PHYSICAL REVIEW B 103, L060503 (2021)

Cubic spin-orbit coupling and anomalous Josephson effect in planar junctions
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Spin-orbit coupling in two-dimensional systems is usually characterized by Rashba and Dresselhaus spin-orbit
coupling (SOC) linear in the wave vector. However, there is a growing class of materials which instead support
dominant SOC cubic in the wave vector (¢cSOC), while their superconducting properties remain unexplored. By
focusing on Josephson junctions in Zeeman field with superconductors separated by a normal ¢cSOC region,
we reveal a strongly anharmonic current-phase relation and complex spin structure. An experimental cSOC
tunability enables both tunable anomalous phase shift and supercurrent, which flows even at the zero-phase dif-
ference in the junction. A fingerprint of cSOC in Josephson junctions is the f-wave spin-triplet superconducting
correlations, important for superconducting spintronics and supporting Majorana bound states.
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Spin-orbit coupling (SOC) and its symmetry breaking pro-
vide versatile opportunities for materials design, bringing
relativistic phenomena to the fore of the condensed matter
physics [1-6]. While for decades SOC was primarily studied
to elucidate and manipulate normal-state properties, including
applications in spintronics and quantum computing [7-15],
there is a growing interest to examine its role on supercon-
ductivity [16-21].

Through the coexistence of SOC and Zeeman field, a
conventional spin-singlet superconductivity can acquire spin-
dependent long-range proximity effects [20,22-24] as well
as support topological superconductivity and host Majorana
bound states, a building block for fault-tolerant quantum
computing [25-27]. In both cases, Josephson junctions (JJs)
provide a desirable platform to acquire spin-triplet supercon-
ductivity through proximity effects [28-38]. In contrast, even
seemingly well-established intrinsic spin-triplet superconduc-
tivity in Sr,RuQ4 [39] is now increasingly debated [40,41].

Extensive normal-state studies of SOC in zinc-blende het-
erostructures usually distinguish the resulting spin-orbit fields
due to broken bulk inversion symmetry, Dresselhaus SOC,
and surface inversion asymmetry, Rashba SOC, and focus
on their dominant linear dependence in the wave vector, k
[10,15]. In this linear regime, with matching strengths of these
SOCs it is possible to strongly suppress the spin relaxation
[42] and realize a persistent spin helix (PSH) [43,44] with a
controllable spin precession over long distances [45-47].

While typically k-cubic SOC contributions (cSOC) in
heterostructures are neglected or considered just detrimen-
tal perturbations (for example, limiting the stability of PSH
[45-47]), a more complex picture is emerging. Materials ad-
vances suggest that such ¢cSOC, shown in Fig. 1(a), not only
has to be included, but may also dominate the normal-state
properties [48—57]. However, the role of ¢cSOC in supercon-
ducting heterostructures is unexplored. It is unclear if cSOC
is detrimental or desirable to key phenomena such as Joseph-
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son effect, spin-triplet superconductivity, or Majorana bound
states.

To address this situation and motivate further cSOC studies
of superconducting properties, we consider JJs depicted in
Fig. 1(b), where s-wave superconductors (S) are separated
by a normal region with cSOC which is consistent with the
two-dimensional (2D) electron or hole gas, confined along the
z axis [48,53]. While the commonly expected current-phase
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FIG. 1. (a) Spin-orbit fields in k space for Rashba cubic spin-
orbit coupling (cSOC) (o, = —1), Dresselhaus ¢SOC (8. = —1,
middle), and both (¢, = B, = —1, bottom). (b) Schematic of the
Josephson junction. The middle region hosts ¢cSOC and an effec-
tive Zeeman field, h, between the two s-wave superconductors (S).
(c) Spin textures in the ¢SOC region resulting from the normal-
incident electrons with in-plane spin orientations [see Fig. 1(b)]
when S is at normal state; the upper (lower) panel o, =1, 8. =0

(. = B. = 1). The in-plane spin orientations of the incident elec-
trons ¢, are from O (bottom row) to 7 /2 (top row).
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relation (CPR) is I(p) = I sin(¢ + ¢o) [19,58], where I, is
the JJ critical current and ¢, the anomalous phase (¢y # 0, ),
we reveal that CPR can be strongly anharmonic and host Ma-
jorana bound states. Instead of the p-wave superconducting
correlations for linear SOC, their f-wave symmetry is the
fingerprint of cSOC.

To study ¢SOC, we consider an effective Hamiltonian

1 n n
H=3 / dp V' (p)H (p)¥ (p), (1)

where H(p) = p2/2m* + o0 - h + H.soc(p), with momentum,
P = (px, py, 0) [see Fig. 1(b)]; effective mass, m*; Pauli ma-
trices, o; effective Zeeman field, h, realized from an externally
applied magnetic field or through magnetic proximity effect
[6,59]; and the cSOC term [48,49,53,54]

e 4 5
Hesoc(p) = —(p_oy — pio-)
2h
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expressed using c¢SOC strengths o, and B, for Rashba
and Dresselhaus terms, where p+ = p, & ip, and 04 = 0, &+
ioy. The field operator in spin space is given by v (p) =
[v+(p), ¥, (P)]", with 1, | spin projections.

To describe S regions in Fig. 1(b), we use an s-wave
BCS model with a two-electron amplitude in spin-Nambu
space A (‘M wI) + H.c., given by the effective Hamiltonian in
particle-hole space

_ (Hp) —pl A
H(p) = < At “H(—p) + Mi>’ 3

where y is the chemical potential and A is a 2 x 2 gap matrix
in spin space. The field operators in the rotated particle-hole
and spin basis are ¥ = (Y4, ¥, wI, —wI)T.

To calculate the charge current, we use its quantum defi-
nition where no charge sink or source is present. Therefore,
the time variation of charge density vanishes, 9,0, =0 =
My Yo [V OV Horore (D)oo (0) =S (VHE
(" )yre(r)]. Hyrorrr is the component form of H, with
spin (particle-hole) label o (r), and r = (x,y,0). From
the current conservation, the charge current density is
J = [dr{y " @H®PE) - F 0 H @) ), where H(r)
is obtained by substituting p = —ifi(d,, dy, 0). The arrow
directions indicate the specific wave functions that the
‘H operates on. By an exact diagonalization of H, we
obtain spinor wave functions " (p) within the left
(x < 0) and right (x > d) S region and the middle normal
region (0 < x < d) in Fig. 1(b). The wave functions and
generalized velocity operators vf;”f are continuous at the
junctions, i.e., /=", =" izgs VL =00 o,
and vy =v " | 4. The spinor wave functions are given in
the Supplemental Material [60].

The complexity of H precludes simple solutions and we
evaluate the wave functions and supercurrent numerically. To
reduce the edge effects, we consider Fig. 1(b) geometry with
W/d > 1 [61]. This approach has been successfully used to
study supercurrent in junctions with PSH, Weyl semimetals,
phosphorene, and twisted bilayer graphene [62—-68]. The cal-
culated supercurrent is normalized by Iy = 2|eA|/h, where e
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FIG. 2. (a) Josephson energy and (b) associated supercurrent
evolution with the superconducting phase difference ¢. Zeeman field
values, h,, are chosen near a 0-7 transition. The other parameters are
a.==x0.1and B. =0, u = A, h, =0.

is the electron charge, and A the energy gap in S. The energies
are normalized by A, lengths by & = /i/+/2m*A, and ¢SOC
strengths by A§S3. The junction length is set at d = 0.3&s.

To investigate the role of cSOC on the ground-state Joseph-
son energy, Egs, and the CPR obtained from the supercurrent
I(¢p) x 0Egs/d¢, we first consider a simple situation with
only Rashba cSOC (¢, # 0, B. = 0) and effective Zeeman
field hy (hy, = h; = 0). The evolution of Egs with |h,|, where
its minima are denoted by dots in Fig. 2(a), shows a con-
tinuous transition from ¢ = 0 to 7 state (blue to green dot).
For ¢ # 0, Egs minima come in pairs at ¢y [69]. The
corresponding CPR reveals in Fig. 2(b) a competition be-
tween the standard, sing, and the next harmonic, sin2g,
resulting in /(—¢) = —I(¢). There is no spontaneous current
expected in a Josephson junction with SOC, I(¢ = 0) =0,
but only I, reversal with &,. Such a scenario of a continuous
and symmetric 0- transition is well studied without SOC
in S/ferromagnet/S JJs due to the changes in the effective
magnetization or a thickness of the magnetic region [70-77].

While our previous results suggest no direct cSOC influ-
ence on CPR, a simple in-plane rotation of h, 4, =0, h, # 0,
drastically changes this behavior. This is shown in Fig. 3(b)
where, at fixed |h,| = 2.4A, we see a peculiar influence of
a finite Rashba ¢cSOC which is responsible for the anomalous
Josephson effect with spontaneous current, /(¢ = 0) # 0, and
strong anharmonic CPR that cannot be described by I(¢) =
I, sin(¢ + ¢p). Unlike in Fig. 3(a), a relative sign between o,
and h alters the CPR and Josephson energy, where the ground
states ¢o appear at single points [green, red dots in Fig. 3(a)],
consistent with ¢y o< ach,.

Ifinstead of u© = A, we consider aregime > A, the evo-
lution of Josephson energy from Fig. 2(a) changes. While 0-7
transitions with |h,| remain, there are no longer global minima
with ¢ # 0, m and the CPR reveals a stronger anharmonicity.
In contrast, for ;> A, the anomalous Josephson effect from
Fig. 3 remains robust and similar ¢, states are accessible [60].
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FIG. 3. (a) Josephson energy and (b) related supercurrent evolu-
tion with the superconducting phase difference ¢ Zeeman field, A,,
at a fixed magnitude and varying Rashba cSOC strength «, are con-
sidered. The other parameters are . = 0, u = A, h, = 0. (c) Three
fits to the green curve in (b) using the generalized CPR from Eq. (4)
with N = 1, 2, 3 harmonics.

Simple harmonics used to describe anharmonic CPR in
high-temperature superconductors [78,79] here are not very
suitable. By generalizing a short-junction limit for CPR
[77,78,80], we identify a much more compact form where
only a small number of terms gives an accurate description.
To recognize the importance of SOC and two nondegenerate
spin channels, o, we write

1)~ ZN: Z I? sin (mp + q)gn)

o p— \/1 — 77 sin” (np/2 + ‘/’gn/z)’

where 7.7 is the normal region transparency for spin channel
o . With only few lowest terms in this expansion (N = 1, 2, 3),
shown in Fig. 3(c) with the corresponding errors, it is possible
to very accurately describe strong CPR anharmonicities for
anomalous Josephson effect. To achieve the relative error from
N = 3 expansion in Eq. (4), in a standard {sin, cos} expansion,
with the corresponding phase shifts as extra fitting parameters,
requires N > 20 [60].

Key insights into the CPR and an explicit functional de-
pendence for the ¢, state are obtained by a systematic 1(¢)
symmetry analysis with respect to the cSOC (., B.) and Zee-
man field or, equivalently, magnetization (h, , ) parameters

“

[60]. We find that &, plays no role in inducing the ¢, state; it
only produces /(@) reversals, explaining our focus on z, = 0
(Figs. 2 and 3).

These properties are expressed as an effective phase shift
to a sinusoidal CPR, sin(¢ + ¢), extracted from Eq. (4). We
again distinguish small- and large-u regime (u = A vs u =
10A). In the first case, for the JJ geometry from Fig. 1, we
obtain

g0 o Ty(a + T1B2)heBe + Ti(a2 — TaB)hyete,  (5)

where the parameters Iy, ., are introduced through their
relations, I', > T'y, I'y < 1, Iy > 1, T'y(hy =0) =T (h =
0)=1,Ty(h, #0) < 1, I'y(h, # 0) < 1. These relations are
modified as u and h change. For u > A, the functional de-
pendence for the ¢ state is simplified:

g0 o (a2 = T B hBe + (a? — TaB)yae,  (6)

where I’ > I'y and I'; , > 1. Therefore, ¢ state occurs when
h shifts p L to I(¢) and thus alters the SOC [60].

Taken together, these results reveal that cSOC in JJ sup-
ports a large tunability of the Josephson energy, anharmonic
CPR, and the anomalous phase, key to many applications,
from post-CMOS logic, superconducting spintronics, quiet
qubits, and topological quantum computing. Realizing 7
states in JJs is desirable for improving rapid single flux
quantum (RSFQ) logic, with operation >100 GHz [81,82]
and enhancing coherence by decoupling superconducting
qubits from the environment [83]. However, common ap-
proaches for m states using JJs combining s- and d-wave
superconductors or JJs with ferromagnetic regions [78,79]
pose various limitations. Instead, extensively studied gate-
tunable SOC [10,38,45,53,54,84] could allow not only a fast
transformation between 0 and m states in JJs with ¢cSOC, but
also an arbitrary ¢ state to tailor desirable CPR.

An insight to the phase evolution and circuit operation of
JJs with cSOC is provided by generalizing the classical model
of resistively and capacitively shunted junction (RSCJ) [85].
The total current, i, is the sum of the displacement current
across the capacitance, C, normal current characterized by the
resistance, R, and I(¢p),

¢o d’¢ | ¢o dg :

7 ar TR VIO =0 @
where ¢ is the magnetic flux quantum and /(¢) yields a
generally anharmonic CPR, as shown from Eq. (4), which
can support 0, 7, and turnable ¢, states. As we have seen
from Figs. 2 and 3, this CPR tunability is accompanied by
the changes in Josephson energy, which in turn is responsible
for the changes in effective values of C, R, and the nonlinear
Josephson inductance. This JJ tunability complements using
voltage or flux control [86,87].

In JJs with ferromagnetic regions, /. is the tunable /. by
changing the underlying magnetic state [32,88,89]. In JJs with
¢SOC, tuning I, could be realized through gate control by
changing the relative strengths of o, and S, even at zero Zee-
man field. This is shown in Fig. 4 by calculating Max[/(¢)]
with ¢ € [0, 27]. In the low-u regime, the maximum /. oc-
curs at the slightly curved region near the symmetry lines
|ae| = |B.|. For the high-u regime, the region of maximum
I. evolves into inclined symmetry lines, |o.| = A|B.], A < 1.
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FIG. 4. Normalized critical supercurrent as a function of ¢cSOC
strength o, and B, for (a) u = A and (b) u = 10A. The Zeeman
field is set to zero.

Similar to linear SOC, in the diffusive regime for cSOC, one
expects that the minimum in /. occurs near these symmetry
lines because of the presence of long-range spin-triplet super-
current [63,90,91].

We expect that a hallmark of JJs with cSOC goes beyond
CPR and will also influence the spin structure and symmetry
properties of superconducting proximity effects. Linear SOC
is responsible for mixed singlet-triplet superconducting pair-
ing [16], while with Zeeman or exchange field it is possible
to favor spin-triplet proximity effects which can become long
range [20,33] or host Majorna bound states [25,26]. To ex-
plore the proximity effects in the cSOC region, we calculate
superconducting pair correlations using the Matsubara repre-
sentation for the anomalous Green’s function, F(t;r, r’) [92],

Foo (i1, 1) = +(Te ¥y (2, )Y, (0, X)) (—io) ), (8)

where s, §', 51 are spin indices, the summation is implied over
s1, T is the imaginary time, ¥, is the field operator, and T;
denotes time ordering of operators [60].

For a translationally invariant SOC region, spin-triplet cor-
relations in Fig. 5, obtained from Eq. (8), provide a striking
difference between linear and cubic SOC. Unlike the p-wave
symmetry for linear Rashba SOC [Figs. 5(a) and 5(b)], we
see that the f-wave symmetry is the fingerprint for cSOC, re-
tained with only «, # 0 [Figs. 5(c) and 5(d)] or both «,, B, #
0 [Figs. 5(e) and 5(f)]. Remarkably, unlike the commonly
sought p-wave symmetry, we confirm that with a suitable
orientation of the Zeeman field cSOC also supports Majorana
flatbands [60].

While we are not aware of any Josephson effect ex-
periments in 2D systems dominated by ¢SOC, our studied
parameters are within the range of already reported measure-
ments. Choosing m* of an electron mass, and A = 0.2 meV,
which is similar for both Al and proximity-induced super-
conductivity [38,93], the characteristic length becomes & ~
14 nm. The resulting cSOC strength from Fig. 3(b) with
a A& ~ 50 eV A% is compatible with the values in 2D
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FIG. 5. Real and imaginary parts of equal-spin superconducting
correlations in k space; & = i/~/2m* A is the characteristic length.
(a), (b) Linear Rashba, = 1. (¢), (d) cSOC, . = 1, B. = 0. (e), (f)
¢SOC, o, = B, = 1. The other parameters are the same for all panels.

electron and hole gases [55,56]. The Zeeman splitting 2.4 x
0.2 meV is available by applying magnetic field in large
g-factor materials [10], or from magnetic proximity effects,
measured in 2D systems to reach up to ~20 meV [6]. Even
though we have mostly focused on the tunable Rashba SOC,
the Dresselhaus SOC can also be gate tunable [45,94], offer-
ing a further control of the anomalous Josephson effect.

Our results reveal that the cSOC in JJs provides versatile
opportunities to design a superconducting response and test its
unexplored manifestations. The anomalous Josephson effect
could serve as a sensitive probe to quantify cSOC. While
identifying the relevant form of SOC is a challenge even in
the normal state [10,12], in the superconducting state already
a modest SOC can give a strong anisotropy in the transport
properties [22,24,95,96] and enable extracting the resulting
SOC. Identifying SOC, either intrinsic, or generated through
magnetic textures, remains important for understanding which
systems could host Majorana bound states [37,97-110]. While
in semiconductor heterostructures the normal-state cubic SOC
was mostly studied in a zinc-blende phase, interesting oppor-
tunities also exist in the wurzite phase [111-113].

With the advances in gate-tunable structures and novel ma-
terials systems [38,53-56,93,114], the functional dependence
of the anomalous phase ¢y and the f-wave superconducting
correlations could also enable decoupling of the linear and
cubic SOC contributions [60]. For the feasibility of such de-
coupling, it would be useful to consider methods employed
in the studies of the nonlinear Meissner effect [115-124].
Even small corrections to the supercurrent from the magnetic
anisotropy of the nonlinear Meissner response offer a sensitive
probe to distinguish different pairing-state symmetries.
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1810266, and 1.Z. by DARPA Grant No. DP18AP900007 and
the UB Center for Computational Research.
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