Bungie: Improving Fault
Tolerance via Extensible
Application-Level Protocols

Samuel H. Christie V

Lancaster University and North Carolina State University

Amit K. Chopra
Lancaster University

Munindar P. Singh
North Carolina State University

Abstract—Decentralized applications involve interactions between autonomous agents. As such,
they must contend with communication faults, such as message loss. However, due to the
inadequacy of existing application programming models, current approaches leave fault
handling to the infrastructure, e.g., by employing reliable transport protocols.

In contrast, we demonstrate how causality and information-based design principles can reveal
an application’s exposure to communication faults, and thereby enable the deployment of
application-specific strategies for recovering from faults. We present Bungie, an approach based
on application-level protocols that precisely capture the causality inherent to the interactions
between agents. We show through patterns and examples how Bungie provides abstractions for

achieving fault tolerance.

Index Terms: Protocol; Autonomy; End-to-End
Argument; Application Meaning; Fault
Tolerance; Agents

1. Introduction

We are concerned with decentralized applica-
tions, whose computations are performed by au-
tonomous and heterogeneous agents. The agents
represent real-world autonomous parties such as
people or organizations, and could be manifested
in hardware (e.g., delivery drones) or software
(e.g., microservices). Further, the agents coordi-
nate their computations via asynchronous mes-
saging, without relying on any central store of

Computer

Published by the IEEE Computer Society

state. Multiparty engagements in e-business [1],
health [2], and finance [3] already emphasize
messaging and naturally lend themselves to de-
centralization. We demonstrate our ideas with a
pharmacy scenario, in which a patient presents
symptoms to a doctor who prescribes medication
that is filled by a pharmacist.

Communication provides a suitable basis for
modeling the interactions of autonomous agents.
Since the dawn of networking, methods for de-
veloping distributed applications have contended
with communication faults such as message loss.
Traditional distributed computing favors handling
faults in the communication infrastructure, invis-
ibly to the application.

An alternative approach is to base fault han-
dling on application meaning, which respects the

© 2020 IEEE

famous end-to-end principle [4]. In our pharmacy
scenario, what matters to the application’s relia-
bility is that the pharmacist fills a prescription, not
merely that a prescription is delivered to the phar-
macist by the infrastructure. Therefore, any fault
handling in the infrastructure is unnecessary and
only imposes costs—e.g., delivering prescriptions
in FIFO order (as TCP does) even though the
pharmacist would fill them based on availability
and urgency. Clark [5] reiterates the importance
of application meaning.

Further, to reduce coupling between agents
and improve reuse and portability, we avoid com-
mon assumptions of the infrastructure such as its
reliability or the channels being ordered.

We investigate this question: How can
we leverage application meaning to achieve
fault tolerance while ensuring flexibility and
reusability of decentralized applications? We
demonstrate an approach, dubbed Bungie, based
on application-level information protocols (see
sidebar) [6]. A protocol captures only the infor-
mation exchanged by an application’s agents and
does not capture or interfere with their internals.
Specifically, we make the following contributions.

e Defining agent expectations (the messages
an agent expects to receive) based on infor-
mation protocols and explaining how unmet
expectations capture faults.

e Describing agent policies for recovering
from faults and how policies fit into a
protocol-based agent architecture.

e Demonstrating protocol extension patterns
that can augment a given protocol with fault
tolerance capabilities such as forwarding and
acknowledgments.

Sidebar: Information Protocols

An information protocol specifies a multiagent
application abstractly in terms of the roles in
the application, messages exchanged by the roles,
and constraints on those messages. In a con-
crete application, each role is bound to an agent.
To illustrate the relevant ideas, we specify the
prescription scenario as an information protocol
using the Blindingly Simple Protocol language
(BSPL) in Listing 1.

In Listing 1, the roles are DOCTOR, PATIENT,
and PHARMACIST; the messages are Complain,
Prescribe, and Filled.

Each message specifies the information it con-
veys via parameters. For example, Complain’s
parameters are vID and symptoms, which represent
the unique visit ID and a description of the
patient’s symptoms, respectively.

Listing 1: Prescription protocol in BSPL

Prescription {
roles Doctor, Pharmacist, Patient
parameters out vID key, out Rx, out package

Patient —> Doctor: Complain[out vID key, out
symptoms]

Doctor —> Pharmacist: Prescribe[in vID key, in
symptoms, out Rx]

Pharmacist -—> Patient:
Rx, out package]

Filled[in vID key, in

Agents enact a protocol by sending and re-
ceiving message instances. Protocol enactments
are constrained by integrity and causality con-
straints.

Integrity constraints on enactments are spec-
ified by annotating one or more parameters of
each message as key parameters. A tuple of bind-
ings for the key parameters identifies a message
instance. Consistent correlation across message
instances requires that, for each tuple of bindings
for key parameters, there can be at most one
binding for a nonkey parameter. For example, in
Listing 1, all messages have the same key pa-
rameter, vID. Therefore, vID identifies instances of
each message. Further, if an instance of Complain
has viD and symptoms bound to 1 and cough,
respectively, then any instance of Prescribe with
vID bound to 1 must also have symptoms bound to
cough.

Causality constraints are information depen-
dencies and are indicated by adorning every pa-
rameter as "out”, Tin”, and "nil". The adorn-
ments "out™” and "nil" mean that the parameter’s
binding must not be known in the enactment,
though with "out™ the binding is generated; "in
means that the binding must be known. For ex-
ample, the adornments "out™ for vID and symptoms
in Complain mean that PATIENT can send an
instance of Complain by generating bindings for
both parameters. The adornments "in ' for viD and
symptoms in Prescribe mean that to send an in-
stance of Prescribe, DOCTOR must already know
their bindings (in our scenario, from receiving a
Complain); however, DOCTOR can generate any
binding it wants for Rx since that parameter is
adorned "out™.

Computer

2. Modeling Faults as Unmet
Expectations

An application must be able to detect a com-
munication fault to recover from it. An agent
can notice the absence of a message only if it
expected to receive that message.

Faults modeled as unmet expectations capture
application requirements. At run-time, expecta-
tions help detect possible message loss even with-
out direct knowledge of the transmission attempt.
For example, the patient expects to receive Filled
after sending Complain, even without knowing
that Filled’s transmission has been attempted.
During design, expectations also identify the re-
sponsibilities each agent has for recovering from
a loss. For example, the patient (who alone has
expectations for the prescription) must initiate any
recovery, but the others should cooperate.

Expectations are essential to many protocol
languages (including BPMN [7], Scribble [8], and
trace expressions [9]) because they specify pro-
tocols as sequences of events: each agent expects
the next event(s) in the sequence. However, the
obviousness of expectations in these languages
also limits their flexibility; because agents are
told exactly what to expect, there is no room
for unexpected events such as a fault or corre-
sponding recovery. Modeling pervasive, flexible
alternatives in such languages is nontrivial [10].

Conversely, information protocols are natu-
rally flexible because they constrain events by
their causal information dependencies and leave
the emission up to the agent. This flexibility
comes at the cost of nontrivial expectations, but
we can still compute them.

Given a protocol, we say that an agent ex-
pects a message instance if it has observed the
message’s key parameters and can receive the
message. The keys are necessary because expec-
tations are for specific message instances, which
can only be identified by their key parameters.
An agent can receive a message if they are the
specified recipient, though further deduction may
refine their expectations based on observations of
prerequisites or contrary messages.

Consider Listing 1. Before an enactment is
initiated, no agent expects anything—they have
not observed any key parameters, and DOCTOR
has no basis for predicting when PATIENT may
become ill. After PATIENT sends Complain with

May/June 2020

some vID, it can expect to observe a Filled mes-
sage with that vID because it has observed the keys
and there aren’t any potential conflicts involving
the other parameters. However, neither of the
other agents ever expects to receive anything,
because they are not aware of any enactments
until they have received the only message they
can.

Besides the directly expected message, an ex-
pectation covers all necessary intermediate mes-
sages; if any of those messages are lost, depen-
dencies will not be satisfied, messages will not
be enabled, and the expectation will be unmet.
In Prescription, Filled depends on Prescribe so
PATIENT’s expectation of Filled covers Prescribe;
if either message is lost, PATIENT will notice
because of its expectation for Filled.

Any messages that are not covered by an
expectation could be lost without any agent notic-
ing. Such uncovered messages are a ‘design
smell’ that should be tolerated only rarely. Either
messages should be added to cover them and en-
able recovery, or the uncovered messages should
be removed if they are truly unimportant.

2.1. Detecting Unmet Expectations at Runtime
Expectations are an application-level concept,
requiring the designer to configure which ex-
pectations are important, when they should be
triggered, and how much delay to tolerate.
Here is a sketch of an algorithm for each agent
to detect unmet expectations during an enactment:

e Wait until all of the key parameters for a
message reception have been observed

e Set a timer for the expectation based on
application requirements (e.g., 2 business
days to fill a prescription)

e Optionally update the timer when messages
on which the expectation depends are ob-
served

e When the timer expires, declare the expec-
tation unmet.

In an enactment of Prescription, PATIENT ex-
pects to eventually receive Filled after observing
viD, Filled’s only key. PATIENT binds viD when
sending Complain, causing PATIENT to also set
a timer for the expectation. If PATIENT does not
receive Filled after two business days, it considers
the expectation unmet.

2.2. Responding to Unmet Expectations at
Runtime

In Bungie, an agent responds to unmet expec-
tations via plugins called external policies. These
plugins determine when (and how often) informa-
tion is sent to ensure the interaction proceeds.

Bungie supports two types of external poli-
cies: Transmission Policies apply to any protocol,
whereas Protocol-Specific policies work in con-
cert with particular protocol patterns. Neither of
these types of policy affects an agent’s internals.

3. Information-Based Fault Tolerance

We adopt application-level information pro-
tocols (see sidebar) as the basis for modeling
an interaction, and detecting and recovering from
faults that may arise in an enactment.

3.1. Concepts

In information protocols the meaning of a
message is determined by its parameters and
correlated by its keys, giving each message an
idempotent effect on the information that an agent
observes. As such, messages can be received
and interpreted correctly at any time, even if
they are reordered or duplicated. For example, if
DOCTOR received two Complain messages with
the payload [1, cough] it would ignore the
second as a duplicate because they have the same
vID; most protocol languages would treat them
as separate enactments, because Complain initi-
ates enactments of Prescription. These features
of information protocols make them suited for
asynchronous, unreliable communication such as
UDP.

Unfortunately, not all communication faults
are as benign as reordering or duplication, and
two additional capabilities are needed for tolerat-
ing communication-related faults:

e Identifying potential message loss; and
e Recovering from message loss.

In general, message loss can be addressed
only through retransmission. Protocol-derived ex-
pectations can help identify loss; our protocol se-
mantics helps identify what information is miss-
ing and how to produce or communicate it either
directly or in cooperation with other agents.

3.2. Architecture

Figure 1 shows our proposed agent archi-
tecture. An agent that is able to participate in
an information protocol has four essential com-
ponents: incoming and outgoing interfaces with
the communication infrastructure (Receiver and
Emitter), internal construction (Agent Internals),
and a local representation of the state of its ongo-
ing interactions with other agents (Local State &
Checker). To this we add two components geared
toward storing and executing policies to promote
fault tolerance.

| Agent Internals |

| Protocol-Specific Policies |

r |

| Local State & Checker |

| Transmission Policies |

T l

| Receiver | | Emitter |

Figure 1: Bungie architecture highlighting the
two policy components introduced in Bungie to
improve fault tolerance.

Agent Internals are the internal databases and
decision-making logic of an agent, never to be
exposed to other agents lest the agents become
tightly coupled.

The Local State & Checker records the mes-
sages and parameters that an agent has observed.
The Checker is configured by the protocol specifi-
cation, and checks messages to ensure they satisfy
its integrity and causality constraints before they
are recorded to the local state. Checking on
reception is only necessary if the agents do not
trust each other.

The Receive and Emitter encapsulate network
transmission and processing.

The Transmission Policies operate between
the receiver and emitter and the local state, be-
cause they handle how a message is physically
packaged, conveyed, and reconstructed through
the infrastructure. Discussed in Section 4.

Protocol-Specific Policies rely on the avail-
ability of specialized message schemas in the
protocol, discussed in Section 5. Protocol-specific

Computer

policies actively send messages instead of manag-
ing the transmission of messages that the agent
already sent, though they only use information
already available in the local state.

4. Recovering from Message Loss with
Transmission Policies

We propose two examples of transmission
policies, Resend and Content.

4.1. Resend Policies

Assuming that disruptions causing unmet ex-
pectations are temporary, an agent can eventually
recover from a fault by resending the information;
this is especially the case for an application
designed using information protocols, in which
duplicate messages are idempotent.

Unlike infrastructure-level guarantees that an
emitted message will be received, expectations
also encompass application requirements that a
message be produced in the first place. PATIENT
expects Filled after sending Complain. It is not
enough for DOCTOR to successfully receive Com-
plain; DOCTOR and PHARMACIST must also
produce and transmit Prescription and Filled to
satisfy PATIENT’s expectation.

Thus, there are two cases in which an
application-level Resend policy resends mes-
sages: first, in response to an unmet expectation,
and second, in cooperation with another agent’s
unmet expectations. In either case, the agent
should resend all relevant messages; i.e., those
that may help satisfy the expectation.

Responding to Unmet Expectations Re-
sending a message in response to an unmet expec-
tation clearly promotes progress if that message
was the one that was lost. If Complain is lost
when PATIENT first sends it, DOCTOR will not
produce a prescription, and the prescription will
not be filled, violating PATIENT’s expectation for
Filled. If PATIENT’s Resend policy responds to
the unmet expectation by resending Complain, it
will eventually (assuming temporary disruption)
get through, recovering from the loss.

Note that DOCTOR does not mistake a dupli-
cate Complain for a new Complain, because each
Complain is uniquely identified by vID.

Information protocols uniquely support the
technique of sending duplicate messages to re-

May/June 2020

cover from loss, because they inherently provide
the idempotence and emission flexibility required.

Cooperating after Receiving a Duplicate
If Prescribe or Filled were lost instead, however,
resending Complain alone would not be enough;
DoCTOR and PHARMACIST must cooperate by
resending their messages to satisfy Patient’s un-
met expectation. DOCTOR can detect that some
expectation is likely unmet if it receives a dupli-
cate message. Then, DOCTOR cooperates by re-
sending all relevant messages—those that depend
on the parameters in the duplicate message, since
the precise expectation may be unclear.

Agents that capture such a Resend policy
would cooperate until all losses are recovered.
This policy additionally enables recovery from
some agent failures, because it resends all rel-
evant information, making up for any gaps in the
agents’ local states due to a crash, as encouraged
by the fail-fast [11] or crash-only [12] paradigms.

4.2. Content Policies

Content policies adjust the actual data being
transmitted to improve reliability or performance,
without changing the meaning of the protocol.

To facilitate content policies, we introduce the
bun, a representation of a message instance pre-
pared for transmission or storage. Buns are also
distinct from network packets, because multiple
buns may be sent in a single packet, or one bun
may be split across several packets.

Content policies add or remove parameters
from buns to guard against potential loss, or
reduce overhead.

Redundancy adds copies of parameters from
other messages to a bun to ensure that they are
received.

Listing 2 shows a prescription refill protocol.
In Refill, PATIENT requests a refill, and receives
a quote for the price. PATIENT may then send the
delivery address or payment in any order.

Listing 2: Prescription Refill

Refill {
roles Patient, Pharmacist
parameters out RxID key, out Rx, out price, out
address, out payment, out package

Patient —> Pharmacist: Request[out RxID, out Rx]
Pharmacist —> Patient: Quote[in RxID, in Rx,
out price]

Patient —> Pharmacist:
out address]
Patient —> Pharmacist: Pay[in RxID,

out payment]
Pharmacist —> Patient: Delivery[in RxID,
in payment, in address, out package]

RequestDelivery[in RxID,
in price,

in Rx,

Under Redundancy, PATIENT’s transmission
policies modify the bun used to transmit the Pay
message to include the address. Consequently,
even if the RequestDelivery message instance is
lost, PHARMACIST will still receive all of the
information.

Listing 3 shows the bun resulting from PA-
TIENT applying Redundancy to an instance of
Pay before sending it to PHARMACIST. We write
=> instead of —> to differentiate a bun from a
message schema.

Listing 3: An example of Redundancy

Patient => Pharmacist: Pay[RxID, price,
payment, address]

Redaction reduces the information encoded in
a bun. Redaction policies can be applied during
either message emission or reception. The sender
can redact on emission to remove parameters that
the recipient has already received, saving band-
width. The recipient may also redact on reception,
dropping parameters they won’t use and saving
space in the local state.

In Refill, the Quote message has Rx as "in.
Normally "in"' parameters are included in the
bun, but since the recipient (PATIENT) has already
observed this parameter, PHARMACIST can redact
it and send only the essential keys and price.
Listing 4 shows an example of Redaction, where
Rx has been removed from Quote

Listing 4: An example of Redaction
Pharmacist => Patient: Quote[RxID, price]

Alternatively, PHARMACIST can send Quote
as usual and let PATIENT drop the duplicated Rx
parameter on reception to reduce storage.

These performance enhancements illustrate
the flexibility afforded through an information
protocol. Without an information protocol, mes-
sages are opaque and must be sent verbatim since
the effects of any modification are unknowable.
An information protocol, however, makes the
information known to agents clearer, enabling the
construction of buns that may include or exclude
redundant information.

A sophisticated implementation could dynam-
ically adjust the redundancy or redaction in re-
sponse to network congestion and loss rates.

5. Recovering from Loss with Protocol
Extensions

Though simple and effective, transmission
policies operate under the restrictions of the exist-
ing protocol. If no agent expects a given message,
its loss cannot be detected. If an agent can detect
the loss but has no relevant messages to send, it
has no means of recovery. Even when recovery is
possible, it may require cooperation from multiple
agents.

Protocol extensions can help by adding mes-
sages to a protocol, enabling new expectations or
means of recovery. Because protocol extensions
add messages, the agents must be extended to
support them through what we term protocol
extension policies, a subset of protocol-specific
policies. Since these policies do not produce new
information, they can be plugged into an agent
without modifying its existing behavior.

The agent developer is responsible for ex-
tending the protocol and agent. Although we
can produce tools that perform the extension,
the design is necessarily application-specific and
must be done by a designer with knowledge of
application requirements.

5.1. Forwarding

A Forwarding extension inserts a message to
forward an existing message to a new recipi-
ent. Forwarding in this context is not limited to
passing messages on from the original recipient,
but encompasses any new transmission of the
original message, such as from the original sender
to a new recipient, or from a new recipient to
the original recipient. A forwarded message can
enable new expectations or provide new ways to
respond to an unmet expectation.

Listing 5 shows the RxForward protocol,
which extends Prescription to enable DOCTOR
to forward copies of Prescribe messages to PA-
TIENT, and also enables PATIENT to forward
them to PHARMACIST. We write a forwarding
schema with the name of the original schema
prefixed with a hyphen.

Listing 5: Forwarding extension

Computer

RxForward {
roles Doctor, Patient, Pharmacist
parameters out vID key, out symptoms, out Rx,
out package

Patient —> Doctor: Complain[out vID key, out
symptoms]

Doctor —> Pharmacist:
symptoms, out Rx]

Doctor —> Patient: —Prescribe

Patient —> Pharmacist: -Prescribe

Prescribe[in vID key, in

Pharmacist —> Patient:
Rx, out package]

Filled[in vID key, in

To take advantage of the extended protocol,
DOCTOR should forward Prescribe (that is, send
-Prescribe) to PATIENT to guard against the pos-
sibility of Prescribe or Filled being lost. After
receiving -Prescribe, PATIENT can respond to
an unmet expectation by sending -Prescribe to
PHARMACIST, providing enough information for
PHARMACIST to send (or resend) Filled regard-
less of which message was lost.

The Forwarding extension and policy reduce
complexity and latency compared to Resend poli-
cies alone. Resend policies often work indirectly,
requiring multiple messages to satisfy expecta-
tions, such as when PATIENT resends Complain
to DOCTOR even though its unmet expectation
is for Filled from PHARMACIST. However, the
two policies are not incompatible; PATIENT could
employ both at the same time for redundancy, or
forward -Prescribe if it is available and otherwise
resend Complain.

5.2. Acknowledgment

An Acknowledgment extension adds mes-
sages that acknowledge receipt of some message.

Requiring acknowledgments for every mes-
sage, as is often done at the infrastructure level,
can be quite wasteful if losses are rare. Further,
infrastructure acknowledgments only indicate that
the infrastructure has handled the message, not
that the agent has acknowledged it in a mean-
ingful sense. For example, a prescription refill
request may be reliably submitted through a
web portal because of infrastructure acknowledg-
ments, but only a confirmation email or page truly
indicates the pharmacist’s legal commitment to
fulfill the request. Bungie supports both sending
meaningful acknowledgments, and using them for
application-level fault tolerance.

Listing 6 shows the Prescribe protocol ex-

May/June 2020

tended with acknowledgment messages.

Listing 6: Acknowledgments Extension

RxAck {
roles Doctor, Pharmacist, Patient
parameters out vID key, out symptoms, out Rx,
out package

Patient —> Doctor: Complain[out vID key, out
symptoms]
Doctor —> Patient: @Complain

Doctor —> Pharmacist:
symptoms, out Rx]
Pharmacist —> Doctor: @Prescribe

Prescribe[in vID key, in

Pharmacist —> Patient:
Rx, out package]
Patient —> Pharmacist: @Filled

Filled[in vID key, in

Acknowledgments need contain only the key
parameters, which identify the instance being
acknowledged.

To take advantage of the Acknowledgment
extension, recipients should employ an Acknowl-
edgment policy that acknowledges messages
when they are received and recorded in the local
state. The senders can respectively expect ac-
knowledgments in response to the messages they
send, and apply a Resend policy to repeatedly
resend the message until that expectation is met.

Employing the Acknowledgment strategy at
the protocol level does not interfere with the
ability to send or receive other messages. Where
TCP would block a stream until the next packet
in the sequence has been received, Bungie agents
can resend messages that have not been ac-
knowledged without blocking other messages.
This problem, called head-of-line blocking, was
one of the primary motivations for the QUIC
protocol [13] used in HTTP/3.

5.3. Probing

A Probing extension adds messages that en-
able an agent to query another for information,
i.e., for messages that match a particular key.

Listing 7: Probing extension

RxProbe {
roles Doctor, Patient, Pharmacist
parameters out vID key, out symptoms, out Rx,
out package

Patient —> Doctor: Complain[out vID key, out
symptoms]

Doctor —> Pharmacist:
symptoms, out Rx]

Pharmacist —> Patient:
Rx, out package]

Prescribe[in vID key, in

Filled[in vID key, in

Patient —> Pharmacist: probe[in vID key]

Doctor Patient Pharmacist

I
W

Ey

(a) Original enactment.

Doctor Patient Pharmacist

Q)
E
=

®.
>

Prescr ibe

=~
T
7]
o
3
o

iled
B

%

%\e‘“:

(b) Recovering from a fault.

Figure 2: A protocol extension in use. With Forwarding extensions, DOCTOR forwards Prescribe to
PATIENT and PATIENT forwards Prescribe to PHARMACIST. PHARMACIST resends Filled, which gets
through the second time. For accessibility, we place the extended messages in parentheses and lost
messages on dashed lines to highlight them without relying on color.

Pharmacist —> Doctor: probe[in vID key]
Doctor —> Patient: probe[in vID key]

In the RxProbe protocol in Listing 7, the
Probing extension starts with PATIENT, which
knows vID after sending Complain. According
to the Probing extension pattern, the protocol is
extended so that each agent has a new probe
message based on the keys that it can observe.

With an appropriate Probing policy, PATIENT
can send a probe to PHARMACIST when its
expectation for Filled is unmet. PHARMACIST
then either responds to the probe by resending
the relevant messages that it has observed, or by
sending its own probe on to DOCTOR.

6. Discussion

We have presented a variety of policies to
illustrate how information protocols support fault
tolerance at the application level, and specifically
in the endpoints of the application.

Ideally, the development overhead can be re-
duced with a library of common configurable
policies. Any situations that cannot be accommo-
dated by common policies further demonstrate the
need for an architecture like Bungie that supports

application-specific fault tolerance policies.

Bungie’s ability to improve fault tolerance for
applications relies on two assumptions. First, that
the disruptions causing message loss are tempo-
rary; and second, that the agents cooperate with
the chosen recovery policies. These assumptions
are reasonable; infrastructure-level approaches for
reliability make the same assumptions. Indeed,
if the network or endpoints fail permanently,
recovery is impossible.

Two ways that information protocols can
support tolerating permanent disruptions of se-
lected agents are history replay and role replace-
ment [14]. Because all of an agent’s interactions
are recorded in its local state, an agent can be
restored from a crash by replicating its local and
internal state and resuming work with the enabled
messages that have not yet been sent. If an agent
is completely unrecoverable or uncooperative, a
replacement can be chosen using dynamic role
binding.

Research on multiagent applications addresses
fault tolerance [15]. However, existing works ei-
ther focus on replicating agents [16] or adopt a
distribution standpoint on how to reconnect nodes
[17].

Computer

(a) Forwarding incoming.

>
vs]
>
vs]

%

G- —m——————fF ===
/
//
!
N\

/
3
S

(c) Ack. (d) Probing.

(b) Forwarding outgoing.

>
vs]
@)

!
!
=

<
&
o

B e e

)
S o)
S (o}
o

(e) Probe propagation.

Figure 3: Protocol extensions summarized.

7. Conclusion

Relying on infrastructure alone is insufficient
for fault tolerance in decentralized applications;
application-level fault detection and resolution
are necessary. Practitioners increasingly recog-
nize the need for application-level mechanisms
[18]; however, lacking adequate support in pro-
gramming models, practitioners must handcraft

May/June 2020

such mechanisms separately for each application.
No wonder then that relying on infrastructure for
fault-tolerance is the dominant modus operandi in
application development. Indeed, service meshes
for microservices go further in the wrong direc-
tion since they seek to make fault handling and
recovery invisible to the application.

Bungie makes application-level fault tolerance
possible. Information protocols, which underpin

Bungie, provide for application-level awareness

of

faults and recovery from them. Bungie helps

identify the main weaknesses of an application
and provides simple and modular strategies to
mitigate them, requiring no more infrastructure
support than is available in UDP.

Acknowledgments

Thanks to NSF (grant IIS-1908374) and EP-

SRC (grant EP/N027965/1) for support.

REFERENCES

1. RosettaNet. Home page, 1998.
www.rosettanet.org.

2. HL7. HL7 FHIR release 4. http://hl7.org/

10

10

thir/, Oct. 2019.

. FpML. FpML 5.11 recommendation. https://
www.fpml.org/spec/fpml-5-11-9-rec-1/, Dec.
2019.

. J. H. Saltzer, D. P. Reed, and D. D.
Clark. End-to-end arguments in system de-
sign. ACM Transactions on Computer Sys-
tems, 2(4):277-288, Nov. 1984. doi: 10.1145/
357401.357402.

. D. Clark. The network and the OS. In
SOSP History Day, pages 11:1-11:19, Mon-
terey, California, Oct. 2015. ACM. doi:
10.1145/2830903.2830912.

. M. P. Singh. Information-driven interaction-
oriented programming: BSPL, the Blindingly
Simple Protocol Language. In Proceedings
of the 10th International Conference on Au-
tonomous Agents and MultiAgent Systems
(AAMAS), pages 491-498, Taipei, May 2011.
IFAAMAS. doi: 10.5555/2031678.2031687.

. OMG. Business Process Model and Notation
(BPMN), version 2.0.2, Jan. 2014. Ob-
ject Management Group. https://www.omg.
org/spec/BPMNY/.

. N. Yoshida, R. Hu, R. Neykova, and N. Ng.
The Scribble protocol language. In Trust-
worthy Global Computing - 8th International
Symposium, TGC, pages 22-41, 2013. doi:
10.1007/978-3-319-05119-2\ _3.

. D. Ancona, A. Ferrando, and V. Mascardi.
Parametric runtime verification of multiagent
systems. In Proceedings of the 16th Confer-
ence on Autonomous Agents and MultiAgent
Systems, AAMAS, pages 1457-1459, 2017.

. A. K. Chopra, S. H. Christie V, and M. P.

11.

12.

13.

14.

15.

16.

17.

18.

Samuel H. Christie V

Singh. An evaluation of communication pro-
tocol languages for engineering multiagent
systems. Journal of Artificial Intelligence
Research, 69:1351-1393, 2020.

J. Shore. Fail fast. IEEE Software, 21(5):21—
25, 2004. doi: 10.1109/MS.2004.1331296.
G. Candea and A. Fox. Crash-only
software. In Proceedings of HotOS’03:
9th Workshop on Hot Topics in Operating
Systems, pages 67-72. USENIX, 2003. URL
https://www.usenix.org/conference/hotos-ix/
crash-only-software.

J. Iyengar and M. Thomson. QUIC: A
UDP-based multiplexed and secure trans-
port. Technical report, Internet Engineering
Task Force (IETF), Fremont, California, Oct.
2020. Proposed standard; https://datatracker.
ietf.org/doc/draft-ietf-quic-transport/.

S. H. Christie V and A. K. Chopra. Fault
tolerance in multiagent systems. In Interna-
tional Workshop on Engineering Multi-Agent
Systems, pages 78-86. Springer, 2020.

K. Potiron, P. Taillibert, and A. E. Fallah-
Seghrouchni. A step towards fault tol-
erance for multi-agent systems. In Lan-
guages, Methodologies and Development
Tools for Multi-Agent Systems, First Inter-
national Workshop, LADS, volume 5118 of
Lecture Notes in Computer Science, pages
156-172. Springer, 2007. doi: 10.1007/
978-3-540-85058-8\ _10.

Z. Guessoum, J. Briot, and N. Faci. Towards
fault-tolerant massively multiagent systems.
In Massively Multi-Agent Systems I, First In-
ternational Workshop, MMAS, volume 3446
of Lecture Notes in Computer Science,
pages 55-69. Springer, 2004. doi: 10.1007/
11512073\ _5.

A. Ricci, A. Ciortea, S. Mayer, O. Boissier,
R. H. Bordini, and J. F. Hiibner. Engi-
neering scalable distributed environments and
organizations for MAS. In Proceedings of
the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems,
AAMAS, pages 790-798. IFAAMAS, 2019.
M. de Graauw. Nobody needs reliable
messaging. https://www.infoq.com/articles/
no-reliable-messaging/, June 2010.

is a Research Associate at

Computer

http://hl7.org/fhir/
http://hl7.org/fhir/
https://www.fpml.org/spec/fpml-5-11-9-rec-1/
https://www.fpml.org/spec/fpml-5-11-9-rec-1/
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/BPMN/
https://www.usenix.org/conference/hotos-ix/crash-only-software
https://www.usenix.org/conference/hotos-ix/crash-only-software
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://www.infoq.com/articles/no-reliable-messaging/
https://www.infoq.com/articles/no-reliable-messaging/

Lancaster University and a PhD student at NC State
University. Contact him at schrist@ncsu.edu.

Amit K. Chopra is a Senior Lecturer
at Lancaster University. Contact him at
amit.chopra@Iancaster.ac.uk.

Munindar P. Singh is a Professor in Computer
Science at NC State University. Singh is a Fellow
of IEEE, AAAI, and AAAS, and a former Editor-in-
Chief of IEEE Internet Computing and ACM Trans-
actions on Internet Technology. Contact him at
singh@ncsu.edu.

May/June 2020

11

	Introduction
	Modeling Faults as Unmet Expectations
	Detecting Unmet Expectations at Runtime
	Responding to Unmet Expectations at Runtime

	Information-Based Fault Tolerance
	Concepts
	Architecture

	Recovering from Message Loss with Transmission Policies
	Resend Policies
	Responding to Unmet Expectations
	Cooperating after Receiving a Duplicate

	Content Policies
	Redundancy
	Redaction

	Recovering from Loss with Protocol Extensions
	Forwarding
	Acknowledgment
	Probing

	Discussion
	Conclusion
	Biographies
	Samuel H. Christie V
	Amit K. Chopra
	Munindar P. Singh

