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1Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
2Department of Physics, University of Rijeka, 51000 Rijeka, Croatia

(Received 8 November 2020; accepted 23 December 2020; published 22 January 2021)

Semiconductor spin lasers are distinguished from their conventional counterparts by the presence of spin-

polarized carriers. The transfer of angular momentum of the spin-polarized carriers to photons provides important

opportunities for the operation of lasers. With the injection of spin-polarized carriers, which lead to the circularly

polarized light, the polarization of the emitted light can be changed an order of magnitude faster than its

intensity. This ultrafast operation of spin lasers relies on a large birefringence, usually viewed as detrimental

in spin and conventional lasers. We introduce a transparent description of spin lasers using intensity equations

which elucidate the influence of birefringence on the intensity and polarization modulation of lasers. Unlike

commonly describing the role of birefringence on laser dynamics by employing complex quantities, our approach

is simpler, because it is relying on real quantities and allowing analytical solutions. While intensity modulation

is independent of birefringence, for polarization modulation an increase in birefringence directly increases the

resonant frequency. Our results for dynamical operation of lasers provide a guide for their spin-dependent

response and spintronic applications beyond magnetoresistance.

DOI: 10.1103/PhysRevB.103.045306

I. INTRODUCTION

Introducing spin-polarized carriers in semiconductors pro-

vides both an opportunity to exceed the performance of best

conventional lasers and realize room-temperature spintronic

applications, beyond the usual magnetoresistive effects. While

typical spintronic devices rely on unipolar transport: only one

type of carriers (electrons) plays an active role, lasers are

bipolar devices, and a simultaneous description of electrons

and holes is crucial [1–3].

Spin lasers [4–14] embody common elements for spin-

tronic devices: spin injection, relaxation, transport, and

detection [15–19]. This is depicted in Fig. 1(a) for vertical

cavity surface emitting lasers (VCSELs) where spin-polarized

carriers are injected from magnetic contacts or, alternatively,

by using circularly polarized light [20]. The spin transport is

dominated by electrons (bright colors) since the spin imbal-

ance of holes (pale colors) is quickly lost, as they experience

stronger spin-orbit coupling and have a much shorter spin

relaxation time, τsp ≪ τsn ≡ τs [17,21,22]. Through the trans-

fer of angular momentum, the spin injection is detected as a

circularly polarized light, i.e., the photon densities of positive

and negative helicity, S+ and S−, are inequivalent.

Even though the individual elements of spin lasers have

been extensively studied [20], the interplay between differ-

ent timescales for carrier, spin, and photon dynamics is far

from understood. For example, unlike in common spintronic

devices, where to preserve spin information a long spin relax-

ation time of electrons is desirable [18], for optimal dynamical
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operation instead a very short electron spin relaxation time is

sought [23].

While many trends in spin lasers can be understood by

simply introducing spin-resolved quantities in simple rate

equations for conventional lasers [1–3], this approach leaves

large uncertainties for the dynamical operation of lasers

which can be dominated by optical anisotropies, such as

the anisotropy of refractive index–birefringence. To address

this situation, and motivated by the recent experimental ad-

vances showing that a large birefringence with spin injection

in III-V quantum well-based lasers supports a much faster
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FIG. 1. (a) Schematic of a spin laser formed by a gain region,

p- and n-type semiconductor layers, and distributed Bragg reflectors

(DBR), with injection of different spins (J− < J+) and circularly

polarized emission with photon densities, S+ < S−. (b) Four-level

model and carrier-spin-photon dynamics. Carriers in the conduction

and valence bands (CB, VB, bright and pale colors, respectively)

have a recombination rate, γr ; spin-relaxation time for electrons is

τs and negligible for holes. The optical selection rules determine the

coupling of spin-down (spin-up) carriers to E+ (E−) light field, while

different helicities of light are coupled by a linear birefringence, γp.
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room-temperature operation than in the best conventional

lasers [23], we introduce here transparent intensity equations

to elucidate dynamical operation of spin lasers relying on

the optical transitions between conduction band (CB) and

the heavy hole states in the valence band (VB), illustrated in

Fig. 1(b).

An advantage of the intensity equations is their simplicity:

instead of the helicity-resolved electric fields with complex

amplitudes, E±, for the considered optical transitions in

Fig. 1(b), it is sufficient to use real-valued photon densities,

S± = |E±|2. Our approach offers analytical solutions for sev-

eral situations and provides a direct link to the extensively

studied rate equations for both conventional and spin lasers

[1–3,6,8,11,24–27]

These intensity equations are closely related to the spin-flip

model [28], introduced to explain the polarization dynamics

in conventional VCSELs and later used for describing spin

lasers [29–40]. We show how to correct some of the assump-

tions in that model, which are particularly important for spin

lasers and their potential to be used for ultrafast operation as

a building block of high-performance optical interconnects

[23,39,41], important for a growing need of transferring in-

formation [42–44]. Following this introduction, in Sec. II

we describe our intensity equations. In Sec. III we introduce

dynamic operation of lasers and how it is experimentally re-

alized in highlybirefringent spin lasers. In Sec. IV our results

for intensity and polarization modulation response are given,

and in Sec. V we provide conclusions and note some open

questions for future work.

II. INTENSITY EQUATIONS

The polarization dynamics of VCSELs has been success-

fully described by the influential spin-flip model (SFM) [28]

and widely applied to conventional lasers, having no external

source of spin-polarized carriers [29–32]. For a spin laser the

corresponding equations can be generalized by including in-

jection of spin-polarized carriers as shown in Fig. 1(a). Since

the hole spin relaxation is typically much faster than for elec-

trons, there is no depicted spin imbalance in the p-region [17].

Following the conservation of angular momentum and the

optical selection rules [17], Fig. 1(b) illustrates the SFM

which focuses on the gain region based on a quantum well

(QW) where its confinement splits the heavy and light hole

degeneracy. In the resulting equation it is then sufficient to

consider optical transition between the CB, with the projec-

tion of the total angular momentum Jz = ±1/2 and the VB

with Jz = ±3/2 for heavy holes,

Ė± =
1 + iα

2τph

(N ± n − 1)E± − (γa + iγp)E∓, (1)

Ṅ = γr[J+(t ) + J−(t )] − γrN − γr (N + n)|E+|2

−γr (N − n)|E−|2, (2)

ṅ = γr[J−(t ) − J+(t )] − n/τs − γr (N + n)|E+|2

+γr (N − n)|E−|2, (3)

where the normalized (see the Appendix) circularly polar-

ized components of slowly varying amplitudes of the electric

field are related to linear modes by E± = (Ex ± iEy)/
√

2.

Corresponding photon densities are S± = |E±|2, with a pho-

ton lifetime τph. N is the total number of carriers with a

recombination rate γr , n is the population difference between

spin-down and spin-up electrons with a spin relaxation life-

time τs, and α is the linewidth enhancement factor. γa and γp

are the dichroism and linear birefringence, the amplitude and

phase anisotropies of the cavity. J±(t ) is the time-dependent

injection rate of spin-up (+) and spin-down (−) carriers.

The SFM equations contain complex amplitudes of the

electric field, which can be expressed in terms of real quanti-

ties as Ex,y = Ex,y exp(iφx,y). Therefore, the equations can be

rewritten in terms of the dimensionless real quantities, such

that all the frequencies are scaled to γr and differentiation

expressed with respect to dimensionless time, τ = γrt , as

Ėx =

[

N − 1

2τph

− γa

]

Ex −
n

2τph

(α cos φ − sin φ)Ey, (4)

Ėy =

[

N − 1

2τph

+ γa

]

Ey +
n

2τph

(α cos φ + sin φ)Ex, (5)

φ̇ = −2γp +
n

2τph

[

α sin φ
E2

y − E2
x

ExEy

+ cos φ
E2

x + E2
y

ExEy

]

, (6)

Ṅ = J − N
(

1 + E
2
x + E

2
y

)

− 2 sin φnExEy, (7)

ṅ = (J− − J+) − n/τs − 2 sin φNExEy − n
(

E
2
x + E

2
y

)

, (8)

where φ = φx − φy is the phase difference between the two

linear modes and J = J+ + J− is the total injection.

A. Intensity equations without spin injection

In the absence of spin injection, J+ = J−, the spin polar-

ization of carriers is minor, i.e., n is small. Therefore, the time

evolution of the phase can be approximated, using dimension-

less time τ = γrt , by

φ ≈ −2γpτ. (9)

Considering typically short spin relaxation times in semicon-

ductors used in the gain region of a laser [23,38], 1/τs ≫ γr ,

we can adiabatically eliminate n (ṅ ≈ 0) to obtain

n ≈ −2τs sin φNExEy. (10)

With the approximations in Eqs. (9) and (10), the SFM from

Eqs. (1)–(3) is reduced to dynamic equations for the light

intensities Sx,y = E2
x,y and total carrier number N :

Ṡx = Sx[(N − 1)/τph − 2γa − ϵxySy], (11)

Ṡy = Sy[(N − 1)/τph + 2γa − ϵyxSx], (12)

Ṅ = J − N − N (Sx + Sy) + 2τsNSxSy, (13)

where the cross-saturation coefficients are ϵxy = ϵyx = τs/τph,

which suppress the intensity of the emitted light as the carrier

injection is increased. However, the above equations arising

from the SFM, lack the well-known self-saturation effects in

conventional lasers known to be crucial in limiting the inten-

sity of the emitted light at large injection levels [1,2,45] and

studied in the rate-equation description of spin lasers [8,24].

For a more complete description of the gain saturation (also

referred to as the gain compression), we phenomenologically
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introduce self-saturation terms with coefficients ϵxx and ϵyy for

the x and y modes

Ṡx = Sx[(N − 1)/τph − 2γa − ϵxySy − ϵxxSx], (14)

Ṡy = Sy[(N − 1)/τph + 2γa − ϵyxSx − ϵyySy], (15)

Ṅ = J − N − N (Sx + Sy) + 2τsNSxSy, (16)

where we note that in describing conventional lasers the gain

saturation coefficients are often simply given by ϵxx = ϵyy = ϵ

and ϵxy = ϵyx = 0 [1,2,45].

B. Intensity equations with spin injection

The immediate effect of a spin injection, J+ ̸= J−, is a

significant spin polarization of carriers, such that

n ≈ τs(J− − J+) − 2τs sin φNExEy, (17)

which in turn leads to additional terms in the equations for

intensities and phase

Ṡx = Sx[(N − 1)/τph − 2γa − ϵxySy − ϵxxSx]

−
τs

τph

(J− − J+)
√

SxSy(α cos φ − sin φ), (18)

Ṡy = Sy[(N − 1)/τph + 2γa − ϵyxSx − ϵyySy]

+
τs

τph

(J− − J+)
√

SxSy(α cos φ + sin φ), (19)

Ṅ = − N + J − N (Sx + Sy) + 2τsNSxSy, (20)

φ̇ = − 2γp + n/(2τph )[α sin φ(Sy − Sx )/
√

SxSy

+ cos φ(Sx + Sy)/
√

SxSy]. (21)

Equations (18)–(21), with real-valued quantities, can be

used to study the dynamic operation of spin lasers and provide

a good agreement with the common SFM [28], as shown in the

Appendix. The transparency of this approach allows analytical

solutions of intensity modulation response by a small-signal

analysis and offers opportunities to further explore the dynam-

ics of highly birefringent lasers using linear analysis.

III. DYNAMIC OPERATION

The most attractive properties of conventional lasers

usually lie in their dynamical performance, suitable for trans-

ferring information and implementing optical interconnects

[1–3]. A damped driven harmonic oscillator, ẍ + γ ẋ + ω2
0x =

(F0/m) cos ωt , provides a valuable model for the dynamic

operation of lasers [26], where ω0 is the angular frequency

of the simple harmonic oscillator, γ is the damping constant,

F0 is the amplitude of the driving force, and m is the mass.

Such a harmonic oscillator shares with lasers its resonant

behavior near the angular frequency ω ≈ ω0 and a large re-

duction of the amplitude, A(ω), for ω ≫ ω0, as depicted for

two resonant frequencies in Fig. 2,

A(ω)/A(0) = ω2
0

/[(

ω2
0 − ω2

)2
+ γ 2ω2

]1/2
. (22)

The reduction of A(ω) by −3 dB, compared to A(0), gives a

useful frequency range over which substantial signals can still

FIG. 2. (a) Modulation response, characterized by the normal-

ized amplitude A(ω)/A(0), of a driven damped harmonic oscillator

with natural frequencies ω
1,2
0 and damping rates γ = ω

1,2
0 /2, ω

1,2
0 /4.

The dashed horizontal line indicates −3 dB level as a limit for signif-

icant response.

be transferred, corresponding to the modulation bandwidth of

a laser [1,26].

A challenge for spin lasers is to seek improving dynamic

operation over their best conventional counterparts. Already

the first VCSEL with optical spin injection [4] has supported

a high-frequency operation. The transfer of a Larmor preces-

sion of the electron spin to the spin of photons was shown

to produce polarization oscillation of the emitted light up to

44 GHz in a magnetic field of 4 T at 15 K [4]. While this

approach is limited to cryogenic temperatures and does not

allow an arbitrary modulation of the polarization, needed for

high-speed information transfer, nor it is clear if the resulting

modulation bandwidth (recall Fig. 2) could exceed those from

conventional semiconductors, it has stimulated subsequent

studies in spin lasers.

One such realization of spin lasers supporting room-

temperature ultrafast operation was demonstrated in highly

birefringent VCSELs [23], as shown in Fig. 3. The role of

birefringence can be understood from Fig. 1(b) and SFM or

intensity equations from Sec. II. Since the birefringence is re-

sponsible for the beating between the emitted light of different

helicities, the changes in the polarization of the emitted light,

PC = (S+ − S−)/(S+ + S−), (23)

can be faster than the changes in the light intensity. While

initially these polarization changes were limited to ∼10 GHz

for commercial III-V VCSELs to which spin-polarized car-

riers were optically injected [33,34], subsequent theoretical

predictions of much higher strain-enhanced birefringence val-

ues [41] and their experimental realization [38] have paved

the way for spin lasers that could operate faster than the

best conventional counterparts. Specifically, the realization of

higher birefringence values, using an elasto-optic effect up

to ∼80 GHz [46], asymmetric heating up to ∼60 GHz [47],

integrated surface gratings up to 98 GHz [48], and mechanical

bending reaching 259 GHz [49], by itself supports only static

implications of birefringence due to mode splitting in VCSEL.

However, Fig. 3 also reveals that high birefringence (achieved
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FIG. 3. (a) Experimental detection of the polarization dynamics

of a spin laser pumped by a constant electrical injection J0 above

the threshold JT and a circularly polarized ps laser pulse as spin

injection. Birefringence, γp, is controlled by a mechanical bending

on the VCSEL array, which induces cavity anisotropy. The setup

contains linear polarizers (LP), quarter-wave plates (λ/4), a beam

splitter (BS), and lenses (L). The laser output is detected by a

streak camera and an optical spectrum analyzer. (b, c) Polarization

dynamics of the laser after a pulsed spin injection for γp/π = 112

and 214 GHz. S± are the helicity-resolved light intensities, PC is the

circular polarization degree [Eq. (23)], and T denotes the period of

the polarization oscillation. From Ref. [23].

by a mechanical bending) is also compatible with ultrafast

oscillations in PC , which was observed after a circularly po-

larized picosecond (ps) laser pulse used for spin injection.

To study the dynamic operation of spin lasers, with spin

polarization of injected carriers

PJ = (J+ − J−)/(J+ + J−), (24)

and conventional lasers as their special limiting case, where

PJ ≡ 0, it is convenient that each of the key quantities, X (such

as, J , S, N , and PJ ), is decomposed into a steady-state X0 and

a modulated part δX (t ) [26],

X = X0 + δX (t ), (25)

where we can assume harmonic modulation δX (t ) =

Re[δX (ω)e−iωt ].

We focus on the intensity and polarization modulation (IM,

PM), illustrated in Fig. 4. IM for a steady-state polarization

implies J+ ̸= J− (unless PJ = 0),

IM: J = J0 + δJ cos(ωt ), PJ = PJ0, (26)

where ω is the angular modulation frequency. Such a modu-

lation can be contrasted with which also has J+ ̸= J−, but J

remains constant [50],

PM: J = J0, PJ = PJ0 + δPJ cos(ωt ). (27)

In spin lasers it is also possible to consider other mod-

ulation schemes with PJ ̸= 0. For example, a complex

modulation [51] can suppress an undesired frequency mod-

ulation, or chirp, a direct consequence of IM and the carrier

dependence of the refractive index in the gain region. In addi-

tion to faster operation, by modulating the polarization of the

FIG. 4. Time dependence of the spin injection J± and helicity-

resolved light intensities S± for intensity (a, b) and polarization

modulation (c, d) in a spin laser. Before the modulation is turned on

at t = 20 ns, the total injection J = J+ + J− is constant with a spin

polarization PJ0 = 0.1.

emitted light rather than its intensity [23,52], spin lasers offer

a reduced noise and an improved signal transfer [53].

IV. INTENSITY AND POLARIZATION

MODULATION RESPONSE

The modulation response in conventional lasers, typically

realized using IM, can be simply summarized by relating their

resonant (relaxation-oscillation) frequency fR = ωIM
R /2π and

the resulting usable frequency range given by the modulation

bandwidth [1,2] (see Fig. 2),

f3dB ≈
√

1 +
√

2 fR. (28)

The modulation bandwidth can be estimated by the reso-

nant frequency, fR = (1/2π )
√

g0S0/[τph(1 + ϵS0)], where g0

is the gain constant, S0 is the steady-state photon density, τph

the photon lifetime, used also in the SFM, and ϵ is the simpli-

fied parametrization of the gain saturation, noted in Sec. II A.

To enhance the bandwidth one can seek to enhance fR by

materials design to enlarge g0 or decrease τph by reducing

the reflectivity of mirrors forming the resonant cavity (recall

Fig. 1), or by increasing J to attain a larger S. While the last

approach is the most common, we can see not only that it

comes at the cost of the higher power consumption, but also

that a finite ϵ is responsible for the saturation of S as J is

increased.

However, this common analysis using Eq. (28) excludes

the influence of birefringence, which experimentally can ex-

ceed 250 GHz [49], and, even for conventional lasers with

PJ = 0, it is unclear what would be its influence on fR and

the corresponding modulation bandwidth. In spin lasers the

situation is further complicated as the birefringence can be

viewed as undesirable and there are efforts in designing lasers

to minimize it [9,54–56].

To elucidate the role of birefringence of the modulation

response we analyze the dynamic operation of the laser using

a perturbative approach to the steady-state response, using

a decomposition as in Eq. (25), known also as the small

signal analysis (SSA) [1,2], limited to a small modulation.

This approach is readily generalized for spin lasers [25], with

|δJ/J0| ≪ 1 for IM and |δPJ | ≪ 1, |PJ0 ± δPJ | ! 1 for PM.
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From the intensity equations we can obtain δS±(ω) and the

(modulation) frequency response functions

R±(ω) = |δS∓(ω)/δJ±(ω)|. (29)

For PJ = 0 they reduce to R(ω) = |δS(ω)/δJ (ω)|, usually

normalized to its ω = 0 value, just as in Eq. (22),

|R(ω)/R(0)| = ω2
R/

[(

ω2
R − ω2

)2
+ γ 2ω2

]1/2
, (30)

where, ωR and damping rate γ can be analytically extracted

from Eqs. (14)–(16). For example, assuming Sy = 0, we can

obtain the steady-state values, Sx0 = J0/N0 − 1 and N0 = 1 +

2τphγa + τphϵxxSx0, and conclude that the normalized thresh-

old values are

JT = NT = 1 + 2τphγa. (31)

We can then express

ω2
R = (J0/N0 − 1)(N0/τph + ϵxxJ0/N0), (32)

γ = (J0/N0)(1 + ϵxx ) − ϵxx, (33)

while assuming instead Sx = 0, ωR, and γ would retain the

same form, but with ϵxx → ϵyy.

To illustrate the effects of injection and birefringence on

IM explicitly, we calculate the modulation response for a

series of injection and birefringence. Shown in Fig. 5(a)

is the resonant frequency ωR as well as the bandwidth

increase with larger injection, which is also implied by

Eqs. (28) and (32). Typically, the response is scaled as R̄(ω) =

10 log10[R2(ω)/R2(0)]. Note that there is a good agreement

between the numerical calculation and analytical expressions

in Eqs. (30), (32), (33). Additionally, the IM bandwidth can

be enhanced by increasing the polarization of injection PJ0,

without visibly altering the resonant frequency, as shown in

the inset of Fig. 5(a). Using the rate equations (in the ab-

sence of birefringence) such an increase in PJ0 has enhanced

both the bandwidth and the resonant frequency [25,57]. In

contrast, from Fig. 5(b), IM response is unaffected by birefrin-

gence. This can be understood from the intensity equations

[Eqs. (18)–(21)], in which birefringence changes only the

phase difference φ between x and y modes, rather than the

intensities.

PM can induce polarization oscillations faster than inten-

sity oscillations (recall Fig. 3), which allows an assessment of

the response on PC given by R(ω) = |δPC (ω)/δPJ (ω)|. Due

to the complexity of the analytical expressions for the PM

response, we analyze numerically the effects of injection and

birefringence on PM. As shown in Fig. 6(a), the PM resonant

frequency and bandwidth increase only slightly (<5%) with

a three times larger injection. In contrast, the increase in

birefringence significantly enhances the resonant frequency

and bandwidth. Remarkably, the birefringence itself approxi-

mately determines the PM resonant frequency, and the striking

increase in the resonant frequency seen from Fig. 6(b) is

well described by f PM
R ≈ γp/π . Since birefringence larger

than 200 GHz has been realized experimentally [23,49], it

can be employed to overcome the bandwidth bottleneck [42]

of conventional IM (!35 GHz) [58]. From the results in

Fig. 6(b), guided by the room-temperature experiments on

the highly birefringent spin lasers [23], we can see that the

FIG. 5. Effects of injection (a) and birefringence (b) on the inten-

sity modulation response. (a) The intensity modulation bandwidth is

enhanced by larger injection, for J0/JT = 2, 4, and 6. For J0/JT =

4, the analytical small signal analysis solution of the modulation

response is given by the black curve, showing a good agreement

with the numerical result with γp/π = 100 GHz. The inset shows

the bandwidth enhancement by spin polarization of injections from

PJ0 = 0.3 (green) to 0.9 (red). (b) The intensity modulation response

coincides for different birefringence γp/π = 50, 100, 200 GHz. As

in Fig. 2, the dashed horizontal line indicates −3 dB level as a limit

for significant response.

birefringence of 200 GHz corresponds to the bandwidth of

300 GHz, about an order of magnitude larger than in the best

conventional lasers [58], offering a promising approach for

high-performance optical interconnects based on spin lasers.

A common strategy to increase the resonant frequency

and bandwidth in conventional lasers can be inferred from

Eq. (28) suggesting a desirable role of a large-injection

regime. However, depending on gain saturation, inevitable in

semiconductor lasers [45], which limits the intensity of emis-

sion with increasing injection, there is a detrimental impact on

the modulation response and the increased power consump-

tion.

We illustrate in Fig. 7 the effects of self-saturation, absent

in SFM, on IM and PM response. For simplicity, we consider

a case of y-mode lasing, i.e., Sx ≪ Sy, which allows a focus

on the saturation of the dominant y mode, while the effect of

x-mode saturation can be inferred analogously. For IM, the

peak value of response is reduced with larger saturation ϵyy,

while the resonant frequency and bandwidth remain nearly
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FIG. 6. Effects of injection (a) and birefringence (b) on the po-

larization modulation response. (a) A minor increase in the resonant

frequency and bandwidth of polarization modulation for injection

J0/JT from 2, 4 to 6. Here γp/π = 100 GHz. (b) A significant en-

hancement of resonant frequency and bandwidth with birefringence

γp/π = 50 GHz, 100 GHz, 200 GHz. The resonance peaks locate at

the corresponding birefringence γp/π . Here J0/JT = 2 and PJ0 = 0.

unchanged. The self-saturation effect on PM is much smaller

and hardly noticeable, which can only be seen from the inset

of Fig. 7(b). We see that the PM response is insensitive to both

injection [Fig. 6(a)] and saturation, as it relies on the dynamics

of polarization instead of intensity. Such distinct properties

further make it a promising candidate for applications in low-

energy ultrafast optical communication. Specifically, ultrafast

operation in highly birefringent spin lasers can be realized at

low injections, JT ! J , which has been recently demonstrated

with electrically tunable birefringence, even at elevated tem-

peratures ∼70 ◦C [59]. This could greatly reduce the power

consumption, which is estimated to be an order of magnitude

lower than in the state-of-the-art conventional lasers [23,60].

V. CONCLUSIONS AND OUTLOOK

The transparency of the developed intensity equations pro-

vides an intuitive description of intensity and polarization

dynamics for both conventional and spin lasers. This ap-

proach, motivated by a popular spin-flip model [28], offers

not only simpler calculations and analytical results, but also a

direct connection to widely used rate equations [1,2] now in-

cluding the missing description of optical anisotropies. While

FIG. 7. Self-saturation effects on intensity (a) and polarization

modulation (b). (a) For intensity modulation, when self-saturation

of the y mode increases (ϵyy = 0, 1, 2), the response peak decreases,

while the bandwidth is not significantly affected. (b) For polarization

modulation, the self-saturation effect is minor, showing only a slight

increase in the response peak with larger self-saturation (magnified

in the inset).

compared to the spin-flip model these intensity equations are

obtained by eliminating the population difference between the

spin-up and spin-down electrons, this approximation is accu-

rately satisfied for spin lasers suitable for ultrafast operation

and implementing optical interconnects [23,39,59].

The introduced intensity equations overcome several lim-

itations of the initial spin-flip model [28], which neglected

gain saturation, particularly important for a large-injection

regime, and assumed identical spin relaxation times of holes

and electrons, despite characteristic times being typically sev-

eral orders of magnitude shorter in holes [17]. Instead, as

relevant to most of the fabricated spin lasers, we have con-

sidered a vanishing spin relaxation time for holes. As shown

within the generalized rate-equation description of spin lasers

[27], this assumption can be relaxed to better describe GaN

quantum well spin lasers [61], where both electron and hole

spin relaxation times are comparable [62], but have not been

simultaneously considered in describing experiments [63].

Our findings on the modulation response reveal that for

the intensity modulation, commonly used in conventional
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FIG. 8. Comparison of time evolution of polarization-resolved

intensities S± between intensity equations (solid) and SFM (dashed)

under intensity modulation (a) and polarization modulation (b).

Before modulations turned on at time t = 20 ns, the injection is

constant with a spin polarization PJ0 = 0.1. Parameters: J0 = 2,

γp/π = 50 GHz, γs = 450 GHz.

lasers, the corresponding resonant frequency and the band-

width are independent of the experimentally demonstrated

range of linear birefringence. In contrast, for polarization

modulation the resonant frequency, which can also give an

estimate for the corresponding maximum bandwidth, grows

linearly with the increase in such birefringence, to reach

values largely exceeding the resonant frequency in fastest

conventional lasers. There is a growing support that such

improvements can be realized with different gain regions and

cover a wide range of the emitted light, from 850 nm to 1.55

µm [23,38,39,59,64,65].

Presently, it is unclear what are the frequency limitations

in the operation of spin lasers, for which both strain-enhanced

birefringence and short spin relaxation times could help

[23,61]. There are suggestions how the resonant frequency

and the bandwidth could be further enhanced by choosing

two-dimensional materials for the gain region and perhaps

by employing magnetic proximity effects [23,66]. Instead of

using pulsed ps optical spin injection (recall the approach

from Fig. 3), it would be desirable to seek alternative methods

for modulation of the carrier spin polarization and consider

phenomena that were previously not studied in the context

FIG. 9. Comparison of the response under intensity modulation

(a) and polarization modulation (b) between intensity equations

(solid) and SFM (dashed). Parameters: J0 = 2, PJ0 = 0, γp/π =

50 GHz, γs = 450 GHz.

of spin lasers, for example, using ultrafast demagnetization

[67,68], ultrasfast magnetization reversal [69,70], or ultrafast

modulation of spin and optical polarization using bound states

in quantum wells [71,72]. Gate-controlled reversal of helicity

was predicted in two-dimensional topological materials [73],

while electrical injection from iron GaAs-based light-emitting

diodes was demonstrated to support helicity switching at room

temperature [74–76].

While our focus was on vertical cavity surface emit-

ting lasers (VCSELs) [3], typically used to implement spin

lasers, it would be interesting to consider if these inten-

sity equations can also complement the studies of vertical

external cavity surface emitting lasers (VECSELs) [13,54].

They have complementary advantages to VCSELs, and having

an external cavity may offer an additional control optical

anisotropy, including birefringence, as well as incorporate

magnetic elements close to the gain region for efficient

electrical spin injection [54,77]. Efforts to obtain an effi-

cient room-temperature electrical injection in semiconductors

with perpendicular magnetic anisotropy of the spin injector

[78–80] could be extended in spin lasers to remove the need
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to use an external magnetic field to align the magnetization

out-of-plane, consistent with the usual optical selection rules

[17].

In addition to the relevance of spin lasers as emerg-

ing room-temperature spintronic devices with operation

principles not limited by magnetoresistive effects [17–20,81],

the studied intensity equations could also be helpful in ex-

ploring other device concepts. For example, an earlier work

on rate equations [25,26] was helpful to motivate electri-

cal spin interconnects [66,82,83] and phonon lasers [84], an

acoustic analog of lasers which also shares properties with

spin-controlled nanomechanical resonators [85,86].
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APPENDIX

The quantities in the spin-flip model (SFM) equations

[28] are usually studied in the dimensionless form mak-

ing it important to describe how they are normalized and

simplify their relation to other rate-equation description

of lasers. Specifically, the quantities in SFM have been

normalized as

E± =
F±

√

S2JT

, (A1)

N =
N+ + N− − Ntran

NT − Ntran

, (A2)

n =
N− − N+

NT − Ntran

, (A3)

where F± are the slowly varying amplitudes of the helicity-

resolved components of the electric field, S2JT
is the steady-

state light intensity at twice the threshold injection 2JT , N±

are the numbers of spin-up and spin-down electrons, and NT

and Ntran are the numbers of electrons at the threshold and

transparency, respectively. The injection J has been normal-

ized with respect to threshold injection JT . We have assumed

γa ≪ 1/τph in the above normalizations.

To verify the validity of intensity equations, we compare

the numerical results from the intensity equations and SFM.

In Fig. 8 we show a comparison of the time evolution of

helicity-resolved intensities S± between intensity equations

and SFM under IM and PM, respectively. Note that S± =

(Sx + Sy ± 2
√

SxSy sin φ)/2. We see that the agreement in the

time evolution is excellent, with only a minor deviation for

PM. The comparison of modulation response is illustrated in

Fig. 9, which shows a good overall agreement, with only a

small discrepancy in the PM response.
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and Photonic Integrated Circuits, 2nd ed. (Wiley, Hoboken, NJ,

2012).

[3] Edited by R. Michalzik, VCSELs Fundamentals, Technology

and Applications of Vertical-Cavity Surface-Emitting Lasers

(Springer, Berlin, 2013).

[4] S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W.

Rühle, F. Jahnke, S. W. Koch, H. M. Gibbs, G. Khitrova, and

M. Oestreich, Manifestation of coherent spin precession in

stimulated semiconductor emission dynamics, Phys. Rev. B 56,

R7076 (1997).

[5] H. Ando, T. Sogawa, and H. Gotoh, Photon-spin controlled

lasing oscillations in surface-emitting lasers, Appl. Phys. Lett.

73, 566 (1998).

[6] J. Rudolph, S. Döhrmann, D. Hägele, M. Oestreich, and W.

Stolz, Room-temperature threshold reduction in vertical-cavity

surface-emitting lasers by injection of spin-polarized carriers,

Appl. Phys. Lett. 87, 241117 (2005).

[7] N. C. Gerhardt, S. Hövel, M. R. Hofmann, J. Yang, D. Reuter,

and A. Wieck, Enhancement of spin information with vertical

cavity surface emitting lasers, Electron. Lett. 42, 88 (2006).

[8] M. Holub, J. Shin, and P. Bhattacharya, Electrical Spin Injection

and Threshold Reduction in a Semiconductor Laser, Phys. Rev.

Lett. 98, 146603 (2007).

[9] S. Hövel, A. Bischoff, N. C. Gerhardt, M. R. Hofmann, T.

Ackemann, A. Kroner, and R. Michalzik, Optical spin manip-

ulation of electrically pumped vertical-cavity surface-emitting

lasers, Appl. Phys. Lett. 92, 041118 (2008).

[10] D. Basu, D. Saha, and P. Bhattacharya, Optical Polarization

Modulation and Gain Anisotropy in an Electrically Injected

Spin Laser, Phys. Rev. Lett. 102, 093904 (2009).

[11] D. Saha, D. Basu, and P. Bhattacharya, High-frequency dynam-

ics of spin-polarized carriers and photons in a laser, Phys. Rev.

B 82, 205309 (2010).

[12] S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, Room temperature

circularly polarized lasing in an optically spin injected vertical-

cavity surface-emitting laser with (110) GaAs quantum wells,

Appl. Phys. Lett. 98, 081113 (2011).

[13] J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A.

Garnache, C. Deranlot, D. Dolfi, and J.-M. George, Control of

light polarization using optically spin-injected vertical external

cavity surface emitting lasers, Appl. Phys. Lett. 103, 252402

(2013).

[14] J.-Y. Cheng, T.-M. Wond, C.-W. Chang, C.-Y. Dong, and Y.- F

Chen, Self-polarized spin-nanolasers, Nat. Nanotechnol. 9, 845

(2014).

[15] S. Das Sarma, J. Fabian, X. D. Hu, and I. Žutić, Spin elec-
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a Phonon Laser Utilizing Quantum-Dot Spin States, Phys. Rev.

Lett. 111, 186601 (2013).

[85] P. Stadler, W. Belzig, and G. Rastelli, Ground-State Cooling of a

Carbon Nanomechanical Resonator by Spin-Polarized Current,

Phys. Rev. Lett. 113, 047201 (2014)

[86] M. Mantovani, A. D. Armour, W. Belzig, and G. Rastelli, Dy-

namical multistability in a quantum-dot laser, Phys. Rev. B 99,

045442 (2019).

045306-10


