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Abstract 

Single-cell genomics and particularly single-cell transcriptome profiling by RNA sequencing (scRNA-seq) 

have transformed the possibilities to relate genes to functions, structures, and eventually phenotypes. 

We can now observe changes in each cell's transcriptome and among its neighborhoods, interrogate the 

sequence of transcriptional events, and assess their influence on subsequent events. This paradigm shift 

in biology enables us to infer causal relationships in these events with high accuracy. Here we review the 

latest single-cell studies in plants that uncover how cellular phenotypes emerge as a result of the 

transcriptome process such as waves of expression, trajectories of development and responses to the 

environment, and spatial information. With an eye on the advances made in animal and human studies, 

we further highlight some of the needed areas for future research and development, including 

computational methods. 

  



Introduction 

Every study of genotype at heart is motivated by a question about the effects of the genotype on the 

specific phenotypes. However, as we can more accurately quantify genomic and phenotypic variations, 

we have started to learn that many phenotypes are a continuum of incremental changes in functionalities 

and structures rather than discrete entities. Single-cell genomics has been instrumental in creating this 

paradigm shift by revealing the blurry boundaries of the conventional definition of cell phenotypes in 

biology. 

Omics-scale data acquisition started from analyzing bulk tissues, producing average measures of all the 

cells collected. The analysis of individual cells began in 2009 by Tang et al. by sequencing RNA in four cell-

stage murine blastomeres [1]. Over the past decade, improvements in techniques for isolating and tagging 

cells and the advancement of next-generation sequencing methods have made it possible to profile 

individual cells at a large scale and in a highly reproducible way. Unlike bulk measurements, these 

methods can analyze a collection of cells individually or as subgroups defined by desired criteria. Single-

cell profiling of samples taken at multiple time points and spatial locations creates snapshots of the cell 

states, akin to a series of photos captured from a group dance which could reveal individual players, 

subgroups, and interplays between them.  These high-resolution pictures of transcriptional programs 

allow characterization and investigation of the continuum of transcriptomic events across cell types along 

time and space. We can now induce in vitro, in vivo, and soon in silico perturbations to both the cellular 

transcriptional machinery and to the environment. By tracing the effects of perturbations, we can ask 

causal questions on what, why, and how the induced changes in regulatory programs affected particular 

aspects of cell phenotypes. This is far more powerful than bulk tissue analysis, which is inherently limited 

to answer questions about co-expression and correlation among vaguely defined groups, often with 

insufficient accuracy. 

Single-cell analysis technologies have advanced our understanding of complex and dynamic regulatory 

networks underlying cellular phenotypes. In response to cellular signals, chromatin accessibility changes 

dynamically to shape the subsequent transcriptional programs [2].  Chromatin accessibility can be mapped 

genome-wide at the single cell level by assay for transposase-accessible chromatin using sequencing 

(scATAC-seq) [3] and matched to transcriptional profiles captured by single cell RNA-seq (scRNA-seq). 

Further integration of chromatin accessibility maps, transcriptome profiles and genomic and epigenomic 

annotation can reveal the upstream regulatory histone modifications, DNA chemical modifications such 

as methylation, and transcription factor (TF) binding sites, delineating the transcriptional programs that 

drive cellular fates. Technologies of in situ spatial analysis further allow us to investigate transcriptional 

changes due to interactions with neighboring cells. Beyond the genome and transcriptome, continuous 

innovations are enabling single-cell proteomics and metabolomics [4] [5] [6] [7]. These advancements 

provide a comprehensive and high-resolution picture of cellular identity and behavior (Figure 1), which 

will bring us closer to answer fundamental questions on what, why and how particular cell fates, responses 

and diseases are decided.  

Cell identities are points on a continuum  

Using scRNA-seq to study cells during the development or response to environmental conditions reveals 

that discrete cell identities are indeed points on a continuum of cell state changes. The existence of such 

continuum has been verified with various independent methods such as marker gene expression [8], DNA 

barcode editing [9] [10], and comparison with cell identity mutants [11]. Arranging the continuous cell 



states based on their progression in the underlying process uncovers distinct trajectories along the 

progression time (pseudotime) that carry the cell to particular phenotypes. Assisted by these methods, 

scRNA-seq studies in plants recapitulated and refined the cell states and known developmental 

trajectories, and identified new cell types and differentiation branches. Lopez et al. used scRNA-seq to 

study Arabidopsis thaliana stomata lineage and found overlapping and flexible stomatal lineage cell states 

along a continuum [12]. Similarly, Liu et al. identified TF regulatory networks in different developmental 

stages of stomatal lineage cells using pseudotime analysis and found several novel marker genes, 

interactions and mutual regulation among key marker genes at different developmental stages [13]. The 

transcriptional programs that drive the development of specific cell types are shaped by differential 

chromatin remodeling that results in distinct chromatin accessibility profiles [14, 15] and cell-type specific 

networks [16]. Recent studies of A. thaliana roots using scRNA-seq and scATAC-seq showed that the 

transcriptome profiles and the accessible chromatin profiles for many cell types were correlated  [17] [14] 

[18], and scATAC-seq can complement scRNA-seq results in identifying the continuum of cell states and 

types [14]. Using scATAC-seq in maize, Marand and colleagues identified 92 chromatin accessibility states 

across 165,913 putative cis-regulatory elements in 52 known cell types and showed that the combinatorial 

accessibility of TFs and their binding motif defines various cell states [18]. The study of maize pluripotent 

stem cells in shoot apical meristems (SAMs) and its differentiating cellular descendants by Satterlee et al. 

by scRNA-seq showed that cell differentiation followed a continuum of transcriptional states [19]. In A. 

thaliana, Gala et al. used CRISPR/dCas9 to repress three histone deacetylases chromatin regulators and 

showed that the induced chromatin remodeling created a substantially different phenotype by increasing 

the density and frequency of lateral root development [11]. Technologies that combine large-scale genetic 

perturbations and scRNA-seq, such as Perturb-seq [20, 21], will enable unbiased characterization and 

validation of key regulators that drive the cell state trajectories. 

Transcriptional response to the environment is heterogeneous across cell types 

Plant species' plasticity in adapting to diverse environments emerges from genotype-environment 
interactions. Single cell analysis allows us to characterize the heterogeneity of transcriptional changes in 
such genotype-environment interactions at the resolution of the individual cell and cell types. Jean-
Baptiste and colleague applied heat stress to A. thaliana roots and used scRNA-seq to identify large gene 
expression changes, particularly in the outer layers such as the epidermis and cortex [22]. Wendrich et al. 
used scRNA-seq to examine A. thaliana roots in low phosphate conditions and discovered that increases 
in the TMO5/LHW TF activity in young xylem cells induced cytokinin biosynthesis, which then diffused 
through the vasculature and directed both the length and identity of the outer trichoblast cells to support 
roots to forage the soil for phosphate [23]. Through comparison of scRNAseq profiles of  A. thaliana roots 
grown in sucrose versus others, Shulse et al. found that the addition of sucrose as a carbon source altered 
proportions of cell populations and induced gene expression changes highly specific to distinct tissues or 
cell populations [24].  Studying the effect of low nitrogen and high salinity condition in rice using scRNA-
seq, Wang et al. found that the induced transcriptional changes were specific to cell types. Interestingly, 
they discovered that the same set of genes expressed under the low nitrogen condition tended to express 
differentially during the high salinity treatment, suggesting a rebalancing of common regulatory networks 
in response to various abiotic stresses [25].  

Distinct expression waves underlie the continuity of cell states  

In closer examination, the continuous cell state transitions revealed by scRNA-seq is not smooth but a 

choppy surface made of mostly distinct TF and gene expression waves. These expression waves of highly 



interconnected TFs and target genes shift the cell state along the developmental trajectory or 

environmental response.  Studying male and female reproductive development in balsam poplar, Cronk 

and colleagues found successive waves of gene expression corresponding to distinct alterations to the 

chromatin landscape [26]. Denyer et al. performed scRNA-seq of A. thaliana root cells and identified 239 

TF corresponding to highly precise gene expression waves that occurred during differentiation and 

maturation of meristematic cells in unidimensional growth and root hair elongation [27]. Similarly, Liu et 

al. studied over 12,844 individual cells from the cotyledons of five-day-old A. thaliana seedlings and found 

that TF activity and gene expression were very high at the early stage of development of stomatal cells 

but quickly decreased along the pseudotime [13]. Examining maize male meiosis by scRNA-seq, Nelms et 

al. observed that periods of rapid gene expression occurred during the meiotic prophase, where 

significant cellular physiology changes took place [28]. They defined the concept of pseudotime velocity 

to measure the rate of gene expression change along the pseudotime of developmental trajectories. It is 

conceivable that the continuum of changes that take place during environmental response is also made 

of explicit expression waves.  Gould and colleagues studied A. thaliana seedling's response to day and 

night cycles and observed robust transcription oscillations [29]. Interestingly, they found that the waves 

of clock gene expression that spread across the plant were seemingly coordinated through cell-cell 

communication. 

Spatial techniques characterize transcriptional programs in situ 

The spatial structure of cells in tissues and the ultimate tissue functions are governed by interactions and 

coregulations of transcriptional programs with neighboring cells and the environment. The development 

of in situ spatial transcriptomics has enabled us to characterize these programs in their original tissue 

context. Experimenting with barley leaf, Solanki and colleagues optimized the sample preparation and 

tissue pretreatment steps of RNAscope, a multiplex fluorescent RNA in situ hybridization method, for 

plant tissues and achieved tissue section integrity, RNA stability and high-quality signal [30]. Giacomello 

et al. optimized the spatial transcriptomics platform of barcoded oligo-DT microarrays for multiple plant 

species and for A. thaliana detected significant differences in the expression levels of 141 genes between 

eight inflorescence tissue domains at 100 μm resolution [31]. To study the cellular response to heat stress 

in A. thaliana and Nicotiana benthamiana leaf, Alamos and colleagues used PP7 and MS2 technologies for 

labeling nascent RNA together with quantitative imaging to measure individual cell’s transcriptional 

changes and discovered tissue level patterns of mRNA accumulation [32]. Many new developments have 

been made in spatial transcriptomics in animal studies, for instance, the method seqFISH+ could detect 

10,000 genes in a single experiment in mouse brain [33]. Implementing these methods in plant biology 

hold great potential to further our understanding of how a plant is made from its genetic instructions. 

Limitations of current methods 

Like any technology, scRNA-seq comes with limitations that may impact the conclusions we derive from 

our studies. Some limitations are the result of the current state of technologies, while others are specific 

to plant studies. For example, the composition and thickness of the cell wall and large variations of cell 

size present unique challenges [34]. Widely-used protocols of preparing single cell suspensions for 

microfluidic-based scRNA-seq platforms usually involve protoplasting, which induces changes in the 

transcriptome [35] [36] [37]. We invite interested readers to find more detailed accounts on technological 

challenges in these recent reviews and papers [34, 38] [39] [40] [41] [42].  Addressing this limitation, 

several recent studies showed that single nucleus RNA-seq is a promising alternative to protoplasting [14, 



43] [44]. Even with appropriate preparation, some inherent limitations of single cell experiments must 

also be overcome. For example, sufficient and unbiased sampling along the real development time and 

adequate representation of the diverse cell states in a sample are necessary to preserve the fingerprint 

of rare cell states [45] [46] or rare cells that lead essential changes, such as quiescent center cells in the 

root.  

Identification of cell states, measuring the similarity between them, and aligning them along a pseudotime 

or pseudospace [35, 47] is at the core of deciphering transcriptional programs using scRNA-seq. However, 

the assumption that similarity in the transcriptome profile corresponds to developmental similarity should 

be examined with independent methods [47]. The measure of similarity can also be influenced by highly 

expressed genes or dominant expression patterns, such as cell cycle progression [47] or gene expression 

oscillation, masking the key differences of lowly expressed genes [48]. Furthermore, assumptions made 

during analysis about data distribution, structure and input features, such as predefined marker genes, 

could strongly influence the number of the identified clusters [49] and the similarity between them and 

may reduce the chance of revealing new or underrepresented information. Therefore, the design of 

scRNA-seq experiments and analysis choices should be informed by the particular biological process that 

we want to identify. 

The representation of cell state transitions as a tree or limited graph, a fundamental assumption for 

constructing pseudotime trajectories, could be a source of bias [50]. As more data accumulates, we learn 

that groups of cells may take an alternative shortcut in differentiation processes to another part of the 

lineage hierarchy [47]. These shortcuts take the shape of a directed acyclic or cyclic graph, which the 

pseudotime method cannot represent. Even using successful graph-based presentations, such as 

partition-based graph abstraction [51], could yield biased lineage graphs due to the algorithm’s 

assumptions [52]. As a result, caution must be taken in conducting trajectories analyses and interpreting 

their results. 

Conclusion and future directions 

In this review, we highlighted several key recent developments and applications of single-cell technologies 

in plant studies.  We envision that the waves of expression, observed in multiple processes, will emerge 

as a key concept in representing units of transformation in cell states.  Each expression wave is the output 

of a multi-layer, coordinated regulation within the cell and is temporally related to an inward or outward 

interaction with the environment.  Developing and adding functionalities to existing analysis pipelines to 

identify and resolve the superimposition of expression waves, and mapping them to the underlying 

regulatory changes and the developmental and environmental signals will be necessary for disentangling 

the regulatory networks that connect genotype to phenotypes. 

Beyond the transcriptome, multimodal single cell technologies could simultaneously capture, in each cell, 

the state of two or more layers of gene expression machinery such as DNA methylation, chromatin 

accessibility, RNA expression, protein profile and metabolites [53] [54] [55]. These technologies provide a 

more comprehensive characterization of cell identity [56] [18], and the interactions between regulatory 

layers that determine the developmental and environmental responses.  Although not yet widely adopted 

in plant studies, we note that multimodal technologies could enhance the usability of the data produced 

by unimodal single-cell methods toward an unbiased view of regulatory networks. Unbiased results 

reduce the uncertainty of computational methods that perform data integration, ultimately leading to 

more reliable predictions and reducing the cost of validating these predictions. 



In single-cell studies, we face a widening gap between the data production rate and our methods' ability 

to analyze it effectively. Bulk tissue analysis is often constrained to finding correlations between co-

expression clusters in a limited number of data matrices. However, integrative single-cell studies have 

presented challenges and opportunities for inferring regulatory circuits from millions of data points across 

many connected data matrices. These challenges so far has been met by extending and combining the 

existing computational methods for parallel data types [57, 58] to learn both the cross-modality variations 

and cross-cell correlations [57]. Several difficulties faced by these extended methods have been discussed 

in the recent literature [48] [57-62]. We argue that even when these difficulties are resolved, there is still 

a fundamental challenge that calls for theoretical expansion. The challenge is that the analysis of multi-

omics single-cell data requires simultaneous inference of local interactions, such as the influence of a TF 

on a particular gene, and global interactions, such as the metabolic effects of that expressed gene on 

neighboring cells and other tissues. Keeping both the local and global connections in perspective requires 

improving the tradeoff made by existing methods that prefer one over the other. Effective concurrent 

inference of local and global connections requires novel theoretical insights beyond correlations and 

conditional probabilities. We suggest that such novel frameworks would come from innovations in 

inferring causality in uncontrolled and complex data. Such methods would be able to draw more certain 

connections between many changing parameters to weed out billions of coincidental proximal and distal 

correlations that emerge from multi-omics single-cell data. The novel theoretical frameworks for causality 

would significantly facilitate our endeavors to answer what, how, and why questions that link the intricate 

regulatory circuits to phenotypes. 
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Figure 1: Overview of the role of single cell technologies in understanding 

transcriptome machinery and cellular phenotypes 

Single-cell data acquisition technologies (A), Conceptual frameworks and methods for 

deciphering genotype to phenotype translation (B),  cellular phenotype emerges from the 

interaction of its regulatory network with developmental and environmental signals(C). 
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