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1. Introduction

Let p be an odd prime and let r = (p −1)/2. Consider the cyclotomic field K = Q(ζp). 

Let Q = Gal(L/K) where L is the splitting field of the polynomial 1 − (1 − xp)p. Then 

Q is an elementary abelian p-group. For p satisfying Vandiver’s conjecture, the rank of 

Q is r + 1 [6, Proposition 3.6].

Let E be the maximal elementary abelian p-group extension of L ramified only over 

p. The field E is contained in a ray class field of L. Let G = Gal(E/K). Then, letting 

N = Gal(E/L), there is a short exact sequence

1 → N → G → Q → 1. (1)

If p is a regular prime, we prove that dimFp
(N) = 1 + pr+1(p − 1)/2 in Proposition 3.1.

There is an element ω ∈ H2(Q, N) which classifies the extension (1) and determines 

the isomorphism class of the group G. After choosing generators for Q and a splitting 

s : Q → G, then ω is determined by certain elements ai, cj,k ∈ N for 0 ≤ i ≤ r and 

0 ≤ j < k ≤ r, see Section 3.4.

Suppose M is a G-module on which N acts trivially. The inflation-restriction exact 

sequence yields a short exact sequence:

0 → H1(Q, M) →H1(G, M) → Ker(d2) → 0, (2)

where d2 : H1(N, M)Q →H2(Q, M) is the transgression map, which depends on ω as in 

[14, 3.7] and [21, 1.6.6, 2.4.3]. In [7, Theorem 6.11], given φ ∈ Hom(N, M)Q, we prove 

that the class of φ is in Ker(d2) if and only if the values of φ on ai and cj,k satisfy certain 

algebraic properties, see Theorem 3.7.

This paper is about the Galois cohomology of the homology of Fermat curves. The 

Fermat curve X of exponent p is the smooth curve in P 2 with equation xp + yp = zp. 

Let H1(X) denote the étale homology of X. Anderson proves that N acts trivially on 

H1(X; Z/pZ), [1, Section 10.5]. In this paper, we study the Galois cohomology group 

H1(G, H1(X; Z/pZ)). More generally, we study H1(G, M) for subquotients M of the rel-

ative homology H1(U, Y; Z/pZ) where U is the affine curve xp + yp = 1 and Y is the set 

of 2p cusps where xy = 0. The motivation for studying this Galois cohomology group 

and Ker(d2) is in Section 1.1.

The main theme of the paper is that Galois extensions of the cyclotomic field K

determine information about the kernel of the transgression map Ker(d2). In Section 3, 
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under the condition that Cl(L)[p] is trivial, we analyze how N , G, ω, and Ker(d2) are 

determined from certain ray class field extensions.

Suppose p is an odd prime satisfying Vandiver’s Conjecture. The main result of the 

paper is Theorem 4.18, in which we determine the subspace of Ker(d2) arising from 

Heisenberg extensions of K. In Section 4.7, we calculate the dimension of this subspace 

for some small p. More generally, in Section 4, we consider natural subextensions Ē/L

of E/L, which lead to quotients N̄ of N for which we can analyze H1(N̄, M)Q, and thus 

determine a subspace of Ker(d2). In Section 4.2, we determine the subspaces of Ker(d2)

arising from ray class, cyclotomic, and Kummer extensions of K; the latter two are trivial 

unless p = 3.

In Section 5, when p = 3, we perform an extensive MAGMA calculation to determine 

N , G, ω, and Ker(d2); in particular, we determine the dimension of Ker(d2) in Corol-

lary 5.7. The results in Sections 3.6, 4.7 and 5 are possible because we have explicit 

knowledge about the action of Q = Gal(L/K) on M from [7].

1.1. Motivation

The motivation to study the Galois cohomology group H1(G, H1(X; Z/pZ)) arises 

from the Kummer map. Let b = [0 : 1 : 0] be a base point of X. Let π = π1(XK̄ , b)

denote the geometric étale fundamental group of X based at b. Consider the lower central 

series:

π = [π]1 ⊇ [π]2 ⊇ . . . ⊇ [π]n ⊇ . . . .

Let GK be the absolute Galois group of K. For a K-rational point η of X, let γ be a 

path in X(C) from b to η. The Kummer map

κ : X(K) → H1(GK, π1(X)) (3)

is defined by κ(η) = [σ �→ γ−1σ(γ)] for σ ∈ GK .

The étale homology H1(X) = π/[π]2 is the maximal abelian quotient of π. From (3), 

we obtain a map κ : X(K) → H1(GK, H1(X) ⊗ Zp), which is injective. Let GK,S be the 

Galois group of the maximal pro-p extension of K ramified only over S = {ν} where 

ν = 〈1 − ζp〉. Since the Fermat curve X has good reduction away from p and K has no 

infinite primes, κ factors through κ : X(K) → H1(GK,S, H1(X) ⊗ Zp).

Using work of Schmidt and Wingberg [23], Ellenberg [8] defines a series of obstruc-

tions to a K-rational point of the Jacobian of X lying in the image of the Abel-Jacobi 

map. Namely, via the Kummer map, X(K) and Jac(X)(K) can be viewed as subsets of 

H1(GK,S, H1(X) ⊗ Zp). Let δ2 denote the first of these obstructions; it was also studied 

by Zarkhin [28]. By [23, Proposition 3.2], the map δ2 also factors through GK,S and has 

the form

δ2 : H1(GK,S, H1(X) ⊗ Zp) →H2(GK,S, ([π]2/[π]3) ⊗ Zp); (4)
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it is the coboundary map associated to the p-part of the exact sequence

1 → [π]2/[π]3 → π/[π]3 → π/[π]2 → 1.

Thus, a complete understanding of H1(GK,S, H1(X) ⊗ Zp), together with the map δ2, 

provides important information about K-rational points on X. In this paper, by taking 

the homology with coefficients in Z/pZ, we consider the “first level” of the cohomology. 

In Section 2.7, we show that we can replace GK,S by G for this first level and we use a 

spectral sequence to produce the exact sequence (2).

The goal of this paper is to analyze the quotient Ker(d2) of H1(G, H1(X; Z/pZ)). This 

material will be needed in future work, where we analyze the kernel H1(Q, M) of (2) and 

compute the obstruction map δ2.

2. Background

2.1. Field theory

Let p be an odd prime and let r = (p − 1)/2. Let ζp be a primitive pth root of unity. 

Let K = Q(ζp). By [27, Lemmas 1.3, 1.4], K is ramified only above p and 〈p〉 = νp−1

where ν = 〈1 − ζp〉 is the unique prime above p; also ν = 〈1 − ζi
p〉 for 1 ≤ i ≤ p − 1.

Let L be the splitting field of 1 − (1 − xp)p. Note that ζp ∈ L. Also L contains the pth 

roots of t0 = ζp and ti = 1 −ζ−i
p for 1 ≤ i ≤ r. Let K0 = K(ζp2) and Ki = K( p

√
ti). By [6, 

Lemma 3.3], L is the compositum of K0 and Ki for 1 ≤ i ≤ r. By [6, Lemma 3.3], L/K

is only ramified at ν. So L is contained in the maximal elementary abelian p-extension 

of K ramified only over the prime above p.

2.2. Galois groups

Let Q = Gal(L/K). We assume throughout that p satisfies Vandiver’s Conjecture, 

namely that p does not divide the order h+ of the class group of Q(ζp +ζ−1
p ); this is true 

for all p less than 163 million and all regular primes. By [6, Proposition 3.6], this implies 

that K0, . . . , Kr are linearly disjoint over K and so Q ≃ (Z/pZ)r+1, where r = (p −1)/2. 

In particular, the degree d = deg(L/Q) satisfies d = (p − 1)pr+1.

Note that Q ≃ ×r
i=0Gal(Ki/K). We choose an explicit basis {τ0, . . . , τr} for Q as 

follows. For 0 ≤ i ≤ r, let τi ∈ Q be such that τi(
p
√

ti) = ζp
p
√

ti and τi( p
√

tj) = p
√

tj for 

i �= j. Let τi also denote the image of τi in Gal(Ki/K).

Let GK (resp. GL) denote the absolute Galois group of K (resp. L).

2.3. A 2-nilpotent extension of K

Let E be the maximal elementary abelian p-group extension of L which is ramified only 

above p. Then E/K is Galois. Let N = Gal(E/L) and G = Gal(E/K). By definition, N
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is an elementary abelian p-group. As in (1), there is a short exact sequence 1 → N →
G → Q → 1.

2.4. Class groups

Let Cl(L) denote the class group of L. Let ClS(L) be the quotient of Cl(L) by the 

subgroup of classes of ideals generated by the primes of a set S. Let Cl(L)[p] and ClS(L)[p]

denote the p-Sylow subgroups of these.

For a number field F , let r2(F ) denote the number of complex places of F . Let GF,p

be the Galois group of the maximal pro-p extension of F ramified only above the primes 

above p, see [14, Section 11.1]. Since L is totally complex, r2(L) = d/2. This implies that 

no infinite places are ramified in finite extensions of L and that restricted and ordinary 

class groups are equal.

There is a short exact sequence

1 → GL,p → GK,p → Q → 1. (5)

For a finitely generated p-group Γ, let Φ(Γ) denote its Frattini subgroup, namely the 

closed characteristic subgroup of Γ topologically generated by pth powers and commu-

tators. We write Φ(Γ) = Γp[Γ, Γ]. The Frattini quotient Γ′ = Γ/Φ(Γ) is an elementary 

abelian p-group. By Burnside’s basis theorem, dimFp
(Γ′) = dimFp

(Γ).

By definition, N is the Frattini quotient G′
L,p of GL,p. The group G is the pushout of 

GK,p and N with respect to the inclusion GL,p → GK,p and the quotient map GL,p → N .

2.5. The Fermat curve

The Fermat curve of exponent p is the smooth projective curve X ⊂ P 2 given by 

the equation xp + yp = zp. The open affine U ⊂ X given by z �= 0 has affine equation 

xp + yp = 1. Let Y ⊂ U denote the closed subscheme of 2p points with xy = 0.

The curve X has good reduction away from p. Thus U/K has good reduction except 

at ν.

The group μp × μp acts on X, and this action stabilizes U and Y . Let ǫ0, ǫ1 be the 

generators of μp × μp which act by ǫ0(x, y) = (ζpx, y) and ǫ1(x, y) = (x, ζpy). Consider 

the group ring Λ1 = (Z/pZ)[μp × μp].

Let yi = ǫi − 1. Then yp
i = 0 and Λ1 ≃ (Z/pZ)[y0, y1]/〈yp

0 , yp
1〉. Consider the augmen-

tation ideal 〈(1 − ǫ0)(1 − ǫ1)〉 = 〈y0y1〉 of Λ1.

2.6. Homology

We consider étale homology groups with coefficients in Z/pZ. Let M = H1(U, Y) =

H1(U, Y; Z/pZ) denote the homology of U relative to Y .
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By [1, Theorem 6], M is a free rank one Λ1-module, with generator denoted β. Under 

the identification of M with Λ1, the homology H1(U) = H1(U; Z/pZ) identifies with the 

augmentation ideal 〈y0y1〉 ⊂ Λ1 [6, Proposition 6.2]. Furthermore, H1(X) =H1(X; Z/pZ)

is the quotient of H1(U) by Stab(ǫ0ǫ1) [6, Proposition 6.3].

In addition, M is a p-torsion GK-module. By [1, Section 10.5], the action of GK on M

factors through L. This implies that GL and N act trivially on M . This means that the 

action of GK on M is determined by the action of Q = Gal(L/K) on M . Write β for the 

chosen generator of M and let Bi = Bτi
∈ Λ1 denote the element such that τi · β = Biβ. 

By [1, 9.6, 10.5.2], Bi − 1 ∈ 〈y0y1〉.

2.7. The transgression map

Let M be a p-torsion GK,p-module. From (5) and the Lyndon-Hochschild-Serre spec-

tral sequence

Hi(Q, Hj(GL,p, M)) ⇒Hi+j(GK,p, M),

we obtain the exact sequence

0 → H1(Q, MGL,p) →H1(GK,p, M) →H1(GL,p, M)Q d2→H2(Q, MGL,p). (6)

Here d2 is called the transgression map. Suppose GL,p acts trivially on M , then 

Hi(Q, MGL,p) =Hi(Q, M) for i = 1, 2.

Since N is the Frattini quotient of GL,p and since M is a finite dimensional 

vector space over Fp, there is an isomorphism H1(GL,p, M)Q ≃H1(N, M)Q. Since G

is a quotient of GK,p, there is an injection H1(G, M) →H1(GK,p, M). By the short 

five lemma, H1(GK,p, M) ≃H1(G, M). With some abuse of notation, we write d2 :

H1(N, M)Q →H2(Q, M). Then there is an exact sequence, as in (2),

0 → H1(Q, M) →H1(G, M) → Ker(d2) → 0.

Since N acts trivially on M , an element φ ∈ H1(N, M)Q is uniquely determined by 

a Q-invariant homomorphism φ : N → M . To compute d2, we consider a 2-cocycle 

ω̃ : Q × Q → N for the element ω ∈ H2(Q, N) classifying the extension (1). By [21, 1.6.6, 

2.4.3] and [14, 3.7 (3.9) and (3.10)] (see [7, Proposition 6.1]), d2(φ) = −φ ◦ ω̃.

3. Ray class fields and the classifying element

Suppose that p is an odd prime satisfying Vandiver’s Conjecture. From Sections 2.1

and 2.2, recall that K = Q(ζp), L is the splitting field of the polynomial 1 − (1 − xp)p, 

and Q = Gal(L/K) is an elementary abelian p-group of rank r + 1, where r = (p − 1)/2.

From Section 2.3, E is the maximal elementary abelian p-group extension of L, ram-

ified only above p. Let G = Gal(E/K) and N = Gal(E/L). There is an exact sequence:
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1 → N → G → Q → 1. (7)

In Sections 3.1, 3.2, and 3.3, under the condition that p is regular, we use class field 

theory to give results on N and its connection with ray class fields. Section 3.4 contains 

the material needed to classify the extension (7). If M is a G-module on which N acts 

trivially, in Section 3.5, we give an algebraic description of the kernel of the transgression 

map d2 : H1(N, M)Q →H2(Q, M). We specialize this to the case that M is the relative 

homology of the Fermat curve in Section 3.6.

3.1. The rank of N when p is regular

Using the topic of p-rationality, we determine more information about L and N when 

p is a regular prime. A good reference for p-rationality is [18] or [10, IV, Section 3]. A 

number field M is p-rational when GM,p is a free pro-p group of rank 1 + r2(M). See 

other equivalent definitions in [10, IV, Remark 3.4.5, Theorem 3.5].

Proposition 3.1. If p is a regular prime, then L is p-rational and dimFp
(N) = 1 + d/2. 

Also, there is a unique prime p of L above p and Cl{p}(L)[p] is trivial.

(Recall that Cl{p}(L)[p] is the p-Sylow subgroup of the quotient Cl{p}(L) of Cl(L) by 

the subgroup of classes of ideals generated by p.)

Proof. If p is a regular prime, then K is p-rational by [17, Proposition 3, Example 

page 166]. Since L/K is a Galois p-extension unramified outside p, L/K is p-primitively 

ramified, e.g., [9, page 330]. Then L is p-rational by [17, Theorem 3]. Since L is p-

rational, then GL,p is a free pro-p group of rank 1 + r2(L) where r2(L) = d/2. Thus 

N ≃ (Z/pZ)1+d/2. The other claims follow from [17, Proposition 3] or [13, Theo-

rem 4.1(iva)]. �

We remark that it might be possible to extend the results to the case that p satisfies 

Vandiver’s conjecture, using the techniques of [11,12].

3.2. Local and global units

Let OL denote the maximal order of L. Let O×
L /p = O×

L /(O×
L )p denote the global 

units modulo p. By Proposition 3.1, if p is a regular prime, then there is a unique prime 

p of L above p.

Corollary 3.2. If p is a regular prime, then the p-rank of (OL/pn+1)× is d +1 if n ≥ pr+2.

Proof. Let e (resp. f) denote the ramification index (resp. residue degree) of p over Q. 

Set e1 = ⌊e/(p − 1)⌋. By [19, Theorem 1, page 45] or [24, Theorem 1, page 31], since 
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ζp ∈ L, the p-rank of (OL/pn+1)× is ef + 1 if n ≥ e + e1. The result follows since 

e = d = (p − 1)pr+1, f = 1, and e1 = pr+1. �

Let O×
p /p = O×

p /(O×
p )p denote the local units modulo p. Both O×

L /p and O×
p /p are 

Fp-vector spaces with an action of Q = Gal(L/K). Let ∗ denote the dual.

Proposition 3.3. If Cl(L)[p] is trivial, then there is a Q-invariant short exact sequence:

0 → H1(N, Fp) → (O×
p /p)∗ ϕ∗

2→ (O×
L /p)∗ → 1. (8)

Proof. The hypothesis that Cl(L)[p] is trivial implies that p is a regular prime. Let 

ϕ∗
2 be the dual to the homomorphism ϕ2 : O×

L /p → O×
p /p induced from the inclusion 

OL → Op. By [14, pages 114-115, Theorem 11.7], there is a Q-invariant exact sequence

0 → H2(Cl(L)[p], Fp)
inf→ H1(GL,p, Fp) → (O×

p /p)∗ ϕ∗

2→ O×
L /p → Bp → 0.

Since Cl(L)[p] is trivial, H2(Cl(L)[p], Fp) = 0. Also, H1(GL,p, Fp) ≃H1(N, Fp). By [14, 

page 120], dimFp
(O×

L /p) = d/2 and dimFp
(O×

p /p) = d + 1. By Proposition 3.1, 

dimFp
(N) = 1 + d/2. The result follows since Bp is trivial by a dimension count. �

3.3. Ray class fields

Let Lm (resp. Clm(L)) denote the ray class field (resp. group) of L of modulus m. 

Every extension of L has a conductor, a minimal admissible modulus, which is only 

divisible by the ramified primes. Thus the field E is contained in the ray class field Lpi , 

for i sufficiently large. Since L is totally complex, the narrow ray class group is the same 

as the ray class group, e.g., [20, page 368]. Let (OL/m)
×

denote the units mod m of L.

Lemma 3.4. If Cl(L)[p] is trivial, then the p-ranks of Clpi(L) and (OL/pi)× stabilize at 

the same index i.

Proof. Consider the exact sequence [5, 3.2.3]:

U(L)[p]
Hom→ (OL/m)×[p]

ψ→ Clm(L)[p]
φ→ Cl(L)[p] → 0. (9)

If Cl(L)[p] is trivial, then Clm(L)[p] = (OL/m)×[p]/(Hom(U(L)[p]) by (9). Consider (9)

for the moduli m = pi and pi+1. There is a commutative diagram

U(L)[p]
Ho

pi+1

(OL/pi+1)×[p]

U(L)[p]
Ho

pi

(OL/pi)×[p].
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Consider the surjection of the Frattini quotients (OL/pi+1)×[p]′ → (OL/pi)×[p]′. The 

p-rank of (OL/pi)× stabilizes at index i if and only if i is the first value such that 

this surjection is an isomorphism. This is equivalent to the equality dimFp
(Im(ρpi+1)) =

dimFp
(Im(ρpi)) or the fact that the p-rank of Clpi(L)[p] stabilizes at index i. �

3.4. Classifying the extension

Let N = Gal(E/L), G = Gal(E/K), and Q = Gal(L/K). Let ω be the element of 

H2(Q, N) classifying (7) 1 → N → G → Q → 1. Since Q and N are both elementary 

abelian p-groups, the structure of H2(Q, N) can be computed abstractly. However, the 

precise identification of ω ∈ H2(Q, N) depends intrinsically on the structure of G.

For example, by Lemma 4.14, G surjects onto a Heisenberg group. Then (7) is not 

split because the short exact sequence for the Heisenberg group has no splitting. This 

implies that ω is non-trivial (i.e., G is not a semi-direct product).

Consider a section s : Q → G of the extension (7). Without loss of generality, we 

assume that s(1) = 1 and

s(τe0

0 · · · τer
r ) = s(τ0)e0 · · · s(τr)er , for 0 ≤ ei ≤ p − 1. (10)

Then there is a 2-cocycle ω̃ : Q × Q → N defined with the formula

ω̃(q1, q2) = s(q1)s(q2)s(q1q2)−1.

The class of ω̃ in H2(Q, N) is ω; in particular, it does not depend on the choice of s.

Consider the generators τi with 0 ≤ i ≤ r for Q ≃ (Z/pZ)r+1 from Section 2.2. For 

0 ≤ i ≤ r, define elements ai by

ai = s(τi)
p, (11)

and for 0 ≤ j < k ≤ r, define cj,k by

cj,k = [s(τk), s(τj)] = s(τk)s(τj)s(τk)−1s(τj)−1. (12)

Note that ai, cj,k ∈ N since their images in Q are trivial. These values provide a useful 

way to classify the extension (7) and play a key role in our analysis of Ker(d2), see 

Theorem 3.7.

The difficulty is that not every section s satisfies (10). Thus, following [3, IV, §3], 

suppose ω′ : Q × Q → N is another 2-cocycle representing the class ω ∈ H2(Q, N). 

We may choose ω′ such that ω′(q, 1) = ω′(1, q) = 1 for all q ∈ Q. By [3, page 92], ω′

determines a unique extension as in (7), together with a section t : Q → G such that 

t(1) = 1. By [3, IV §3 (3.3)], the correspondence between t and ω′ is described by

ω′(q1, q2) = t(q1)t(q2)t(q1q2)−1. (13)
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This yields the following description of G = Gal(E/K) as an abstract group: the elements 

of G are in bijection with N × Q; this bijection takes (n, q) to nt(q). The group law is:

(n1, q1)(n2, q2) = (n1(q1n2)ω(q1, q2), q1q2).

The section t for ω might not satisfy the conditions in (10). To fix this, we set s(τi) =

t(σ) = 0 × τi and extend s to a set-theoretic section s : Q → G using (10). Next, we 

show that the values of ai = s(τi)
p and cj,k = [s(τk), s(τj)] can be computed from ω′.

Lemma 3.5. With notation as above:

ai =

p−1
∑

ℓ=1

ω′(τ ℓ
i , τi) and cj,k = ω′(τk, τj) − ω′(τj , τk).

Proof. First, by (13), ω′(τ ℓ
i , τi) = t(τ ℓ

i )t(τi)t(τ
ℓ+1
i )−1. Taking the telescoping product 

yields

ω′(τi, τi)ω
′(τ2

i , τi) · · · ω′(τp−1
i , τi) = t(τi)

p. (14)

Second, by (13),

ω′(τk, τj) = t(τk)t(τj)t(τkτj)−1. (15)

By (13), ω′(τj , τk) = t(τj)t(τk)t(τjτk)−1. Since τjτk = τkτj in Q, then t(τjτk) = t(τkτj). 

So

ω′(τj , τk)−1 = t(τkτj)t(τk)−1t(τj)−1. (16)

Multiplying (15) and (16) yields

ω′(τk, τj)ω′(τj , τk)−1 = t(τk)t(τj)t(τk)−1t(τj)−1 = [t(τk), t(τj)]. (17)

To finish, we replace t(τi) with s(τi) in (14) and (17) and rewrite the equations addi-

tively. �

Remark 3.6. Lemma 3.5 is a generalization of [7, Lemma 6.10]. To see this, note that if 

the section t does satisfy (10) then ω′(τ ℓ
i , τi) = 0 for 0 ≤ ℓ ≤ p − 2.

3.5. The transgression map

Let M be a G-module such that N acts trivially on M . Since the action of N on 

M is trivial, an element φ ∈ H1(N, M) is uniquely determined by a homomorphism 

φ : N → M .
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Furthermore, Q acts by conjugation on N . Then φ ∈ H1(N, M)Q if and only if the 

homomorphism φ is Q-invariant, i.e., φ(q · n) = q · φ(n) for all n ∈ N .

As in Section 2.7, associated with the exact sequence (7), there is the transgression 

map

d2 : H1(N, M)Q →H2(Q, M). (18)

We now give an algebraic description of Ker(d2). Recall the definitions of ai, cj,k ∈ N

from (11) and (12). Write Nτi
= 1 + τi + · · · + τi

p−1 for the norm of τi.

Theorem 3.7. [7, Theorem 1.2]. Let M be a G-module such that N acts trivially on 

M . Suppose φ ∈ H1(N, M)Q is a class represented by a Q-invariant homomorphism 

φ : N → M . Then φ is in the kernel of d2 if and only if there exist m0, . . . , mr ∈ M

such that

1. φ(ai) = −Nτi
mi for 0 ≤ i ≤ r and

2. φ(cj,k) = (1 − τk)mj − (1 − τj)mk for 0 ≤ j < k ≤ r.

3.6. The transgression map for Fermat curves

We now specialize to the Fermat curve setting. If M is any subquotient of the relative 

homology H1(U, Y; Z/pZ) of the Fermat curve of degree p, then M is a G-module on 

which N acts trivially.

Recall that Q = Gal(L/K) is generated by {τi | 0 ≤ i ≤ r}. From Section 2.6, 

Bi ∈ Λ1 is such that τi · β = Biβ. The norm of Bτi
is almost always zero, which is useful 

for determining subspaces of the kernel of d2 arising from certain extensions of K in the 

next section.

Theorem 3.8. [7, Theorem 4.6] Suppose M = H1(U, Y; Z/pZ) is the relative homology 

of the Fermat curve of exponent p. Let Nτi
denote the norm of Bi in Λ1. If p ≥ 5, then 

Nτi
= 0 for 0 ≤ i ≤ r; if p = 3, then Nτ1

= 0 but Nτ0
= y2

0y2
1.

4. Subspaces of the kernel of the transgression map

The results in this section apply for any odd prime p satisfying Vandiver’s Conjecture. 

The main theme is that Galois extensions of the cyclotomic field K = Q(ζp) determine 

subspaces of the kernel Ker(d2) of the transgression map.

We study this when M is a subquotient of the relative homology of the Fermat curve 

of degree p. In Section 4.2, we determine the subspaces of Ker(d2) arising from ray class, 

cyclotomic and Kummer field extensions of K; Propositions 4.4, 4.9, 4.11 show that 

these are frequently trivial. The main result is Theorem 4.18 in Section 4.5 in which we 

determine the subspace of Ker(d2) arising from Heisenberg extensions of K. We compute 



R. Davis, R. Pries / Journal of Algebra 554 (2020) 78–105 89

this subspace with Magma for p = 3, 5, 7 using our explicit knowledge of the action of 

GK on M .

4.1. Subextensions and subspaces

Suppose Ē is a subfield of E containing L such that E/K is Galois. Let Ḡ = Gal(Ē/K)

and let N̄ = Gal(Ē/L). Then Ḡ is a quotient of G and N̄ is a quotient of N . In this 

situation, there is an exact sequence

1 → N̄ → Ḡ → Q → 1. (19)

An element φ̄ ∈ H1(N̄, M)Q is uniquely determined by a Q-invariant homomorphism 

φ̄ : N̄ → M .

Lemma 4.1. If the conjugation action of Q on N̄ is trivial, then H1(N̄, M)Q ≃ (MQ)ρ

where ρ = dimFp
(N̄).

Proof. This is clear since φ̄ ∈ H1(N̄, M) is Q-invariant if and only if φ̄(N̄) ⊂ MQ. �

Lemma 4.2. There is a natural inclusion ι : H1(N̄, M)Q →֒H1(N, M)Q.

Proof. This is true because the action of N on M is trivial and N̄ is Q-invariant. More 

explicitly, ι(φ̄) is the composition of the surjective reduction map N → N̄ with φ̄; if φ̄ is 

non-trivial, then so is ι(φ̄). �

Associated with the exact sequence (19), there is a differential map

d̄2 : H1(N̄, M)Q →H2(Q, M). (20)

Lemma 4.3. Then d̄2 = d2 ◦ ι and Ker(d̄2) ⊂ Ker(d2).

Proof. This follows from the description of ι(φ̄) in the proof of Lemma 4.2. �

For the following types of extensions of K, we determine the element in H2(Q, N̄)

classifying the extension (19) and determine the resulting subspace Ker(d̄2) of Ker(d2): 

ray class, cyclotomic, Kummer, Heisenberg, and U4 extensions.

4.2. Information from ray class, cyclotomic, and Kummer extensions of K

4.2.1. The ray class group of K

Let Φ(G) = Gp[G, G] denote the Frattini subgroup of G. Let L̃ be the fixed field 

of E over K by Φ(G). By definition, G̃ = Gal(L̃/K) is the elementary abelian p-group 
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G/Φ(G). Also L̃ is the maximal elementary abelian p-group extension of K ramified only 

over ν. Note that L ⊆ L̃. Let ρ ∈ Z≥0 be such that deg(L̃/L) = pρ.

Note that Φ(G) ⊂ N since Q is an elementary abelian p-group. Let Ñ = N/Φ(G). By 

definition, L̃/L is Galois with group Ñ = Gal(L̃/L).

By Lemma 4.3, Ker(d̃2) ⊂ Ker(d2), where d̃2 : H1(Ñ, M)Q →H2(Q, M).

Proposition 4.4. Suppose M is a G-module on which Ñ acts trivially. If deg(L̃/L) = pρ, 

then Ker(d̃2) = H1(Ñ, M)Q ≃ (MQ)ρ.

Proof. By Lemma 4.1, H1(Ñ, M)Q ≃ (MQ)ρ. Since G̃ is an elementary abelian p-group, 

the images ãi, ̃cj,k ∈ Ñ of ai, cj,k ∈ N are all trivial. The conditions in Theorem 3.7 for 

φ to be in Ker(d̃2) are all satisfied, by taking mi = 0 for 0 ≤ i ≤ r. Thus Ker(d̃2) =

H1(Ñ, M)Q. �

Example 4.5. Using Magma [2], we compute that ρ = 0 for p < 37 and ρ = 1 for p = 37, 

with the computation for p ≥ 23 depending on the generalized Riemann hypothesis. 

To see this, consider the ray class group of K for the modulus m = (1 − ζp)i. By [19, 

Theorem 1] or [24, Theorem 1], the rank of its maximal elementary abelian p-group 

quotient stabilizes beyond some index i. Also i = e + ⌊ e
p−1 ⌋ + 1, where e = p − 1 is 

the ramification index of 〈1 − ζp〉 of K above p, so i = p + 1. From this, it follows that 

ρ = dimFp
Cl(1−ζp)i(K)[p] − (r + 1).

4.2.2. A cyclotomic extension of K

Let v = ζp3 . Let w = vp = ζp2 and note that w ∈ L. Let L∗ = L(v). Let r = (p −1)/2.

Lemma 4.6. The extension L∗/K is Galois and is ramified only over ν. The Galois group 

G∗ = Gal(L∗/K) is isomorphic to Z/p2Z × (Z/pZ)r.

Proof. This is because L∗/K is the compositum of the Z/p2Z-extension K(v)/K and 

the Z/pZ-extensions K( p
√

ti)/K where ti = 1 − ζ−i
p for 1 ≤ i ≤ r. These extensions are 

disjoint and each ramified only over ν. �

By Lemma 4.6, L ⊂ L∗ ⊂ E. Then N∗ = Gal(L∗/L) is a quotient of N . Let a∗
i , c∗

j,k

denote the images of ai, cj,k ∈ N in N∗ = Gal(L∗/L) for 0 ≤ i ≤ r and 0 ≤ j < k ≤ r.

Lemma 4.7. With notation as above, N∗ is generated by a∗
0. Also, a∗

i is trivial for 1 ≤
i ≤ r and c∗

j,k is trivial for 0 ≤ j < k ≤ r.

Proof. By Lemma 4.6, G∗ = Gal(L∗/K) is abelian and generated by automorphisms 

τ∗
i whose image in Q is τi for 0 ≤ i ≤ r; also τ∗

0 has order p2 and τ∗
i has order p for 

1 ≤ i ≤ r.

In particular, τ∗
0 (v) = ve for some exponent e ∈ Z/p3Z such that p ∤ e. The relation 

vp = w implies that τ∗
0 (w) = we. Thus e ≡ p + 1 mod p2.
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By definition, a∗
0 = (τ∗

0 )p(v)/v. Now τ∗
0 (v) = vep

. The condition e ≡ p + 1 mod p2

implies that ep ≡ 1 + p2 mod p3. Thus a∗
0 = vep−1 = vp2

= ζp. Thus a∗
0 is non-trivial and 

thus generates N∗.

By definition, c∗
j,k = τ∗

k τ∗
j (τ∗

k )−1(τ∗
j )−1(v)/v. Since G∗ is abelian, c∗

j,k is trivial.

For 1 ≤ i ≤ r, by definition, a∗
i = (τ∗

i )p(v)/v. Since τ∗
i has order p, a∗

i is trivial. �

Proposition 4.8. If M is a G-module on which N∗ acts trivially, then H1(N∗, M)Q ≃ MQ.

Proof. This follows from Lemma 4.1 and Lemma 4.7, with the isomorphism H1(N∗, M)Q

≃ MQ identifying φ̄∗ with the value μ∗ = φ̄∗(a∗
0) ∈ MQ. �

By Lemma 4.3, Ker(d∗
2) ⊂ Ker(d2) where d∗

2 : H1(N∗, M)Q →H2(Q, M).

Proposition 4.9. Let X be the Fermat curve of degree p. Suppose M is a subquotient of 

the relative homology H1(U, Y; Z/pZ).

1. If p ≥ 5, then Ker(d∗
2) = 0. The same is true for p = 3 when M = H1(X; Z/3Z).

2. If p = 3 and M = H1(U; Z/3Z) or M = H1(U, Y; Z/3Z), then Ker(d∗
2) has dimension 

1 and is generated by the homomorphism φ∗ : N∗ → M such that φ∗(a∗
0) = y2

0y2
1.

Proof. A Q-invariant morphism φ∗ : N∗ → M is determined by its image on the gen-

erator a∗
0 of N∗. Theorem 3.7 contains the conditions for φ∗ to be in Ker(d∗

2). By 

Theorem 3.8, Nτi
= 0 for 1 ≤ i ≤ r. Since c∗

j,k = 0, and a∗
i = 0 for 1 ≤ i ≤ r, 

these conditions are satisfied if and only if φ∗(a∗
0) = −Nτ0

m0 for some m0 ∈ M . If p ≥ 5

then Nτ0
= 0. If p = 3, then Nτ0

= y2
0y2

1 , which is trivial in H1(X; Z/3Z), but not in 

H1(U; Z/3Z) or H1(U, Y; Z/3Z). �

The theory of higher ramification groups for a ramified prime in an extension of 

number fields can be found in [25, Chapter 4]. For ramification of order pe, there are 

e jumps in the filtration which can be indexed in either the upper or lower numbering. 

The first jump is the same in both numbering systems and the conductor is one more 

than the last lower jump.

Lemma 4.10. When p is a regular prime, then the conductor of L∗/L is p3 − 2p2 + 2p.

Proof. The facts in this proof about jumps in ramification filtrations can be found in 

[25, Chapter 4]. The extension K(w)/K has jump p − 1. The extension K( p
√

ti)/K has 

jump p for 1 ≤ i ≤ r. Let K◦ = K( p
√

t1, . . . p
√

tr). Then L = K(w)K◦.

When p is a regular prime, then there is a unique prime of L above p by Proposition 3.1. 

It is totally ramified since the residue field degrees of K(w)/K and K( p
√

ti)/K are all 

trivial. So L/K has r + 1 upper jumps, and they are u1 = p − 1 and u2 = p (with 

multiplicity r). By Herbrand’s formula, the lower jumps j1 and j2 satisfy j2 − j1 =

p(u2 − u1). So L/K has lower jumps j1 = p − 1 and j2 = 2p − 1 (with multiplicity r).
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Thus L/K(w) has lower jump 2p − 1 with multiplicity r. The jump of K(v)/K(w)

is p2 − 1. Note that L∗ = K(v)K◦. So L∗/K(w) has upper jumps U1 = 2p − 1 (with 

multiplicity r) and U2 = p2 −1. By Herbrand’s formula, this has lower jumps J1 = 2p −1

(with multiplicity r) and J2 = p3 − 2p2 + 2p − 1. Thus L∗/L has jump J2 and conductor 

J2 + 1. �

We use Lemma 4.10 in Notation 5.2 and Remark 5.8 to identify the non-trivial ho-

momorphism φ∗ ∈ Ker(d∗
2) in Ker(d2) when p = 3, in which case the conductor of L∗/L

is 15.

4.2.3. Kummer extensions

In this section, we show that some other Kummer extensions of L do not increase the 

dimension of Ker(d2).

Let K0 = Q(ζp2) and K∗
0 = Q(ζp3). From Section 4.2.2, τ0 lifts to an automorphism 

τ∗
0 of K∗

0 such that τ∗
0 (ζp3) = ζe

p3 for some integer e such that e ≡ p + 1 mod p2. Also 

τ∗
0 (ζp2) = ζe

p2 .

Let F ∗
i = K( p2√

ti) where ti = 1 − ζ−i
p . Note that F ∗

i /K is not Galois, but F ∗
i K0 is 

Galois over K0. Also F ∗
i is ramified only over ν = 〈1 − ζp〉.

Let F ∗ be the compositum of F ∗
i for 0 ≤ i ≤ r. Let G̃∗ = Gal(F ∗/K). Then G̃∗ is 

generated by the lifts τ∗
i of τi, each of which has order p2. Let G◦ be the subgroup of G̃∗

generated by τ∗
i for 1 ≤ i ≤ r. Since K∗

0 /K is Galois, G◦ is normal and there is a short 

exact sequence

1 → G◦ → G̃∗ → 〈τ∗
0 〉 → 1.

For 1 ≤ i ≤ r, the conjugate of τ∗
i by τ∗

0 is (τ∗
i )e because

τ∗
0 τ∗

i (τ∗
0 )−1( p2√

ti) = τ∗
0 (ζp2

p2√
ti) = ζe

p2
p2√

ti = (τ∗
i )e( p2√

ti).

Note that F ∗ is an elementary abelian p-group extension of L which is ramified only 

above p. So N̄∗ = Gal(F ∗/L) is a quotient of N . Let ā∗
i , c̄∗

j,k denote the images of ai, 

cj,k in N̄∗.

Proposition 4.11. With notation as above:

1. N̄∗ ≃ (Z/pZ)r+1 and a basis for N̄∗ is given by ā∗
i for 0 ≤ i ≤ r;

2. if j �= 0, then c̄∗
j,k is trivial; if j = 0, then c̄∗

0,k = ā∗
k.

3. If M is a subquotient of the relative homology of the Fermat curve, then the kernel 

of d̄∗
2 on N̄∗ equals Ker(d∗

2) from Proposition 4.9.

Proof. 1. First N̄∗ ≃ ×r
i=0N̄∗

i where N̄∗
i = Gal(LK∗

i /L). By Lemma 4.7, N̄∗
0 = N∗

is generated by a∗
0. For 1 ≤ i ≤ r, the image of ā∗

i in N̄∗
i is non-trivial because 

(τ∗
i )p( p2√

ti)/
p2√

ti = ζp; but the image of ā∗
i in N̄∗

j for i �= j is trivial.
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2. If j �= 0, then c̄∗
j,k is trivial because τ∗

j and τ∗
k commute. If j = 0, then

τ∗
0 τ∗

k (τ∗
0 )−1(τ∗

k )−1( p2√
ti)/

p2√
ti = (τ∗

k )e−1( p2√
ti)/( p2√

ti) = ζe−1
p2 = ζp.

3. Suppose φ ∈ d̄∗
2. Then φ(ā∗

i ) = 0 for 1 ≤ i ≤ r. So φ is zero on ×r
i=1N̄∗, and is thus 

determined by its image on N̄∗
0 . �

4.3. Review of Heisenberg extensions

Let Hp denote the mod p Heisenberg group, namely the multiplicative group of upper 

triangular 3 × 3 matrices with coefficients in Z/pZ and diagonal entries equal to 1. Let 

Up denote the central subgroup of Hp consisting of those matrices for which the upper 

right corner is the only non-zero entry off the diagonal.

Let q : Hp → Hp/Up ≃ Z/pZ × Z/pZ denote the quotient map. The two coordinate 

projections Z/pZ ×Z/pZ → Z/pZ produce two classes ι1, ι2 in H1(Z/pZ × Z/pZ, Z/pZ). 

The cup product ι1 ∪ ι2 in H2(Z/pZ × Z/pZ, Z/pZ) classifies the extension

1 → Up → Hp
q→ Z/pZ × Z/pZ → 1. (21)

Heisenberg extensions appear in many places in the literature. We follow the notation 

of [26]. The next result is a special case of [26, Proposition 2.3]. Let K = Q(ζp).

Proposition 4.12. Suppose Lα,β = K( p
√

α, p
√

β) is a field extension of K with Gal(Lα,β/K)

≃ Z/pZ × Z/pZ. Then there is a Galois field extension R/K dominating Lα,β/K such 

that Gal(R/K) → Gal(Lα,β/K) is isomorphic to q : Hp → Z/pZ × Z/pZ if and only if 

κ(α) ∪ κ(β) = 0 in H2(GK, (Z/pZ)(2)) ∼=H2(GK, Z/pZ).

Furthermore, by [26, Section 2.4], the extension R/K can be constructed explicitly, 

and in some sense uniquely, as follows. Let Kα = K( p
√

α) and Kβ = K( p
√

β). Then Lα,β =

KαKβ . Let τα ∈ Gal(Kα/K) be multiplication by ζp on p
√

α and let τβ ∈ Gal(Kβ/K)

be multiplication by ζp on p
√

β. These determine 2 characters χα and χβ.

Consider the surjection ρ̄ : GK → Gal(Lα,β/K). By [26, Section 2.4], ρ̄ lifts to ρ :

GK → Hp if and only if the cup product χα ∪χβ is zero. Also, the cup product equals the 

norm residue symbol (α, β) which is trivial if and only if β ∈ NKα/K(K∗
α) [25, XIV.2]. 

In this case, let β ∈ K∗
α be such that β = NKα/K(β). Then, let

γα,β =

p−1
∏

j=0

τ j
α(β)j . (22)

By [26, Lemma 2.4], σ(γα,β) ≡ γα,β mod (L∗
α,β)p for all σ ∈ Gal(Lα,β/K).

By [26, Theorem 2.5], the Heisenberg relation ρ has the property that, for all ξ ∈
GLα,β

,
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ρ(ξ) = Ind
ξ( p

√
γα,β)

p
√

γα,β
.

This means that ρ factors through the extension Rα,β = Lα,β( p
√

γα,β). Furthermore, γα,β

is unique up to multiplication by an element of K∗(L∗
α,β)p.

Finally, by [26, Equation 2.4],

τα(γα,β) =
βp

NKα/K(β)
γα,β . (23)

4.4. Heisenberg extensions of K

We apply this to the (Z/pZ)2-extensions of K in L. The Steinberg relation is that the 

cup product κ(α) ∪ κ(1 − α) = 0 is zero for any α ∈ K∗ − {1}, see [15, section 11]. Let 

1 ≤ I ≤ r. Choose α = ζ−I
p and β = 1 − ζ−I

p . Let

FI = K(
p

√

ζ−I
p ,

p

√

1 − ζ−I
p ).

Applying Proposition 4.12, there is a field extension RI/K dominating FI/K such 

that Gal(RI/K) → Gal(FI/K) is isomorphic to q : Hp → Z/pZ × Z/pZ.

Lemma 4.13. Let w = ζp2 and β
I

= 1 − w−I . Let Kα = K( p

√

ζ−I
p ) = K(w). Then 

NKα/K(β
I
) = 1 − ζ−I

p .

Proof. By definition, NKα/K(β
I
) =

∏p−1
ℓ=0 τ ℓ

0(β
I
). Because τ0(w) = ζpw, this simplifies 

to

(1 − w−I)(1 − ζ−I
p w−I) · · · (1 − ζ−I(p−1)

p w−I) = 1 − ζ−I
p . � (24)

By definition, τβ acts by multiplication by ζp on p
√

β where β = 1 − ζ−I
p . So τβ = τI . 

By definition, τα acts by multiplication by ζp on p
√

α where α = ζ−I
p . So τα = τJ

0 where 

J is such that −IJ ≡ 1 mod p.

In particular, τα(w) = ζJ
p w. Write β = β

I
= 1 − w−I . So

τ j
α(β) = 1 − (ζjJ

p w)−I = 1 − ζj
pw−I .

Let γI = γα,β . By (22),

γI =

p−1
∏

j=0

τ j
α(β)j =

p−1
∏

j=1

(1 − ζj
pw−I)j =

p−1
∏

j=1

(1 − wpj−I)j . (25)
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By (23) and Lemma 4.13,

τα(γI) =
(1 − w−I)p

1 − ζ−I
p

γI . (26)

Let R̃I = LRI . Both RI/FI and R̃I/L are generated by p
√

γI .

Lemma 4.14. The Heisenberg extension RI/K is ramified only over 1 −ζp. Thus R̃I ⊂ E.

Proof. The field R̃I is a Z/pZ-Galois extension of L. The second statement follows 

directly from the first, since it guarantees that the ramification of R̃I occurs only at 

primes above p.

Recall that FI over K is ramified only over p [6, Lemma 3.2]. So it suffices to prove 

that all the ramification of RI over FI lies above p. By [4, Lemma 5, Section 3.2], a prime 

η of FI is unramified in RI if η ∤ pγI . But γI is a product of powers of the conjugates 

of β
I

under σ. Each of these conjugates of β
I

is a generator for the unique prime ideal 

of KI above p. Thus the primes of FI which are ramified in RI all lie above β
I

which 

lies above p. Since there are no real places of K, there is no ramification of K over any 

infinite place. �

The following result is useful because the conductor is the same as the index of the 

modulus for which this extension appears in the ray class field.

Lemma 4.15. The conductor of RI/FI is p2 + p(p − 1)/2.

Proof. Take z = p
√

γI . Then z generates RI/FI . The conductor is the valuation in FI

of g(z) − z = (ζp − 1)z, where g generates Gal(RI/FI). The valuation of z in FI equals 

the valuation of γI in Z[ζp2 ] which is 1 + · · · + (p − 1) = p(p − 1)/2. So the conductor is 

p2 + p(p − 1)/2. �

We use Lemma 4.15 in Notation 5.2 and Remark 5.8 when p = 3, with conductor 12.

4.5. The Heisenberg classifying element

Recall that RI/K is an Hp-Galois extension dominating FI/K and R̃I = LRI . Let 

NI = Gal(R̃I/L) = Gal(RI/FI) ≃ Z/pZ.

Let R̃ be the compositum of R̃I for I ∈ I := {1, . . . , (p − 1)/2}. Note that R̃/K is 

Galois because the action of Q permutes the fields FI , and thus permutes the Heisenberg 

extensions RI . Thus Q stabilizes R̃. Let N̄H = Gal(R̃/L).

Proposition 4.16. Let āi, ̄cj,k be the images of ai, cj,k in N̄H . Then N̄H ≃ ×I∈INI ≃
(Z/pZ)r and a basis for N̄H is given by {c̄0,k | 1 ≤ k ≤ r}. In particular,
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1. āi is trivial for 0 ≤ i ≤ r;

2. c̄j,k is trivial if j �= 0;

3. and the image of c̄0,k in NI is non-trivial if and only if k = I.

Proof. With some risk of confusion, we use the same notation āi and c̄j,k to denote the 

images of āi and c̄j,k in Gal(RI/FI). The claim is that āi and c̄j,k are trivial for each I

when j �= 0 and that c̄0,k is non-zero if and only if k = I.

The last part of this claim implies the main statement of Proposition 4.16. If c̄0,I has 

a non-trivial image in NI but a trivial image in Nk for k �= I, then RI is disjoint from 

the compositum of {Rk | 1 ≤ k ≤ r, k �= I}.

Let w = ζp2 and let tI = β. Recall that FI = K(w, p
√

tI) and that Gal(FI/K) is 

generated by σ = τ0 and τβ = τI where σ(w) = ζpw = w1+p and σ( p
√

tI) = p
√

tI and 

τβ(w) = w and τβ( p
√

tI) = ζp
p
√

tI . For ℓ �= 0, I, the other automorphisms τℓ generating 

Q act trivially on FI .

Recall that RI/K is a Heisenberg extension and that σ and τ1, . . . , τr extend to σ̃ and 

τ̃ , . . . , ̃τr in Gal(RI/K). By definition, the elements āi and c̄j,k in NI are

āi = τ̃p
i ( p

√
γI)/ p

√
γI ,

and

c̄j,k = τ̃k τ̃j τ̃−1
k τ̃−1

j ( p
√

γI)/ p
√

γI .

1. Then āi is trivial because τ̃i has order p in the Heisenberg group Hp.

2. If j �= 0, then τ̃j and τ̃k fix p
√

γI , so c̄j,k is trivial.

3. We compute c̄0,k in NI . Now c̄0,k = [τ̃k, ̃σ]( p
√

γI)/ p
√

γI . Since σ̃ = τ̃−I
α , the following 

quantity is non-trivial exactly when c̄0,k is non-trivial:

[τ̃k, τ̃α]( p
√

γI)/ p
√

γI = τ̃k τ̃ατ̃−1
k τ̃−1

α ( p
√

γI)/ p
√

γI . (27)

By (26), for some z ∈ μp,

τ̃α( p
√

γI) = z
1 − w−I

p

√

1 − ζ−I
p

p
√

γI = z
1 − w−I

p
√

tI

p
√

γI .

The value of z is not important since it is fixed by Q; set z = 1.

If k �= I, then τ̃k fixes p
√

tI and ω and thus commutes with the action of τ̃α on p
√

γI . 

Thus the quantity in (27) is trivial and c̄0,k is trivial in NI when k �= I.

Now consider the case that k = I. The result is stated in [26, Equation 2.5]; since no 

details are included there, we include a proof for the benefit of the reader.

Note that τ̃α fixes p
√

tk. Thus

τ̃2
α( p

√
γk) =

(1 − τ̃α(w)−k)
p
√

tk

(1 − w−k)
p
√

tk

p
√

γk.
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It follows that

τ̃p−1
α ( p

√
γk) =

1

( p
√

tk)p−1
(1 − wk)(1 − τ̃α(wk)) · · · (1 − τ̃p−2

α (wk)) p
√

γk.

Recall that τ̃k acts by multiplication by ζp on p
√

tk. By modifying τ̃k by an element 

of Gal(R̃/L), we may assume that τ̃k( p
√

γk) = ζp
p
√

γk. It follows that

τ̃p−1
k τ̃p−1

α ( p
√

γk) =
1

ζp( p
√

tk)p−1
(1 − wk)(1 − τ̃α(wk)) · · · (1 − τ̃p−2

α (wk))ζp
p
√

γk. (28)

Applying τ̃α to the right hand side of (28) yields

1

( p
√

tk)p−1
(1 − τ̃α(wk))(1 − τ̃2

α(wk)) · · · (1 − τ̃p−1
α (wk))

1 − w−k

tk

p
√

γk. (29)

By Lemma 4.13,

τ̃ατ̃p−1
k τ̃p−1

α ( p
√

γk) =
1

tk
NKα/K(1 − wk) p

√
γk = p

√
γk.

Thus

[τ̃k, τ̃α]( p
√

γk) = τ̃k τ̃ατ̃p−1
k τ̃p−1

α ( p
√

γk) = ζp
p
√

γk.

Thus c̄0,k is non-trivial in Nk, which completes the proof. �

Proposition 4.17. If M is a G-module on which N̄H acts trivially, then H1(N̄H, M)Q ≃
(MQ)r.

Proof. Since M is a trivial N̄H -module, H1(N̄H, M)Q ≃ Hom(N̄H, M)Q. By Proposi-

tion 4.16, N̄H has basis {c̄0,k | 1 ≤ k ≤ r}. Thus φ̄ is determined uniquely by the 

values μk = φ̄(c̄0,k) ∈ M . Since N̄I ≃ Up is central in Hp, the homomorphism φ̄ is 

Q-invariant if and only if μk ∈ MQ for 1 ≤ k ≤ r by Lemma 4.1. �

4.6. The kernel of d2 for Heisenberg extensions

Consider the map

d2,H : H1(N̄H, M)Q →H2(Q, M).

By Lemma 4.3, Ker(d2,H) ⊂ Ker(d2). By Proposition 4.17, we can study the isomorphic 

image of Ker(d2,H) in (MQ)r.
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Theorem 4.18. Let X be the Fermat curve of degree p. Let M be a subquotient of 

H1(U, Y; Z/pZ). Then Ker(d2,H) is isomorphic to the set of all (μ1, . . . , μr) ∈ (MQ)r

such that

(μ1, . . . , μr) = ((1 − τ1)m0 − (1 − τ0)m1, . . . , (1 − τr)m0 − (1 − τ0)mr),

for some m0, . . . , mr ∈ M such that (1 − τk)mj − (1 − τj)mk = 0 for all 1 ≤ j < k ≤ r. 

When p = 3, we further require that y2
0y2

1m0 = 0.

Proof. By Proposition 4.17, there is an isomorphism H1(N̄H, M)Q → (MQ)r, where 

φ̄ �→ (μ1, . . . , μr) where μk = φ̄(c̄0,k). Recall the conditions on the tuple (μ1, . . . , μr)

in Theorem 3.7 which are equivalent to φ̄ being in Ker(d̄2,H). By Theorem 3.8, the con-

straint φ̄(āi) = −Nτi
mi gives no constraint when p ≥ 5, because both sides equal zero; 

when p = 3, then the constraint is only satisfied if 0 = φ̄(ā0) = −y2
0y2

1m0. �

Remark 4.19. By [1, 9.6 and 10.5.2], 1 − τk ∈ 〈y0y1〉. By [6, Proposition 6.2], 〈y0y1〉 ≃
H1(U; Z/pZ). So (μ1, . . . , μr) ∈ (H1(U; Z/pZ)Q)r.

4.7. Computing Ker(d2,H) for small p

We compute Ker(d2,H) for small p by finding matrices for the action of Gal(L/K)

on H1(U, Y; Z/pZ); the explicit formulas for this action are found in [7, Theorem 3.5]. 

From this, we determine matrices for the action on H1(U; Z/pZ) and H1(X; Z/pZ). We 

did these computations using Magma [2].

Example 4.20. When p = 3, then φ̄ ∈ H1(N̄H, M) is determined by μ1 = φ̄(c̄0,1). Also, φ̄

is Q-invariant if and only if μ1 ∈ MQ.

Now φ̄ ∈ Ker(d2,H) if and only if μ1 is in the image of the map T : M2 → M given 

by (m0, m1) �→ (1 − τ)m0 − (1 − σ)m1 (condition c0,1) and y2
0y2

1m0 = 0 (condition a0).

For p = 3, we compute the dimension of Ker(d2,H) for several choices of M :

M H1(U, Y) H1(U) H1(X)

dim(MQ) 5 3 2

dim(im(T |cond a0
)) 4 1 0

dim(Ker(d2,H)) = dim(MQ ∩ im(T |cond a0
)) 3 1 0

In particular, when M = H1(U, Y ; Z/3Z), then φ̄ ∈ Ker(d̄2,H) if and only if μ1 ∈ H1(U)Q.

Example 4.21. When p = 5, then φ̄ ∈ H1(N̄H, M) is determined by μ1 = φ̄(c̄0,1) and 

μ2 = φ̄(c̄0,2). Also, φ̄ is Q-invariant if and only if μ1, μ2 ∈ MQ.

Now φ̄ ∈ Ker(d2,H) if and only if (μ1, μ2) is in the image of the map T : M3 → M2

given by
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(m0, m1, m2) �→ ((1 − τ1)m0 − (1 − τ0)m1, (1 − τ2)m0 − (1 − τ0)m2),

(condition c0,1, c0,2) and (1 − τ2)m1 − (1 − τ1)m2 = 0 (condition c1,2). For p = 5, we 

compute:

M H1(U; Y) H1(U) H1(X)

dim(MQ) 11 9 8

dim((MQ)r) 22 18 16

dim(im(T |cond c1,2
)) 16 8 4

dim(Ker(d2,H)) = dim((MQ)r ∩ im(T |cond c1,2
)) 11 7 4

Example 4.22. For p = 7, we compute:

M H1(U; Y) H1(U) H1(X)

dim(MQ) 17 15 14

dim((MQ)r) 51 45 42

dim(im(T |J)) 36 23 16

dim(Ker(d2,H)) = dim((MQ)r ∩ im(T |J)) 19 14 10

Here the image of T : M4 → M3 are the triples (μ1, μ2, μ3) satisfying conditions c0,1, 

c0,2, and c0,3, and J denotes the conditions coming from c1,2, c1,3, and c2,3.

Remark 4.23. In Theorem 4.18, taking m0 ∈ M and mi = 0 for 1 ≤ i ≤ r, we see that 

Ker(d2,H) contains a subspace isomorphic to the set

{(μ1, . . . , μr) ∈ (MQ)r | (μ1, . . . , μr) = ((1 − τ1)m0, . . . , (1 − τr)m0)}.

Thus,

dim(Ker(d2,H)) ≥ dim(Im((Bτ1
− 1)|M ) ∩ MQ). (30)

When p = 3, 5, 7 and when M = H1(X), the lower bound in (30) is in fact an equality.

4.8. Other unitary extensions

Recall that RI/K is a Heisenberg degree p3 extension for 1 ≤ I ≤ r. Consider the 

group U4 which has order p6 and exponent p. Using the results of [16, Section 3.1], 

it is possible to construct a U4-Galois extension of K from RI/K and RJ/K, when 

1 ≤ I < J ≤ r. For p ≥ 5, this yields a degree p3 elementary abelian p-group extension 

ĒU /L. Let N̄U = Gal(ĒU /L). By [16, Claim, page 1036-1037], the lifts of τI and τJ

commute in U4. This implies that the image of cI,J is trivial in N̄U . From this, we expect 

that dim(Ker(d2)) grows by at least dim(MQ) in the passage from N̄H to N̄U .
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5. The kernel of the transgression map when p = 3

In this section, p = 3. Then K = Q(ζ3) and L is the splitting field of 1 − (1 − x3)3. 

Let σ = τ0 and τ = τ1 be the generators of Q = Gal(L/K) ≃ (Z/3Z)2 from Section 2.2.

Then E/L is the maximal elementary abelian 3-group extension of L ramified only over 

3. Also G = Gal(E/K) and N = Gal(E/L). In Corollary 5.1, we show that dimF3
(N) =

10.

Let M = H1(U, Y; Z/3Z) be the relative homology of the Fermat curve of degree 3. 

In Lemma 5.3, we find a basis for H1(N, M)Q; it has dimension 18.

In Proposition 5.6, we determine the element ω ∈ H2(Q, N) classifying the exact 

sequence

1 → N → G → Q → 1. (31)

Recall that d2 : H1(N, M)Q →H2(Q, N) is the transgression map.

The main result of the section is Corollary 5.7, in which we determine Ker(d2) com-

pletely when p = 3: in particular, we show that it has dimension 5 and is determined 

by a degree 35 extension of K whose Galois group is non-abelian and has exponent 9; 

replacing M by H1(X; Z/3Z), we show that Ker(d2) is determined by the Heisenberg 

extension of K.

Similar calculations for p = 5 appear out of reach, since deg(L/Q) = 500 in that case.

5.1. Ray class fields when p = 3

A Magma computation shows that Cl(L) is trivial. By Proposition 3.1, there is a 

unique prime p of L above p. We compute that p = 〈ζ9, 3
√

t1〉.
Let Lm (resp. Clm(L)) denote the ray class field (resp. group) of L of modulus m.

Corollary 5.1. When p = 3, then N = Clp28(L) and dimF3
(N) = 10.

Proof. When p = 3, then e = d = 18, f = 1, and e1 = 9. By Proposition 3.1, dimF3
(N) =

10. By Lemma 3.2, (OL/pi)× has 3-rank 19 for i ≥ 28. A Magma computation [2] shows 

that Clp28(L) ≃ (Z/3Z)10; in particular, Clp28(L) has 3-rank 10. Thus N = Clp28(L)

since, by Lemmas 3.2 and 3.4, the rank does not increase for modulus pi for i > 28. �

More generally, we compute the 3-rank of the ray class group Clpi(L) with modulus 

pi for 1 ≤ i ≤ 28. The rank increases at modulus pi when i is one of the following values 

m1, . . . , m10: 12, 15, 18, 20, 21, 23, 24, 26, 27, 28.

Notation 5.2. For 1 ≤ ℓ ≤ 10, let Lℓ denote the maximal elementary abelian extension 

of L of modulus pmℓ and consider Nℓ = Gal(Lℓ/L). By Lemma 4.15, N1 = N̄H , where 

N̄H is the quotient of N arising from the Heisenberg extension of K. By Lemma 4.10, 

N2 = N1N∗, where N∗ is the quotient of N arising from the cyclotomic extension of K.
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5.2. Computation of H1(N, M)Q

Let M = H1(U, Y; Z/3Z). Then dimF3
(M) = 9. Recall the definition of y0, y1 ∈ Λ1

from Section 2.5 and the identification of M with Λ1 from Section 2.6. We consider the 

following ordered basis VM of M :

[

1, y1, y2
1 , y0, y0y1, y0y2

1 , y2
0 , y2

0y1, y2
0y2

1

]

.

Let Bσ, Bτ ∈ Λ1 be such that σ · β = Bσβ and τ · β = Bτ β. By [7, Example 3.7],

Bσ − 1 = y0y1(1 − y0 − y1), Bτ − 1 = y0y1(−y0 − y1 + y0y1).

By [7, Example 5.5(1)], when p = 3 then {y2
0 , y2

0y1, y2
0y2

1 , y0y2
1 , y2

0y2
1} is a basis for MQ.

Lemma 5.3. Let p = 3 and M = H1(U, Y; Z/3Z).

1. Then H1(N, M)Q =H1(N7, M)Q and dimF3
(H1(N7, M)Q) = 18.

2. There is a basis ξ1, . . . , ξ7 for N7 (also the images of {ξ1, . . . , ξℓ} in Nℓ are a basis 

for Nℓ for 1 ≤ ℓ ≤ 7), such that H1(N7, M)Q is spanned by the image of the 10-

dimensional Hom(N2, MQ) and the 8 maps A11, . . . , A18:

A11 : ξ1 �→ y1 ξ4 �→ y0y2
1 + y2

0y2
1 ξ5 �→ y0y2

1 ξ7 �→ −y0y2
1 − y2

0y2
1

A12 : ξ1 �→ y0 ξ4 �→ y2
0y1 + y2

0y2
1 ξ5 �→ y2

0y1 ξ7 �→ −y0y2
1 − y2

0y2
1

A13 : ξ1 �→ y0y1 ξ4 �→ y2
0y2

1 ξ5 �→ y2
0y2

1 ξ7 �→ −y2
0y2

1

A14 : ξ3 �→ y2
1 ξ4 �→ −y2

1 ξ5 �→ y2
1 ξ7 �→ y2

1

A15 : ξ3 �→ y0y2
1 ξ4 �→ −y0y2

1 ξ5 �→ y0y2
1 ξ7 �→ y0y2

1

A16 : ξ3 �→ y2
0 ξ4 �→ −y2

0 ξ5 �→ y2
0 ξ7 �→ y2

0

A17 : ξ3 �→ y2
0y1 ξ4 �→ −y2

0y1 ξ5 �→ y2
0y1 ξ7 �→ y2

0y1

A18 : ξ3 �→ y2
0y2

1 ξ4 �→ −y2
0y2

1 ξ5 �→ y2
0y2

1 ξ7 �→ y2
0y2

1

(All basis elements ξi not listed map to 0).

3. If MU = H1(U; Z/3Z), then H1(N, MU)Q is spanned by the image of the 6-

dimensional Hom(N2, MQ
U ) and {A13, A15, A17, A18}; in particular,

dimF3
(H1(N, MU)Q) = 10.

4. If MX = H1(X; Z/3Z), then H1(N, MX)Q is spanned by the image of the 4-

dimensional Hom(N2, MQ
X ) and {A13, A15}; in particular, it follows that

dimF3
(H1(N, MX)Q) = 6.

Proof. We prove each statement using a Magma calculation [2]. Here are some details 

for part (1). By Corollary 5.1, N is a ray class group with N ≃ (Z/3Z)10. Using Magma, 

we find a basis for N and 10 × 10 matrices Mσ,10 and Mτ,10 for the conjugation action 

of σ and τ on N with respect to that basis.
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Since N acts trivially on M , an element of H1(N, M)Q can be uniquely represented 

as a Q-invariant homomorphism φ : N → M . Since dimF3
(N) = 10 and dimF3

(M) = 9, 

φ is given by a 9 × 10 matrix Aφ with respect to the bases for M and N . Then φ is 

Q-invariant if and only if, for every �n ∈ N ,

Aφ(�nσ) = Bσ · Aφ(�n), Aφ(�nτ ) = Bτ · Aφ(�n).

To find the Q-invariant homomorphisms, we follow [22, pages 21-22] and set

Aσ,10 = Mσ,10 ⊗ I9 − I10 ⊗ Bt
σ, Aτ,10 = Mτ,10 ⊗ I9 − I10 ⊗ Bt

τ .

Then φ is Q-invariant if and only if Aφ ∈ Ker(Aσ,10) ∩ Ker(Aτ,10). Using Magma, we 

compute that dim(Ker(Aσ,10) ∩ Ker(Aτ,10)) = 18. Thus dimFp
(H1(N, M)Q) = 18.

By an analogous calculation, dimFp
(H1(N7, M)Q) = 18. By Lemma 4.2, the natural 

map H1(N7, M)Q →H1(N, M)Q is injective. Thus H1(N7, M)Q =H1(N, M)Q. �

Remark 5.4. Recall that N̄H (resp. N∗) is the quotient of N arising from the Heisen-

berg (resp. cyclotomic) extension of K. By Propositions 4.8 and 4.17 and Notation 5.2, 

H1(N2, M)Q =H1(N̄H, M)Q⊕H1(N∗, M)Q. Furthermore, by Propositions 4.9 and Exam-

ple 4.20, it follows that Ker(d2,H) ≃ H1(U)Q has dimension 3 and Ker(d∗
2) ≃ 〈y2

0y2
1〉 has 

dimension 1.

Example 5.5. Here are the matrices computed for the action of σ and τ on N7:

Mσ,7 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 0 1 0 1

0 1 0 0 0 2 0

0 0 1 2 0 2 2

0 0 0 1 0 0 0

0 0 0 0 1 2 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

; and Mτ,7 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1 2 1 2

0 1 0 1 0 2 1

0 0 1 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (32)

For 1 ≤ ℓ ≤ 7, σ and τ act on Nℓ via the upper-left ℓ × ℓ submatrices of Mσ,7 and Mτ,7.

5.3. Computing Ker(d2) when p = 3

By a Magma computation, dimF3
(H2(Q, N)) = 1. The extension in (7) therefore cor-

responds to an element of F∗
3 . We make an arbitrary choice of element of F∗

3 and compute 

an explicit 2-cocycle ω′ representing ω ∈ H2(Q, N). Since the elements of F∗
3 negate each 

other, Ker(d2) is not affected by this choice.

By Section 3.4, the element ω ∈ H2(Q, N) classifying (31) is determined by the 

elements a, b, c ∈ N such that a = s(σ)3, b = s(τ)3 and c = [s(σ), s(τ)].
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Proposition 5.6. Let a7, b7, c7 denote the images of a, b, c in N7. In terms of the basis 

ξ1, . . . , ξ7,

a7 = [0, 2, 0, 2, 1, 0, 2], b7 = [0, 0, 0, 0, 0, 0, 2], and c7 = [2, 1, 2, 0, 2, 1, 0]. (33)

Proof. Using Magma, we compute a 2-cocycle ω′ for ω ∈ H2(Q, N). Using Lemma 3.5, we 

compute a = ω′(σ, σ) + ω′(σ2, σ); b = ω′(τ, τ) + ω′(τ2, τ); and c = ω′(τ, σ) − ω′(σ, τ). �

Corollary 5.7. Let p = 3.

1. If M = H1(U, Y; Z/3Z) or H1(U; Z/3Z), then Ker(d2) = Ker(d2,3) and

dimF3
(Ker(d2)) = 5.

2. If M = H1(X; Z/3Z), then dimF3
(Ker(d2)) = 2.

Proof. By Lemma 5.3, a class φ ∈ H1(N, M)Q is uniquely determined by a Q-invariant 

homomorphism φ̄ : N7 → M . Also φ ∈ Ker(d2) if and only if φ̄ ∈ Ker(d̄2) where 

d̄2 : H1(N7, M)Q →H2(Q, M). It thus suffices to compute using H1(N7, M)Q, which is 

explicitly described in Lemma 5.3.

Let φ̄ ∈ H1(N7, M)Q. By Theorem 3.7, when p = 3, then φ̄ is in Ker(d̄2) if and only if 

there exist m0 and m1 in M such that:

φ̄(a7) = −Nσm0, φ̄(b7) = −Nτ m1, and φ̄(c7) = (1 − τ)m0 − (1 − σ)m1.

Using Magma, this simplifies to φ̄(a7) ∈ 〈y2
0y2

1〉 and φ̄(b7) = 0 and φ̄(c7) ∈ H1(U)Q.

The calculations for N7 and N3 have the same outcome. For N3, we compute using 

Magma that these conditions are satisfied if and only if

φ̄ ∈ Span{A2, A4, A5, A10, A13 + A18},

where A2 : ξ1 �→ y0y2
1 , A4 : ξ1 �→ y2

0y1, A5 : ξ1 �→ y2
0y2

1 , A10 : ξ2 �→ y2
0y2

1 , and

A3 + A18 : ξ1 �→ y0y1, ξ3 �→ y2
0y2

1

(all generators not listed map to zero). Thus dimF3
(Ker(d2)) = 5.

Replacing M by H1(U), the images of the maps A2, A4, A5, A10, A13 + A18 are in 

H1(U) and Ker(d2) is again 5-dimensional. Next, we replace M by H1(X), which is 2-

dimensional, say with basis v1 and v2. In this case, Ker(d2) has dimension 2 and a basis 

is given by φ1 : ξ1 �→ v1 and φ2 : ξ1 �→ v2, where all generators not listed map to zero. �

Remark 5.8. When M = H1(X; Z/3Z), this shows that Ker(d2) is determined by the 

Heisenberg extension of K. When M = H1(U, Y; Z/3Z), then Ker(d2) is determined by 

the extension L3/K. Note that G3 = Gal(L3/K) is non-abelian since c3 = [2, 1, 2] is 

non-trivial and has exponent 9 since a3 = [0, 2, 0] is non-trivial. In Magma notation, the 

group G3 is SmallGroup(243, 13).
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