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rational curves with 7 + 2 markings and weights (% +1, % +1, %,..4, %), for 0 <# < 1. These Hassett spaces
can be identified with the symmetric GIT quotients of (Plyr by the diagonal action of G,;, when 7 is odd,
and their Kirwan desingularization, when 7 is even. The existence of such an exceptional collection is one of
the needed ingredients in order to prove the existence of a full S, -invariant exceptional collection on Mo,n-
To prove exceptionality we use the method of windows in derived categories. To prove fullness we use previous
work on the existence of invariant full exceptional collections on Losev-Manin spaces.
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Collections exceptionnelles sur certains espaces de Hassett

Résumé. Nous construisons une collection exceptionnelle pleine Sy x S;-invariante sur les espaces de Hassett
de courbes rationnelles stables pondérées avec 1+2 marquages et poids (%+11, %+17, %, oo %), pour 0 <y < 1.
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d’une collection exceptionnelle S, -invariante pleine sur MO,n- Pour prouver le caractére exceptionnel, nous
utilisons la méthode des fenétres dans les catégories dérivées. Pour prouver que la collection est pleine, nous
utilisons un travail précédent portant sur 'existence de collections exceptionnelles pleines sur les espaces de
Losev-Manin.

Received by the Editors on May 7, 2020, and in final form on November 9, 2020.
Accepted on November 27, 2020.

Ana-Maria Castravet

Université Paris-Saclay, UVSQ, CNRS, Laboratoire de Mathématiques de Versailles, 78000, Versailles, France

e-mail: ana-maria.castravet@uvsq.fr

Jenia Tevelev

Department of Mathematics and Statistics, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003,
USA, and Laboratory of Algebraic Geometry and its Applications, HSE, Moscow, Russia

e-mail: tevelev@math.umass.edu

AMC was supported by NSF grants DMS-1529735 and DMS-1701752. JT was supported by NSF grants DMS-1303415, DMS-1701704,
and by the HSE University Basic Research Program, Russian Academic Excellence Project 5-100. Parts of this paper were written
while AMC was visiting the Institut des Hautes Etudes Scientifiques in France and JT was visiting the Fields Institute in Toronto,
Canada.

© by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/


http://epiga.episciences.org/
epiga.episciences.org
http://creativecommons.org/licenses/by-sa/4.0/

2 A.-M. Castravet and J. Tevelev

Contents

1. Imntroduction. . . . . . . . . . . . .. L0000 Lo 2
2. Preliminaries on Hassettspaces . . . . . . . . . . . . . . . . .. ... ... b
3. Proof of Theorem16 . . . . . . . . . . . . . . . . ... ... ...... 8
3.1. Generalities on GIT quotients (P!)./G,,. . . . . . . . . . . . . . ... ... 8
3.2. The space Zy as a GIT quotient whennisodd . . . . . . . . . . . . . . . .. 9
3.3. Exceptiomnality . . . . . . . . . . . . . ... ... ... ... 10
34. Fullness . . . . . . . . . . L Lo 0L e e 12
4. Proof of Theorem18 . . . . . . . . . . . . . . . . . .. ... ... .. 13
4.1. The space Zy as a GIT quotient,neven . . . . . . . . . . . . . . . . . ... 14
4.2. Exceptionality . . . . . . . . . . . . . . oL oL oL L ... 1T
43. Fullness . . . . . . . . . . .. L0002
5. Pushforward of the exceptional collection on the Losev-Manin space LMy to Zy . . . . 27
References. . . . . . . . . . . . . . . . . . .. .00 ..o oo 33

1. Introduction

A conjecture of Manin and Orlov states that Grothendieck-Knudsen moduli space Mo,n of stable, rational
curves with 7 markings admits a full, exceptional collection which is invariant (as a set) under the action
of the symmetric group S, permuting the markings. The conjecture has been proved by the authors in
[CT20b] by reducing it to the similar statement for several Hassett spaces, one of which is the space under
consideration in this paper. While the proof presented in [CT20b] for other needed Hassett spaces is valid
in this particular case as well, it was not discussed in [CT20b] and we prefer to give a different and much
simpler proof here.

For a vector of rational weights a = (ay,...,a,) with 0 <a; <1 and ) a; > 2, the Hassett space M, is
the moduli space of weighted pointed stable rational curves, i.e., pairs (C,) a;p;) with slc singularities,
such that C is a genus 0, at worst nodal, curve and the Q-line bundle w¢(}_ a;p;) is ample. For example,
Morn = M(l 1)- There exist birational reduction morphisms M, - M, every time the weight vectors are

,,,,,

such that a; > a; for every i.

Understanding the derived categories of the Hassett spaces M, was considered in the work of Ballard,
Favero and Katzarkov [BFK19], and earlier, for Mo,n in the work of Manin and Smirnov [MS13] (see also
[Smil3, MS14]). However, here we consider a modified question. If I, C S,, denotes the stabilizer of the set of
weights a, we ask whether there exists a full, I;;-invariant exceptional collection on Ma. Theorem [CT20b,
Theorem 1.5] reduces the existence of such collections on M()In, as well as many other Hassett spaces M,, to
the following cases:

(I) The Losev-Manin spaces Ma, where a=(1,1,¢,...,€), 0 <e <« 1.
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(IT) The Hassett spaces M, 4,

the following properties:

for p+q=mn(g>0, p>2) having p heavy weights and q light weights with

(L1 ay=...=ap=a+1, dp=...=a,=€, pa+tqe=2,
where 0 <7,e < 1.

To reduce to the above cases, the authors were inspired by results of Bergstrom and Minabe [BM13, BM14]
that used reduction maps between Hassett spaces. The existence of a full, invariant, exceptional collection
in case (I) was proved in [CT20a]. The work in [CT20b] proves the statement for the spaces Mp,q in (II)
with p > 3 and is the most difficult part of the argument. The current paper treats the spaces Mp,q in (II)
with p = 2. We emphasize that this case is not explicitly proved in [CT20b]. However, the proof for p > 2
is valid even when p = 2. The proof for p > 2 requires a lot of different comparisons between different
Hassett spaces. Here we prove that this can be avoided when p = 2. More precisely, the main space under
consideration when p = 2 is the following:

Notation 1.1. Let Zy denote the Hassett moduli space of rational curves with markings N U {0, co} with
weights of markings 0 and oo equal to %+ 1 and the markings from N equal to %, where 0 <1 < 1. We
also write Z,, := Zy for n = |N| when there is no ambiguity.

The condition on the weights is equivalent to the condition (1.1) for p = 2 (in which case, a=1— %)

Explicitly, all light points may coincide with one another and one heavy point may coincide with at most
L”—Elj heavy points. We have the following description:

with respect to the diagonal action of G,, on (P1)", coming from G,, acting on P* by z-[x,v] = [zx,27 ' y]. When
n is even, Z,, is isomorphic to the Kirwan desingularization of the same GIT quotient.

Theorem 1.2 for n odd is stated in [Has03] within a more general set-up. Theorem 1.2 for n even is a direct
consequence of [Has03]. For the reader’s convenience, we give the proofs in Lemma 3.4 and Lemma 4.3.

The group S; xS, acts on Z,, by permuting 0, co, and the markings from N respectively. In a similar
fashion, the Losev-Manin space LMy (or LM, for n = IN|) of dimension (1 — 1) is the Hassett space with
weights (1,1,€,...,€), with markings from N U {0, co} with the weights of 0, co equal to 1, while markings
from N are equal to €, with 0 < € < 1. The space LMy is isomorphic to an iterated blow-up of IP"~! along
points gy, ...,q, in linearly general position, and all linear subspaces spanned by {g;}. In particular, LM,, is
a toric variety. The action of S, permuting the markings from N corresponds to a relabeling of the points
{q;}, while the action of S,, permuting 0, co, corresponds, at the level of P"~!, to a Cremona transformation
with center at the points {g;}. There is a birational S, x Sy -equivariant morphism, reducing the weights of 0
and co: p: LMy — Zy. In particular, Zy is also a toric variety. Our main theorem is the following:

Theorem 1.3. The Hassett space Z,, has a full exceptional collection which is invariant under the action of
(S2xS,,). In particular, the K-group Ko(Z,,) is a permutation (S, x S,,)-module.

Theorem 1.3 is the immediate consequence of Theorem 1.6 (case of # odd) and Theorem 1.8 (case of n
even). We now describe the collections.

Definition 1.4. If (7 : &/ — M, 07,...,0,) is the universal family over the Hassett space M, one defines
tautological classes

1[11‘ = O';a)n, (51‘]‘ :O';O']'.
Note that when 7 is odd, we have ¢y + 1, = 0 on Z,,. For other relations, including the case when 7 is even,
see Section 2.
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Definition 1.5. Assume 7 is odd. Let E C N and p € Z, such that if e = |[E| we have that p + ¢ is even. We

define line bundles on Z,, as follows:
—_(eZP
oy (2 Y b
jeE
As sums of Q-line bundles, Lg , = %gl)oo + %ZjeE Pj = —ggbo + %ZjeE ;. In particular, the action of S,
exchanges Lg , with Lg _,. The line bundles Lg , are natural from the GIT point of view, see (3.1).

Theorem 1.6. Let n = 2s+1 odd. The line bundles {Lgp} (Definition 1.5) form a full, (S, x S,) invariant
exceptional collection in DY(Z,,) under the condition:

|p|+ min(e,n—e) <s, where e=|E|, p+e even
The line bundles are ordered by decreasing e, and for a fixed e, arbitrarily.

The collection in Theorem 1.6 is the dual of the collection in [CT20b, Theorem 1.10] for p = 2, with some
of the constraints on the order removed. See also Remark 3.7 for a more precise statement.

Consider now the case when n = 25+ 2 > 2 is even. In this case the universal family over Z, has reducible
fibers. For each partition N = TU TS, |[T[=|T¢| = s + 1, we denote o7y} € Z, the boundary component
parametrizing nodal rational curve with two components, with markings from T U {co} on one component

.....

Kirwan resolution of singularities with exceptional divisors 01yjco)-

Definition 1.7. Assume # is even. Let E C N and p € Z, such that if e = |E| we have that p + e is even. We
define line bundles on Z,, as follows:

e— e— _
LEIP Z:_(Tp)ll)oo_zéjoo_ Z (|EmT|_Tp)éTU{oo}
JEE |[ENT|-5E2>0

The line bundles L, are natural from the GIT point of view, see Definition 4.6 and the discussion thereafter.
From this point of view, it is also clear that the action of S, exchanges Lg , with Lg, .

Theorem 1.8. Assume n = 2s + 2 is even, s > 0. The following form a full, (S, x S,)) invariant exceptional
collection in DY(Z,,):
o The torsion sheaves O(—a,—b) supported on Oy} = P° X IP°, forall T C N, |T| = |T¢| = s+1, such that
one of the following holds:
-0<a<s,0<b<s,
-a=0,0<b<,
-b=0,0<a<L,
o The line bundles {Lg,,} (Definition 1.7) under the following condition:

p|+ min(e,n+1—-e)<s+1, where e=|E|, p+e even

The order is as follows: all torsion sheaves precede the line bundles, the torsion sheaves are arranged in order of
decreasing (a + b), while the line bundles are arranged in order of decreasing e, and for a fixed e, arbitrarily.

The torsion part of the collection in Theorem 1.8 is the same as the torsion part of the collection in
[CT20b, Theorem 1.15] for p = 2. However, the remaining parts are not the same, nor are they dual to each
other, as in the case of Theorem 1.6. There is a relationship between the dual collection {LEP} and the
torsion free part of the collection in [CT20b, Theorem 1.15] for p = 2, but this is more complicated - see
Remark 4.23 for a precise statement.

To prove that our collections are exceptional, we use the method of windows [HL15, BFK19]. We then
use some of the main results of [CT20a, Proposition 1.8, Theorem 1.10] to prove fullness, by using the
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reduction map p : LM,, — Z, in order to compare our collections on Z,, with with the push forward of
the full exceptional collection on the Losev-Manin space. We emphasize that while in [CT20b] we prove
exceptionality and fullness on spaces like Zy indirectly, by working on their contractions (small resolutions
of the singular GIT quotient when 7 is even), in this paper we prove both exceptionality and fullness directly,
by using the method of windows (for # even on the Kirwan resolution, the blow-up of the strictly semistable
locus).

As remarked in [CT20a], we do not know any smooth projective toric varieties X with an action of a
finite group I' normalizing the torus action which do not have a I'-equivariant exceptional collection {E;} of
maximal possible length (equal to the topological Euler characteristic of X). From this point of view, the
Losev-Manin spaces LMy and their birational contractions Zy provide evidence that this may be true in
general. The existence of such a collection implies that the K-group Ky(X) is a permutation I'-module. In
the Galois setting (when X is defined over a field which is not algebraically closed and I’ is the absolute
Galois group), an analogous statement was conjectured by Merkurjev and Panin [MP97]. Of course one may
further wonder if {E;} is in fact full, which is related to (non)-existence of phantom categories on X, another
difficult open question.

We refer to [CT15, CT13, CT12] for background information on the birational geometry of ./Vo,n, the
Losev-Manin space and other related spaces.

Organization of paper. In Section 2 we discuss preliminaries on Hassett spaces and prove some general
results on how tautological classes pull back under reduction morphisms. These results are of independent
interest and have been already used in a crucial way in [CT20b]. In Section 3, we discuss the GIT
interpretation of the Hassett spaces Z,, in the n odd case and prove Theorem 1.6. In Section 4, we do the
same for the n even case and prove Theorem 1.8. Section 5 serves as an appendix, recalling results on
Losev-Manin spaces from [CT20a] and calculating the push forward to Z,, of the full exceptional collection
on the Losev-Manin space LM,,. These results are used in Sections 3 and 4 to prove fullness in Theorems
1.6 and 1.8. Throughout the paper, we do not distinguish between line bundles and the corresponding divisor
classes.

Acknowledgements. We are grateful to Alexander Kuznetsov for suggesting the problem about the derived
categories of moduli spaces of pointed curves in the equivariant setting. We thank Daniel Halpern-Leistner
for his help with windows in derived categories. We thank Valery Alexeev and the anonymous referee for
useful comments.

2. Preliminaries on Hassett spaces

We refer to [Has03] for background on the Hassett moduli spaces. Recall that for a choice of weights
a=(ay,...,a,), a;€Q, 0<a <1, Zui > 2,

we denote by M, the fine moduli space of weighted rational curves with 7 markings which are stable with
respect to the set of weights a. Moreover, M, is a smooth projective variety of dimension (1 — 3). Note that
the polytope of weights has a chamber structure with walls ) ;.;a; = 1 for every subset I C{1,...,n}. One
obtains the Losev-Manin space LMy by considering weights on the set of markings {0, 00} U N:

(1,1,1,...,%), n=|N]|.

Replacing the weights equal to % with some € € Q, for some 0 < € < 1, defines the same moduli problem,
hence, gives isomorphic moduli spaces.
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Similarly, the moduli space Zy of Notation 1.1 is the moduli space with set of markings {0, co} UN and

weights

1 1 1 1
—+1,=—+1,—...,— ), €, O<nxl.
(3+w5+m =) neQ 0<y
If a =(ay,...,a,) and a’ = (by,...,b,) are such that a; > b;, for all i, there is a reduction morphism
p: M, — M;. This is a birational morphism whose exceptional locus consists of boundary divisors d;
(parametrizing reducible curves with a node that disconnects the markings from I and I€) for every subset
I C N such that ) ;c;a; > 1, but } ;;b; < 1. For us a special role will be played by the reduction map

p: LMy — Zy which reduces the weights of {0, o0} from 1 to the minimum possible.
For a Hassett space M = M,, with universal family (7 : i/ — M, {0;}), recall that we define Y; = 0] Wy,
0;j = 0; 0. Since the sections o; lie in the locus where the map 7 is smooth, the identity o0; - w;, = —aiz holds

on U. Therefore, —1; = 71*((71.2) =0/ 0;.

Lemma 2.1. Assume M is a Hassett space whose universal family 7c: U — M is a P! -bundle. Then the identity
—wy =20, + 170 (;) holds on U, and therefore, on M we have for all i = j:

i+ ) = =20;;.
Hence, for all distinct i, j, k, we have ; = =6 — Ojx + Ojg-

Proof. Indeed, —w,, — 20; restricts to the fibers of the IP!-bundle trivially, and therefore is of the form 7c*(L)
for some line bundle on M. Pulling back by o; shows that L = 1;. O

When 7 is odd, the universal family &/ — Zy is a IP!-bundle and the sections o and o, are distinct.
Lemma 2.1 has the following:

Corollary 2.2. The following identities hold on Zy when n is odd:
(2.1) Yo=Y = —0i0 * Oicor ;= =00 — Ojco-

Lemma 2.3. Let M=M,, M = M, be Hassett spaces, with a = (a;), a’ = (b;), a; > b; for all i. Consider the

corresponding reduction map p M —M. Let (U =M, {o;}), (W’ U — M, {0]}) be the universal families.

Denote by (p:V — M, {s;}) the pull-back of (" : U — M, {0;}) to M'. Then there exists a commutative diagram:
v q

u’ 1% U
=l
M’ 1d MI P M

Furthermore, identifying U’ with a Hassett space My, where a = (ay,...,a,,0) (with an additional marking x
with weight 0) [Has03, 2.1.1], we have:

*

v a)p =Wy — E 6IU{X}'
1122,) je; ai>1 Y ey bi<1

vVSi=0;+ E 51U{x}1
iEIr|I|22IZiEI ai>1r2iel blsl

. i}
pi=vi- Z o,
ieL|I122,) ;i a;>1,) ;e bi<1
‘e
P bi]' = 51] + Z 61.
L,jELIN23,) je; 2;i>1,) e bi<1
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Proof- The spaces U and U’ are smooth [Has03, Propositions 5.3 and 5.4]. The existence of the commutative
diagram follows from semi-stable reduction [Has03, Proof of Theorem 4.1]. The map v is obtained by
applying the relative MMP for the line bundle w, /() b;o;/). Concretely, the relative MMP results in a

sequences of blow-downs, followed by a small crepant map:
U=8"-58—...-58=V,

(all over M’). The resulting map v : 4’ — V is a birational map which contracts divisors in ¢/’ to codimension
2 loci in V (as the relative dimension drops from 1 to 0). Note that V' is generically smooth along these loci.
The v-exceptional divisors can be identified via 2/’ = M; with boundary divisors O1ufx) (I € N), with the

property that ) ;c;a; > 1, ) ;o b; < 1.

For a flat family of nodal curves u : C — B with Gorenstein base B (in our case smooth) the relative
dualizing sheaf w,, is a line bundle on C with first Chern class K¢ — u*Kpg, where Ko and Kp denote the
corresponding canonical divisors. In particular:

Wy = Ky = 10" Ky w, = Ky —p"Kyy-

Since the map v on an open set is the blow-up of codimension 2 loci in V, it follows that K;;» = v*Ky, + } E,
by the blow-up formula. Hence, v*w, = w7 —)_E, where the sum runs over all prime divisors E which
are v-exceptional. This proves the first identity. For the second, we identify the sections o (resp., 0;) with
the boundary divisors 0;, in U’ (resp., in ). Note that the proper transform of the section s; is o/ and
s contains v(dyyy}) (I| = 2), for ojyyy) v-exceptional if and only if i € I. Moreover, in this case, v(5ryyx))
is contained in s; (with codimension 1) and s; is smooth (since M is). The second identity follows. By
Definition 1.4 and the diagram,

pPYi=poiwy =5siq"wy = 5w, = O'i'*v*wp,

p*dij =p*o;(0)) =siq*(0}) =sis; = o'jv"s;.
The last two formulas now follow using the first two and the fact that 0"}y = 07 if i € I and is 0
otherwise. O

Corollary 2.4. Let p: LMy — Zy be the reduction map. Let s := {”—ElJ Then

P o =g - Z Oruio)s

ICN,1<|I|<s

pri=- Z (81010} + S1uie)) (P €N),

ielCN,1<|l|<s

P'oio= ) oo (€N),

ielCN, 1<|I|<s

p*éi]' = 51] + Z (6IU{O} + 6[U{oo}) (1,] € N)
i,jeICN,1<|I|<s

Lemma 2.5. On the Losev-Manin space LMy, we have (; = 0 for all i € N.

Proof. Apply Lemma 2.3 to a reduction map p :MO,NU{O,OO} — LMy
P i =i - Z or.
iel|I1>2,0,00€l¢

The right hand side of the equality is 0 [KL09, Lemma 3.4]. Therefore, p*y; = 0. As p,O = O, by the
projection formula, we have ; = 0. 0
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Proof of Corollary 2.4. Follows from Lemma 2.3 and Lemma 2.5. In the notation of Lemma 2.3, the universal
family U’ over M = WN can be identified with Mé, where a =(1,1,¢,...,€,0), with an additional marking
x with 0 weight. But /" can also be identified with WNU{X} = M(l,l,e,...e) (here x has weight €). Via this
identification, boundary divisors ¢; correspond to boundary divisors 9y, for any ] € N U {0, 00,x}. The

v-exceptional divisors appearing in the sum are Ojyjx,0}, Orufx,c0}, [ €N, [I] < {%J O

When n = |N]| is even, the Hassett space Zy = M(I

Ly et of Notation 1.1 is closely related to the

following Hassett spaces:

ZI’V :M( 11 l), ZI,\; :M(

i1vel i
T HE Gy
with weights assigned to (c0,0,py,...,py). There exist p’: Zy — ZJ, p’: Zy — ZJ;, reduction maps that
contract the boundary divisors using the two different projections. The universal families over Zy; and Zj;

are IP!-bundles. Lemma 2.3 applied to the reduction maps p’, p” leads to:

Lemma 2.6. Assume n = |N| is even. The following relations hold between the tautological classes on the Hassett
space Zy:

Po = 0j0o — 0jo + Z OTU[oo)  Poo = 0i0 — Ojo + Z OTU(co)r

i€T,|T|=5% ieT,|T|=4

Yo+ Poo = Z OTU{oo)-

ITI=}

Proof. The second relation follows from the first using the S, symmetry, while the third follows by adding
the first two. To prove the first relation, consider the reduction map p’: Zy — Zj;. To avoid confusion, we
denote by 17, 6;]- (resp., ;, 0;j) the tautological classes on Z; (resp., on Zy). The universal family C’ — Z
is a P! -bundle. By Lemma 2.1, we have ¢/, = 5}, — 6/ (since &, = 0). The relation follows, as by Lemma
2.3, we have

p,*¢<,><> = quoo - Z 6TU{oo}; p/*égm = 51'00 + Z 5TU{00}’ p,*CSZ{O = 51'0.
|T|=4% ieT,|T|=5

3. Proof of Theorem 1.6

We start with a few generalities on GIT quotients (IP!)" / G,,. For n odd, we first show that the Hassett
space Zy introduced in (L1) can be identified with symmetric GIT quotients (IP!) / G,,. We use the method
of windows from [HL15] to prove exceptionality of the collections in Theorem 1.6. We then prove that the
collection is full, by using the full exceptional collection on the Losev-Manin spaces LMy (see Section 5).

3.1. Generalities on GIT quotients (IP')% /G,,

Assume 7 is an arbitrary positive integer. Let G, = Speck[z,z7!] act on A? by z- (x,7) = (zx,z" ).
Let PG,, := G,,/{+1}. Note that PG,, acts on IP! faithfully. Let 0 € P! be the point with homogeneous
coordinates [0: 1] and let co = [1: 0].

We use concepts of “linearized vector bundles” and “equivariant vector bundles” interchangeably. For
(complexes of) coherent sheaves, we prefer “equivariant”. We endow the line bundle Opi(-1) with a
G,,,-linearization induced by the above action of G,, on its total space VOp1(—1) C P! x A2,

Consider the diagonal action of G,, on (IP!)". For j = (ji,...,j,) in Z", we denote O(j) the line bundle
O(ji,--.,jn) on (IP1)" with G,,-linearization given by the tensor product of linearizations above. We denote

O ®zF the trivial line bundle with G,,-linearization given by the character G,, —» G, z— zk. For every
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equivariant coherent sheaf F (resp., a complex of sheaves F*), we denote by F ® z* (resp., F*®z*) the
tensor product with O ® zF. Note that O(j) ® z* is PG,,-linearized iff j; +... + j, +k is even.
There is an action of S, x S,, on (IP!)"” which normalizes the G,, action. Namely, S,, permutes the factors

of (P1)" and S, acts on P! by z +> z~!. This action permutes linearized line bundles O(j) ® z* as follows:
S, permutes components of j and S, flips k > —k.

Notation 3.1. Consider the GIT quotient
Y, =(PYHYL/,G,, L=0(1,...,1),

with respect to the ample line bundle £ (with its canonical G,,-linearization described above). Here (IP!)’
denotes the semi-stable locus with respect to this linearization. Let ¢ : (IP!)”. — ¥, denote the canonical
morphism.

As GIT quotients X /; G are by definition Proj(R(X,ﬁ)G), where R(X, £)C is the invariant part of the

section ring R(X, £), we may replace £ with any positive multiple. As the action of PG,, on (IP!)" is induced
from the action of G,,, ¥,, is isomorphic to the GIT quotient (IP!)” / PG,, (with respect to any even multiple
of £). The action of S, x S,, on (IP!)" descends to ¥,,.

By the Hilbert-Mumford criterion, a point (z;) in (IP!)" is semi-stable (resp., stable) if < 5 (resp., < 3) of
the z; equal 0 or equal co.

3.2. The space Zy as a GIT quotient when 7 is odd

When 7 is odd, there are no strictly semistable points and the action of PG,, on (IP!)% is free. In
particular, ¥, is smooth and by Kempf’s descent lemma, any PG,,-linearized line bundle on (IP!) descends
to a line bundle on ¥,,. Furthermore, ¥, can be identified with the quotient stack [(IP')"/PG,,] and its
derived category D(X,,) with the equivariant derived category DlgGm((IPl)?s).

Consider the trivial P! -bundle on (IP!)" with the following sections:
p: (P x P! = Proj(Sym(O @ 0)) — (P!)",

50(2) = (2,0),  $x0(2) = (2,00), s5i(2) = (2,pri(2)),
where pr; : (P!)" — IP! is the i-th projection. The sections s, resp., so, are induced by the projection
p2:080 — O, resp,, p; : O®O — O, while the section s; is induced by the map O & O — pr;O(1) given
by the sections x; = prix,y; = priy of pr*O(1) that define 0 and oo on the i-th copy of IP!.

Notation 3.2. Let A;q = pri_l({O}) C(PY)" and Aj, = pri_l({oo}) c (Phyn,

Note that A is the zero locus of the section x;, or the locus in (IP')" where s; = s(. Similarly, let A;, the
zero locus of the section y;.

We now endow all the above vector bundles with G,,-linearizations. Let
Ly=08z, L,=00z', L;=priO(1)®l, E£=Ly® L.

The maps £y — L}, L, — L; (given by the sections x;, v;) are G,,-equivariant, hence, induce G,,-equivariant
surjective maps £ — L;. The projection maps £ — Lj and & — L, are clearly G,,-equivariant. While
none of &, Ly, L, L; are PG,,-linearized vector bundles, tensoring with O(1,...,1) solves this problem,
and we obtain a non-trivial IP!-bundle 7 : IP(€) — ¥,, with disjoint sections oy, 0o, and additional sections
O01y...,0y.

Denote ;¢ the locus in ¥, where o; = 0y. This is the zero locus of the section giving the map £, — £;
on ¥, ie., the section whose pull-back to (IP')"
where 0; = 0. Hence, the sections x;, y; of pr;O(1)®1 defining A;y, A;,, descend to global sections of the

corresponding line bundle on X, and define 6;¢, 0jc.

is the section x;. Similarly, we let 6;,, the locus in ¥,
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Lemma 3.3. Assume n is odd. We have the following dictionary between line bundles on the GIT quotient ¥,
and PG,,-linearized line bundles on (IP')":

O(5i) = priO(1)®z, O(6je0) = pr;O(1) @27
IPO = O®Z_2, 11000 = O®22, ¢i = pr:O(—2)® 1.

Proof. The first two formulas follows from the previous discussion: O(9;() corresponds to the PG,,,-linearized
line bundle £; ® LY. The remaining formulas follow from Lemma 3.4 and the identities (2.1). O

Lemma 3.4. If n = |N| is odd, the Hassett space Zy (see Notation 1.1) is isomorphic to the GIT quotient

.....

Proof. The trivial P'-bundle p : (IP!)” x P! — (IP!)" with sections g, S, $; is the pull-back of the P!-
bundle 7 : P(£) — X, and sections 0, 0., 0;. Since the former is a family of A-stable rational curves,
where A = (%4‘7],% +17,%,...,%
pointed rational curve is represented in the family over (IP')’ (hence, ¥,,). Furthermore, two elements of this

), we have an induced morphism f : ¥, — Zy. Clearly, every .A-stable

family are isomorphic if and only if they belong to the same orbit under the action of G,,. It follows that f is
one-to-one on closed points. As both Zy and ¥,, are smooth, f must be an isomorphism. Alternatively, there
is an induced morphism F : (IP!)", — Zy which is G,,-equivariant (with G,, acting trivially on Zy). As ¥,
is a categorical quotient, it follows that F factors through ¥, and as before, the resulting map f : ¥, — Zy
must be an isomorphism. g

3.3. Exceptionality

When 7 is odd, ¥, is a smooth polarized projective toric variety for the torus G, and its polytope is a
cross-section of the n-dimensional cube (the polytope of (IP!)" with respect to £) by the hyperplane normal
to and bisecting the big diagonal. In particular, the topological Euler characteristic e(X,,) is equal to the
number of edges of the hypercube intersecting that hyperplane:

e(X,) = n(nn_;ll) = n(g)+ (n— 2)(711) + (n—4)(1;)+....

By Lemma 3.3, the line bundles {Lg,} in Theorem 1.6 correspond to restrictions to (PHE of PG,,

SS
linearized line bundles on (IP!)"

(3.1) Lg,=O(-E)®2",

where O(—E) = O(j), and j is a vector of 0’s and (—1)’s, with —1’s corresponding to the indices in E C N.
(Here we abuse notations and we denote by Lg,, both the line bundle on (P')" and the corresponding one
on ¥,.) The collection is (S, X S,;)-equivariant and consists of e(X,) line bundles.

Proof of Theorem 1.6 - exceptionality. Let G := PG,,,. We use the method of windows [HL15]. We describe the
Kempf-Ness stratification [HL15, Section 2.1] of the unstable locus (IP!)” with respect to £. The G-fixed
points are

Zr={(x;)|x;=0foriel, x; = oco for i €I}

for every subset I C {1,...,n}. Let o7 : Z; <> (IP!)" be the inclusion map. The stratification comes from an
ordering of the pairs (A, Z), where 1: G,, = G is a 1-PS and Z is a connected component of the A-fixed
locus (the points Z; in our case). The ordering is such that the function

weight L]

A7) =— ,
A, Z) B
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is decreasing. Here || is an Euclidean norm on Hom(G,,, G) ®7 R. We refer to [HL15, Section 2.1] for the
details. As pu(A,Z) = y(Ak,Z ) for any integer k > 0, it follows that, in our situation, one only has to consider
pairs (A, Z;) and (A, Z;), for the two 1-PS A(z) = z and A’(z) = z7!. Recall that

weight) O(=1)|e, =+1, weight, O(-1)|y = -1,
weight, (O®zF)|, =p  for all points q € Pl
It follows that weight, O(-1)|,, = -1, weight ;,O(-1)|p = +1 and
weight ) L], = 11— 1|, weight ), L], = —|I¢| + 1]
The unstable locus is the union of the following Kempf-Ness strata:
Sp={(x;)|x;=ccificl,x;zo0ifieI}= A"l for |I|>n/2,

S;={(xj)|xi=0ifielx=0ifielj=~Al for |I|<n/2.

The destabilizing 1-PS for S; (resp. for S;) is A (resp. A). The 1-PS A (resp., A’) acts on the conormal bundle

v
NSII(IPI)
as

v
» (resp., Ng (

, lPl)") restricted to Z; with positive weights and their sum #; (resp., #j;) can be computed

nr=2|I|, resp. n;=2|I

To see this, note that the sum of A-weights of (NS\,/Il(IPl)" )IZ equals
I

. v R .
welght/\( det Ng jp1ys )|Z, = welght/\( det Ts, )|Zl - welght/\( det Ty )lzz'
Note that S; can be identified with Al and the point Z; € S; with the point 0 € A"l The action of G on
Al s via z- (xj) = (z2x]-). It follows that weight, T, 7z, = 2|I¢|. Similarly, the tangent space (det Tipry )|ZI
can be identified with the tangent space of TyAA", with the action of G on (x;) € A" being z- x; = sz]- if
je€lfand z-x; = z_zx]- if j € I. Tt follows that weight/\(T(Ipl)n)lz = 2|I°| - 2|I|. Hence, #; = 2|I|. Similarly,

I

1y = 2[1¢.

For the Kempf-Ness strata S; and S; we make a choice of “weights”

wy =w; =-2s, where n=2s+1.

By the main result of [HL15, Theorem 2.10], Dé((IP1 )%s) is equivalent to the window G, in the equivariant
derived category Dg((ﬂ)l)”), namely the full subcategory of all complexes of equivariant sheaves F* such
that all weights (with respect to corresponding destabilizing 1-PS) of the cohomology sheaves of the complex
o; F* lie in the segment

[w,wr+1;) or [wj,w;+1j), respectively.

We prove that the window G,, contains all linearized line bundles Lg , = O(—E) ® z from Theorem L6.
Recall that # = 25+ 1. Since the collection is S, invariant and S, flips the strata S; and S, it suffices to
check the window conditions for S;. The A-weight of O(—E) ® zP restricted to Z; equals |[I N E|—[I[° N E|+ p.
It is straightforward to check that the maximum of this quantity over all E is equal to 25+ 2|I| —n+ 1 when
sis odd, or 2s + 2|I|—#n—1 when s is even, and the minimum to —2s, hence the claim. Since our collection
of linearized line bundles is clearly an exceptional collection on Dg((]l’l)”), it follows it is an exceptional
collection in Dé(Zn). O
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3.4. Fullness
We will prove the following general statement.
Theorem 3.5. The collection in Theorem 1.6 generates all line bundles
Lg,:=O(-E)®2F,
forallEC N, e=|E|, p € Z with e+ p even.

Proof of Theorem 1.6 - fullness. By Theorem 3.5, the collection in Theorem 1.6 generates all the objects

A

Rp.(17G) from Corollary 5.11. Fullness then follows by Corollary 5.5. Alternatively, it is easy to see that
line bundles Lg , generate the derived category of the stack [(P1)"/PG,,] and we can finish as in [CT20b,
Proposition 4.1]. U

Proof Theorem 3.5. For simplicity, denote by C the collection in the theorem. We introduce the score of a pair
(E,p), with e = |E| as
s(E,p) :=|p| + min{e, n —e}.

The collection C consists of Lg , with s(E, p) <s. We prove the statement by induction on the score s(E, p),
and for equal score, by induction on |p|.

Let (E,p) be any pair as in Theorem 3.5. If s(E, p) < s, there is nothing to prove. Assume s(E,p) > s.
Using S,-symmetry, we may assume w.l.o.g. that p > 0. We will use the two types of PG,,-equivariant Koszul
resolutions from Lemma 3.6 to successively generate all objects.

Case e <s. The sequence (1) in Lemma 3.6 for a set I with |I| = s+ 1 followed by tensoring with
Lg, =O(-E)®zP, gives an exact sequence

0— LEUI,p—S—l e A 4 @ LEU],p—j — ... LE;P — 0.
JeLll=j

We prove that each term Lgyyj,,_; is generated by C for all j > 0. Note that s(E,p) = [p|+e=p+e. If
p—j =0, then

S(EULp—j)<(p—j)+(e+j)=p+e=s(E,p),
but as p —j < p, we are done by induction on |p|. If p—j < 0 then
S(EUL,p—j)<(j—p)+n—(e+j)=n—e-p<e+p=s(E,p)
since we assume e+ p > s. In particular, Lgj - is in C.

Case e>s+1. Let I C E, with |I| = s+ 1. The sequence (2) in Lemma 3.6 for the set I, followed by
tensoring with Lg, , ;1 = O(E’) ®2zP~71, where E’ = E \ I, gives an exact sequence

0— LE,p e G 4 @ LE’U],j+p—s—1 - ... LE’,p—S—l — 0.
JELITI=j

We prove that each term Lgyj j;p 51 is generated by C for all | # I (when (E'UJ,j+p-s—1)=(E,p)).
Note that s(E,p)=p+n—e. Welete':=|E'|=e—s—-1.If j+ p—s—1 >0, then

S(E'UJ,j+p-s-1)<(j+p-s—-1)+(n—e' —j)=p+n—e=s(E,p).
As p+j—s—1 < p with equality if and only if ] = I, we are done by induction on |p|. If j+ p—s—1 <0, then
S(E'UJ,j+p-s-1)<—(j+p-s—-1)+(e'+j)=e—p<s(E,p)=p+n-—e,
since we assume s(E, p) > s, which gives e —p <s. O

Lemma 3.6. Letn=2s+1,1 CN, |I| =s+1. There are two types of PG,,-equivariant resolutions:
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(1) The restriction to (P1) of the Koszul complex of the intersection of the divisors Ao (Notation 3.2) fori € I,
which takes the form

050Nzt 5 . - @ O-)®zl ... 5081 >0
JELI=j

(2) The restriction to (IP')". of the Koszul complex of the intersection of the divisors A;, (Notation 3.2) for
i €I, which takes the form

0-0(-Ne 5. - @ O-)®z —>... 5081 -0
JELII=j

Proof. Let G = PG,,. Denote for simplicity D; = A;q, for all i € N. The divisors Dy, ..., D,, intersect with
simple normal crossings. Let Y7 := N;¢;D; C (IP')". Consider the Koszul resolution of Y;:

oo 2 @i i je1O(=D; = D;) = @;fO(-Dy) — O — Oy, — 0.
Each of these maps in the sequence is a direct sum of maps of the form

O(-D;, -

i "_D]})_>O(_Dj1_"'_D'

Jt-1 )

obtained by multiplication with a canonical section corresponding to the effective divisor D]}' This can be
made into a G-equivariant map:

t-1)

O(-D; Y@z (1),

—t
i —...—D]'t)®Z _)O(_Djl —...—D

Je-1
since O(-D;)®z! — O is the G-equivariant map given by multiplication with x;, whose zero locus is
D; = A (see Lemma 3.3 and the discussion preceding it). The Lemma follows by restriction to (IP')”. Note
that Y; N (IP1)” = 0. The proof of (2) is similar, with the only difference that multiplication with p;, the
canonical section of A;,, corresponds to a G-equivariant map O(-A;,,)®z — O. O

Remark 3.7. We explain the connection with case p =2, g =n = 2s+1 of [CT20b, Theorem 1.10]. The
collection there is the following:

(i) The line bundles Fy g := —% Yicyj(e= |E| is even) in the so-called group 1 (group 1A and group 1B
of the theorem coincide in this case).

(ii) The line bundles in the so-called group 2:

. e+1-1 e_l—l l+1 1
Tupoe =00 (EUL)) = =5—u+ ) Sju=-—"u=) 5V

jeE jeE

where e = |E|, u € {0,00}, | > 0, [ +|E N {u}| even (ie., | + e odd), with
I +min{e,n—e} <s-—1.

This collection is the dual of the one in Theorem 1.6. The elements in group 2 with  =p—1, u = o0
recover the dual of the collection in Theorem 1.6 when p > 0. Similarly, elements in group 2 with [ = —p -1,
u = 0 recover the dual of the collection in Theorem 1.6 when p < 0. The elements of group 1 recover the
dual of the collection in Theorem 1.6 when p = 0.

4. Proof of Theorem 1.8

We employ a similar strategy as in Section 3. We identify the Hassett space Zy (see (L1)) when n = |N| is
even with the Kirwan resolution of the symmetric GIT quotient ¥,. We use the method of windows [HL15]
to prove the exceptionality part of Theorem 1.8. We prove fullness using previous results on Losev-Manin
spaces LMy (see Section 5).
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4.1. The space Zy as a GIT quotient, 1 even

Assume 1 = 25+ 2. There are (_",) strictly semistable points {pr} € (IP!)”, one for each subset T C N,

SS
|T| = s+ 1. More precisely, the poiniJ;T is obtained by taking oo for spots in T and 0 for spots in T°. Instead
of the GIT quotient X,,, which is singular at the images of these points, we consider its Kirwan resolution
¥, constructed as follows.
Let W = W, be the blow-up of (IP')" at the points {p7} and let {E7} be the corresponding exceptional
divisors. The action of G,, lifts to W. To describe this action locally around a point pr, assume for simplicity

T ={s+2,...,n} around the point pr. Consider the affine chart
A" = (P {oo)™! x (P {0})!

In the new coordinates, we have py = 0 =(0,...,0). We let ((x;), (v;)), resp., ((¢;),(u;)), for i =1,...,s, be
coordinates on A", resp., P"~!. Then W is locally the blow-up BlyA", with equations

Xitj :x]-tl-, XjlU; :yjti! Villj = Y;u;.
The action of G,, on W is given by
z-((xi, 1), [t wi]) = ((Zx0, 27 291), (278,22 ui]).
The fixed locus of the action of G, on Et consists of the subspaces
Zr={uy=...=ug =0} =P CP"! =E,
Zr={t=...=ty =0} =P CP" ! =Ep.

As BlyA" is the total space V(Og,(~1)) of the line bundle Of (~1) = O (ET) and the action of G,, on
BlyA" coincides with the canonical action of G, on V(O (1)) coming from the action of G on E7 = P!
given by

Al [tl,...,t5+1,u1,...,1.45+1] = [Zztl,...,22t5+1,Z_2M1,...,Z_2M5+1],

it follows that Og_(Et) (and hence, O(Et)) has a canonical G,,-linearization. With respect to this lineariza-
tion, we have:

(4.1) weight/\OET(—l)m = weight/\O(ET)m =+2, q€Z;, Mz)=gz

weight/\(’)ET(—l)m = weight | O(E7) 2, g€Z;, Mz)=z

9=~
and similarly,
weight, Op_(-1)

= weight ,, O(ET) 2, qezs, N@)=z"

la =~
=12, geZ;, MN@)=z"

lg
0= weight/\,O(ET)lq

We denote by O(j)(}_ arEr) the line bundle *O(jy,...,j,)(}_arEr) on W, (where j;, a7 integers and
7 : W, — (IP1)" is the blow-up map), with the G,,-linearization given by the tensor product of the canonical

weight, O (-1)

linearizations above. As before, for every equivariant coherent sheaf F, we denote by F ®z* the tensor
product with O® zk. For a subset E C N, we denote

O(-E) = 0\j)
with j; = —1if i € E and j; = 0 otherwise. Note that the action of S, exchanges O(-E)®z” with O(-E)®z7P

and E7 with E7c (Lemma 4.4).
Consider the GIT quotient with respect to a (fractional) polarization

c :O(l,...,l)(—eZET),

where 0 < € <« 1, € € Q, and the sum is over all exceptional divisors (with the canonical polarization
described above):

in = (Wn)ss /E Gm'
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Lemma 4.1. The G,,-linearized line bundle O(j)(Y. arET)® 2P descends to the GIT quotient 3, if and only if

Jor all subsets I C N with |I| #s+1
—Zji+Zji+p is even

i€l iel¢

and for all subsets I C N with |I| = s+ 1, we have

=) Ji+) ji+px2ay isdivisibleby 4
i€l i€l

Proof. By Kempf’s descent lemma, a G-linearized line bundle L descends to the GIT quotient if and only if
the stabilizer of any point in the semistable locus acts trivially on the fiber of L at that point, or equivalently,
weight, L, = 0, for any semistable point q and any 1-PS A : G, — G. By definition, weight, L, = weight, L, ,
where p is the fixed point lim;_,o A() - g.

For any point g in (IP')" \ {pr} such that g = (z;) has z; = oo for i € I and z; # co for i € I, we have for
A(z) = z that lim;_,4 A(t) - g is the point with coordinates z; = co for i € I and z; = 0 for i € I, and hence:

(4.2) weight(O()()_arEr)®2) ==) ji+) ji+p.
iel iel¢

Note that such a point g is semistable if and only if |I| < s+ 1. Similarly, if g has z; =0 for i € I¢ and z; # 0

foriel, MV(z)=2z"1
weighty (O()()_arEr)@=") =) ji=) ji+p

iel iel¢
Note, g is semistable iff |I| > s+ 1. The stabilizer of g is {+1} in both cases.
If g€ Ex \ (Z7 U Z7) then lim,_,g A(t)-q € Z;, limy_,g A’(t) - q € Z] and using (4.1) we obtain

weighty(O()()_arEr)®@2’) =-) ji+) ji+p-2ar,

i€l iel¢
. x p _ 4' _ -‘ _
welght/\,(O(])(ZaTET)@)z )|q = ;]Z ;]l +p—2ar.
i S
A point g € Ep \ (Z7 U Z7) has stabilizer {+1,+i}. The conclusion follows. O

Corollary 4.2. For ECN, p € Z, the line bundle O(—E)(Y arE7)® 2P descends to the GIT quotient 3, if and
only if for all subsets ] C N with |I| #s+ 1

INE|-|I°NE|+p iseven
and for all subsets I C N with |I| = s+ 1, we have
INE|-|I°NE|+p—2a; is divisible by 4.

Lemma 4.3. If n = |N| is even, the Hassett space Zy = MO’(I

Ligdagd, 1) 28 isomorphic to the GIT quotient

in = (Wn)ss /(9(1 ..... 1)(-e Y Et) G-

Proof. The trivial IP!-bundle (IP!)"” x P! — (IP!)" has sections s, S, 5;. We still denote by s, So, s; the
induced sections of the pull back W, x P! — W,,. The family is not .A-stable at the points pr, where
S; =S foralli e T and s; = 5( for all i € T® (markings in T are identified with oo, and markings in T° with
0). Here A = (% +1, % +1, %,.. 1). Let C’ be the blow-up of W x P! along the codimension 2 loci

oy E
Er x{0} =so(E7), Er x{oo}=s5,(ET).
Denote by I::% and Ef’f’ the corresponding exceptional divisors in C’. The resulting family 7w’ :C’ — W has
fibers above points p € Et a chain of IP'’s of the form Cy U F U C,,, where F is the proper transform of the

fiber of W x P! — W and F meets each of C, (the fiber of E% — Er at p) and C,, (the fiber of ]::5’5’ — Ep
at p). The proper transforms of s; for i € T (resp., i € T¢) intersect C, (resp., Cy) at distinct points. The
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dualizing sheaf w,, is relatively nef, with degree 0 on F. It follows that @, induces a morphism C’ — C over
W, which contracts the component F in each of the above fibers, resulting in an .A-stable family. Therefore,
we have an induced morphism F : Wy, — Zy. Clearly, the map F is G,,-equivariant (where G,, acts trivially
on Zy). As the GIT quotient Y, isa categorical quotient, there is an induced morphism f : ¥, — Zn. Two
elements of the family C — W, are isomorphic if and only if they belong to the same orbit under the action
of G,,. Hence, the map f is one-to-one on closed points (as there are no strictly semistable points in W,
¥, is a good categorical quotient [Dol03, p. 94]). It follows that f is an isomorphism. U

Lemma 4.4. Assume n = 2s+ 2 is even. We have the following dictionary between tautological line bundles on
the Hassett space Zy (idenitified with the GIT quotient 3.,,) and G,,-linearized line bundles on W,,:

O(549) = priO(1 [ ZET = prio(1 [ ZET

ieT ieT

lPOZO(ZET)@Z_Z, IPMZO(ZET)QMZ, =priO(- ZET

O(01u(e)) = O(2ET)® 1 (|T| =s+1).

Proof. Denote 61 = O7yjeo)- We start with the proof of O(67) = O(2E7)® 1. Consider the affine chart
A" = (P {oo])™ x (PT {0)°!

around the point pr (markings in T = {s+ 2,...,n} are identified with co, and markings in T¢ with 0). We
have coordinates xy,...,Xs.1,V1,...,Vs+1. The GIT quotient map (IP1)% — ¥ is locally at pr given by

frA" Y =f(A") S AT, f((x), (7)) = (x79))ij-

The morphism F : W,; — ¥, = ¥ induced by the universal family over W;, (proof of Lemma 4.3) is locally
the restriction to the semistable locus of the rational map (which we still call F)

F:BlyA" - BlyY C Bl,ACH).

Consider coordinates ((x;,v;), [tl,u,]) (with x;t; = x;t;, xju; = y;t;, x;jt; = x;t;) on Blg A" C A" x P"~! and
coordinates (z;;, [w;;]) on BIOA (s+1)? (with z;jwy; = Zklwl]) Con51der the affine charts U; = {t; = 0} C Bl A"
and Vy; = {wy; =0} C BloAr The map Fy, is the rational map

2

F:U =A"

X1,E0,ee b Uy, Uy

>V1]

217 (Wr ki1
le = x%uj, Wy = t’;—ljl

The exceptional divisor E in BIOA(SH)2 has local equation z1; = 0 in Vi, while the exceptional divisor Et

of Bly/A™ has equation x; = 0 in U;. It follows that F*O(E) = O(2E7). In particular, as 67 = BlyY N E, it

follows that F*O(67) = O(2E7). It follows that O(57) = O(2ET) ® z¥, for some integer k (the same for all T,

by the S,,-symmetry). On the other hand, by the S,-symmetry, O(67¢) = O(2E7¢) ® z7%. Hence, we must

have k = 0.

We now prove that O(0;9) = pr;O(1)(= ) ;er ET) ® z. (Note that all other relations will then follow by
S;-symmetry and Lemma 2.6.) Clearly, F*O(0;¢) is the line bundle O(Ai0)|wss’ where A is the proper
transform in W of the diagonal A;q in (IP!)" defined by x; = 0, where z; = [x;,;] now denote coordinates
on (IP1)". As Ajo = Ajp - Y ieT ET (markings in T¢ are identified with 0), it follows that

[ Lee:

ie¢T

O(0;9) = pr;O(1

for some integer k. The pull-back of the canonical section of the effective divisor 0;¢ (which is x;) must be
an invariant section. The section x; of Op1(1) becomes the constant section 1 in the open chart U : x; = 0.
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Considering a point 4 = (qy,...,4,) in U, with g; = co and g € IP! general for j # i, it follows that for the
1-PS A(z) = z we have weight,pr;O(1), = -1, weight/\(9®zllf] = k, hence, the constant section 1 becomes

z~1*k under the action of A and we must have k = 1 for the section to be invariant. O

Lemma 4.5. Let 01 := 0Tyoo) = IP* X IP°. We have
_10@,0) if ieT _|o©,1) if ieT
=Pt o if ieT "o if ieT,
Yoojs, = O(=1,0), g5 =0(0,-1), orlor =0(-1,-1).

Proof. By symmetry, it suffices to compute 0;c,|5, and P s, Clearly, the intersection 6o, N 07 = DifieT.
We identify o = M xM~ =P xIP%, where M, resp., M are Hassett spaces with weights (3 +7,1,...,1,1),
with the attaching point x having weight 1. We identify M =TPS via the isomorphism [, : M — .
We have 0jc|5, = 0ico ® 0, Poois. = oo ® O. By Lemma 2.1, on M we have Yoo + Py = 0 since 9y, =0,

and ;o =~ = O(1) if i € T. The identity 07|07 = O(-1,-1) follows now from the previous ones by
restricting to o1 any of the identities in Lemma 2.6. g

4.2. Exceptionality

Note that W, is a polarized toric variety with the polytope A obtained by truncating the n-dimensional
cube at vertices lying on the hyperplane H normal to and bisecting the big diagonal. Then ¥, is a smooth
polarized projective toric variety for the torus G/; ! and its polytope is AN H. In particular, the topological
Euler characteristic e(X,,) is equal to the number of edges A intersecting H:

e(zn):(5+1)2(5:1)252(5-1:1)+(n_1)(5-r:1) (n=2s+2).
Note that (s +1)(,.,) = n(y) + (n=2)(}) + (n=4)(3) +... + 2().

s+1 s

Definition 4.6. For E C N, e = |E|, p € Z such that p + e is even, let

Lg,:=O(=E) Z argpEr ®zP where
TCN,|T|=s+1
. e—p
(4.3) arep=—xrepl x7Ep=ENT[- 5

i.e., the descent to 3, of the restriction to (W,,)s; of the above G,,-linearized line bundle on W,,. By Lemma
4.4 we recover Definition 1.7:

e —
(4.4) Lg, = —(Tp)¢m - Zéim - Z XT,E,pOTU{oo}-
i€E xT,E,p>O

We write x7 if there is no ambiguity. Note that x7 g, = —X1c g, p.

Lemma 4.7. The action of Sy on Zy exchanges Lg , with Lg,_,.
Proof. The statement follows immediately from (4.4) and Lemma 2.6. g

Proof of Theorem 1.6 - exceptionality. Lemma 4.9 implies that the torsion sheaves Os(—a,—b) form an excep-
tional collection. Let now 0 := 67y} To prove that {Os(—a,-b), Lg »} form an exceptional pair, i.e., that
Ll\g ®O(-a,—D) is acylic, note that by Lemma 4.5 and (4.6) we have, letting at := ar

Vo
L|5_

O0,a7) if p+|ENT|-|ENT>0
O(ar,0) if p+|ENT|-|ENT <0,
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Clearly, if a,b > 0 then Ll\g ®O(-a,-b) is acylic. Consider now the case when one of a,b is 0. Using the

S,-symmetry, we may assume a = 0. Let 0 <b < % Since by (4.5) we have —L%J < ag <0, the result
follows.

We describe the Kempf-Ness stratification of the unstable locus in W,,. Let G = G,,. As before, we
consider (A, Z), with a 1-PS 1: G,, —» G and Z a connected component of the A-fixed locus. It suffices to
consider A(z) = z and A’(z) = z7!. The G-fixed locus in W = W,, consists of the points

Zy={(xj)|xi=ooforiel, x;=0foriel,}e(P)"\{pr})
for every subset I C N with [I| # s+ 1 and the loci Z; U Z} C Er, for each subset T C N, |T|=s+ 1. The
pairs (A, Z) to be considered are therefore
(AZ), (M,Z) (ICSN,[I|=s+1),
(AZH), 2P, (WZp), (VZp) (TEN,|T|=s+1),
Recall that our polarization is £ = O(1,...,1)(—€ ) Er) and for any subset I C N with |I| # s+ 1 we have
weight L]z, = [I°|=|I|, weight) L|z, = —[I°[+]I],
while for all subsets T C N with |T| = s+ 1 we have:
weight) L], = —2¢, weight) L, = +2¢ (q€Z7),
weight ) L], = +2€, weight, L], =-2¢ (g€ Z7).
As in the 1 odd case, we define for any subset I C N affine subsets:
S ={(x;)|x; =0 ifiel,x;zooifiel}=All
S;={(x;)|x;=0ifielx;=0ifiel}=All
The unstable locus arises from the pairs with negative weight:
(A, Zp) (for|I|>s+1), (XN,Z;) (for|I|<s+1),
(AZ7), (M, Z7) (for [T|=s+1):
S = A"l (for [I|>71), S;j=aAll (for |[I|<s+1),
St =Bl, St =Bl A", S;=Bl, S;=Bl,A"Tl (for |T|=5+1).

The destabilizing 1-PS for S; (resp., for S;) is A (resp. A’). The 1-PS A (resp., A’) acts on the restriction to

Zp of the conormal bundle NSVI|(IP1)" (resp., N~;/[,|(IP1)”) with positive weights. Their sum #; (resp., #7;) is:
ny=2lI|, resp., n;=2[I
When |T| = s+ 1, the destabilizing 1-PS for S7. (resp. for S7)is A (resp. A’). The 1-PS A (resp., 1) acts on

NV

SHw (resp., NSV*|W) restricted to q € Z7 (resp., Z7 ), with positive weights. Their sum #7. (resp., 17) is:
T T

ny =4T|=2n, resp., np=4T=2n.

To see this, let g € fo. The sum of A-weights of (NSV*lw)M equals
T

weight/\( det N/,

S;|W)|q = weight/\( det Ts%r )|t] - weight/\( det Tw)|

q
We use the local coordinates introduced in 4.1 (assume again w.l.o.g. that T = {s+ 2,...,n}). We may assume
also that the point

q=1[t,...,t41,0...,0]€ Z+ CEr = P"!
has t; = 1. Then local coordinates on an open set U = A" C W around g are given by xq,1,,...,t1,
uy,..., Ugyq, with the blow-up map A" — A™:

(Xl,tz,,..,t5+1,ul,,..,us+1) (g (xl,xltz,...,x1t5+1,x1u1,..,,x1u5+1).
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Then S7 N U C U has equations u; =... = us, (the proper transform of St :y; =... = 95,1). The action of
G on W induces an action on U:

zox;=2°x1, z-ti=t; (i=2,..,s+1),z-t;=2z"%; (i=1,...,s+1).

It follows that

weight/\( det Ty )Iq =-2-4s, weight/\( det Tg: )Iq =2.

Hence, 17 = 4s + 4 = 2n. Similarly, 7. = 2n: for g € Z7 and coordinates vy,t1,..., 51, Uy, ..., Uy on the
chart u; =1, the action of G given by:

z-ylzz_zyl, z-t; = 2%t i=1,....,s+1),z-u;=u; (i=2,...,s+1).

Letting m := HJ = {%J, we make a choice of windows G,

) , + o+ + [ _
(wpwr+m1),  [wpwp+mn;), [wp,wr+n7),  [wp,wr +17),
wy=w;=—(s+1), wr=wr=-4m=-n if s isodd,
wy=w;=-s, wp=wp=—-4m=-n+2 if s iseven

We prove that G, contains the G-linearized line bundles that descend to the Lg , in Theorem 1.8. Since
the collection is S, invariant and S, flips the strata S; and S, it suffices to check the window conditions for
the strata Sy, St. For I C N, |I| > s+ 1, at the point Z; € S; we have by (4.2)

weightA(LE,p)lzl =|ENI|-|ENI+p,

which lies in [w, wy + 717) by Lemma 4.10.
For T € N with |T| = s+ 1, we have by (4.1) and (4.2) that

weight/\(LE,p)mez% =|[ENT|-|ENT|+p-2lx7]|
o if |[ENT|-|ENT+p>0
~4lxr| if |ENT|-|ENT+p<0,

which by (4.5) lies in [wf, w7 +777). Hence, all {Lg ,} in Theorem 1.8 are contained in the window G,
We now check exceptionality. Consider two line bundles as in Theorem 1.8:

ZaTET Z a%ET

IT|=r |T|=r

Lgp = O(-E) ®2, Lpy=0(-E) ®z7F.

where ar 1= arg,, ar = arp . Assume that e = |E| > ¢’ = |E’|. Hence, E € E’ unless E = E’. By the
main result of [HL15, Theorem 2.10], we have that RHom(Lg,, L ») equals the weight (p” - p) part (with
respect to the canonical action of G) of

RHomW(LE/’p/, LE,p) = Rr

O(E’'-E) ®O(Z(0/T - OCT)ET)]-

T
Hence, letting

My :=O(E' -E)®0

Z(—ﬁT)ET], where Br:=ar-ar,
Br=0
we need to understand the weight (p’ — p) part of

RT|My®0

> <—ﬁT>BT]].

|T|:r,ﬁT>O
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Note that M is a pull-back from (IP!)"; hence, by the projection formula, RT'(M) = RT(O(E’ — E)) (which
is 0 if E ¢ E).
Consider a simplified situation. For a line bundle M on W, G := E7,  := fr > 0 consider the exact

sequences:
0—> M(-(i+1)G) » M(-iG) > M(~iG)g >0, (i=0,...0-1).
To prove that the weight (p’ — p) of RT(M(—BG)) is 0, it suffices to prove that
RT(M), RI(M(-iG)g) (i=0,1,...,5-1),
have no weight (p’ — p) part. Put an arbitrary order on the subsets T with fr >0 (T}, T5,...). Applying the

above observation successively, first for My, Et,, then inductively for Mo(—p1 Ty —... = B; T;), E,,, it suffices
to prove that for all T, the following spaces

Rr(Mo), RF(M()(—IET)|ET) (l 20,1,...,ﬁ—1)

have no weight (p” — p) part.

We start with RT'(M,). If E = E’, then R[*(M) = 0. If E = E’, then My = O and the action of G on
RT (M) is trivial. Hence, unless p = p’ (i.e.,, Lg,, = Lp' p), R[(My) has no weight (p’ —p) part.

We now continue with RI'(My(—iET)g, ). By the projection formula,

RI(Mo(=iET)E) = Moy, ® RT(O(=iET)E, ),
where M), is the fiber of M at pr (we denote My both the line bundle on (P')" and its pull back to W).
By (4.2), the action of G on M), has weight
(|E NT|-|ENT)- (|E’ NT|-|E'nT9)

Consider coordinates t;,u; on E = P"~!, such that t; (resp., u;) have weight 2 (resp., weight —2). There is a
canonical identification

Rr(O(—iET)|ET):a:{l_[t;jk]_[ufk | ap b € Zso, Zak+Zbk:i},

with the weight of [] tZ" I1 u;:k equal to 2) a; —2) by. As 2) ap—2) by ranges through all even numbers
between —2i and 24, it follows that the possible weights of elements in R['(My(—iE1)g,) are

(IENTI-IENTe|)-(IE'nT|-|E’'nT)+2j,
for all the values of j between —i and 1.
Assume now that for some 0<i<fr-l=ar—-ar-1,-i<j<i,
(EnTI-[ENT)-(IE'nT|-|E'n T|)+2j =p -p.
Using the definition of ar, ap, it follows that +2a +2a7 = —2j.
Claim 4.8. None of +ar + af lies in the interval [—(ap —ap - 1), (ar —ap —1)].

Proof- By symmetry, it is enough to prove that none of +ar + a7 lies in the interval [0, (o —a} —1)]. As
ar,ar <0 and ar > a;. Hence, it remains to prove that —ar — a7, ar — a7 do not lie in the interval
[0,(ar —a} —1)]. But clearly, —ar —a7 >ar —a; -1 and ar —a7 > ar —agp - 1. O

This finishes the proof that the collection in Theorem 1.8 is exceptional. O

Lemma 4.9. Let 0 <a,b <s. Let o be a divisor in a Hassett space M such that 6 = IP° x P° and with normal

bundle O(—1,-1). Assume that the restriction map Pic(M) — Pic(0) is surjective. Then {Os(—a,—b),Os(—a’,—b’)}
is not an exceptional collection if and only if one of the following happens:
ea >a b >0,

e a =0,a=sb' >0,
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e b'=0,b=s,a" >a,
ea=b=0,a=b=s.
Whena=a’, b =b’, we have RHom(Ogs(—a’,-b’),Os(—a,—b)) = C.
Proof. As any line bundle on 9 is the restriction of a line bundle on M, we have that
RHom(Os(-a’,-b"),0s(—a,—b)) = RHom(Oy,Oy(a’ — a, b’ - b)).
Applying RHom(—,Os(a’ —a,b’ — b)) to the canonical sequence
0—-0(-0) >0 —-05 -0,
it follows that there is a long exact sequence on M
... > Ext'(0y,05(a’ —a,b’ - b)) >
—H(Os(a’ —a,b’ - b)) > H(Os(a’ —a-1,b'=b-1)) - ...
It is clear now that if any of the conditions in the Lemma hold, then
RHom(Os(—a’,-b"),0s(—a,-b)) # 0.

Assume now that none of the conditions holds. Then either a’ < a or b’ < b. Assume a’ < a. Since
a’'—a>-a>-s, Os(a’—a,b’—b) is acyclic. But in this case Og(a’—a—-1,b"— b - 1) is not acyclic if and
only if 4’ = 0, a = s and either b’ —b > 0 or b’ — b < —s (in which case, we must have b’ =0, b =s). This
gives precisely two of the listed cases. The case b’ < b is similar. g

Lemma 4.10. Let n = 2s+ 2. For a fixed set | C N with |I| > s+ 1, we have

2I|-(s+3) if s isodd

max ([ENI|-|ENI+p)=
(E.p) 2I|-(s+2) if s iseven,

(E if s iseven,

where the maximum and the minimum are taken over all the pairs (E, p) corresponding to each line bundle L, , in
Theorem 1.8. Similarly, for TC N, |T|=s+1

—(s+1) 1 is odd
min(|EmI|—|Em16|+p):{ (s+1) if s iso
) s

max(p+|ENT|-|ENT|)=2m, min(p+|ENT|-|ENT|)=-2m,
(E.p) (p ) (E.p) (p )

e =[]
wnere = 4 = 2 .

In particular, when (E,p) are as in Theorem 1.8, the coefficients at g , in (4.3) satisfy
(4-.5) -m< aT,E,p = _|xT,E,p| <0

The proof is straightforward and we omit it.

4.3. Fullness

Let C be the collection in Theorem 1.8. We denote by A c C the collection of torsion sheaves in Theorem
1.8. We prove more generally:

Theorem 4.11. The collection C in Theorem 1.8 generates all line bundles {Lg y} (see Definition 1.7 and Definition
4.6) for allEC N, e =|E|, p € Z with e+ p even.

A

Proof of Theorem 1.8 - fullness. By Theorem 4.11, the collection C generates all the objects Rp,(71;G) from
Corollary 5.11. Fullness then follows by Corollary 5.5. U
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To prove Theorem 4.11 we do an induction on the score S(E, p):

(4.6) S(E,p) :=|p| + min{e,n—e},

(4.7 written as  S(E,p) = 2{%J +2g9, qeZ.
Remark 4.12. As S(E, p) is even, the range of (E, p) in Theorem 1.8 is precisely:
e If s is even: S(E,p) <s,

e If sisodd: S(E,p)<s+1life<s+1and S(E,p)<s—-1ife>s+2.

Using notation (4.7), (E,p) is not in the range of Theorem 1.8 if 4 > 1 when s is even or s is odd and
e>s+2,and if ¢ > 2 when s is odd and e <s+ 1.

To prove Theorem 4.11 we introduce three other types of line bundles.
Notation 4.13. Let n=25+2, ECN,e=|E|and p€Z. On Zy let
_ (e-p _ (e+p
RE,p__( P )l;l}oo_zéioor QE,p__( P )4)0_261'01

i€E ieE

(4'8) VE,p = RE,p + Z |xT,E,p|5TU{oo} = QE,p + Z |xT,E,p|6TU{oo}r

xT,E,p<0 xT,E,p>0

where the last equality follows from (4.9) and (4.10).

We recall for the reader’s convenience that using Notation 4.3 we have

e—
LE,p:_( 2p)lgboo_zéioo_ Z xT;ErP(STU{OO}'

i€E xT,E,p>0

Therefore,

(4.9) Rpp=Lgp+ Z 1X7,E,pl0TU{o0)
X7 E,p>0

and by using Lemma 2.6, we have also

(4.10) Qpp=Lgp+ Z X7, E,pl0TU oo}
x7,£,p<0

We remark that using Lemma 4.4, we have:
Rpp=O(-E)() xrEr)®2, Qpp=O(-E)(-) xrEr)@2,

Lgp=O(E)-) |xrlEr)®@2, Vg,=O(-E)) |xrlEr)@2.

Remark 4.14. It is clear by the definition that by the S, symmetry (i.e., exchanging 0 with o) the line
bundle Rg , is exchanged with Qg _,. The line bundles Rg ,, Qf,, will be crucial for the proof of Theorem
4.11. We note that the line bundles Vg , are used only in the proof of Corollary 4.18.

For every divisor 07 := d7y(c0), we have by Lemma 4.5 that
(4—11) RE'pléT = O(_xT,E,pI 0), QE'méT = 0(0, xT,E,p)'

From here on, the notation O(—a,—b) indicates that O(—a) (resp., O(—b)) corresponds to the component
marked by co (resp., marked by 0).
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Definition 4.15. We say that line bundles L and L’ are related by quotients Q' if there are exact sequences
0L 'S5 Q50 (i=1,...,1),
Ly=L L;,=L".

Note that when L’ =L+ ) Bror with 7 > 0 for all T, the quotients Q! are direct sums of torsion sheaves
of type Os,.(~a,—b).

Lemma 4.16. Let EC N, e = |E|, p € Z, such that e + p even. Then:

(i) Lg, and Rg , are related by quotients which are direct sums of type
Os, (=x7 +1,i), 0<i<|xp[=xr (xr>0)

(it) Lgp and Qg are related by quotients which are direct sums of type
Os (i, xp +1), 0<i<|xp|=-xr (xr<0)

(iii) Rg,, and Vi , are related by quotients which are direct sums of type

Os (—=x1 —1,-1), 0<i<Zl|xr|=-x7 (x7<0)

(iv) Qg,p and Vg, are related by quotients which are direct sums of type

Os, (=i,xp—1i), 0<i<Z|xr|=xr (x1r>0),

where we denote for simplicity 51 = OT (o) and x7 = X7 . In particular, all pairs are related by quotients of
type
O(-a,%), O(x,—a), with 0<a<

S(E,p)
>

Proof. This follows immediately from (4.11), (4.9), (4.10) and (4.8). The last statement follows by Lemma
4.17. O

Lemma 4.17. Letn=2s+2, ECN,e=|E|,peZ, e+p even. Then for all T

S(E,
(4—.12) |xT,E,p| < ( B p);
where S(E, p) is the score of the pair (E,p) (Notation 4.6). Furthermore,

S(E,
7 pl = X15p = ( > p) ifand onlyif TCE, p=0

The proof is straightforward and we omit it. Note, (4.5) is a particular case.
Corollary 4.18. Lete =s5+1,p >0, and (E,p) such that
S(E,p) = 2EJ +2q,

withp=2q—-1,q>1 ifs iseven, and p =2q—2, q > 2 if s is odd. Assume the following objects are generated
byC:

(i) All torsion sheaves Os (-a,0) for all 0 <a < {%J +qandall T,
(it) The line bundles Rg,,, Q, -
Then OéT(—({%J +q),0) with T = E is generated by C. Here O := O7y{co)-

As C is invariant under the action of S, it follows from Corollary 4.18 that a similar statement holds
when replacing Os, (-a,0) with O;_(0,~a).
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Proof. We claim that Vg , is generated by C. Since Rg , is generated by C by assumption, using Lemma
4.16(iii), it suffices to prove that when x7 < 0, O(—xp —1,—i) is generated by A, for all 0 <i < |x7|, ie,
x| < $L. Since the assumptions on g imply that p > 0, we have that

e—p e—p s+1-p s+1
=—xr=——-|ENT|< = <
|x7] XT 3 | |< ) 2 2
and the claim follows. By Lemma 4.16(iv), the quotients relating Qf , and Vg, have the form Oy (—i,x7 — 1)
(E S(Ep) _

s

for 0 <i < xp. By Lemma 4.17, we have that xp < { J + ¢, with equality if and only if T C E. Since

e =541, we must have T = E. It follows that all but one quotient, namely OéT(—(EJ +q),0) for T =E

(when i = x1 = w) are already by assumption generated by C. Note that this quotient appears exactly
once. Since Qg ,, Vg, are generated by C, it follows that this quotient is also. U

Corollary 4.19. Let q € Z, q > 0. Assume that Rg ,, Qf , are generated by C whenever S(E, p) = 2{%J +2q,
with0<q' < q, and e =5+1. Then for all T, 01 := O7yjc0)» the following torsion sheaves are generated by C:

Os,(=4,0),  Os,(0,—-a) when 0<a<{ J+q

Proof. By the S, symmetry, it suffices to prove the statement for O, (-a,0). For any g > 0, taking E C N with
e=s+1 and p = 2q—1 when s is even, or p = 2q—2 when s is odd, gives a pair (E, p) with S(E, p) = 2{%J+2q.
If s is even, or if s is odd and g > 2, the assumptions of Corollary 4.18 are satisfied. By induction on g > 0,
Os,(=a,0) is generated by C when T = E, a = {%J +q.

The only case left is when s is odd and g =1 (p = 0). By assumption Rg o, Qf o are generated by C if
e=s5+1(S(E,0) =s+1). We have to prove that OéT( s+1 ,0) is generated by C. Taking E=T, p =0, we

have that the pair (E,0) is in the range of Theorem 1.8. Hence, Lg is in C. By Lemma 4.16 and Lemma
4.17 Lg o and Rg o are related by quotients which are direct sums of sheaves in A, with only one quotient

which is Os, (- 5+1 ,0) for T = E (the only possibility to have x7 = S(E 0 - % is when T = E). Note that
this quotient appears exactly once. The statement follows. O

Lemma 4.20. (Koszul resolutions) Letp € Z, E C N.
(K1) Ife<s+1, letting] CN\E, |I| =s+1, there is a long exact sequence:
0— QEUI'p,S,l —>...> @ QEu],p,j —>...— QE,p — 0.
JeLUI=j
(K2) Ife>s+1, letting] CE, |I| =s+1, there is a long exact sequence:
0— RE,p — ... @ RE\],p—j — ... RE\I,p—s—l — 0.
JELlTI=j

Proof. We have (;c; 0ico = 0 and the boundary divisors {0;.};c intersect transversely (the divisors intersect
properly and the intersection is smooth, being a Hassett space). It follows that there is a long exact sequence

o0 |~ Bo|- Zam]ﬁ@o 5 m]ﬁ...
iel jel iel\{j} jkel iel\{j,k}
= P O(-5i0) > 0 > 0,
i€l

Tensoring this long exact sequence by —} jcp\; 9jc0 — %gbw gives the second long exact sequence in the
lemma. The first long exact sequence is obtained in a similar way by considering the Koszul resolution of
the intersection of the boundary divisors {0;¢};cs- d
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Lemma 4.21. Assumep >0 and E C N such that
s

S(E,p) = 2{2J +2q,

and the pair (E,p) is such that q > 1 if s is even and q > 2 if's is odd. In the notations of Lemma 4.20, we have:
(1) Ife<s+1 then Qpyjp-;j in Lemma 4.20(K1) satisfies S(EU ], p — j) < S(E, p). If equality holds, then

lp-jl<pifj=0
2) Ife>s+1 then Rp\j,_j in Lemma 4.20(K2) satisfies S(E\ J,p — j) < S(E, p). If equality holds, then
lp=jl<pifj=0.

Proof. We prove (1). We have S(E,p)=p+e. If p—j >0, then
S(EVL,p-j)<(p-jl+e+j=p+e=S(Ep),
and clearly [p—jl=p—-j<pif j#0. If p—j <0, we prove that the inequality on slopes is strict. We have
S(EVL,p=j)<(j=p)+(n-e-j)=n-p-e<e+p=S(Ep),

since S(E,p):e+p:2{%J+2q>s+1.
We prove (2). We have S(E,p) =p+(n—e). If p—j >0, then
S(ENL,p=j)<(p=j)+(n—e+j)=p+(n-e)=S(Ep)
and clearly [p—jl=p—j<pif j# 0. If p—j <0, we prove that the inequality on slopes is strict. We have
S(ENL,p=j)<(j—p)+(e~j)=e-p<p+n-e=S(Ep)
sincee—p<s+1,asS(E,p):p+n—e:2EJ+2q>s+1. O

Proof of Theorem 4.71. Case s even. For any (E, p) write the score S(E, p) as
(4.13) S(E,p)=s+2q.

Note that if g < 0 then Lgp is already in C (Remark 4.12). Moreover, if ¢ < 0, by Lemma 4.16 Rgp and
Qk,p are related by quotients which are direct sums of torsion sheaves of the form O(—a,+) or O(x, —a), with
0<a<lxt| As|xr| < @ <5< %, such quotients are in A.

We prove by induction on g > 0, and for equal g, by induction on |p|, that R ,, Qf,, with S(E,p) =s+2q
are generated by C. By Corollary 4.19, it follows that all O;_(—a,—b) are generated by C. Then Lemma 4.16
implies then that all line bundles L , are generated by C.

We now prove the inductive statement. For q < 0, we already proved that Rg ,, Qf,, are generated by C.
Assume g > 1. Take a pair (E, p) with score S(E,p) = s+ 2q. Using the S, symmetry, we may assume p > 0.
For any (E’,p’) with strictly smaller score than s+ 2g, or equal score and strictly smaller |p|, we have by
induction that Qg ,, Rg, are generated by C.

If e<s+1, we apply Lemma 4.20 and get a resolution for Qg ,. Using Lemma 4.21(i), all terms in the
resolution are generated by C by induction. Hence, Qf , is generated by C if e < s+ 1. Similarly, using
Lemma 4.20, Lemma 4.21(ii) and induction, Rg , is generated by C if e > s+ 1.

We have that both Qf ,, Rg, are generated by C if e = s + 1. By Corollary 4.19 and the induction
assumption, Os_(-a,0), Os.(0,—a) if 0 < a < 5 + g are generated by C. By Lemma 4.16 we have that

Lg,p is related to each of Qg ,, Rg, by quotients which are direct sums of Oy, (-a,%), Os, (+,—a) with
0<a< @ = 3 +q. Since for any e # s + 1, one of Q ,, Rg,, is generated by C, it follows that Lg , is

generated by C.
Case s odd. For any (E, p) write the score S(E,p) as

(4.14) S(E,p)=(s—1)+2q.
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We prove by induction on q > 0, and for equal g, by induction on |p|, that the line bundles Rg , and
Qg,p with S(E,p) = (s —1) + 2q are generated by C. This proves the theorem, as Corollary 4.19 gives that all
torsion sheaves supported on boundary are generated by C. The inductive argument we did for s even goes
through verbatim if g > 2 (the assumption is used in Lemma 4.21). Hence, we only need to prove that RE’p,
Qg,p are generated by C for g = 0 and g = 1. We may assume w.l.o.g. that p > 0.

Assume q = 0. Fix a pair (E, p) with S(E,p) =s—1. Then (E, p) is in the range of Theorem 1.8 and L ,
is in C. As in the previous case, by Lemma 4.16, the line bundles Rg ,, Qf,, are related to L , by quotients
generated by A. Hence, Rg,,, Qf,, are generated by C.

Assume now g = 1 and fix a pair (E,p) with S(E,p) =s+ 1.

Claim 4.22. (’)5T(—%, 0), OéT(O,—%) are generated by C.

Proof- By Corollary 4.19, it suffices to prove that Rg o, Qf, are generated by C for some E with e = |[E| =s+1.
Take such an E. By Remark 4.14, Rg o and Qf o are exchanged by the action of S;. Hence, by symmetry, it
suffices to prove that R ( is generated by C. Consider the resolution in Lemma 4.20(ii) for (E, 0), with I = E.
The terms that appear, other than R g, are Rg\;,_j, with J CE, j > 0. For all j > 0, S(E \J,—j)=s+1and
all (E\],—j) are in the range of Theorem 1.8. Hence, Lg\;,_; are generated by C.

We claim that if j > 0, the quotients relating Rg\j,_; to Lg\j,_; are generated by .A. By Lemma 4.16 the
quotients relating Rg\;,_; to Lg\;,_; are

O(ST(_XT +1,i), 0<i<xp= XT,E\],~j where

s+1 s+1 s+1 s-1
xr=IE\)NTI- 2= < B\ )= 2= <s- 2 = 20

The claim follows. It follows that for j > 0, Rg\;,_; is generated by C. Using the resolution, it follows that

RE o is generated by C. O

Assume that e < s+ 1. Then (E, p) is in the range of Theorem 1.8 and Lgp is in C. Since Ry, Q) are

related to Lg , by quotients Oy (-a,*), Os, (x —a) with 0 <a < @ = %, it follows by Claim 4.22 that

Rg,p, Qp,p are generated by C.
Assume now that e > s+ 1. Then (E, p) is not in the range of Theorem 1.8. Note that it suffices to prove

that Rg , is generated by C, since by Lemma 4.16 Rg ,, L, are related by quotients which are direct sums of

Os,(—a,*) with 0 <a < w = 541 (generated by C by Claim 4.22). To prove Rg, is generated by C, we do

an induction on e > s+1 (for (E, p) of fixed score s+ 1) by using a resolution as in Lemma 4.20 for Rg ,. [

Remark 4.23. For n = 25+ 2 > 2, the exceptional collection on Z,, given in [CT20b, Theorem 1.15] consists
of:

(i) The same torsion sheaves Os_(—a,—b) as in Theorem 1.8.

(ii) The line bundles in the so-called group 1 (group 1A and group 1B of that theorem coincide in this
case): for all E C N, with e = |E| even,

(4.15) For = gz,boo +Y = Y (g ~[ENTI)S70(co)

jeE $—|ENT|>0

The line bundles F r are defined in [CT20b] as R7,(Ny g), for certain line bundles Ny  on the universal
family over Z,,. One checks directly (or see the proof of [CT20b, Lemma 5.8]) that Ny  restrict trivially to
every component of any fiber of the universal family 7w : i/ — Z,. Hence,

o *
Nog =7 Fog, Fop=0,NoE,

for any marking u. In particular, for u € {0, oo}, we obtain formula (4.15).
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(iii) The objects in the so-called group 2B, which in this case are line bundles (corresponding only to the
J =0 term in [CT20b, Notation 11.5]):

- —-1-1 i -1-1 ]
T} (u)UE = ET% + iju - Z (e 7 |ENT[|o1uqu)
JeE =L |ENT|>0

where u € {0,00}, ECN, e=|E|, I € Z, ] > 0 such that |[E N {u}|+ [ is even (i.e., e+ is odd), subject to the
condition

I+ min{e,n+1—e}<s (group 2B).

The formula generalizing both expressions in (ii) and (iii) is

oY s- Y (SE-ENTI)oru
jeE £2_|ENT]>0
which, when u = oo, is exactly the line bundle V];{ " (the dual of Vg, - see (4.13). Hence, the group 2B with
I =p—1, u =00 recovers all the {Vg{p} when p > 0. Similarly, the group 2B with [ = —p—1, u = 0 recovers
all the {VFXP} when p < 0. The elements of group 1 recover all the {VEV,p} when p = 0. A similar proof as
in this section will prove that the collection in [CT20b, Theorem 1.15] - the torsion sheaves (i) and the line
bundles {be p}’ for (E,p) as in Theorem 1.8- is a full exceptional collection.

5. Pushforward of the exceptional collection on the Losev-Manin space
mN to ZN

We refer to [CT20a] for background on Losev-Manin spaces. Recall that the Losev-Manin moduli space
mN is the Hassett space with markings N U {0, oo} and weights (1,1, %,..., %), where 1 = |N|. The space
LMy parametrizes nodal linear chains of IP'’s marked by N U {0, oo} with 0 is on the left tail and oo is on
the right tail of the chain. Both ¢y and 1), induce birational morphisms LMy — IP"~! (Kapranov models)
which realize LMy as an iterated blow-up of IP"~! in 1 points (standard basis vectors) followed by blowing
up (5) proper transforms of lines connecting points, etc. In particular, LMy is a toric variety of dimension
n—1. Its toric orbits (or their closures, the boundary strata as a moduli space) are given by partitions
N = Nj U...UNy, [N;| > 0 for all i, which correspond to boundary strata

ZN,,...N; = ON,ui0} N ON,UN, U0} N -+« N ON, U...UN,_, U{0)
which parametrizes (degenerations of) linear chains of IP!’s with points marked by, respectively, N; U {0},
Ny,..., Ni_1, N U{oco}. We can identify

ZN Nkﬁlex...Xme,

1seeer

where the left node of every IP! is marked by 0 and the right node by co.
There are forgetful maps 7x : LMy — LMy, for all K C N, 1 < |K| < n -1, given by forgetting points
marked by K and stabilizing.

Definition 5.1 (¢f [CT20a, Definition 1.4]). The cuspidal block chusp (LMy) consists of objects E € D?(LMy)
such that for all i € N we have

Rmt; ,E = 0.
Proposition 5.2 (¢f [CT20a, Proposition 1.8]). There is a semi-orthogonal decomposition
D*(LMy) = (Dk,,,(LMy), {1y DL,s,(LMy\x)}kcn, O)

where subsets K with 1 < |K| < n—2 are ordered by increasing cardinality.
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Definition 5.3 (¢f. [CT20a, Definition 1.9]). Let Gy = {G{,...,G,_,} be the set of following line bundles on

LMNZ
Ga=ﬂ¢o—(a—1)z5ko—(ﬂ—2)Z5kzo—~~— Z Oyui0)

keN k,leN JCN,|J|=a-1
for everya=1,...,n—1. Let G be the collection of sheaves of the form
T =(iz)L, L=G,; ®...RG,

for all massive strata Z = Zy, N, i.e., such that N; > 2 for every i and for all 1 < a; < |N;|-1. Here
iz : Z <> LMy is the inclusion map. If t = 1 we get line bundles Gy and for ¢ > 2 these sheaves are torsion
sheaves.

Theorem 5.4 (¢f [CT20a, Theorem 110]). G is a full exceptional collection in DquP(WN), which is invariant
under the group S, x Sy.

Clearly, by Theorem 5.4, Proposition 5.2 and adjointness, we have the following

Corollary 5.5. IfE € DY(Zy) is such that RHom(E,F) = 0 for all F of the form Rp,(1ix*G), for all K C N,
including K = 0, then E = 0.

A

We now proceed to calculate the objects in the collection Rp,(mg*G).

Proposition 5.6. Let p: LMy — Zy be the reduction map.
(1) ForallTCN with0<|I|<n—-2andalll <a<n—|I|-1, we have

Rp*(nfG;/) = —apg - Z djo ifn is odd,

JeN\I
Rp(miGY)==apo— ) 0+ ) (a=InN\DI)Sup)
jEN\I JENJI=3.IN(N\I)|<a

if n is even. Moreover, Rp,O = O.

(2) Ifn is odd, all the torsion sheaves and their pull-backs, i.e, all sheaves T in the collection G not considered
in (1), have Rp.(T) = 0.

(3) Ifn is even, we have Rp*(G;/1 R...X G;’r) =0, except for sheaves G R G, with support Z = LMy, x LMy,
where IN1| = |N,| = 75, when

Rp.(GY ®G))=0(-a)mO(-b),

where we use the identification p(Z) = P>~ x P>71.
4) Ifniseven, I #0 and T € @N\I is a torsion sheaf, then either

Rp.(mT) =0,

or Rp*(T(;T) is generated by the sheaves O(—a) R O(-b) supported on the images P2 x P2t of strata
LMy, x LMy, with |Ny|=|Ny| =4 and with 0 <a,b<%-1.

We use here that if n = 25+ 2 is even, the restriction of the map p to a stratum of the form LM, xLM;,4
is a product of reduction maps of type LM;,; — M,, where a = (1, % +1, %,..., %) (with % appearing (s+ 1)
times). By [Has03, Remark 4.6], we have M 4 = IP* (the Kapranov model of LM, | with respect to the first
marking).
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Proof of Proposition 5.6. Throughout, we denote s := [”—EIJ We first prove (1). As p is a birational morphism

between smooth projective varieties, we have Rp,O = O. We write 7;G,] and p*( —ao =) jen\1 5]-0) in the
Kapranov model with respect to the 0 marking. We denote

H .= 1!)0, E] = 6]U{O} (]gN, |]|Sn_2)l

be the hyperplane class and the exceptional divisors respectively. We have:

miGY = —aH + ) (a=17 N (N\D))E;.
JEN Iz LTAN\DI<a

p(—apo— ) sjo)=—aH+ )  (a=IIN(N\D))E),

jEN\I JCN,1<|J|<s
where the last equality follows by Corollary 2.4. It follows that

T(;G;/ :p*(—ﬂllbo— Z 5]'0)-1—21-1—22,
jeEN\I

where X! consists of all the terms that appear in 7;Gy, but do not appear in p*( —apg— ):jeN\I 6]0), and
Y2 consists of the terms that appear in p*( —ay - ZjeN\I 6j0), but do not in 7t} Gy, taken with a negative

sign:
3= ) (a-lTn(N\D))E;,
JENJIZLIN(N\)I<a,|]|>s

¥2 = Z (10 (N\D)[-a)E;.
JEN,JIZLIJN(N\D)>a|]|<s
When [J| < s, the codimension of p(Ej) in Zy is |J|. For the terms in the sum Y2, the coefficient of E;
satisfies

UN(N\I)|-a<|]|-1 = codim(p(Ej)) - 1.

Hence, one may apply Lemma 5.9 successively to the terms of the sum ¥2. We use here that the map p
can be decomposed into a sequence of blow-ups, with exceptional divisors 070}, Ojufeo}, With 1 < [J| <s,in
order of increasing |/|. Note that the divisors E; with fixed || are disjoint.

Similarly, when [N \ J| <'s, the codimension of p(Ej) in Zy is [N \ J|. For the terms in the sum ¥ 1, the
coefficient of E; with [N \ J| <'s, satisfies

a-|JN(N\I)|<n-1-[I[-]JN(N\I)|<n—-1-]|]|=codim(p(Ej)) -1,

so one may apply again Lemma 5.9 to the terms of the sum X! which satisfy [N \ J| <s. When n = 25 + 1,
the inequality |N \ J| < s is equivalent to |J| > s. However, when n = 25 + 2, the inequality [N \ J| < s is
equivalent to |J| > s+ 1. Hence, in the case when n = 25 + 2, one is left with the terms in the sum ¥ ! that
have |J| = s + 1. This proves ().

Now we turn to the torsion objects, i.e., objects of the form 77(7"), where
T=iz,(G)®...8G), Z=LMg, x...xIMg,

where I CN, N\ I =K; U...UK; and |K;| > 2, for all j. Consider first the case when I = 0. If |[K;| <, the
map Z — p(Z) is a product of reduction maps, the first of which is the constant map WKI — pt. It follows
in this case that Rp,(7) = 0, since RT(G,.) = 0. The same argument applies when |K;| <s. It follows that
Rp.(T') = 0, except possibly in the case when n =25+ 2, t =2 and |K;| = |K| = s+ 1. In this case, the map
Z — p(Z) is a product of Kapranov maps LM, x LM,,; — IP* x IP*, and it follows (for example by Lemma
[CT20a, Lemma 5.7]) that in this case Rp,(7) = Ops(—a) ® Ops(—b). This proves (3) and the case I =0 of (2).
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Consider now the case when I # (). To compute Rp,(7;7), consider the boundary divisors Dy, D5, ..., D;_;
whose intersection is Z, denoting

Di:mKlu'_'uKixmK (izl,...,t—l).

i+10... UK

For the remaining part of the proof, we denote for simplicity
K'=K;, K’=K,uU...uk,
and consider the canonical inclusions
iy 1 Z < Dy = LMy, x LMg», ip, : D1 — WN\,.
We resolve i;,0; using the Koszul complex
coo 2 B<icj<tO(=D; = Dj)p, = ®2<i</O(-D;)p, = Op, — 11,07 — 0.

By our choice of Dy, for all 2 <i <t we have O(D;)|p, = ORO(D), for the corresponding boundary divisor
on mK»:
D] = LMk, .k, X LMg

i+10.. UKy "
By Lemma 5.10, we may choose a line bundle M on LMy~ such that the restriction of M to the massive
stratum sz x...xm,@ is G[\I/2 ‘Z]---ng\z/, and ./\/l(X)O(—Di'1 —...—Dl-'k) is acyclic for any 2 <i; <...<ip <t.
Consider the line bundle £ = G; ® M on D;. Then £z = G; ®...®G, . We now: (1) Tensor the Koszul
sequence with £, (2) Apply Rip, (), and (3) Apply L7tj(~). Since 7  is flat, we obtain a resolution for 7t;7°
with sheaves whose support is contained in nl_l(Dl). To prove (4) and the remaining part of (2), it suffices to
show that for all 2 <i; <... < <t

Rp.7;Rip, (L®O(-D;, —... - D)), )

is 0 when n is odd, or generated by the sheaves O(—a) ® O(-b) (a,b > 0) supported on the divisors
P> ! xP>2! asin (4), when n is even. Here we need the same statement also for RpJ(}RiDM([:) (i.e., k =0).
Note that

L&O(-D; -...=D;)p, = Gy &(M®O(-D] —...-D})).

Tk

There is a commutative diagram

-1 infl(Dl) _— p
n; (D)) —— LMy —— Zy

Pll | nll

Dl ——E——> mN\I

where in,‘] (D,) is the canonical inclusion map and pj is the restriction of 7ty to T(I_l(Dl). Let g =poizip,)
As 77 is flat, we have

Rp*T(}‘RiDH(ﬁ ®O(_Di1 IR Dik)|D1 ) = Rq*p}‘(ﬁ ®O(_Di1 e Dik)|D1 )
The preimage TZI_I (D) has several components By, 1,
BIlrIZ = mK/U]I XmK”Ulz for every partition I= 11 LI 12

We order the set {By 1,} as follows: By, ;, must come before By, ; if |I;|>|];| and in a random order if
[I;| = |J1]. Hence, if By ;, comes before By, ; , then By, ;, N By ;, # 0 if and only if J; ¢ I, in which case, the
intersection takes the form

By, N By, j, = LMgoyy, X LM(p,\j;) X LMgoy,.
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For simplicity, we rename the resulting ordered sequence as By, By, ..., B,. A consequence of the ordering is
that B, is the component By ;, with [} =0, [, =1, and if 1 <i <r—1 and B; is By |, = mKUIl XmK”UIZa
then
Op,(Bis1 +.-+B) =0() ko) 8O =0( ) 6501) 8O,
J&h 0£SCIy
where the first sum runs over all ] C I; (including J = 0), while for the second sum we use the identification

Ouk ulo) = O(1,\J)ulx) = LMjukr X LMy, j,

as divisors in mK'ull (with x being the attaching point). Consider now the following exact sequences
resolving OnI—I(Dl) =0Op,u..uB,:

0— Op,u..uB, ,(=B;) = Op,u..us, = Op, = 0,
0— OB]U...UB,_Z(_Br—l -B,)— OB]U...UB,_] (=B,) — OB,_I (-B,) — 0,

0 _)OBI(_B2 —... _Br) _)OBlUBZ(_BC% _"'_Br) —>OBZ(—B3 _"'_Br) — 0.
We tensor all the above exact sequences with L&O(-D;, —...—D; ) p, and apply first p7(—), then Rq.(-).
As the restriction of the map p; to a component B; of the form By, 1, for some partition I = I} LI I, is the
product of forgetful maps 77 X 7y, it follows that, if i # r, then

OBi(_BiH .. _Br)®p;(£®0(_Di1 T _Dik)|D1) =
(71,GY, ®0(= ) Ssup)) 87, (MBO(-D] ~...—D}))
0=SCI,
while
Op,®p;(L®O(-D;, ~...~ Dy )p, ) = GY, B 1j(M®O(-D], ~...~D})).

(Recall that B, corresponds to the partition I; =0, I, =1.)

We claim that both components of all the above sheaves are acyclic. To prove the claim, recall that
/\/l(X)(’)(—DZ.’1 -. ..—Di’k) is acyclic by the choice of M. We are left to prove that 7}, (G4 )®O(= Y p.scr, Osuix))
is acyclic when I; # (). Since we may rewrite the line bundle Go\{l using the x marking, we are done by the
following:

Claim 5.7. Consider the forgetful map 1c; : LMy ; — LMy for some subset I = 0. For all 1 <b < |N|—1, the
line bundle 117(G)) ® O(= Lg..sc1 Osufo}) is acyclic.

Proof. Using the Kapranov model with respect to the 0 marking, we have

nj(Gy)=-bH + Z (b—-ITNNJE;, O]- Z 53u{0}]=— Z Es.

JENUILJJAN|<b 0=SCI 0=SCI
As b—|]NN|-1 >0, the result follows by Lemma 5.8. O

Recall that the map p either contracts By, 1, = mmll X mKUUIZ by mapping mmh to a point if
II; + K’| < 3, or by mapping LM, to a point if |I"2 +K”|n< 5), or, we have |I; + K’| = |, + K”| = 5 and
p(By,,1,) is a divisor in Zy which is isomorphic to P21 xIP27!. Hence,

RCI*(OBi(—Bi+1 —.. —Bs)®9?(£®0(_Di1 _"'_Dik)|D1))’
Rq*(OBS ® p}(ﬁ ®O(-D; —...—Dj)p, ))'

are either O or they are supported on the divisors P! xIPZ~! as above (in particular, 1 is even). In the latter
case, writing n = 2s + 2, as both components of the above sheaves are acyclic, such objects are generated
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by O(-a) R O(=b) for 0 < a,b < s. We use here that if A is an object in D?(LM;, ) with R['(A) = 0 and
f : LM, — IP* is a Kapranov map, then Rf,.A has the same property, therefore it is generated by O(~a),
for 0 < a <s. Using the above exact sequences,

Rq.pj(L&O(-D;, —... - D) p, )

is either 0 or, when # is even, generated by O(—a) R O(-b) (0 < a,b < s) on IP* x IP°. Proposition 5.6 now
follows. O

Lemma 5.8 (¢f [CT20a, Lemma 4.6]). Consider the divisor D = —dH + Y _m;E; on LMy written in some
Kapranov model. The divisor D is acyclic if

1<d<n-3, 0<my<n-3-|I|.
The following lemma is well known:

Lemma 5.9. Letp: X — Y be a blow-up of a smooth subvariety Z of codimension r + 1 of a smooth projective
variety Y. Let E be the exceptional divisor. Then for all 1 <i <r we have Rp,Ox(iE) = Oy.

Lemma 5.10. Let Z = le X ... X mNt be a massive stratum in LMy and let Dy,...,D,_, be the boundary
divisors whose intersection is Z. Let

T=7T1x...R7;
be a sheaf supported on Z, with either T, = O or T; = G;’i, for some 1 < a; <|Nj|, and not all T; = O. Then there
exists a line bundle L on LMy such thai:
@ Lz=T;
(b) L is acyclic;
(¢c) Foralll <iy <...<iy<t, the restriction £|Di1 N.ND;, i acyclic.
In addition, L& O(-D;, —...—D; ) is acyclic for all 1 <1y <...<ip < t.

Proof. The proof is by induction on t > 1. The statement is trivially true when t = 1, i.e., when Z = LM,, (as
L =T and there are no boundary divisors to be considered). In addition, if all but one of the 7;’s are trivial,
say 7; = G;/i, we are done by [CT20a, Lemma 4.3(3)], as we can take

L=G’

a;+|Np|+...+|N; |

Assume now t > 2 and at least two of the 7;’s are non-trivial. Consider 1y, LMy — mN\Nl and let
Z' =my,(Z). Then Z’ can be identified with LMy, x... x LMy, and the map 7y, : Z — Z’ is the second
projection. Let 7' = 7, ®... ®7;. By induction, there is an acyclic line bundle £” on LMy, such that
'C|’Z’
and clearly all of the properties are satisfied. If 7; = GY, we define £ = G/ ®n}‘\]lﬁ’. Clearly, £;7 = 7. By the
projection formula, Rrty, (£) = ,C’®R7ZNH(G;/). As R7t;(G)) = 0 for all i, it follows that Ry, (£) =0,ie,
L is acyclic.

=T’ and whose restriction to every stratum containing Z’ is also acyclic. If 7; = O, we let £ =ry L’

The same argument applies to show that the restriction of £ to a stratum W containing Z is acyclic.
Consider such a stratum:
4% :LMMl X... XLMMS,

and let W’ = mMz X... mes, considered as a stratum in in mN\MI- If My = Ny, the restriction L)
equals G) ® ([:l'w,) and is clearly acyclic. If M; # Ny, then My = Ny +... + N;, with i > 2, and 7ty (W) is
the stratum li \W, X W in WN\NI. The restriction of £’ to this stratum has the form £] ® £). Then
Liw = (G @ 'y, £1) ® L), where 1ty : LMy, — LMy, is the forgetful map. Again, by the projection
formula, Ly is acyclic.
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We now prove the last assertion in the lemma. As L, Lp. are both acyclic, £(-D;) is acyclic (case
k =1). The statement follows by induction on k using the Koszul resolution for the intersection Nj¢;D;,

I= {il,...,ik}I
-+ = @14 1,je1O(=Dy = Dj) = &1 O(=Dj) = O = Op, n..ap, = 0.

Proposition 5.6 and Lemma 3.3 have the following:

Corollary 5.11. Assume n = |N| is odd. Let p : LMy — Zy be the reduction map. For all I C N with
0<|l|sn—-2andalll <a<n-|I|-1, we have

Rp.(m;GY) = O(-I19) 02>, I°=N\L
Alternatively, this is the collection of PG, -linearized line bundles
O(-E)®zP, 0<|p|<e-2, 2<e<n (e=|E, ECN).
Moreover, Rp,O = O and Rp,E = 0 for all other objects E in the collection G.

Proposition 5.6 and Lemma 4.4 have the following:

Corollary 5.12. Assume |N| = 25 + 2 is even. Let p : LMy — Zy be the reduction map. For all E C N,
e=|E|>2andalll <a<e-1,

Rp.(mi Gy ) = O(-E)( Zm —[ENT*||Er)®2>*,

where |a — |E N T¢|| denotes the absolute value of (a—|E N T€|). Moreover, Rp,O = O. For all G} ® G, supporied
on strata LM, x LM, we have

Rp.(Gy®G))=0(-a)O(-b) (0<ab<s),
All other pushforwards are either O or are generated by the above torsion sheaves.

When 7 = 4, the map p : LMy — Zy is an isomorphism. In particular, the objects in Rp,,n}’(ﬁ form a
full exceptional collection. However, it is straightforward to see that this is different than the collection in
Theorem 1.8.
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