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Xin Xiao, Bane Vasić, Fellow, IEEE, Shu Lin, Life Fellow, IEEE, Juane Li, and

Khaled Abdel-Ghaffar, Senior Member, IEEE

Abstract

In his pioneering work on LDPC codes, Gallager dismissed codes with parity-check matrices of

weight two after proving that their minimum Hamming distances grow at most logarithmically with

their code lengths. In spite of their poor minimum Hamming distances, it is shown that quasi-cyclic

LDPC codes with parity-check matrices of column weight two have good capability to correct phased

bursts of erasures which may not be surpassed by using quasi-cyclic LDPC codes with parity-check

matrices of column weight three or more. By modifying the parity-check matrices of column weight

two and globally coupling them, the erasure correcting capability can be further enhanced. Quasi-cyclic

LDPC codes with parity-check matrices of column weight three or more that can correct phased bursts

of erasures and perform well over the AWGN channel are also considered. Examples of such codes

based on Reed-Solomon and Gabidulin codes are presented.
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I. INTRODUCTION

With the rediscovery of low-density parity-check (LDPC) codes by the turn of the century,

researchers have recognized that LDPC codes have good erasure correcting capability in addition

to their superior performance over AWGN channels [1]. A simple “peeling” algorithm that

can be applied to a sparse parity-check matrix of the code to correct erasures was proposed

early on. The algorithm may not correct all erasures that can be corrected by an optimal

maximum-likelihood (ML) decoder. However, for long LDPC codes, it is very difficult to

determine the capability of an ML decoder to correct erasures let alone implement such a decoder.

Motivated by potential applications of LDPC codes in storage systems and communication over

fading channels, researchers investigated the capability of LDPC codes to correct erasure bursts.

Building on the peeling algorithm, Yang and Ryan [2] introduced the notion of maximum

resolvable erasure burst length to determine the erasure burst correcting capability of LDPC

codes. Some researchers proposed algorithms to permute the columns of the parity-check matrix

to maximize this length [3] or to correct multiple erasure bursts [4], while others used algebraic

[5] and combinatorial [6] techniques to give explicit constructions of parity-check matrices with

large maximum resolvable erasure burst length.

In this paper we consider binary quasi-cyclic (QC) LDPC codes, with parity-check matrices

which are m × n arrays of circulant permutation matrices (CPMs) of size t× t. These are the

most widely known, studied, and used QC-LDPC codes. A codeword v in such a code can be

written as v = (v0,v1, . . . ,vn−1), where vj , 0 ≤ j < n, is a sequence of t bits which we call

a section. We assume that such a codeword is transmitted over a channel that causes multiple

phased bursts of erasures. By a phased burst of erasures we mean that all the erasures affect

one and only one of the sections v0,v1, . . . ,vn−1. Early work based on [2], such as [5] and [6],

concentrated on correcting a long sequence of adjacent phased bursts of erasures. In this paper,

we also consider the correction of multiple phased bursts of erasures that are not necessarily

adjacent.
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First, we notice that no QC-LDPC code with a parity-check matrix composed of CPMs can

correct two “solid” phased bursts, i.e., all bits in a section are erased. Therefore, the best we can

hope for is to correct pairs of mutually “semi-solid” phased bursts of erasures in which all the

bits in the two phased bursts are erased except for one. We show that a QC-LDPC code with

parity-check matrix of column weight two, i.e., composed of just two row blocks of CPMs, if

properly designed, can correct any pair of such phased bursts. Ge and Xia call such a parity-check

matrix ultra sparse [7]. We demonstrate that codes with parity-check matrices of column weight

two which can correct two phased bursts except for one bit have the highest possible dimension

among all codes with this correction capability. We also prove that the peeling algorithm when

applied to such parity-check matrices of column weight two can correct all erasures that can be

corrected by an ML decoder. This means that all stopping sets of such parity-check matrices are

nonzero codewords. Basically, our analysis of QC-LDPC codes with parity-check matrices of

column weight two is rather comprehensive as we determine, for all such codes, their dimensions,

minimum Hamming distances, and their capabilities to correct phased bursts. We also show how

to add extra rows to such parity-check matrices in order to correct any two solid phased bursts,

without the exception of one bit. We also present a technique to globally couple the codes in order

to correct long phased bursts of erasures. Since QC-LDPC codes with parity-check matrices of

column weight two have poor performance over AWGN channels, and practical channels rarely

only cause erasures, we propose methods for constructing parity-check matrices with column

weight three or more which are natural extensions of the parity-check matrices with column

weight two. The constructions are related to Reed-Solomon and Gabidulin codes [8],[9].

This paper is organized as follows. The notation for burst erasures, QC-LDPC codes, and their

parity-check matrices with some basic results are presented in Section II. Section III covers QC-

LDPC codes with parity-check matrices of weight two and Section IV extends this to weights

more than two. The paper is concluded in Section V. For smooth reading, all proofs are relegated

to appendices.

September 15, 2020 DRAFT



4 IEEE TRANSACTIONS ON COMMUNICATIONS

II. PRELIMINARIES

A. Correcting Bursts of Erasures

We consider transmission over a binary erasure channel (BEC) in which a transmitted bit

is either received correctly or erased. The decoder knows exactly the set of indices, J , of the

erased bits. To be able to recover the values of the erased bits, a binary linear code is used.

An (N,K) binary linear code is the K-dimensional null space of an N ×M binary matrix H,

for some integer M ≥ N −K. This matrix is a parity-check matrix for the code, the rank of

which is rank(H) = N − K, which we call the redundancy of the code. For any codeword

v, we have vH
T = 0 where computations are over GF(2), T denotes transpose, and 0 is the

all-zero M-tuple. Suppose a codeword is transmitted over the channel and e erasures occur in

the bits indexed by J . Then, a maximum-likelihood (ML) decoder [10],[11] can recover the

erased bits if and only if the code does not have any nonzero codeword in which the indices

of all the 1’s are confined to J . In this case, we say that the erasures are recoverable by the

ML decoder. By considering the values of the erased bits to be unknowns in the codeword v,

these unknowns can be determined from vH
T = 0 which is a system of M parity equations. A

necessary condition for this to be possible is that N −K ≥ e. Codes meeting this bound with

equality are said to be optimal for correcting the erasures specified by J . Although a code in

general has many parity-check matrices, its ability to correct erasures does not depend on the

choice of H to solve for the unknowns in the equation vH
T = 0. However, if e is large, say in

the hundreds, then solving this system of equations may be computationally intensive.

In 2001, Luby et al. [1] came up with a simple decoding algorithm to correct erasures. The

algorithm is applied to a particular parity-check matrix of the code and its success depends on

this matrix. Although the algorithm may not be able to recover all erasures recoverable by the

ML decoder, it is quite simple as it allows the recovery of the erased bits one by one. Basically,

if there is a parity equation that checks only one unknown erasure, then the erased value can
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be determined from that equation by an XOR operation and the number of unknowns is then

reduced by one. Next, if another parity equation is found that checks only one of the remaining

unknowns, then that unknown can be determined and the number of unknowns is further reduced

by one. This may continue until all erasures are recovered or until no equation is found that

checks only one unknown erasure in which case decoding fails. The set of erased positions at

this stage forms a stopping set [10]. Although there is no universal term to identify this algorithm

in the coding literature, some call it figuratively the peeling algorithm [12], a term which we

will adopt. The peeling algorithm was initially developed for randomly constructed low-density

parity-check (LDPC) codes and applied to their sparse parity-check matrices. The randomness

makes it hard to develop erasure decoding algorithms that exploit the structure of the codes.

On the other hand, the sparseness helps in having parity equations involving a small number of

terms for which the peeling algorithm is most effective.

The peeling algorithm is best understood in terms of the Tanner graph, G, representing the

parity-check matrix H = [hI,J ]0≤I<M,0≤J<N [8],[13],[14]. This is a bipartite graph in which the

set of vertices is partitioned into a set of variable nodes indexed by the columns of H and a set

of check nodes indexed by the rows of H. Edges connect only variable nodes to check nodes. In

particular, there is an edge connecting the variable node corresponding to the J-th column to the

check node corresponding to the I-th row if and only if hI,J = 1. Since the code is the null space

of H, if the variable nodes assume the bit values of a codeword, then the sum of the values of

the variable nodes adjacent to each check node is even. The peeling algorithm looks for a check

node which is adjacent to only one erased variable node and determines its value as the sum

over GF(2), i.e., XOR, of the values of all other variable nodes adjacent to the check node. The

number of erasures is then reduced by one and the process is repeated until all erased bits are

recovered, in which case decoding is successful, or there is no check node that checks exactly

one erased variable node, in which case decoding fails as the remaining variable nodes form a

stopping set. The success of the peeling algorithm depends on the parity-check matrix used and
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its associated Tanner graph. We say that a parity-check matrix is ML peeling-decodable if every

recoverable set of erasures by an ML decoder can also be recovered by the peeling algorithm.

Constructions of ML peeling-decodable parity-check matrices for an (N,K) linear code are

presented in [15]–[17] where the number of rows of the constructed matrices is exponential in

N −K. For such matrices, the peeling algorithm may cease to be appealing if N −K is large.

As a motivation of our investigation of codes with parity-check matrices of column weight two

we give the following result, the proof of which is presented in Appendix A.

Theorem 1. Let H be a parity-check matrix of a linear code in which each column has weight

at most two. Then, H is ML peeling-decodable.

Let H = [hI,J ]0≤I<M,0≤J<N be a binary matrix. We say that H satisfies the row-column (RC)

constraint [8] if there are no four 1’s in the positions specified by a pair of distinct rows and

a pair of distinct columns, i.e., for any 0 ≤ I0 < I1 < M and 0 ≤ J0 < J1 < N , at least one

of the elements hI0,J0, hI0,J1, hI1,J0, hI1,J1 is zero. In this case, the girth of the Tanner graph G

representing H, which is the shortest length of a cycle in G, is at least 6. However, there is a more

important consequence to the RC-constraint. Suppose that the code with H as a parity-check

matrix is used over a channel causing erasures. If the number of erasures, e, is at most equal to

the minimum weight wmin of a column in H, then not only the code can recover the erasures

but it can do so by applying the peeling algorithm to H. Indeed, an erasure is checked by at

least wmin parity equations and, because of the RC-constraint, each of the other e− 1 erasures

is checked by at most one of these parity equations. Hence, there is a parity equation that

checks only that erasure and no other from which the erasure can be recovered. The procedure

is repeated until all erasures are recovered. In particular, if H satisfies the RC-constraint, then

it is a parity-check matrix of a code with minimum Hamming distance at least wmin + 1.

In this paper, we consider the case in which a codeword is partitioned into sections of equal

length. Each section may correspond, for example, to a part of a large file that is stored at a node
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in a distributed storage system. That part of the file may be subject to losses. In coding-theoretic

context, the file can be viewed as a sequence composed of sections, each corresponding to a

part of the file. Losses in part of a file stored at a node can then be modeled as a phased burst

of erasures in which all the erasures are confined to a section.

B. QC-LDPC Codes and Their Parity-Check Matrices

Throughout this paper, we use (x)t for an integer x and a positive integer t to denote the least

nonnegative integer congruent to x modulo t, i.e., (x)t = x− ⌊x/t⌋t. All indices of vectors and

of rows and columns of matrices are numbered starting with 0.

By an m×n array H = [Hi,j]0≤i<m,0≤j<n of t×t matrices Hi,j we mean the mt×nt matrix in

which the (I, J) entry in H, 0 ≤ I < mt, 0 ≤ J < nt, is the (i′, j′) entry in Hi,j where i′ = (I)t,

j′ = (J)t, i = ⌊I/t⌋, and j = ⌊J/t⌋. In general, we use (I, J), 0 ≤ I < mt, 0 ≤ J < nt, to

denote indices of entries in the mt × nt matrix H, (i′, j′), 0 ≤ i′, j′ < t, to denote indices of

entries in a t × t submatrix, and (i, j), 0 ≤ i < m, 0 ≤ j < n, to denote the indices of the

submatrix within the array H. For 0 ≤ i < m, the t×nt submatrix [Hi,0,Hi,1,Hi,1, . . . ,Hi,n−1]

is called the i-th row block of H and for 0 ≤ j < n, the mt×n matrix [HT

0,j,H
T

1,j, . . . ,H
T

m−1,j)]
T

is called the j-th column block of H. For 0 ≤ i < n and 0 ≤ i′ < t, a row in H is indexed by

(i; i′) if it is the i′-th row in the i-th row block. Thus, a row in H can be indexed by I for some

I , 0 ≤ I < mt, or by the pair (i; i′), 0 ≤ i < m, 0 ≤ i′ < t, where i′ = (I)t, i = ⌊I/t⌋, and

I = it + i′. Similarly, a column in H can be indexed by J for some J , 0 ≤ J < nt, or by the

pair (j; j′), 0 ≤ j < n, 0 ≤ j′ < t, where j′ = (J)t, j = ⌊J/t⌋, and J = jt + j′, indicating the

j′-th column in the j-th column block.

A circulant is a square matrix in which every row other than the top row is the cyclic shift of

the row above it by one position to the right. It follows that the top row is also the cyclic shift of

the bottom row. Hence, a circulant is completely characterized by its top row. In particular, the

square zero matrix (ZM) is a circulant. A binary t× t matrix is called a circulant permutation
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matrix (CPM) if its top row has weight one. A CPM in which the single 1 in its top row is in

position p, 0 ≤ p < t, is denoted by CPMt(p)
1. Notice that all the entries in CPMt(p) are zeros

except those in positions (i′, (i′ + p)t) for 0 ≤ i′ < t, i.e., positions ((j′− p)t, j
′) for 0 ≤ j′ < t.

Suppose that H is an array of m× n of t× t CPM’s, i.e., H = [CPMt(pi,j)]0≤i<m,0≤j<n. Then

each column in H has weight m and each row has weight n. To capture the parameters of H we

denote it by Hm,n,t and reserve this notation for arrays composed exclusively of CPMs without

any ZMs. A necessary and sufficient condition for H to satisfy the RC-constraint is given in the

following proposition which follows as a special case of [18, Theorem 2.1].

Proposition 1. The matrix Hm,n,t = [CPMt(pi,j)]0≤i<m,0≤j<n satisfies the RC-constraint if and

only if pi1,j1 − pi0,j1 − pi1,j0 + pi0,j0 is not divisible by t for 0 ≤ i0 < i1 < m, 0 ≤ j0 < j1 < n.

A code is quasi-cyclic (QC) [8],[14] if it is the null space of an array of circulants of equal

size. In particular, if Hm,n,t = [CPMt(pi,j)]0≤i<m,0≤j<n, then it is a parity-check matrix of a

QC code, Cm,n,t, of length nt and dimension nt− rank(Hm,n,t). Assuming that t is not small,

then Hm,n,t is sparse and the code Cm,n,t is a QC-LDPC code.

The composition of the parity-check matrix Hm,n,t as an array of circulants naturally defines

a sectionalized structure for codewords. A binary sequence v = (v0, v1, . . . , vnt−1) composed of

nt bits can be written as v = (v0,v1, . . . ,vn−1), where vi = (vit, vit+1, . . . , vit+t−1) forms a

section. Erasures affecting only one section of the transmitted codeword form a phased burst.

Thus, a phased burst may contain up to t erasures. If the number of erasures in a phased burst

is t, then we say that the phased burst is solid. We say that two phased bursts affecting two

sections are mutually semi-solid if the total number of erasures is 2t− 1, i.e., one phased burst

is solid and the other contains t− 1 erasures.

For the code Cm,n,t, let e(r) be the maximum number of guaranteed correctable erasures if

1More commonly denoted by I(p) or P p, see, e.g., [18] and [19].
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the channel causes erasures confined to any r sections and eadj(r) be the maximum number of

guaranteed correctable erasures if the erasures are confined to r adjacent sections. i.e, sections

j, j + 1, . . . , j + r− 1 for some integer j, 0 ≤ j ≤ n− r. Clearly, e(r) ≤ eadj(r) for 1 ≤ r ≤ n.

Furthermore, e(1) = eadj(1) = t as the first equality trivially holds and the second follows

from the fact that the columns in any column block are linearly independent. We also have

e(n) = eadj(n) = d− 1, where d is the minimum Hamming distance of the code.

By circularly shifting the columns in each column block of Hm,n,t = [CPMt(pi,j)]0≤i<m,0≤j<n,

we can put Hm,n,t in a form of an m× n array of CPMs in which the 0-th row block consists

only of t× t identity matrices CPMt(0), i.e., p0,j = 0 for 0 ≤ j < n. These shifting operations

do not change the rank of the matrix Hm,n,t and, being confined to columns in the same column

block, do not change the capability of Cm,n,t to correct phased bursts using ML decoding or the

peeling algorithm. Therefore, from now on, we only consider matrices Hm,n,t in this form.

As each column block is composed of CPMs, the columns in any two column blocks are

linearly dependent as their sum is the all-zero vector. This implies that e(r) ≤ eadj(r) ≤ 2t− 1

for all r ≥ 2. For m = 1, eadj(2) = 1 as H1,n,t is just a row of CPMs and, therefore, there are

two identical columns in any two distinct column blocks. To have eadj(2) > 1, m should be at

least two. We will show that with proper choice of the CPMs, the upper bound 2t − 1 on the

number of erasures that can be corrected in a pair of phased bursts can be attained for m = 2.

Since the dimension of code may decrease by increasing m, it is interesting to consider the case

m = 2 which is treated in the next section.

III. QC CODES WITH PARITY-CHECK MATRICES OF COLUMN WEIGHT TWO

A. Correcting Pairs of Semi-Solid Phased Bursts of Erasures

With m = 2, we consider a parity-check matrix, H2,n,t, in the form of






CPMt(0) CPMt(0) · · · CPMt(0)

CPMt(p0) CPMt(p1) · · · CPMt(pn−1)






, (1)
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where n ≥ 2. For convenience, we call the two row blocks in H2,n,t the top row block and the

bottom row block. Then H2,n,t is a parity-check matrix of a QC-LDPC code, C2,n,t, of length

nt and dimension nt− rank(H2,n,t). The rank of H2,n,t, which equals the redundancy of C2,n,t,

is given in the following theorem in which GCD stands for the greatest common divisor. The

proof is presented in Appendix B.

Theorem 2. The rank of the matrix H2,n,t in (1) is given by

rank(H2,n,t) = 2t−GCD(p1 − p0, p2 − p0, . . . , pn−1 − p0, t).

The following theorem, the proof of which is given in Appendix C, specifies the phased-burst

erasure correcting capabilities of the code C2,n,t with the parity-check matrix H2,n,t. First we

say that a collection of integers p0, p1, . . . , pn−1 forms a t-modular Golomb ruler [20, Section

19.3] if (pi − pj)t are nonzero and distinct for distinct ordered pairs (i, j), 0 ≤ i 6= j < n. This

means that for every positive integer less than t, there is at most one pair of i and j such that

(pi − pj)t equals this integer2. The integers p0, p1, . . . , pn−1 are called the markers of the ruler.

We say that the parity-check matrix H2,n,t in (1) has the distinct property if pj , 0 ≤ j < n,

are distinct. We also say that H2,n,t has the modular Golomb ruler property if the numbers pj ,

0 ≤ j < n, form a t-modular Golomb ruler. In particular, if H2,n,t has the modular Golomb ruler

property, then it also has the distinct property. For example, the parity-check matrix H2,3,7 for

which p0 = 0, p1 = 1, and p2 = 2 has the distinct property since p0, p1, and p2 are distinct, but

not the modular Golomb ruler property since (p1 − p0)7 = (p2 − p1)7 as both equal 1. On the

other hand, the parity-check matrix H2,3,7 for which p0 = 0, p1 = 1, and p2 = 3 has the modular

Golomb ruler property since (p1 − p0)7 = 1, (p0 − p1)7 = 6, (p2 − p0)7 = 3, (p0 − p2)7 = 4,

2In case (pi − pj)t is replaced by (pi + pj)t, the sequence is a modular Sidon sequence [22] while if the difference sign

is kept but “at most” is replaced by “exactly”, the modular Golomb ruler is a perfect difference set [20, Section 19.3]. These

combinatorial objects and variations thereof were used in numerous papers, e.g., [19],[23]–[26]. to construct LDPC codes with

Tanner graphs of large girths.
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(p2 − p1)7 = 2, and (p1 − p2)7 = 5, i.e., (pi − pj)7 are nonzero and distinct for distinct ordered

pairs (i, j), 0 ≤ i 6= j < 3. Clearly, t ≥ n is a necessary condition for H2,n,t to have the

distinct property. Also, t ≥ n2 − n + 1 is a necessary condition for H2,n,t to have the modular

Golomb ruler property. For 1 ≤ r ≤ n, we say that H2,n,t has the r-adjacent distinct property

or the r-adjacent modular Golomb ruler property if the corresponding property holds for any

submatrix of H2,n,t composed of r consecutive column blocks.

Theorem 3. For the code C2,n,t with the parity-check matrix H2,n,t in (1), we have e(1) =

eadj(1) = t,

e(2) = 2t
max

0≤j0<j1<n
GCD(pj1−pj0 ,t)

− 1

eadj(2) = 2t
max

0≤j0<n−1
GCD(pj0+1−pj0 ,t)

− 1

e(r) =







































1, if H2,n,t does not have the distinct property

3, if H2,n,t has the distinct property but not the

modular Golomb ruler property

5, if H2,n,t has the modular Golomb ruler property,

eadj(r) =







































1, if H2,n,t does not have the r-adjacent distinct property

3, if H2,n,t has the r-adjacent distinct property but not the

r-adjacent modular Golomb ruler property

5, if H2,n,t has the r-adjacent modular Golomb ruler property,

for r ≥ 3. In particular, if t is a prime and H2,n,t has the distinct property, then C2,n,t can

correct any two mutually semi-solid phased bursts of erasures regardless of whether or not they

are adjacent.

Since the minimum Hamming distance of the code is d = e(n) + 1, we have the following

corollary to Theorem 3.
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Corollary 1. The minimum Hamming distance, d, of the code C2,n,t with the parity-check matrix

H2,n,t in (1), where n ≥ 3, is

d =







































2, if H2,n,t does not have the distinct property

4, if H2,n,t has the distinct property but not the

modular Golomb ruler property

6, if H2,n,t has the modular Golomb ruler property.

It is worth mentioning that Gallager [27, Theorem 2.5] has shown that the minimum Hamming

distances of codes, with parity-check matrices in which each column has weight two, grow at

most logarithmically with the code length. A result by MacKay and Davey [28, Theorem 2]

implies, as a special case, that the minimum Hamming distance of QC-LDPC codes with parity-

check matrices of the form H2,n,t in (1) is at most 6. Theorem 3 specifies exactly the minimum

Hamming distances for such codes. In spite of the poor minimum distance, Theorem 1 implies

that H2,n,t is ML peeling-decodable. In particular, all erasures recoverable by the ML decoder,

and not only those limited in number by the minimum Hamming distance, are also correctable

by the peeling algorithm. We also notice from the proofs in Appendix C that the girth of the

Tanner graph representing H2,n,t is twice the minimum Hamming distance, i.e., it is 4, 8, or 12

as observed earlier by Fossorier [18, Corollary 2.1]. We should also mention here that Chen,

Bai, and Wang have shown that the girth is 12 if and only if H2,n,t has the modular Golomb

ruler property [23].

Although C2,n,t has poor correcting capability if the erasures are in three or more sections, it

may correct large number of erasures confined to two sections. As mentioned earlier, a linear

(N,K) code is optimal for correcting some erasures if these erasures are correctable by the code

and the redundancy, N −K, equals the number of erasures. By combining Theorems 2 and 3,

it follows that if e(2) = 2t − 1, then rank(H2,n,t) = 2t − 1 and the code C2,n,t is optimal for

correcting two mutually semi-solid phased bursts of erasures.
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In the following, we give two constructions of general classes of codes with parity-check

matrices as given in (1) by specifying the parameters p0, p1, . . . , pn−1. The two classes of codes

are denoted by CRS
2,n,t and CGabidulin

2,n,t . The superscripts RS and Gabidulin refer to Reed-Solomon

and Gabidulin codes, respectively. The parameters p0, p1, . . . , pn−1 are the exponents, modulo t,

of elements in a finite field used to define parity-check matrices of these codes. This will be

elaborated upon later after generalizing the constructions in Examples 3 and 4.

Example 1. Let HRS
2,n,t be the parity-check matrix given in (1) in which t ≥ n ≥ 3 and pj = j

for 0 ≤ j < n. From Theorem 2, we have rank(HRS
2,n,t) = 2t−GCD(1, 2, . . . , n−1, t) = 2t−1.

Notice that HRS
2,n,t has the distinct property but not the modular Golomb ruler property or the

r-adjacent modular Golomb ruler property for any r ≥ 3. Indeed, for the pairs (p0, p1) = (0, 1)

and (p1, p2) = (1, 2), we have (p1 − p0)t = (p2 − p1)t. Hence, from Theorem 3, we have

e(1) = eadj(1) = t,

e(2) = 2t
max

0≤j0<j1<n
GCD(j1−j0,t)

− 1 =
2t

tn
− 1

eadj(2) = 2t
max

0≤j0<n−1
GCD((j0+1)−j0,t)

− 1 = 2t− 1,

and e(r) = eadj(r) = 3 for r ≥ 3 where tn is the largest factor of t less than n. The null space

of H
RS
2,n,t is a QC-LDPC code which we denote by CRS

2,n,t. This code has minimum Hamming

distance of four. It can correct any pair of adjacent mutually semi-solid phased bursts of erasures

and it is optimal for correcting these erasures. If t is a prime, then tn = 1 and the code can

also correct any pair of mutually semi-solid phased bursts of erasures and, in this case, it is also

optimal for correcting these erasures.

Example 2. Let H
Gabidulin
2,n,t be the parity-check matrix given in (1) in which t ≥ n ≥ 3 and

pj = (qj)t for 0 ≤ j < n, q ≥ 2 is an integer, and t is relatively prime to q and q − 1. From

Theorem 2, we have rank(H2,n,t) = 2t−GCD(q− 1, q2− 1, . . . , qn−1− 1, t) = 2t− 1 and from
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Theorem 3, we have e(1) = eadj(1) = t,

e(2) =
2t

max
0≤j0<j1<n

GCD(qj1 − qj0, t)
− 1 =

2t

max
1≤j<n

GCD(qj − 1, t)
− 1

eadj(2) =
2t

max
0≤j0<n−1

GCD(qj0+1 − qj0, t)
− 1 = 2t− 1.

For HGabidulin
2,n,t to have the distinct property, t should be chosen such that qj−1 is not divisible by

t for every j, 1 ≤ j < n. To have the modular Golomb ruler property, in addition to the distinct

property, qj0 − qj1 − qj2 + qj3 should not be divisible by t for all j0, j1, j2, j3, 0 ≤ j0 6= j1 <

n, 0 ≤ j2 6= j3 < n, (j0, j1) 6= (j2, j3). For such t, we have e(r) = eadj(r) = 5 for r ≥ 3 and the

minimum Hamming distance of the code is six. The null space of HGabidulin
2,n,t is a QC-LDPC code

which we denote by CGabidulin
2,n,t . It can correct any pair of adjacent mutually semi-solid phased

bursts of erasures and it is optimal for correcting these erasures. As a special case, we can take

q = 2 and t = 2τ − 1 where τ ≥ n. With this choice, H2,n,t has the distinct property. It also has

the modular Golomb ruler property. Indeed, suppose that 2j0−2j1−2j2 +2j3 is divisible by t for

0 ≤ j0 6= j1 < n, 0 ≤ j2 6= j3 < n, (j0, j1) 6= (j2, j3). Since −2n+2 ≤ 2j0−2j1−2j2+2j3 ≤ 2n−2

and t ≥ 2n − 1, it follows that 2j0 − 2j1 − 2j2 + 2j3 = 0. Without loss of generality, assume that

j3 ≥ j0, j1, j2. Since 2j3 > 2j3−1 + 2j3−2 + · · · + 1, we conclude that j2 = j3 and j1 = j0 or

j1 = j3 and j2 = j0. Both cases contradict the conditions imposed on the two pairs. Therefore,

H2,n,t has the modular Golomb ruler property. With this choice of q and t, e(r) = eadj(r) = 5

for r ≥ 3 and e(2) = 2t/(2τn − 1) − 1, where τn is the largest factor of τ less than n. The

drawback of this construction is that the value of t is exponential in n. In Table I we list in the

second and third columns, respectively, the smallest t, denoted by tGabidulin
q≤5,min (n), minimized over

q = 2, 3, 4, 5, such that HGabidulin
2,n,t has the modular Golomb property and a value of q ≤ 5 that

yields this minimum.

We can construct t-modular Golomb rulers with markers p0, p1, . . . , pn−1 with values of t that

are substantially less than those obtained above by not restricting pj to be (qj)t as in Example 2.
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Let tmin(n) be the minimum value of t such that there are n nonnegative integers p0, p1, . . . , pn−1

less than t that form a t-modular Golomb ruler. This function has been studied extensively, see

e.g., [20]. It is stated in [29] that n2 − n + 1 ≤ tmin(n) ≤ n2 + O(n36/23), which shows that

quadratic growth in n is necessary and sufficient. Constructions of t-modular Golomb rulers with

t equal or close to the lower bound for some values of n are due to Singer [30], Bose [31], and

Ruzsa [32]. The last two columns in Table I extracted from [33] give for each n, 2 ≤ n ≤ 14,

the value of tmin(n) and the n markers of a tmin(n)-modular Golomb ruler. The ruler is optimal

in the sense that there is no ruler of the same size which is a t-modular Golomb ruler for

any t < tmin(n). If the difference between any two consecutive markers is relatively prime to

tmin(n), one can use the ruler to construct a parity-check matrix for a code that can correct

adjacent phased bursts of erasures which are mutually semi-solid. We succeeded in ordering the

markers of each ruler to satisfy this condition except in the case n = 7. It should be noted,

however, that for any given n there is an infinite number of t-modular Golomb rulers satisfying

the condition as shown in Example 2.

B. Correcting Solid Phased Bursts of Erasures

Any code with dimension at most 2t − 1, such as C2,n,t, cannot correct two solid phased

bursts of 2t erasures. If C2,n,t can correct two adjacent mutually semi-solid phased bursts then

its redundancy is 2t − 1. In this case a subcode of C2,n,t can correct any two adjacent solid

phased bursts. The parity-check matrix of this subcode is obtained by augmenting H2,n,t with

an additional row that contains 1 in column (j; 0) whenever j is even and 0’s everywhere else.

This gives an extra parity equation that can be used to recover one of the erased bits if the

channel causes two adjacent solid phased bursts of erasures. The remaining erasures form two

adjacent mutually semi-solid phased bursts which are within the correcting capability of C2,n,t.

In particular, the peeling algorithm applied to the augmented parity-check matrix can correct any

two adjacent solid phased bursts of erasures. The dimension of the subcode is 2t and, hence, is
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TABLE I

tGabidulin
q≤5,min (n) AND OPTIMAL tmin(n)-MODULAR GOLOMB RULERS OF SIZE n FOR 2 ≤ n ≤ 14

n tGabidulin
q≤5,min (n) q tmin(n) Optimal Modular Golomb Rulers’ Markers

3 7 2 7 0, 1, 3

4 15 2 13 0, 1, 3, 9

5 25 2 21 4, 0, 1, 14, 16

6 41 2 31 0, 1, 3, 8, 12, 18

7 69 5 48 0, 1, 3, 15, 20, 38, 42

8 73 2 57 13, 36, 32, 1, 3, 43, 0, 52

9 73 2 73 0, 1, 3, 7, 15, 31, 36, 54, 63

10 191 3 91 61, 77, 81, 49, 3, 9, 27, 56, 1, 0

11 197 4 120 45, 58, 35, 114, 1, 20, 3, 74, 31, 0, 53

12 239 5 133 0, 1, 3, 12, 20, 38, 34, 81, 94, 88, 104, 109

13 295 2 168 1, 0, 121, 108, 103, 30, 11, 162, 83, 46, 3, 34, 147

14 295 2 183 0, 1, 3, 16, 23, 28, 42, 76, 82, 86, 119, 137, 154, 175

optimal for correcting such erasures.

If C2,n,t can correct any two mutually semi-solid bursts of erasures, not necessarily adjacent,

then it is easy to come up with a subcode, C, of C2,n,t that can correct any two solid phased

bursts of erasures. Since any vector of weight 2t in which all its 1’s are confined to two sections

is in the null space of H2,n,t, a parity-check matrix, H, of C can be obtained by augmenting

H2,n,t with a matrix that does not have any such vector in its null space. Hence, the sums

of the columns in each column block in the augmenting matrix should be distinct. Therefore,

the number of rows in the augmenting matrix is at least ⌈log2(n)⌉. A possible choice for such

matrix with that many rows is to have the (j; 0) column to be the binary representation of j,

0 ≤ j < n, and all other columns to be all-zero columns. The (j; 0) columns in this matrix

are all distinct. Hence, if the channel causes two solid phased bursts of erasures, then there is a
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parity equation that can be used to recover one of the erased bits. Again, the remaining erasures

form two mutually semi-solid phased bursts which are within the correcting capability of C2,n,t.

In particular, the peeling algorithm applied to the augmented parity-check matrix can correct

any two solid phased bursts of erasures. Unlike the case for adjacent solid phased bursts, the

code is not optimal for correcting any two solid phased bursts of erasures. Indeed, if n ≤ 2t,

then a (possibly shortened or lengthened) Reed-Solomon code of length n and dimension n− 2

over GF(2t) in which each symbol is represented by a binary vector of length t is optimal for

correcting pairs of solid phased bursts of erasures.

C. Globally Coupled QC-LDPC Codes for Correcting Multiple Phased Bursts of Erasures

The matrix H2,n,t given in (1) can be used as a building block to construct long QC-LDPC

codes to correct multiple phased bursts of erasures. Here we present an approach in which a

number of matrices H2,n,t are connected globally [34, Chapter 10]. For an integer l ≥ 2, we

define the following (2l + n)t× ntl matrix

H
Global
2,n,t,l =



























H2,n,t

H2,n,t

. . .

H2,n,t

CPMnt(0) CPMnt(0) CPMnt(0) CPMnt(0)



























. (2)

This matrix consists of two submatrices. The upper submatrix is an l×l diagonal array of 2t×nt

matrices with copies of H2,n,t on the diagonal. The lower submatrix, which we call the global

coupling matrix, is a 1× l array of nt×nt matrices CPMnt(0), the nt×nt identity matrix. The

matrix H
Global
2,n,t,l has column weight three and two row weights n and l, for the upper and lower

submatrices, respectively. It can also be viewed as a (2l+n)×nl array of t× t matrices, each is

either a CPM or a ZM. Hence, its null space is a QC code denoted by CGlobal
2,n,t,l . The code CGlobal

2,n,t,l
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is a globally coupled QC-LDPC code of length ntl and dimension ntl − rank(HGlobal
2,n,t,l ). The

rank of HGlobal
2,n,t,l is given in the following theorem, the proof of which appears in Appendix D.

Theorem 4.

rank(HGlobal
2,n,t,l ) = (l − 1)rank(H2,n,t) + nt.

It follows from Theorem 4 that the dimension of CGlobal
2,n,t,l is (l − 1)(nt − rank(H2,n,t)). This

product suggests that CGlobal
2,n,t,l is a product code, which is indeed the case. It is the product of

the code C2,n,t and the single parity-check (SPC) code composed of all even-weight words of

length l. The minimum Hamming distance of CGlobal
2,n,t,l is twice that of C2,n,t.

From (2), we see that H
Global
2,n,t,l has a local structure represented by each matrix H2,n,t on

the main diagonal of the upper submatrix. These matrices are connected together by the global

coupling matrix endowing the matrix H
Global
2,n,t,l with a global structure as well. This allows for a

two-phase decoding procedure. Let u = (u0,u1, . . . ,ul−1) be a codeword in CGlobal
2,n,t,l where each

ui, 0 ≤ i < l, is a sequence of length nt. Then, each such sequence is a codeword in C2,n,t, which

we call a local codeword. If erasures occurring in each local codeword are within the erasure

correcting capability of C2,n,t, then they can be recovered by applying the peeling algorithm to

the parity-check matrix H2,n,t of C2,n,t. If an entire local codeword is erased, and the remaining

codewords suffer from erasures that can be corrected by C2,n,t, then after recovering them the

erased local codeword can be recovered as each bit is checked by a row in the global coupling

matrix that checks that bit and no other in the erased local codeword. In particular, if t is a prime

and H2,n,t has the distinct property, then from Theorem 3, CGlobal
2,n,t,l can recover any local codeword

which is entirely erased, in addition to correcting two mutually semi-solid phased bursts in each

of the other l− 1 local codewords. The number of erasures is then (l− 1)(2t− 1) + nt. This is

precisely equal to the rank of the matrix H
Global
2,n,t,l given in Theorem 4 where rank(H2,n,t) = 2t−1

as t is a prime, see Theorem 2. Hence, CGlobal
2,n,t,l is optimal for correcting these erasures.
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IV. QC-LDPC CODES WITH PARITY-CHECK MATRICS OF COLUMN WEIGHT THREE OR

MORE

The capability of the codes in Section III with parity-check matrices of column weight two

to correct a pair of mutually semi-solid bursts of erasures may not be surpassed by codes

with parity-check matrices with higher column weights. However, most noisy channels affect

the transmitted data adversely in many ways besides causing bursts of erasures. As stated in

Theorem 3, QC-LDPC codes with parity-check matrices of weight two have minimum Hamming

distance of at most six which renders them ineffective in combating random noise. By having

m ≥ 3, the code Cm,n,t with parity-check matrix Hm,n,t = [CPMt(pi,j)]0≤i<m,0≤j<n can be

made more effective compared to C2,n,t. For this purpose, we choose the parity-check matrix,

Hm,n,t, to satisfy the RC-constraint. Based on the discussion following Theorem 1, any code

with parity-check matrix of column weight m, such as Cm,n,t, has minimum Hamming distance

at least m + 1 if the matrix satisfies the RC-constraint. We give two explicit examples for the

parameters pi,j , 0 ≤ i < m, 0 ≤ j < n, m ≥ 3, such that Hm,n,t satisfies the RC-constraint. In

both examples, the top two row blocks of the parity-check matrix Hm,n,t of Cm,n,t constitute the

parity-check matrix H2,n,t of C2,n,t. Hence, Cm,n,t can correct all phased bursts of erasures that

can be corrected by C2,n,t using the same peeling algorithm.

Example 3. Let n ≥ m ≥ 3 and choose t such that none of the products i× j, where 1 ≤ i <

m, 0 ≤ j < n, is divisible by t. This is satisfied, for example, if t is greater than (m−1)(n−1) or

its largest prime factor is at least equal to both m and n. Let HRS
m,n,t = [CPMt((ij)t)]0≤i<m,0≤j<n,

i.e., pi,j = (ij)t. From Proposition 1, HRS
2,n,t satisfies the RC-constraint since

pi1,j1 − pi0,j1 − pi1,j0 + pi0,j0 = i1j1 − i0j1 − i1j0 + i0j0 = (i1 − i0)(j1 − j0)

is not divisible by t. Hence, HRS
m,n,t is a parity-check matrix of a QC-LDPC code, CRS

m,n,t, of

minimum Hamming distance at least m + 1. Notice that the top two row blocks of H
RS
m,n,t

constitute the matrix H
RS
2,n,t in Example 1.
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Example 4. Let n ≥ m ≥ 3 and choose t to be relatively prime to q ≥ 2 such that none of

the products i × (qj − 1), where 1 ≤ i < m, 0 ≤ j < n, is divisible by t. This is satisfied, for

example, if t is greater than (m−1)(qn−1−1) or its largest prime factor is at least equal to both

m and qn−1. Let HGabidulin
m,n,t = [CPMt((iq

j)t)]0≤i<m,0≤j<n, i.e., pi,j = (iqj)t. From Proposition 1,

H
Gabidulin
2,n,t satisfies the RC-constraint since

pi1,j1 − pi0,j1 − pi1,j0 + pi0,j0 = i1q
j1 − i0q

j1 − i1q
j0 + i0q

j0 = (i1 − i0)(q
j1 − qj0)

is not divisible by t for 0 ≤ i0 < i1 < m, 0 ≤ j0 < j1 < n. Hence, HGabidulin
m,n,t is a parity-check

matrix of a QC-LDPC code, CGabidulin
m,n,t , of minimum Hamming distance at least m+ 1. Notice

that the top two row blocks of HGabidulin
m,n,t constitute the matrix H

Gabidulin
2,n,t in Example 2.

The superscript RS that appears in Examples 1 and 3 refers to Reed-Solomon (RS) code

[8] with a parity-check matrix of the form [βij]0≤i<m,0≤j<n while superscript Gabidulin that

appears in Examples 2 and 4 refers to Gabidulin code [9] with a parity-check matrix of the form

[βiqj ]0≤i<m,0≤j<n where q is a power of a prime and β is some element in an extension field

of GF(q) satisfying certain properties. In both cases, the exponents of β reduced modulo t are

precisely the values of pi,j defining the CPMs in the constructions. The RS and the Gabidulin

codes are nonbinary codes that can be considered as base codes for constructing QC-LDPC

codes, see [35] where techniques to determine the dimensions of the QC-LDPC codes are also

presented. The use of RS codes to construct QC-LDPC codes for correcting erasures is explored

in [36],[37].

We simulated the performances of the codes CRS
2,12,239, CGabidulin

2,12,239 , CRS
6,12,239, and CGabidulin

6,12,239 over

the AWGN channel using a scaled min-sum decoder. The four codes are of length 2868 and

their parity-check matrices are composed of 12 column blocks of 239× 239 CPMs. The codes

CRS
2,12,239 and CGabidulin

2,12,239 have parity-check matrices H
RS
2,12,239 = [CPM239((ij)239)]0≤i<2,0≤j<12

and H
Gabidulin
2,12,239 = [CPM239((i5

j)239)]0≤i<2,0≤j<12, respectively. Both codes have dimension 2391

and rate 0.8337. The codes CRS
6,12,239 and CGabidulin

6,12,239 have parity-check matrices H
RS
6,12,239 =
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[CPM239((ij)239)]0≤i<6,0≤j<12 and H
Gabidulin
6,12,239 = [CPM239((i5

j)239)]0≤i<6,0≤j<12, respectively.

Both codes have dimension 1439 and rate 0.5017. The constructions of CGabidulin
2,12,239 and CGabidulin

6,12,239

are based on q = 5, see the entry in Table I for n = 12. The bit error rate (BER) and the frame

error rate (FER) of the four codes are shown in Fig. 1 where α is the scaling factor used in min-

sum decoding. As shown, CGabidulin
2,12,239 performs better than CRS

2,12,239 as their minimum Hamming

distances are six and four, respectively, see Examples 1 and 2. Also, as expected, increasing the

number of row blocks from two to six yields better performance albeit with a loss in rate.
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Fig. 1. The BER and BLER performances of CRS
2,12,239 , CGabidulin

2,12,239 , CRS
6,12,239, and CGabidulin

6,12,239 over the AWGN channel decoded

with a scaled min-sum decoder.

V. CONCLUSION

In this paper, we considered the use of QC-LDPC codes with parity-check matrices of the

form Hm,n,t = [CPMt(pi,j)]0≤i<m,0≤j<n for correcting phased bursts of erasures. Such codes

cannot correct erasures forming two solid phased bursts regardless of the column weight m of
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their parity-check matrices. Since, in general, codes with parity-check matrices of column weight

m = 1 cannot correct a single error, we first focused on codes with parity-check matrices of

column weight m = 2 and determined their abilities to correct phased bursts of erasures. Using

these parity-check matrices, we showed how to modify them to correct two solid phased bursts

of erasures and how to globally couple them to correct more erasures. To improve performance

over the AWGN channel, we considered QC-LDPC codes with parity-check matrices Hm,n,t

with m ≥ 3 which include as submatrices well designed H2,n,t.

In our work we did not consider correcting cyclically adjacent phased bursts of erasures. To

do that, extra conditions can be easily incorporated in our work. In Section IV we presented

examples of parity-check matrices meeting the RC-constraint by imposing conditions on pi,j ,

0 ≤ i < m, 0 ≤ j < n. We could have also used masking, a technique that replaces some of the

CPMs in Hm,n,t, which does not necessarily meet the RC-constraint by ZMs. The replacement

of CPMs by ZMs can be judiciously performed such that the resulting matrix satisfies the

RC-constraint. This process can also be used to enhance the phased burst erasure correcting

capabilities and obtain better degree distributions of check and variable nodes for improved

performance over the AWGN channel [34, Section 7.4].

APPENDIX A

PROOF OF THEOREM 1

Suppose H is not ML peeling-decodable. Then, there is a nonempty set, J , of variable nodes

in G that form a stopping set such that the columns in H indexed by J are linearly independent.

Let I be the set of check nodes in the subgraph G(J ) induced by J . This is the subgraph of G

consisting of the variable nodes in J , all edges incident on these variable nodes, and all check

nodes adjacent to these nodes. As every column in H has weight at most two, the number of

edges incident on J is at most 2|J |. Since J forms a stopping set, every check node in I

is adjacent to at least two variable nodes in J . Hence, the number of edges incident on these
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check nodes is at least 2|I|. Since the columns in H indexed by J are linearly independent, we

have |J | ≤ |I|. As the edges in G(J ) incident on I are the same as those incident on J , we

conclude that |I| = |J | and every node in I or J is incident on exactly two edges. This is to

say that every row in the submatrix of H composed of the columns indexed by J has weight

two, contradicting the assumption that the columns indexed by J are linearly independent.

APPENDIX B

PROOF OF THEOREM 2

We start with the following lemma which gives the rank of an array of circulants that are not

necessarily CPMs. The proof is based on Bézout’s identity which states that given polynomials

a0(x), a1(x), . . . , an(x) over some field with greatest common divisor (GCD) f(x), there exists

polynomials q0(x), q1(x), . . . , qn(x) such that f(x) = q0(x)a0(x)+q1(x)a1(x)+· · ·+qn(x)an(x),

see e.g., [38, Corollary 1.37].

Lemma 1. 3 Let A0,A1, . . . ,An−1 be t×t circulants over some field and A = [A0,A1, . . . ,An−1].

For 0 ≤ j < n, let aj = (a0,j, a1,j , . . . , at−1,j) be the top row of Aj and aj(x) = a0,j+a1,jx+· · ·+

an−1,jx
n−1. Then, rank(A) = t−deg(f(x)) where f(x) = GCD(a0(x), a1(x), . . . , an−1(x), x

t−

1) and deg(f(x)) is the degree of the polynomial f(x).

Proof: Let f(x) =
∑t−1

j=0 fjx
j and define the sequence f = (f0, f1, . . . , ft−1). Then, with an(x) =

xt − 1, Bézout’s identity yields

f(x) ≡ q0(x)a0(x) + q1(x)a1(x) + · · ·+ qn−1(x)an−1(x) (mod xt − 1)

3In the special case in which n = 1, Lemma 1 gives the rank of a circulant. In this special case, if the circulant is over GF(q)

and t = q− 1, the result is known as the König-Rados Theorem [39]. More generally, if t is not divisible by the characteristic

of the field, Newman [40] provided a proof based on a similarity transformation of the circulant. Although the result for general

t in case of a single circulant may be a folk theorem to coding theorists, we did not find it explicitly stated in the coding

literature. We believe that the generalization to an array of n > 1 circulants is new.
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for some polynomials q0(x), q1(x), . . . , qn−1(x). This implies that f is a linear combination of

a0, a1, . . . , an−1 and their cyclic shifts. Since the columns of a circulant are the the same as its

rows read in reverse, then
←−
f = (ft−1, ft−2, . . . , f0) is in the column space of the matrix A.

Notice that
←−
f starts with exactly t− deg(f(x))− 1 zeros. Hence,

←−
f and its t− deg(f(x))− 1

cyclic shifts are linearly independent. Since
←−
f is in the column space of A which is a row of

circulants, all cyclic shifts of
←−
f are also in the same column space. Thus, A has rank at least

t−deg(f(x)) as it contains that many linearly independent vectors. To show that the rank of A

does not exceed t− deg(f(x)), we argue that every vector s = (s0, s1, . . . , st−1) in the column

space of A is a linear combination of these t−deg(f(x)) linearly independent vectors composed

of
←−
f and its cyclic shifts. Indeed, as s is in the column space of A, ←−s = (st−1, st−2, . . . , s0)

is a linear combination of a0, a1, . . . , an−1 and their t − 1 cyclic shifts. In particular, for some

polynomials u0(x), u1(x), . . . , un−1(x), we can write

←−s (x) ≡ u0(x)a0(x) + u1(x)a1(x) + · · ·+ un−1(x)an−1(x) (mod xt − 1),

where ←−s (x) =
∑t−1

i=0 st−1−ix
i. Since f(x) = GCD(a0(x), a1(x), . . . , an−1(x), x

t− 1), it follows

that f(x) divides ←−s (x), i.e., ←−s (x) = q(x)f(x) for some polynomial q(x) of degree less than

t − deg(f(x)). This is equivalent to saying that ←−s is a linear combination of f and its t −

deg(f(x))− 1 cyclic shifts which is the same as saying that s is a linear combination of
←−
f and

its t− deg(f(x))− 1 cyclic shifts.

We continue with the proof of Theorem 2. First, we notice that by circularly shifting the rows

in the bottom row block of the matrix H2,n,t given in (1) by p0, we obtain, without changing

the rank, the matrix

H
′ =







CPMt(0) CPMt(0) · · · CPMt(0)

CPMt(0) CPMt((p1 − p0)t)) · · · CPMt((pn−1 − p0)t)






.
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Next, we subtract the top row block of H′ from the bottom row block to obtain the matrix

H
′′ =







CPMt(0) CPMt(0) · · · CPMt(0)

0 A1 · · · An−1






,

where 0 is the t× t all-zero matrix and Aj = CPMt((pj − p0)t)−CPMt(0). For 1 ≤ j < n,

the matrix Aj is a circulant in which its top row is either the all-zero vector or has exactly two

1’s at positions (pj − p0)t and 0. Since H
′′ is obtained from H

′ by elementary row operations,

they have the same rank. Furthermore, as CPMt(0), being an identity matrix, has rank t, we

have

rank(H2,n,t) = rank(H′) = rank(H′′) = t + rank(A), (3)

where A = [A1, . . . ,An−1] is composed of n − 1 circulants. We invoke Lemma 1 to find the

rank of this matrix. For this purpose, let aj(x) = x(pj−p0)t − 1 for 1 ≤ j < n. Then,

f(x) = GCD(a1(x), . . . , an−1(x), x
t − 1)

= GCD(x(p1−p0)t − 1, . . . , x(pn−1−p0)t − 1, xt − 1)

= xGCD(p1−p0,...,pn−1−p0,t) − 1,

where we used the well-known fact that GCD(xa − 1, xb − 1) = xGCD(a,b) − 1 for nonnegative

integers a and b. The result now follows directly from Lemma 1 and (3).

APPENDIX C

PROOF OF THEOREM 3

Since the t columns in any column block are linearly independent, e(1) = t. As any r column

blocks, where 2 ≤ r ≤ n, have linearly dependent columns, e(r) is one less than the minimum

number of linearly dependent columns confined to r column blocks. Since each column in H2,n,t

has a single 1 in the top row block and a single 1 in the bottom row block, only an even number

of columns in H2,n,t can sum up to the all-zero vector and, therefore, e(r) is odd for 2 ≤ r ≤ n.

September 15, 2020 DRAFT



26 IEEE TRANSACTIONS ON COMMUNICATIONS

Our approach is based on relating linear dependence of columns in H2,n,t to cycles in the

Tanner graph G representing H2,n,t. Indeed, the columns of H2,n,t indexed by a nonempty set

J of indices are linearly dependent if and only if there is a cycle in the subgraph, G(J ), of G

induced by J . Notice that “if” uses the fact that every column in H2,n,t has exactly two 1’s.

Without loss of generality, we can assume that a cycle in G starts with the variable node

(j0; j
′
0) followed by a check node in the top row block followed by the variable node (j1; j

′
0)

followed by a check node in the bottom row block and so on until it reaches a variable node

(jz−1; j
′
z−1) followed by a check node in the bottom row block and finally ends at the variable

node (jz; j
′
z) = (j0; j

′
0) we started with for some positive even integer z. Based on this, the cycle

can be completely specified by the sequence (j0; j
′
0), (j1; j

′
1), . . . , (jz−1; j

′
z−1) of variable nodes

without listing the check nodes or the ending variable node which is the same as the starting

node. The length of the cycle is 2z. For such a sequence to form a cycle it is necessary that

1) jℓ 6= jℓ+1 for 0 ≤ ℓ < z where jz = j0 as no check node is adjacent to two variable nodes

in the same column block;

2) If ℓ is even, then j′ℓ = j′ℓ+1 for the variables nodes (jℓ; j
′
ℓ) and (jℓ+1; j

′
ℓ+1) to be adjacent

to a check node in the top row block;

3) If ℓ is odd, then (j′ℓ − pjℓ)t = (j′ℓ+1 − pjℓ+1
)t, where (jz; j

′
z) = (j0; j

′
0), for the variables

nodes (jℓ; j
′
ℓ) and (jℓ+1; j

′
ℓ+1) to be adjacent to a check node in the bottom row block.

Combined with the condition that (j0; j
′
0), (j1; j

′
1), . . . , (jz−1; j

′
z−1) are distinct gives a necessary

and sufficient condition for the sequence to form a cycle. If this extra condition is not met, then

the sequence represents a closed walk that contains a cycle of length less than 2z.

To determine e(2), we consider the minimum number of linearly dependent columns confined

to the column blocks j0 and j1, where 0 ≤ j0 6= j1 < n. There are z such columns only if

there is a sequence (j0; j
′
0), (j1; j

′
1), . . . , (jz−1; j

′
z−1) of variable nodes satisfying conditions 1),

2), and 3). Then, for even ℓ we have jℓ = j0 and j′ℓ = j′ℓ+1 while for odd ℓ we have jℓ = j1 and

(j′ℓ−pjℓ)t = (j′ℓ+1−pjℓ+1
)t. Summing over ℓ = 0, 1, . . . , z−1, we get 1

2
(pj1−pj0)z ≡ 0 (mod t).
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The minimum value of z for this congruency to hold is 2t/GCD(pj1 − pj0, t). Hence, there is

no cycle of length less than 2z with z = 2t/GCD(pj1 − pj0, t) involving only variable nodes

confined to the column blocks j0 and j1. For such z, we can find a closed walk of length 2z.

Indeed, let (jℓ; j
′
ℓ) = (j0; ((pj0 − pj1)

ℓ
2
)t) if ℓ = 0, 2, . . . , z and (jℓ; j

′
ℓ) = (j1; ((pj0 − pj1)

ℓ−1
2
)t) if

ℓ = 1, 3, . . . , z−1. Then, (jz; j
′
z) = (j0; j

′
0) and the three conditions 1), 2), 3) hold. We conclude

that the length of a shortest cycle of variable nodes confined to the column blocks j0 and j1

is 2z and z is the minimum number of linearly dependent columns confined to these column

blocks. From this, the expression of e(2) follows.

Next, we consider e(r) in case r ≥ 3. If H2,n,t does not have the distinct property, then

pj0 = pj1 for some j0 6= j1. In this case, the j′-th column, 0 ≤ j′ < t, in the j0-th column block is

the same as the j′-th column in the j1-th column block. Hence, e(r) = 1. If H2,n,t has the distinct

property, then no two columns in H2,n,t are identical and e(r) > 1 which implies that e(r) ≥ 3.

If H2,n,t does not have the modular Golomb ruler property, then (pj1 − pj0)t = (pj2 − pj3)t

for distinct pairs (j0, j1) and (j3, j2) such that 0 ≤ j0, j1, j2, j3 < n, j0 6= j1, and j2 6= j3.

Then j1 6= j2 otherwise pj0 = pj3 which implies that j0 = j3 as p0, p1, . . . , pn−1 are distinct.

Similarly, j3 6= j0. The sequence of variable nodes (j0; 0), (j1; 0), (j2; (pj2−pj1)t), (j3; (pj2−pj1)t)

satisfies conditions 1), 2), and 3) and forms a cycle of length 8. Therefore, the columns of

H2,n,t indexed by these four variable nodes are linearly dependent and e(r) = 3. If H2,n,t

has the modular Golomb ruler property, then there is no such sequence of variable nodes and

e(r) > 3, which implies that e(r) ≥ 5. However, consider the sequence of the six variable

nodes (j0; 0), (j1; 0), (j2; (pj2 − pj1)t), (j0; (pj2 − pj1)t), (j1; (pj2 − pj0)t), (j2; (pj2 − pj0)t), where

0 ≤ j0 < j1 < j2 < n. This sequence satisfies conditions 1), 2), and 3) and forms a cycle

of length 12. Therefore, the columns of H2,n,t indexed by these six variable nodes which are

confined to the three column blocks j0, j1, j2 are linearly dependent. This proves that e(r) ≤ 5

for all 3 ≤ r ≤ n.

The results for eadj(r) follow by confining the erasures to r consecutive column blocks.
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APPENDIX D

PROOF OF THEOREM 4

Clearly, the upper and lower submatrices have row spaces of dimensions lrank(H2,n,t) and

nt, respectively. Because of the structure of the lower submatrix, a linear combination of the

rows of the upper submatrix belongs to the row space of the lower submatrix if and only if it

involves the same linear combination of the rows of each matrix H2,n,t on the diagonal. Hence,

the dimension of the intersection of the row spaces of the two submatrices is rank(H2,n,t). The

dimension of the row space of H
Global
2,n,t,l is the sum of the dimensions of the row spaces of the

upper and lower submatrices excluding the dimension of their intersection. We conclude that the

rank of HGlobal
2,n,t,l , which is the dimension of its row space, is as given in the theorem.
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[3] K. Li, A. Kavc̆ić, and M. F. Erden, “Construction of burst-erasure efficient LDPC codes for use with belief propagation

decoding,” in Proc. IEEE Int. Conf. Commun. (ICC), Cape Town, South Africa, May 23–27, 2010, pp. 1–5.

[4] G. Hosoya, H. Yagi, T. Matsushima, and S. Hirasawa, “A modification method for constructing low-density parity-check

codes for burst erasures,” ICICE Trans. Fundamentals, vol. E89-A, no. 10, pp. 2501–2509, Oct. 2006.

[5] Y. Y. Tai, L. Lan, L. Zeng, S. Lin, and K. A. S. Abdel-Ghaffar, “Algebraic construction of quasi-cyclic LDPC codes for

the AWGN and erasure channels,” IEEE Trans. Commun., vol. 54, no. 10, pp. 1765–1774, Oct. 2006.

[6] S. J. Johnson, “Burst erasure correcting LDPC codes,” IEEE Trans. Commun., vol. 57, no. 3, pp. 641–652, Mar. 2009.

[7] X. Ge and S. -T. Xia, “Structured non-binary LDPC codes with large girth,” Electron. Lett., vol. 43, no. 22, pp. 1220–1221,

Oct. 2007.

[8] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, 2nd ed. Upper Saddle River, NJ:

Prentice Hall, 2004.

[9] E. M. Gabidulin, “Theory of codes with maximum rank distance,” Problems Inf. Transmiss., vol. 21, no. 1, pp. 3–16, Jul.

1985.

DRAFT September 15, 2020



SUBMITTED PAPER 29

[10] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, “Finite-length analysis of low-density parity-check

codes on the binary erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, Jun. 2002.

[11] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check codes over the binary erasure channel,” IEEE Trans.

Inf. Theory, vol. 50, no. 3, pp. 439–454, Mar. 2004.

[12] V. Savin, “LDPC decoders,” in Channel Coding: Theory, Algorithms, and Applications, D. Declercq, M. Fossorier, and E.

Biglieri Eds., Oxford, UK: Academic Press, 2014.

[13] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, no. 5, pp. 533 – 547,

Sep. 1981.

[14] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. New York, NY: Cambridge University Press, 2009.

[15] H. D. L. Hollmann and L. M. G. M. Tolhuizen, “Generic erasure correcting sets: bounds and constructions,” J. Combin.

Theory, Ser. A, vol. 113, no. 8, pp. 1746–1759, 2006.

[16] H. D. L. Hollmann and L. M. G. M. Tolhuizen, “On parity check collections for iterative erasure decoding that correct all

correctable erasure patterns of a given size,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 823–828, Feb. 2007.

[17] J. H. Weber and K. A. S. Abdel-Ghaffar, “Results on parity-check matrices with optimal stopping and/or dead-end set

enumerators,” IEEE Trans. Inf. Theory, vol. 54, no. 3, pp. 1368–1374, Mar. 2008.

[18] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf.

Theory, vol. 50, no. 8, pp. 1788–1793, Aug. 2004.
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