

b = 15 Myr, so modeling this phase could lead to important differences.
Our model assumes a uniform ISM of a given disc semi-thickness H, so does not differentiate between

the various ISM phases. Thus, it effectively averages over the individual locations of isolated SNe, both in
terms of distance from the midplane and occurrence inside or outside molecular clouds. Furthermore,
it does not distinguish between the average properties of the ambient medium encountered by SBs as
opposed to that encountered by isolated SNe, or between the average properties of the medium in which
SNRs and SBs expand as opposed to that in which the turbulence is primarily driven. Refinements to
the model to address theses shortcomings would entail introducing more parameters, and it is not clear
whether this would be warranted given the various uncertainties.

More fundamentally, our model could also be extended to include turbulence driving by mechanisms
other than SN feedback.

7. Summary and Conclusions

Various astrophysical phenomena, including galactic dynamos, are sensitive to the parameters of
interstellar turbulence. However, determining the values of these parameters, as well as their dependencies
on other galactic or interstellar medium parameters, has remained an elusive goal. We have applied
standard similarity solutions for SNRs and SBs to a model of SN-driven interstellar turbulence, and
obtained simple analytic expressions for the velocity correlation scale l, RMS turbulent speed u, velocity
correlation time τ, and SN to turbulent energy transfer efficiency ε.

Our main motivation for this work was to extend dynamo models such that they can be parameterized
by quantities that are more accessible than l, u and τ, namely, the underlying model parameters
summarized in Table 1. In this way, l, u and τ would become intermediate quantities computed within
the dynamo model, rather than input parameters. As it is beyond the scope of the present work, we
leave the implementation of this idea for the future. This could be done using already available dynamo
models [e.g. 78–81], but the underlying ISM parameters of Table 1, including their spatial and temporal
dependencies, would need to be modelled independently and/or constrained using observations. The
relations between turbulence parameters and underlying ISM parameters that we have derived are testable
and may have many applications besides dynamos. However, care must be taken to account for separate
relations between the underlying parameters themselves. No attempt is made to include these additional
dependencies in our model.

In Figure 3, we present solutions over a large region of the underlying parameter space. We obtain
the following approximate ranges for the quantities computed: l ∼ 20–175 pc, u ∼ 3–23 km s−1, τ ∼
1–13 Myr and ε ∼ 0.01–0.04. For our fiducial set of underlying parameter values, applicable to the Solar
neighbourhood, we obtain l ≈ 74 pc, u ≈ 12 km s−1, τ ≈ 4 Myr and ε ≈ 0.016, which can be compared
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with “canonical” order-of-magnitude estimates of l ∼ 100 pc, u ∼ 10 km s−1, τ ∼ 10 Myr and ε ∼ 0.04, and
recent local ISM simulations of Hollins et al. [37] which find l ≈ 74 pc, u ≈ 13 km s−1 and τ ≈ 5 Myr. The
close agreement with the latter results is partly just a coincidence, but our results are in broad agreement
with other simulations as well [e.g. 34,35,82].

Our model includes both isolated SNe and SBs, with a fraction fSB = 3/4 of SNe residing in SBs.
Turbulent energy is deposited in the ISM once the expansion velocity of an SNR or SB reaches the
ambient sound speed. We find that isolated SNe and SBs can both contribute significantly to the turbulent
energy injection in the ISM. This suggests that both of these sources should be accounted for in models
of interstellar turbulence.8 However, one is free to choose to include only one or the other of these
components. In particular, the model is simpler and contains many fewer parameters if clustering of SNe
to form SBs is neglected ( fSB = 0).

The evolution of SBs depends on the density scale height H of the warm diffuse ambient gas (the
Lockman layer in the Milky Way), and SB blowout happens in our model when the SB radius in the
midplane is of order the ambient scale height [47]. For H . 0.5 kpc, SBs tend to blow out of the disc, and
consequently, a smaller fraction of their energy ends up in interstellar turbulence. Blowout is assumed
to result in a rapid loss of pressure support near the midplane, and a sudden reduction of the expansion
speed to the ambient sound speed, at which point the SB merges with the ISM. If blowout happens early,
i.e. when the SB expansion speed ṘSB � cs, then the energy deposited into the ISM is only a small fraction
∼ H3/R3

SB(t
SB
s ) of what would have been injected had the SB been able to expand up to the time tSB

s when
ṘSB(t

SB
s ) = cs. In this case, isolated SNe dominate the energy injection into turbulence in our model.

We also computed the fraction of SN energy that ends up in turbulence, and found this efficiency
factor to typically lie in the range ε = 0.01–0.04. This agrees closely with the range found by Bacchini
et al. [10] for the warm atomic gas. The efficiency of conversion of SN energy to turbulent energy is found
to be lower when SBs are included, compared to a model for which all SNe are isolated. This is because
SBs can blow out and also because SBs drive turbulence less efficiently than isolated SNe even when they
do not blow out, as seen in the bottom row of Figure 4. Since most SNe can be contained within SBs, the
reduction in the overall efficiency can be significant. When SN clustering is absent ( fSB = 0) in our model,
all SNe are isolated. This results in values of l and τ that are smaller than the fSB = 3/4 case, and values of
ε that are larger, while the opposite is true if fSB = 1.

It could be argued that large driving scales comparable to H cannot be present because the resulting
turbulence would then disrupt the thin HI cloud layer, which has a scale height of ∼ 130 pc in the Solar
neighbourhood. This motivated us to consider a variation on the model in which an SB blows out earlier,
when its radius in the midplane is equal to ξH with ξ = 1/3 instead of 1. As ξ is reduced, SBs end up
being less important in transferring energy to turbulence in the disc. For ξ = 1/3, we obtain values of l up
to a few times lower than in the ξ = 1 case, and values of u up to two times smaller, but τ remains about
the same.

Author Contributions: Conceptualization, methodology and writing: L.C. and A.S. All authors have read and agreed
to the published version of the manuscript.
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8 Yoo and Cho [83] study MHD simulations with forcing on two scales and find that even a relatively small amount of energy
injection on the larger scale can have important effects on the properties of the turbulence.
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