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ABSTRACT 

Gene regulatory networks (GRNs) model the interactions between gene expression regulators 
and their targets that mediate a myriad of biological functions. Constructing GRNs that integrate 
multiple data types at increased resolution is improving our understanding of the complex 
regulatory mechanisms controlling different biological processes in plants. Going beyond 
transcription factor binding and transcriptome profiles, GRNs that incorporate multiple data 
types, including chromatin accessibility and long-range chromatin interaction, TF binding site 
motifs, microRNA, ribosome-associated RNA, and proteomic profiles, were constructed for 
several cell types and multiple species. The rise of single-cell RNA-seq applications in plants 
opens up possibilities for studying cell type-specific GRNs in the processes of cell 
differentiation, development and responses to the environment. Applications of high-throughput 
reporter assays and genome editing technologies allow large-scale validation of GRNs. Future 
advances in refining plant GRNs will most likely involve integration of multi-omics single-cell 
data and methods for cross-species model translation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MAIN TEXT 

Introduction 

A gene regulatory network (GRN) depicts the interactions between gene expression regulators 
and their targets, as well as how these interactions affect the expression levels of RNA and 
proteins. GRNs provide a holistic view of the interactions between molecules that mediate 
biological processes and phenotypic traits (Figure 1). Many computational methodologies have 
been developed to build comprehensive GRNs (reviewed in [1,2]), and recent systems biology 
studies have made significant progress in delineating plant GRNs involved in various aspects of 
plant development [3*,4], environmental responses [5**,6], and coordination between growth 
and defense [7,8]. However, there are still significant challenges in constructing GRNs that 
recapitulate the complex and heterogeneous biological processes in the plant. In this review, we 
focus on recent progress in addressing these challenges in constructing plant GRNs by 
integrating multiple data types and increasing the spatial and temporal resolution, as well as 
experimental approaches that enable the critical task of GRN validation. 

 

Integration of multiple data types in GRN 

A majority of studies on plant GRNs focused on how changes in transcription factor (TF) 
binding events affect target gene expression, under the premise that changes in target gene levels 
could be predictive of changes in the relevant biological processes. However, it is difficult to 
predict changes in biological processes, cellular structures or phenotypes solely based on 
observed changes in the levels of mRNA transcripts or proteins for several reasons. First, mRNA 
levels are not necessarily correlated with protein abundance [9,10]. Secondly, transcriptional 
compensation between paralogous genes and functional redundancy between proteins are 
prevalent in plants, in which loss of certain transcripts or proteins can be compensated by 
proteins with overlapping functions [11,12]. For example, mutating two master regulators 
involved in tomato fruit ripening resulted in partial non-ripening phenotypes in tomato fruits, 
suggesting this important biological process may be regulated by redundant GRNs [13]. 
Furthermore, post-transcriptional regulation by microRNA (miRNA) and post-translational 
modifications also have significant impact on a broad range of biological processes [14-16]. 
Therefore, in order to obtain a holistic picture of the biological processes in plant cells, GRNs 
need to be constructed beyond transcriptome profiles. 

        The development of new experimental approaches for genome-wide high resolution 
identification of cis-regulatory elements (CREs), accessible chromatin regions (ACRs), and 
chromatin architecture features has made it possible to discover and integrate new features in 
plant GRNs (Table 1). These methods are particularly valuable for plants since the rapid 
sequence evolution of plant genomes make it challenging to use phylogenetic footprinting 
methods that were developed in mammalian genomes for regulatory element identification 
[17,18]. Integrative analysis of epigenome dynamics (H3K27ac profile and chromatin 
accessibility) and transcriptome dynamics in the developing flowers of Arabidopsis thaliana 
revealed that DNase I hypersensitive sites (DHS) in distal intergenic regions were predictive of 



active enhancers and distinct sets of TF motifs were enriched in stage-specific enhancers [19*], 
allowing the construction of GRNs that are stage-specific rather than static. The distal DHS 
showed features of active enhancers because genes with both distal and proximal DHS had 
higher expression levels than genes with distal or proximal DHS only, and the accessibility 
dynamics of these regions among different floral developmental stages correlated with stage-
specific gene expression [19*]. Changes in genome-wide chromatin accessibility between the 
stem cells of the shoot apical meristem (SAM) and differentiated leaf mesophyll cells in 
Arabidopsis were used to infer TF regulatory networks specific to these two cell types [20*]. 
Incorporation of chromatin interaction data could link long-range CREs to target genes, 
especially in large plant genomes. A genome-wide study of CREs in maize seedlings [21**] 
revealed that ACRs located far away from genes (distal ACRs; dACRs) were prevalent in the 
maize genome and that dACRs formed chromatin loops to their target genes and acted as 
enhancers. 

        In addition to transcriptome profiles, multiple -omics scale data types have been 
continuously integrated into mRNA-centric GRNs to improve network inference. In maize, GRN 
derived from integrating transcriptome, proteome and phosphoproteome data significantly 
outperformed GRNs derived from a single data type [9]. Translatome data generated by TRAP-
seq (Table 1) can be used as an alternative to proteome data [22,23], complementing certain 
limitations of proteomics, i.e. low coverage due to lowly expressed or unstable proteins. 
Integrative analysis of multi-level epigenome, transcriptome and translatome data from 
Arabidopsis seedlings in response to hypoxia revealed comprehensive gene regulation dynamics 
coordinating chromatin accessibility, transcription and translation processes that occur in the 
nuclei and cytoplasm under environmental stress [23]. Analysis of floral gene regulatory network 
in Arabidopsis that included genome-wide TF binding, mRNA and miRNA expression data 
identified 568 feed-forward loop (FFL) motifs in which a master TF targeted both the miRNA 
and miRNA-targeted TFs [3*]. In a coherent FFL, the floral master regulator SEP3 binds to the 
upstream regions of MIR319a, TCP4 and TCP10, while MIR319a in turn targets TCP4 and 
TCP10. MIR319a is a critical component in this FFL that regulates petal growth by controlling 
the timing of TCP4 and TCP10 activation. 

        The diversity in the plant kingdom provides an advantage to study the evolution and 
conservation of GRN that mediates specific biological processes. By tracing the evolution of a 
single phenotypic trait among natural populations within the same species, as well as between 
closely and distantly related species, conservation characteristics of plant GRNs could be 
characterized. Analysis of dACRs in thirteen angiosperms showed that the majority of dACR 
sequences and their chromatin environment were conserved between species [24]. Transposable 
element proliferation contributed to the species-specific distribution of dACRs, and partially 
explained why species with larger genome sizes contained a higher proportion of dACRs [24]. 
Incorporating environmental conditions into evolutionary genomics analysis revealed conserved 
GRNs involved in environmental responses. Survey of RNA transcripts responsive to 
submergence in four dryland-adapted and flood-resilient angiosperm species identified 68 
submergence-up-regulated families (SURFs), and motif analysis of promoters and accessible 
chromatin regions near the SURFs reported enrichment of four TF binding motifs (HRPE, 



bHLH, WRKY, MYB). Putative regulatory networks for each species were built based on the 
presence of these motifs at each SURF gene in each species, and comparison of the networks 
across species suggested species-specific and conserved functionalities of these TF motifs in 
flood response [5**]. Interestingly, although flooding response circuitry was found in dryland-
adapted species and wetland crop, it showed higher degree of activation in the wetland crop in 
response to submergence [5**]. Comparative analysis of natural selection strength on over 
15,000 transcripts in two populations of rice under drought and wet conditions reported that 
earlier flowering and higher expression of early flowering regulator OsMADS18 were strongly 
selected under drought conditions, and selection strength was weaker for genes with high 
connectivity in GRNs, higher number of CREs and transcriptional regulators [25]. The 
evolutionary characteristics of GRNs could provide insights for enhancing plant resilience to 
environmental changes. 

 

Increasing the resolution of GRN 

A plant is a complex system consisting of different organs, tissues and cell types at various 
developmental stages and with distinct sets of biological processes. Therefore, GRNs need to be 
built to reflect the different developmental stages, the diverse internal and external molecular 
environments, and the positional context of each cell type. The application of cell type-specific 
and single cell approaches and the addition of temporal and spatial information have increased 
the resolution of plant GRNs and improved our understanding of biological processes in plants. 

        Cell type-specific genetic markers allow isolation of cell types of interest and construction 
of cell type-specific GRNs. INTACT-ATAC-seq (Table 1) of Arabidopsis SAM stem cells and 
leaf mesophyll cells identified ACRs and enriched motifs specific to each cell type [20*]. By 
examining TF motif enrichment in differentially accessible ACRs of these two cell types, cell 
type-specific TFs and their target genes were predicted to create TF regulatory networks specific 
to each cell type [20*]. These GRNs were further expanded by adding new cell type-specific TF 
binding events discovered by an Ensemble motif-mapping approach [26]. INTACT-ATAC-seq 
was also used to analyze hair and non-hair cells in the Arabidopsis root, which reported a root 
hair cell specific MYB-driven regulatory module that controlled cell fate and response to abiotic 
stress, such as water and phosphate starvation [27]. By immunoprecipitation of epitope-tagged 
ribosomal subunits expressed under the control of domain specific promoters, domain-specific 
translatome profiles and gene co-expression networks were generated for nine different SAM 
and leaf domains in Arabidopsis [22]. Interestingly, leaf marginal domain was found to share 
high gene expression similarity with the unrelated rib meristem domain, supporting the parallel 
morphogenesis hypothesis between leaf and SAM [22].  

        One shortcoming of using markers is that cell type markers must be defined a priori 
[20,22,27,61], limiting the identification of new cell types or transient cell states and resulting in 
incomplete cell type-specific GRNs. Single-cell RNA-seq (scRNA-seq) provides a marker-free 
approach to characterize cell types and cell states and to construct GRNs. scRNA-seq profiling 
of Arabidopsis root cells discovered genes with cell type-specific expression that could be used 



as new markers for cell type identification [28-31*], and generated developmental trajectories for 
multiple cell types such as the endodermal and epidermal cells [28,29]. Rather than grouping 
cells by collection time in the experiments, the trajectories placed individual cells along a 
continuous “pseudotime” path that represents the developmental and differentiation progression 
of the cells, allowing inference of more refined cell type- and stage-specific transcriptional 
regulators [30**] and GRNs [31*]. Examining the co-occurrence of TF expression and motif 
enrichment in specific cell clusters revealed putative TFs that drove cell cluster-specific gene 
expression, as well as TFs that drove gene expression at early and late stages along the 
developmental trajectories in cortex, endodermal and root hair cells [30**]. A GRN regulating 
trichoblast differentiation process was built for 239 TFs that were dynamically expressed across 
the pseudotime trajectory using the SCODE algorithm [31*,62]. SCODE used ordinary 
differential equations (ODE) to model the pseudotime expression dynamics of the TFs, and 
inferred TF regulatory networks by optimizing the parameters of the ODE to reconstruct the 
observed expression data [62]. This GRN predicted key TFs, such as ATHB-20, that might be 
involved in root development, and revealed a negative feedback relation between TFs at the end 
of trajectory and TFs in the meristem [31*]. scRNA-seq also makes it possible to characterize 
cell type-specific responses to environmental changes, as demonstrated by scRNA-seq analysis 
of Arabidopsis root following heat stress [30**]. Different biological processes were enriched 
for genes that showed cluster-specific expression changes in response to heat shock, such as 
ribosome-associated and RNA methylation in hair cells, cell wall organization and biogenesis in 
stele cells, and nitrogen and anion transport in endodermis cells [30**]. Such datasets provide a 
foundation for constructing GRNs that underlie cell type-specific responses to environmental 
stimuli. 

        Incorporating time and spatial information provides additional dimensions to investigate 
GRNs. In Arabidopsis, temporal regulation on nitrogen response genes was uncovered by 
applying dynamic factor graphs (DFG) [63] to time-series transcriptome datasets from 
Arabidopsis shoots in response to nitrogen signaling [32*]. In a state-space modeling framework, 
DFG learned a function that determined the target gene expression at each time point from the 
expression of a set of TFs at previous time points [32*]. This function represented the influence 
of TFs on the target genes, giving rise to a putative GRN that was pruned based on validation 
data from TARGET assays (Table 1). The pruned and validated GRN predicted the dynamic 
relationship between 155 TFs and 608 nitrogen-response genes [32*]. Using a barcoded array-
based spatial transcriptome technique [33], meristem micro domain specific genes and 
biosynthetic pathways involved in different meristem developmental stages were identified and 
visually localized in the inflorescence meristem of Arabidopsis [34*]. However, the current 
resolution of this method (200 μm) is significantly larger than the size of plant cells (30 μm to 
100 μm in Arabidopsis [35]), so information regarding rare cell types or domains consisting of 
single cell layers may be missed.  

 

 

 



Experimental validation of GRN 

Once a GRN is constructed, we need robust tools to validate the connections in the network. Two 
widely used validation approaches are reporter assays and targeted mutagenesis. 

        Multiple reporter assays have been applied to validate GRNs in plants. A cell-based 
transient TF perturbation system named TARGET (Table 1) was used to validate in vivo, direct 
TF-target interactions in nitrogen response in Arabidopsis protoplasts [36]. In maize, the 
regulatory functions of DHSs associated with conserved noncoding sequences were validated by 
GFP reporter expression in protoplasts [37]. One caveat of using protoplasts is that the protoplast 
preparation process may induce changes in the endogenous molecular environment of the cell. In 
addition to genome-wide enhancer mapping, STARR-seq (Table 1) can be used to validate 
potential enhancer candidates [21**], although the strength of enhancers is difficult to evaluate 
due to the lack of endogenous genome environment for the fragments being tested. A rapid 
validation method for enhancers was developed in tobacco using an agroinfiltration luciferase 
reporter assay, which allowed the relative strength of different enhancers to be quantitatively 
compared through bioluminescence signals [38]. 

        Targeted mutagenesis can be used to test the regulatory effect of TFs and CREs on specific 
phenotypic traits. Recent studies in tomato used CRISPR/Cas9 genome editing to generate triple 
mutants of transcriptional regulators controlling flowering time (SP5G), growth termination (SP) 
and stem length (SlER), resulting in dwarf tomato plants without compromising yield [39,40]. 
CRISPR/Cas9 mutagenesis at the promoter region of SlCLV3 created quantitative variation in 
tomato locule numbers [41*]. However, the phenotypic effect is not strictly correlated with the 
magnitude of disruption in the promoter region, further suggesting the complex relationship 
between GRNs and in planta biological processes [41*]. The development of multigene 
transcriptional activation systems in plants, such as the multiplexed CRISPR-Act2.0 [42], has the 
potential for large-scale, systematic validation of GRN. 

 

Future perspectives 

Currently, most of the plant GRNs were constructed based on whole tissue sections and bulk 
measurements. However, these approaches cannot capture the dynamics of cell interactions, such 
as the transport of small molecules and proteins across cells. These interactions play critical roles 
in coordinating gene expression programs and biological processes that give rise to phenotypic 
traits in plants. Therefore, plant GRN models need to be improved by integrating multi-omic, 
cell type-specific datasets, with the ultimate goal to understand and create precise phenotypic 
traits. 

        Single cell approaches have been developed and used in mammalian cells to collect 
information on chromatin accessibility, cis-regulation, transcriptome and proteome [43-46]. 
Cross-platform integration of multi-omic single cell datasets significantly improved the 
resolution of cell type identification [47,48]. It is also possible to simultaneously profile multiple 
modalities, such as chromatin architecture, epigenome, transcriptome, and proteome, in the same 



cell [10,49-50]. Although these high resolution and integrative single cell approaches hold great 
promise to advance plant GRN research, they need to be adjusted to accommodate plant-specific 
features and challenges, such as the presence of cell wall, chloroplasts, vacuole and secondary 
metabolites. 

        Many GRNs have been studied in model plant species, so it is important to investigate the 
extent at which the GRN information could be generalized to non-model species. The challenge 
lies in the selection of translatable features and representative phenotypes, because regulatory 
mechanisms that underlie the same biological process may differ in different plant species. For 
example, the gene networks that regulate ovule initiation are distinct in Arabidopsis and tomato 
[51]. Comparing gene expression programs between species at single cell resolution alleviates 
the confounding variation in tissue and organ anatomy, potentially allowing more accurate cross-
species comparisons [52]. Machine learning methods for translating animal models to human 
patients [53], which integrate phenotypes and multiple data types and incorporate cross-species 
differences, could inspire new approaches for translating GRNs in plants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1. Experimental techniques for identification and validation of GRN.  

Method Description GRN feature 
identified 

References 

STARR-Seq (self-
transcribing active 
regulatory region 
sequencing) 

Transfect cells with a construct 
that contains a minimum promoter 
upstream of a sequence of interest, 
followed by sequencing of cellular 
RNA 

Enhancer elements [21**,54,55] 

DAP-seq (DNA 
affinity purification 
sequencing) 

Affinity purification of genomic 
DNA by in vitro expressed TF 
followed by sequencing 

Transcription 
factor binding sites 

[21**,56] 

ATAC-seq (assay for 
transposase-accessible 
chromatin sequencing) 

Digestion of chromatin at by Tn5 
transposase, followed by 
sequencing 

Accessible 
chromatin regions 

[5**,21**,23,27,5
7,58] 

HiChIP Chromatin immunoprecipitation 
(ChIP) of factor-directed 
chromatin contacts, followed by 
sequencing  

Protein mediated 
chromatin 
interaction  

[21**,59] 

TRAP-seq (translating 
ribosome affinity 
purification followed 
by RNA-seq) 

Affinity purification of RNA 
bound by an epitope-tagged 
ribosomal protein, followed by 
RNA sequencing 

Translating RNA [5**,22,23] 

INTACT (isolation of 
nuclei tagged in 
specific cell types) 

Transgenic expression of nuclear 
envelope proteins followed by 
affinity purification of the tagged 
nuclei 

Nuclei from 
specific tissue or 
cell type 

[60]  

INTACT-ATAC-seq ATAC-seq with INTACT isolated 
nuclei  

Cell type-specific 
accessible 
chromatin regions 

[5**,20*,23,27] 

TARGET (Transient 
assay reporting 
genome-wide effects of 
transcription factors) 

Transient expression of TF in 
protoplasts followed by RNA 
sequencing 

Target genes 
activated by a TF 

[36] 
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Figure 1. Path from GRN to phenotypes 

The path from genomic information to phenotypic traits is regulated at multiple levels. A GRN 
describes the collection of molecules and interactions underlying the biological processes that 
impact the phenotypes of the plants. 

Gray area represents canonical GRN with transcription factor (TF) binding and target gene 
expression as the center of the network. Black arrow depicts information flow from genome to 
phenotypes. Outside of the gray area are new features incorporated into the GRN. Dark grey 
arrow indicates the steps at which these features affect the GRN. 

 

 

 

Figure 1 Caption



 

Table 1. Experimental techniques for identification and validation of GRN.  

Method Description GRN feature 
identified 

References 

STARR-Seq (self-
transcribing active 
regulatory region 
sequencing) 

Transfect cells with a construct 
that contains a minimum promoter 
upstream of a sequence of interest, 
followed by sequencing of cellular 
RNA 

Enhancer elements [21**,54,55] 

DAP-seq (DNA 
affinity purification 
sequencing) 

Affinity purification of genomic 
DNA by in vitro expressed TF 
followed by sequencing 

Transcription 
factor binding sites 

[21**,56] 

ATAC-seq (assay for 
transposase-accessible 
chromatin sequencing) 

Digestion of chromatin at by Tn5 
transposase, followed by 
sequencing 

Accessible 
chromatin regions 

[5**,21**,23,27,5
7,58] 

HiChIP Chromatin immunoprecipitation 
(ChIP) of factor-directed 
chromatin contacts, followed by 
sequencing  

Protein mediated 
chromatin 
interaction  

[21**,59] 

TRAP-seq (translating 
ribosome affinity 
purification followed 
by RNA-seq) 

Affinity purification of RNA 
bound by an epitope-tagged 
ribosomal protein, followed by 
RNA sequencing 

Translating RNA [5**,22,23] 

INTACT (isolation of 
nuclei tagged in 
specific cell types) 

Transgenic expression of nuclear 
envelope proteins followed by 
affinity purification of the tagged 
nuclei 

Nuclei from 
specific tissue or 
cell type 

[60]  

INTACT-ATAC-seq ATAC-seq with INTACT isolated 
nuclei  

Cell type-specific 
accessible 
chromatin regions 

[5**,20*,23,27] 

TARGET (Transient 
assay reporting 
genome-wide effects of 
transcription factors) 

Transient expression of TF in 
protoplasts followed by RNA 
sequencing 

Target genes 
activated by a TF 

[36] 
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