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ABSTRACT: Monoterpene indole alkaloids are a large class of natural products derived from a single biosynthetic precursor,
strictosidine. We describe a synthetic approach to strictosidine that relies on a key facially selective Diels—Alder reaction between a
glucosyl-modified alkene and an enal to set the C15—C20—C21 stereotriad. DFT calculations were used to examine the origin of
stereoselectivity in this key step, wherein two of 16 possible isomers are predominantly formed. These calculations suggest the
presence of a glucosyl unit, also inherent in the strictosidine structure, guides diastereoselectivity, with the reactive conformation of
the vinyl glycoside dienophile being controlled by an exo-anomeric effect. (—)-Strictosidine was subsequently accessed using late-
stage synthetic manipulations and an enzymatic Pictet—Spengler reaction. Several new natural product analogs were also accessed,
including precursors to two unusual aryne natural product derivatives termed “strictosidyne” and “strictosamidyne”. These studies
provide a strategy for accessing glycosylic natural products and a new platform to access monoterpene indole alkaloids and their

derivatives.

B INTRODUCTION

Monoterpene indole alkaloids (MIAs) are a large class of
natural products, many of which possess valuable pharmaco-
logical properties. To date, more than 3000 MIAs have been
identified with diverse structures and bioactivities, which are
exemplified by three of the most well-known members: quinine
(1), strychnine (2), and vinblastine (3) (Figure 1).'~> Quinine
(1) belongs to the family of Cinchona alkaloids and is an
antimalarial drug;*~° strychnine (2), one of the most complex
Strychnos alkaloids, is a potent toxin;” " and vinblastine (3),a
Vinca alkaloid, is a frontline anticancer therapeutic and one of
the most expensive small-molecule, off-patent drugs on the
pharmaceutical market.'*”"?

An active area of research is the development of new
strategies to access complex MIAs, such as vinblastine (3),
through a combination of isolation from natural sources,
biosynthesis, and total synthesis.”'*™*' We identified the
natural product (—)-strictosidine (4) as an attractive entryway
to access MIAs and derivatives." (—)-Strictosidine (4) is the
last common biosynthetic precursor to all MIAs. It was first
isolated in 1968 and contains nine stereocenters, a highly
congested dihydropyran ring, a glucosyl moiety, and a
bis(acetal) linkage.”” Despite its importance in MIA biosyn-
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thesis and being known for over S0 years, (—)-strictosidine (4)
has remained challenging to access. Isolation of 4 from natural
sources is unreliable, and its complete biosynthesis has proven
difficult to engineer.’> Seminal efforts in this field include
O’Connor and co-workers’ breakthrough in the biocatalytic
production of strictosidine in yeast, albeit with a modest
titer,"** and our groups’ finding of prevalent shunt pathways in
the bioengineering of the early steps in S. cerevisiae.”"*
Furthermore, 4 has been largely overlooked by the synthetic
community until very recently. The first total synthesis of
strictosidine (4) was published during the course of our studies
by Ishikawa and co-workers.>**’

Our laboratories sought to achieve the synthesis of
(—)-strictosidine (4) using a blend of synthetic chemistry
and biocatalysis and then use our approach as a platform for
the preparation of new, unnatural derivatives thereof. Herein,
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Figure 1. Strictosidine (4) and select natural products biosyntheti-
cally derived from 4.

we report: (a) a facially selective Diels—Alder reaction to
access the dihydropyran moiety of 4, including the C15—C20—
C21 stereotriad, (b) a computational analysis of this key step,
(c) access to (—)-strictosidine (4) and an unnatural C15
epimer via enzymatic and nonenzymatic late-stage Pictet—
Spengler reactions, and (d) the preparation and interception of
“strictosidyne” and “strictosamidyne,” which are aryne
derivatives of natural products.

B RESULTS AND DISCUSSION

Retrosynthetic Analysis. Our retrosynthetic analysis of
(=)-strictosidine (4) is shown in Scheme 1. We envisioned

Scheme 1. Retrosynthetic Analysis of (—)-Strictosidine (4)
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(—)-strictosidine (4) would be obtained from its biosynthetic
precursors (—)-secologanin (6) and tryptamine (5) via an
enzymatic Pictet—Spengler reaction.”® This known step would
build the tetrahydro-p-carboline ring, establish the stereo-
chemistry at the C3 stereocenter, and provide a platform for
the synthesis of unnatural strictosidine analogs. It should be
emphasized that secologanin derivatives have been popular
synthetic targets, yet only one synthesis of this compound
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exists, as reported by Ishikawa in 2019.””~* (—)-Secologanin
(6) could be obtained from vinylogous ester 7 through a series
of manipulations, including introduction of the terminal olefin
and oxidative cleavage of the five-membered ring. In a key step,
the dihydropyran of vinylogous ester 7 could be accessed by an
inverse electron-demand hetero-Diels—Alder reaction between
enal 8 and enol ether 9. Enabled by the presence of the
acetylated glucose moiety, this transformation would set three
key stereocenters (C1S, C20, C21). Whereas enal 8 can be
obtained from cyclopentenone using known chemistry,* we
envisioned enol ether 9 to be accessible from glucose.””**
Substrate Synthesis and Experimental and Computa-
tional Studies of Facially Selective Diels—Alder Reac-
tion. To initiate our synthetic effort, we prepared enol ether 9
using the sequence shown in Scheme 2. Known vinylogous

Scheme 2. Synthesis of Enol Ether 9
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ester 10** underwent silylation/Rubottom oxidation to give an
intermediate a-siloxy ketone.”” Subsequent ketone reduction
and acetylation®”" provided allylic acetate 11 as a 1:1
diastereomeric mixture in 56% yield over the two steps. Next,
substantial effort was put forth to reductively remove the
acetoxy group, which proved quite challenging. Reductions of
allylic acetates bearing oxygen on the vinylic carbon are
precedented on cyclic systems,”” " but the corresponding
reduction on linear substrates is rare and gives poor E/Z
selectivity.”” Ultimately, we optimized nickel-catalyzed allylic
reductlon conditions reported by Yin, which afforded enol
ether 9.° Of note, the position and E geometry of the olefin
was maintained.’">

With enol ether 9 in hand, we sought to assess its viability as
a dienophile in the key inverse electron demand hetero-Diels—
Alder reaction with known enal 8*° (Scheme 3).°** Of note, a
successful Diels—Alder cycloaddition would lead to the
introduction of three new stereocenters, where we hoped
selectivity would be guided by the sugar moiety in 9.
Moreover, in considering the formation of these stereocenters
and regioselectivity possibilities, 16 isomers of the Diels—Alder
cycloadduct could arise. After examining a variety of reactlon
conditions (i.e., solvents, Lewis acids, and temperatures) we
identified optimal reaction conditions, which involved heating
8 and 9 in hexafluoroisopropanol (HFIP) at 50 °C for 16 h.
This gave rise to cycloadducts 7a (desired) and its C15 epimer,
7b, as the major productsin a 1:1 ratio (55% combined
yield).® Sugars have rarely been employed to dictate
stereochemistry in intermolecular inverse electron-demand
hetero-Diels—Alder reactions, where the sugar resides on the
dienophilic component. 67-80" Byrthermore, in the present
example, the sugar is not used as a chiral auxiliary, but it is a
component of both (—)-secologanin (6) and (—)-strictosidine
(4). Thus, our approach involving early introduction of the
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sugar to guide stereochemical outcomes represents a useful
strategy for accessing single enantiomers of glycosylated
natural products.

To explore the factors that control selectivity in the Diels—
Alder reaction, we undertook density functional calculations
(DFT) with the M06-2X functional. This method is known to
give reliable energetics of stereoisomeric transition states of
Diels—Alder reactions.”' ~** Transition states were calculated
for stepwise and concerted pathways, and the latter were found
to be more favorable. As such, the E geometry in dienophile 9
leads to the trans relationship between C20 and C21 in the
products 7a and 7b (see Scheme 3). Four possible stereo-
isomeric transition states, corresponding to endo/exo pathways
and different facial approach, were investigated, with bond
formation occurring between C15 and C20 and O17 and C21
of the reactants. These are shown in Figure 2.**~% TS1(exo)
and TS1(endo) were energetically most favorable and correlate
to the two major products isolated experimentally, 7a and 7b,
respectively. TS2(exo) and TS2(endo) were found to have
higher activation barriers, and the corresponding products
were not isolated experimentally.

Two key factors that were investigated are the conformation
of the glucosyl moiety and the adjacent reactive double bond
(Figure 3a). Although the conformation of the glucosyl unit in
dienophile 9 was found to be similar to that in all
stereoisomeric transition states (ie., TS1 and TS2), the
orientation of the adjacent reactive olefin is more variable and
is believed to dictate the stereochemical outcome of the
reaction.

On dienophile 9, the C21 alkene adopts an exo-anomeric
conformation (Figure 3).* The dihedral angle between C21—
O1 and CI'-0S is —68°. Here, one lone pair on exocyclic
oxygen Ol overlaps with the C1’-0S ¢* antibonding orbital
and stabilizes itself by negative hyperconjugation as shown in
the Newman projection in Figure 3a. The glucosyl enol ether is
s-trans in order to avoid steric repulsion of the glucosyl group
that would occur in the s-cis conformation that is normally
favored for enol ethers.”””" Each acetate is syn with the C=O
aligned with the axial CH of the ring, similar to the XRD
structure of an acetylated glucose.®”

In each TS1, approach of the heterodiene occurs anti to the
face of pyranyl oxygen OS5 (re face) (Figure 2). The C21-01
and C1’=0S dihedral angles are —63° and —70°, respectively,
for TS1(endo) and TS1(exo), indicating exo anomeric
preferences in the transition states, similar to the orientation
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Figure 2. Four stereoisomeric transition states of the hetero-Diels—
Alder reaction, with activation energies shown in kcal/mol. TS1(exo)
and TS2(endo) correspond to observed products 7a and 7b,
respectively. R = TBS in experimental work. R = TMS in calculated
structures.

a. Conformation and Newman projection of dienophile 9

TS1

752

Figure 3. (a) Conformation and Newman projection of dienophile 9.
(b) Newman projections for TS1 and TS2.

present in dienophile 9 (Figure 3b).”> This stabilizing effect
imparted by the glucosyl ring leads to the face anti to pyranyl
oxygen OS (re face) being more accessible to the diene. In
TS2(endo) and TS2(exo), involving si facial approach, some
rotation around the C1’—O1 bond from the stable exo-
anomeric conformation is required (C21—O1 and C1'—OS$
dihedral angles are —143° and —134°, respectively). As a
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result, TS2(endo) and TS2(exo) are 1.3 and 1.8 kcal/mol
higher in free energies than the corresponding TS1(endo) and
TS1(exo) facial approaches. The computationally predicted
activation energies for TS1(endo) and TS1(exo) correlate to
the experimentally observed ratio of products 7a and 7b.
This hetero-Diels—Alder reaction is inverse electron-
demand, since the LUMO of the heterodiene and the
HOMO of the dienophile have a lower energy gap (9.6 eV)
than the opposite HOMO—LUMO pair (14.5 eV) as shown in
Figure 4a. There is a strong preference for one regioisomer

a. 8 9 b.
2 & diene dienophile
R -Bq PR ‘ 8
Jo _ /. 45eV
1.2eV ", K R
15 S H ,.'

Inverse electron-demand normal electron-demand

-8.4eV

-10.0eV

Figure 4. (a) Frontier orbital interactions in the inverse electron-
demand Diels—Alder reaction of 8 with 9. Orbital energies were
calculated with HF/6-3>1G(d,p)/SMD(toluene).%‘g4 HOMO-
LUMO energies are shown with the inverse electron-demand pathway
in blue (HOMO-LUMO gap = 9.6 eV) and the normal electron-
demand pathway in red (HOMO-LUMO gap = 14.5 eV). (b)
Schematic representation of the strong endo-stabilizing secondary
orbital interactions in a normal electron-demand Diels—Alder reaction
(compared to weak interactions for the inverse electron-demand case
studied here).

involving the union of the nucleophilic carbon (C20) of the
enol ether with the electrophilic carbon (C1S5) of the a,3-
unsaturated aldehyde heterodiene due to a larger HOMO
coefficient at C20 than C21. The frontier orbital interactions
involving the 7 orbitals of the enal 8 and enol ether 9 are
shown in Figure 4a. Endo/exo selectivity is not observed
experimentally. The 7 lone pair of O1 mixes slightly with the
alkene HOMO, but the coeflicient is small, and the stabilizing
secondary orbital interaction in the endo transition state is
small. By contrast in a normal Diels—Alder reaction, such as
that of butadiene plus acrolein, the large coefficient on the
carbonyl carbon in the LUMO gives strong secondary orbital
stabilization of the endo transition state (Figure 4b).
Elaboration to (—)-Secologanin and (-)-Strictosidine.
As shown in Scheme 4, Diels—Alder adduct 7a was elaborated
to (—)-secologanin (6). Deprotection of 7a afforded the
corresponding free alcohol, which underwent elimination

Scheme 4. Synthesis of (—)-Secologanin (6)

OTBS
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3
0 NO,

(o]
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MeOH oH B OH

«0 o
- OH

2. LiOMe, —20 °C

MeOH

(65% yield, (-)-Secologanin (6)
2 steps)

under standard Grieco-olefination conditions.” This sequence
gave olefin 12 in 93% yield over two steps. Next, 12 was
converted to the corresponding TBS enol ether, which set the
stage for a Rubottom oxidation. The corresponding a-hydroxy
ketone 13 was obtained in 53% yield as a single diastereomer.
This intermediate was subjected to lead tetraacetate in
methanol***® to effect oxidative cleavage”” and introduce the
necessary aldehyde and methyl ester groups. Lastly, global
acetyl removal gave (—)-secologanin (6) in 65% yield over 2
steps.”” Overall, (—)-secologanin (6) was accessed in nine
steps from known materials.

To access (—)-strictosidine (4), we turned to the late-stage
enzymatic Pictet—Spengler reaction between (—)-secologanin
(6) and tryptamine (5) (Scheme 5). The natural biocatalyst

Scheme 5. Enzymatic Pictet—Spengler Reaction Provides
(—)-Strictosidine (4)

z OH

\H HO OH N
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=z Ol Ll aes o )
K o\zmm (enzyme pur is not y)

OH

Generation of a single diastereomer (C3)

(-)-Strictosidine (4)

for this transformation, strictosidine synthase, has previously
been used successfully in the laboratory setting to prepare
47778719 Ag a practical advance, we sought to use crude cell
lysate from an Escherichia coli BL21 overexpressing the
strictosidine synthase strain in place of purified enzyme. The
lyophilized crude lysate was found to be a stable white powder
that could be easily weighed on the benchtop.'”* To test the
key biocatalytic step, (—)-secologanin (6) and tryptamine (5)
were combined in an aqueous phosphate buffer with the crude
lysate containing strictosidine synthase. This procedure
delivered the natural product, (—)-strictosidine (4), in 82%
yield, as a single C3 epimer, for which the spectral data are
consistent with the published data.'”® Overall, (—)-strictosi-
dine (4) was accessed in 10 steps from known materials,
utilizing a blend of chemical synthesis and enzymatic catalysis.

Synthesis of epi-Strictosidine, “Strictosidyne”, and
“Strictosamidyne”. Our next objective was to prepare new,
unnatural analogs of strictosidine (4)."°°7"% This was pursued
via two complementary strategies, the first of which is
highlighted in Scheme 6 and involves the use of one of our
synthetic intermediates that would not be readily accessible by
other means. Specifically, 7b, the C1S5 epimer of the desired
product of the Diels—Alder reaction was elaborated to an
unnatural secologanin derivative 14 by applying a similar
synthetic sequence as that from 7a to 6 (Scheme 3). The
enzymatic Pictet—Spengler reaction of 14 with strictosidine
synthase was attempted, but unfortunately, it led to the return
of starting material, thus highlighting the substrate specificity
of the enzyme.''® We were delighted to find that treatment of
14 with TFA and tryptamine (5) generated the desired
tetrahydro-beta-carboline ring system (1:1 diastereomeric ratio
(dr) with respect to C3)."""~""* Subsequent removal of the
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Scheme 6. Synthesis of Unnatural Derivative epi-
Strictosidine 15

oTBS

OAc
OAc

1. TFA
CH,Cl,, 0 = 23 °C

2, K,CO,3, MeOH
(50% yield, 2 steps)
(dr 1:1)

epi-Strictosidine

acetates afforded epi-strictosidine isomers 18. It is worth noting
that isomers 15 would not be readily accessible from
epimerization of strictosidine (4) or by manipulating the
biosynthetic pathway.''*

The second strategy we pursued for analog synthesis
involved varying the tryptamine fragment using a new and
unconventional building block (Figure S). Specifically, we

™S ™S
TiO TiO NH |~ NH,
y —= N N
e
N N N
N 4 steps H H
16 17 . 8
indolyne precursor “tryptaminyne” precursor tryptaminyne
TfO ™S
TFA
6+17 —_—
CH,Cl,, 0 - 23 °C
(52% yield)
Na,COs
H,0, 60 °C
(42% yield)

“Strictosamidyne” precursor

Figure 5. Synthesis of tryptaminyne precursor 17, “strictosidyne”
precursor 19, and “strictosamidyne” precursor 20.

questioned if tryptamine derivative 17 could be accessible. In
turn, 17 could serve as a masked synthetic equivalent of
“tryptaminyne” 18, which itself could find use in aryne trapping
experiments or, for the purposes of our current study, be used
in Pictet—Spengler reactions to make unique strictosidine
derivatives. Of note, tryptamine is a prevalent precursor in
both biosynthesis and chemical synthesis,”''>''® so the
previously unknown “tryptaminyne” precursor could prove
generally useful. We were delighted to find that commercially
available indolyne precursor 16 could be elaborated to
silyltriflate 17 in four steps.'’’
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With silyl triflate 17 in hand, we attempted the Pictet—
Spengler reaction using (—)-secologanin (6). Attempts to
promote the desired reaction with strictosidine synthase were
unsuccessful and only led to unreacted starting material.
However, we found that the use of TFA led to the desired
fragment coupling and annulation. “Strictosidyne” precursor
19 was obtained in 52% yield. The C3 epimer was also
observed (16% yield, not depicted).''® We also took advantage
of the opportunity to make new derivatives of strictosamide, a
related natural product.''”~"*" As such, a single diastereomer
of 19 (as depicted) was treated with sodium carbonate to
afford 20, which we envisioned serving as a precursor to the
aryne derivative of strictosamide we term “strictosamidyne”.

Lastly, we demonstrated that “strictosidyne” (22) and
“strictosamidyne” (23) could be generated from precursors
19 and 20, respectively, by performing Diels—Alder trapping
experiments (Scheme 7). Each silyltriflate was independently

Scheme 7. Trapping Experiments of Strictosidyne Precursor
19 and Strictosamidyne Precursor 20

19 20

@ 4 \ CsF
(o} CH,CN, 50 °C 0 CH4CN, 50 °C
21 21

MeO,C
22 23
“Strictosidyne” “Strictosamidyne”
(66% yield) (55% yield)
(dr 1:1) (dr 1:1)

25
Strictosamide analog

Strictosidine analog

subjected to furan (21) and cesium fluoride in acetonitrile at
50 °C."** To our delight, this gave cycloadducts 24 and 25 in
66% and 55% yield (both 1:1 dr), respectively. The
chemoselectivity in both reactions is noteworthy, given that
the highly reactive aryne moieties could be generated and
trapped in the presence of nucleophilic groups, such as
unprotected amines and the four free alcohols on the glucosyl
unit. To our knowledge, 19 and 20 are the first silyl triflate
derivatives of complex alkaloids. Likewise, 22 and 23 are the
first aryne derivatives of such complex naturally occurring
structures.'”> We expect the ability to use and intercept aryne
derivatives of complex natural products will prove useful in
future efforts, especially those geared toward late-stage
structural diversification.

B CONCLUSIONS

In summary, we have completed the total synthesis of
(—)-strictosidine and several unnatural analogs thereof. Our
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stereospecific approach features a facially selective Diels—Alder
reaction to access the C15—C20—C21 stereotriad. As shown
by DFT calculations, stereoselectivity in this key step is
ultimately controlled by the glucosyl unit present in both the
dienophile and (—)-strictosidine itself as a result of an exo-
anomeric effect. This key step permits access to (—)-secolo-
ganin and an unnatural derivative, which are subsequently
employed in enzymatic or reagent-based Pictet—Spengler
reactions, to give (—)-strictosidine and an unnatural epimer.
Moreover, by accessing a “tryptaminyne” precursor, two
unusual aryne natural product derivatives termed “strictosi-
dyne” and “strictosamidyne” were generated and intercepted in
Diels—Alder cycloadditions. These studies not only provide a
means to access strictosidine and new derivatives thereof but
also showcase the ability of a glucosyl unit to guide
stereoselectivity through conformational effects, the synergy
between synthetic chemistry, biocatalysis, and computations,
and the use of “tryptaminyne” chemistry as a strategy to access
derivatives of complex alkaloids.
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