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Abstract

We study when Hurwitz curves are supersingular. Specifically, we show
that the curve H, ¢ : X"Y*+Y"Z* + Z"X* = 0, with n and ¢ relatively
prime, is supersingular over the finite field F, if and only if there exists an
integer i such that p' = —1 mod (n? —nf+£?). If this holds, we prove that
it is also true that the curve is maximal over [F,2:. Further, we provide
a complete table of supersingular Hurwitz curves of genus less than 5 for
characteristic less than 37.
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1 Introduction

In 1941, Deuring defined the basic theory of supersingular elliptic curves. Su-
persingular curves are useful in error-correcting codes called Goppa codes. They
also have potential applications to quantum resistant cryptosystems.

In this paper we determine a condition for supersingularity of Hurwitz curves
H, , when n and /¢ are relatively prime. In particular we show that every
supersingular Hurwitz curve H, , is maximal over some finite field. We also
provide a classification of supersingular Hurwitz curves with genus less than
5 over fields with characteristic less than 37 and find some restrictions on the
genera of Hurwitz curves.
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2 Background information

We first define the Hurwitz curve and the Fermat curve. Next we define the
zeta function of a curve. From the zeta function we compute the normalized
Weil numbers which we use to study supersingularity. We must also state the
Hasse-Weil bound in order to define maximality and minimality.

2.1 The Hurwitz curve and the Fermat curve

Let n, £, and d be positive integers. Let F be a field.

Definition 2.1 (Hurwitz curve H, ). The Hurwitz curve H,, over F is
given by the projective equation

Hyo: X"Y 4+ Y20+ 72" X = 0.

Throughout this paper, set m = n? — nf + (2. The Hurwitz curve H,, , has
the following genus
m+ 2 —3ged (n,£)
2
and is smooth when the characteristic p of F' is relatively prime to m.

g:

Definition 2.2 (Fermat curve Fy). The Fermat curve of degree d over F' is
given by the projective equation

Fa: U+ Vi we=o.
The Fermat curve F; has genus W and is smooth when the charac-
teristic p of F' does not divide d. Note that the Hurwitz curve H,, ; is covered
by the Fermat curve of degree m = n? —nf+?; see Section 3.2 for more details.

2.2 Zeta Function

Let F;, be a finite field of cardinality ¢ where ¢ is a power of a prime p. For
a curve C defined over F,, denote the number of points on C' by #C(F,). For
extensions of Iy, define Ny = #C(Fy:).



Definition 2.3 (Zeta function). The zeta function of a curve C/F, is the

series
o0

Z(C/Fy,T) = exp<z N8T5>. (1)

S

s=1

Rationality of the zeta function for curves was proven by Weil [Weid8a,
Weid9]. In particular, Weil showed that the zeta function can be written as

L(C/F,,T)

The L-polynomial, L(C/F,,T) € Z[T], has degree 2g [IR90, page 152],
L(C/Fy,T) = 14+ C1T + ... + O, T, (3)

The L-polynomial of a curve C over F, with genus g factors in C[T] as
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L(C/F,, T) =[] (1 = aT).

=1

Furthermore, |o;| = (/g for each 1 < i < 2g [IR90, page 155]. The normalized
Weil numbers (NWNs) are the normalized reciprocal roots of the L-polynomial.

Definition 2.4 (Normalized Weil Numbers). The Weil numbers of C/F,
are the reciprocal roots «; of L(C/F,,T) for 1 < i < 2g. The normalized Weil
numbers are the values a;/,/q for 1 <i < 2g.

Remark 2.5. If {a1,..., a2} are the normalized Weil numbers over Fy, then
{ai,...,as,} are the normalized Weil numbers over F.

The coefficients of L(C/F,,T) follow a pattern. For k € N, we denote the
set of partitions of k by par(k) and the length of a partition v by len(y).

Lemma 2.6. In Equation (3) for 0 < k < 2g, the coefficient C) has the form

N;
1;[ R
Cr = Z jle;(y)! - Z(Cizqu)'

yepar(k) =0 n=0

Proof. Equation (1) can be expanded using the Taylor series of the exponential
function

< (N T + 212 4 4 B2em29)i

Z(C/F,,T) = .

i=0
Collecting terms up through 7° gives a pattern to follow:

Ny N3 NiN, N3

Z(C/]Fq,T):1+(N1)T+<2+]\;12>T2+( 35 TG >T3+.... (4)



The key step is to recognize that the subscripts on the N; are the partitions
of k. The coefficient on T* can be written as

I
e
Z JEY

.
o) len(+)!

Equation (2) gives a simplified version of Z(C/F,,T). Using the Taylor series
for each of the denominator terms as well as equation (3) yields the following
expansion:

Z(CJF,,T) = (14+C1T+..+CoT*) 1+ T+T?+.. ) (1+qT+PT?*+...). (5)

Expanding and collecting terms, the coefficients on T* are given by

k—1 k—i .
(Ci> )+ Cr.
i=0 j=0

Setting equation (4) and equation (5) equal and comparing coefficients gives a
linear system allowing one to solve for C} in terms of the values of N;. O

2.3 The Newton Polygon and Supersingularity
Fix a curve C/F, with associated L-polynomial L(C/F,,T).

Definition 2.7 (Supersingularity). The curve C is supersingular if all its
normalized Weil numbers are roots of unity.

Another way to check if C' is supersingular is with its Newton polygon.

Definition 2.8 (Normalized Valuation on F,-). Let n = p'k be an integer
with p { k. We denote the normalized F, -valuation of n by val, (n) = L and
the prime-to-p part of n by n, = k. If n = 0, we say val,-(0) = oo.

Definition 2.9 (Newton Polygon). Fix a curve C/F, with L-polynomial in
the form of equation (3). The Newton polygon of C'/F - is the lower convex hull
of the points {(4, val,-(C;)) | 0 < i < 2g}.

Remark 2.10. Because Cy = 1 for every curve C/F,-, the Newton polygon
will always have initial point (0,0). Likewise the final coefficient of L(C/Fp-,T)
is always Cyy = p™. For this reason the Newton polygon always has terminal
point (2g, ).

From Remark 2.10, we can see that the Newton polygon of a curve C over [F-
is always a union of line segments on or below the line y = %:r with increasing
slopes.

Remark 2.11. A curve C/F, is supersingular if and only if its Newton polygon
is a line segment with slope %



2.4 Minimality and Maximality

As a consequence of the Weil conjectures, the number of points on a curve C/F,
is controlled by the Hasse-Weil bound:

1+q¢-29/q < #C(Fy) <1+ +29V/3.
The Hasse-Weil bound for curves was proven by Weil [Weid8al.
Definition 2.12 (Minimal). A curve C/F, is minimal if

#C(Fq) =1+¢q- 29\/5'

Definition 2.13 (Maximal). A curve C/F, is mazimal if

#COFy) =14+ q+ 294

Remark 2.14 ([Weid48a, page 22], [Weid8b, page 69]). The curve C is
maximal over Fy (resp. minimal over Fy) if and only if all its normalized Weil
numbers are -1 (resp. 1) over F,.

In the following remark, we use the notation that ¢y, is the primitive k* root
27
of unity e™ . Notice that there is a power s such that ¢ = —1 if and only if k&
is even.

Lemma 2.15. Let C' be a supersingular curve over F,. Suppose the normalized
Weil numbers of C/Fy are of the form (,tcll, .. @,Z‘; Assume ged(kq,t;) = 1.
The curve C is mazimal over Fyr if and only if

e there exists s > 1 and b; odd, such that k; = 2°(b;)
e and r is an odd multiple of 25~ tlem(by, ..., by,).

Proof. Assume C'is maximal over F,r. By Remark 2.14, the curve C is maximal

over Fg- if and only if (,:t = —1 for all . Consequently, k; is even for all 4.
Thus k; = 2%b; for some positive integer s; and odd integer b;. The condition
;l“ = —1 for all 7 implies that there exists an s such that s = s; for all ¢ and r

is an odd multiple of 2°~!lem(by, ..., b,).
For the converse, the conditions imply that the normalized Weil numbers of
C over Fy- are all —1. O

3 Curve maps and covers

3.1 Aoki’s Curve

Let a = (a,b,c) € N with a + b+ ¢ = m. Note that S3, the symmetric group
on three letters, acts on a by permuting the coordinates. For o € S3 we denote
the action by . We say two triples @ = (a1, a2,a3) and 8 = (b1, ba,b3) are



equivalent, denoted « &~ 3, if there exist elements ¢ € (Z/m)* and o € S5 such
that

(a1, a2,a3) = (tby(1), tby(2), thy(s)) mod m.
In [Aok08a] and [Aok08b], Aoki studies curves of the form
Dy s 0™ = (—=1)u®(1 — u)°.
He provides the following conditions for when D, is supersingular.

Theorem 3.1 ([Aok08b, Theorem 1.1]). The curve D, is supersingular over
Fpr if and only if at least one of the following conditions holds:

e p' = —1 mod m for some i.

e a = (a,bc) ~ (1,—p',p' — 1) for some integer i such that d = ged(p® —
1,m) > 1 and p’ = —1 mod " for some integer j.

3.2 Covers of H,, by F,,

In Section 2.1, we noted that the Hurwitz curve H,, ; is covered by the Fermat
curve F,, where m = n? —nf 4 ¢2. On an affine patch the Fermat and Hurwitz
curves are given by the following equations

Fr ™ +0"™"+1=0
H7,,,l:9:”ye+y”+xzz().

Then the following covering map is provided by [AKT01, Lemma 4.1]

¢ Fm — Hyp
(u,v) = (u™v~! ulom ).
Furthermore, it is known that F,, is supersingular over F, if and only if
p' = —1 mod m for some integer i [SK79, Prop. 3.10]. See also [Yui80, Theorem
3.5]. In [Taf10, Theorem 5] it is shown that F,, is maximal over FF,: if and only
if p* = —1 mod m.

Remark 3.2.If X — Y is a covering of curves defined over F,-, then the
normalized Weil numbers of Y/F,~ are a subset of the normalized Weil numbers
of X/F,-, see [Ser85].

Thus when a covering curve is supersingular (or maximal or minimal) the
curve it covers is as well.



3.3 A Birational Transformations

In [BC97], Bennama and Carbonne show that H, ¢ is isomorphic to a curve
with affine equation
Y =2l 1) (6)

via the following variable change. Suppose 1 < ¢ < n and ged(n,€) = 1. Then
there exist integers 6 and § such that 1 <9</, 1<J<n—1,and nd -3¢ =1.
Let A = dn — 6(n — £) and m = n? — nf + (2. The birational transformation is
as follows

= _ljy—n

y = (=)l
Equation (6) is very similar to the equation for D,, that Aoki studies but there
are small differences. The following argument shows that these can be recon-
ciled. Consequently, this variable change can be used to apply Aoki’s results to
Hurwitz curves.

Notice that equation (6) is divisible by (2’ — 1) while Aoki studies curves
whose equation contains a (1 — ) factor. Aoki requires that a + b+ ¢ = m
so the exponent on the negative sign is important. Inspecting equation (6) we
see that m will always be odd since (n,¢) = 1. Consequently, this negative sign
is not an issue. Since m is always odd we can replace v with —v. This choice
allows us to pick c=m —a—0b. Then b=1and a = A.

4 Supersingular Hurwitz Curves

We arrive at explicit conditions on supersingularity for H,, , when n and ¢ are
relatively prime. We use results from [BC97] and [Aok08a] to accomplish this.
We will be using affine equations for the Hurwitz curve in this section.

Lemma 4.1. Ifn and ¢ are relatively prime then z™y* + y™ + z* = 0 is super-
singular over I, if and only if at least one of the following conditions holds.
1. There exists i € Z~q such that p* = —1 mod m.
(In this case the Fermat curve covering the Hurwitz curve is mazimal over
F2i.)

p

2. There exists i € Z~o with d = (p* — 1,m) > 1 such that
(O(n =€) + 00 — 1,1, —(5(n — £) + £0)) = (1, —p',p’ — 1)

and p? = —1 mod (%) for some integer j.



Proof. We use the variable substitution from [BC97] to apply Aoki’s results to
Hurwitz curves. We use the substitutions:

o m=n?—nl+ (2
a=A=3dn—-40)+100—1,
o b=1,

o c=m—(8(n—10)+16).

Combining these with Aoki’s results completes the proof. O

Remark 4.2. If n and ¢ are relatively prime, then n and ¢ are relatively prime
to n? — nl + (2.

Theorem 4.3. Suppose n and ¢ are relatively prime and m = n? — nf + (2.
Then H, ¢ is supersingular over F, if and only if p© = —1 mod m for some
positive integer i.

Proof. If p* = —1 mod m for some positive integer i, then F,, is supersingular
over F,, by [SK79, Prop. 3.10]. Recall from section 3.2 that F,, covers H, .
Thus H, , is supersingular over F, by Remark 3.2.

Suppose H,, ¢ is supersingular over IF,. By Lemma 4.1 it is enough to show
condition 2 in Lemma 4.1 can not happen. We begin by simplifying it using
the substitution § = 12& and reducing modulo m to show that condition 2
is equivalent to (% = 1,1,—%) ~ (1,—p’,p* — 1) for some i such that d
(P —1,m) > 1 and p/ = —1 mod (%) for some integer j. Recall that o
o' if @ = ta/? for some t € (Z/m)* and o € S3. We will show that p' — 1 and m
are relatively prime. We label the three coordinates of (£ —1,1,—£) as (a, b, c)
and the three coordinates of (1, —p?,p* — 1) as (4, B, C).

The proof will address six cases accounting for the orbit of (A, B, C) under
the action of S3. In each case we will show that ged(p® —1,m) = 1. Specifically,
we show d = 1 by taking these congruences modulo d. By Remark 4.2 we know
that n~! exists modulo m and modulo d. Finally, note that % is relatively prime
to d.

&l

e (a,b,c) =t(A, B,C) mod m: Comparing ¢ and tC yields

Consequently, % = 0 mod d. Therefore, d = 1.
e (a,b,c) =t(B, A,C) mod m: Comparing a with ¢tB and b with tA yields

— —1=—tp' modm
n
1 =t mod m.
Substituting we have % = p' — 1 mod m. Reducing modulo d produces
%EOmodd, thus d = 1.



(a,b,c) =t(A,C, B) mod m: Comparing b and tC' yields

S|~

=t(p" — 1) mod m.

This is identical to the first case.
e (a,b,c) =t(C, B, A) mod m: Comparing a and tC yields

/ .
E—lzt(pz—l)modm.

Thus % — 1 = 0mod d. Recall by the definition of m and selection of d,
we have d | n? — nl + (2. Hence, d divides 1 — £ + (£)2. We conclude
d|(£), thus d = 1.

e (a,b,c) =t(C, A, B) mod m: Comparing b with tA and ¢ with ¢B yields
1=tmodm

— = tp’ mod m.
n

This case is completed as in the previous case.

e (a,b,c) =t(B,C,A) mod m: Comparing b with tC yields
1 =t(p" — 1) mod m.

Modulo d this reduces to 1 = 0 mod d. Therefore, d = 1.

O

Remark 4.4. There is a family of Hurwitz type curves with affine equations
Cayt,anmims t TYY +y™ + 2% = 0. Set § = ajaz —agng +ning. When g = p”
is coprime to 6 then the curve Cy, 45.n,n, is Fg-covered by the Fermat curve
Fs of degree 6. In [TT17, Theorem 2.9] Tafazolian and Torres show that under
certain numerical conditions the statements

e the Fermat curve Fs is maximal over F;
e the Hurwitz type curve Ci q,,n, n, is maximal over F;
e and¢g+1=0 mod d

are all equivalent.

The Hurwitz type curve C¢gn.n is the Hurwitz curve H,,. Thus in the
case that { = a; = a2 and n = n; = ng, Theorem 4.3 generalizes [TT17,
Theorem 2.9].



Remark 4.5. Consider the family of curves with affine equations
Nal,amnl,nz sy + by 4 ko™ =0

over Fpr with ki, ks € (Fg)*, n1 > a1, n1 + a1 > az, 1 + a1 > ng, if n1 = as
then ne > ag, and p { ged(ay, as,n1,n2). Set d = ged(aq, az,n1,n2) and § as in
Remark 4.4. Recall the definition of n, in Definition 2.8. With these assump-
tions [Niel6, Theorem 4.12] shows that if (6/d), divides g+ 1 then Ny, ay.n1,ns
is maximal over F, and if Ng, a5,n, n, is maximal over Fg2 then (6/d), divides
g+ 1.

Note Ngynn = Hpyp. Thus Theorem 4.3 generalizes [Niel6, Theorem 4.12]
when a1 = ag = ¢ and n; = ngy = n.

Corollary 4.6. If n and { are relatively prime and H, ; is supersingular over
Fp, then it will be maximal over IF,2: where © is the same as in Theorem 4.5.

Proof. By Theorem 4.3, if H,, ; is supersingular over F,, then p'* = —1 mod m
for some i. By the results of [Taf10], this implies J,,, will be maximal over Fz:.
Since JF,, covers H,, ¢, this implies H,, , will also be maximal over F2:. O

A priori, if Hy, ; is supersingular (or maximal or minimal) over F,, then 7,
may not be because it has more normalized Weil numbers.

Corollary 4.7. If n and { are relatively prime and H, ¢ is supersingular over
F,, then F,, is supersingular over F,.

Proof. If H,, ¢ supersingular over F, and ged(n,f) = 1, Theorem 4.3 shows
the existence of positive integer i such that p' = —1 mod m. Then by [SK79,
Proposition 3.10], F,,, is supersingular over F,,. O

Partial results are known for when a Hurwitz curve is maximal.

Theorem 4.8 ([AKTO1, Theorem 3.1]). Let £ = 1. The curve H, 1 is mazimal
over Fg2; if and only if p” = —1 mod m for some positive integer j.

Theorem 4.9 ([AKTO01, Theorem 4.5]). Assume that gcd(n,?) = 1 and m is
prime. Then Hy ¢ is mazimal over Fp2; if and only if PP = —1 mod m for some
positive integer j.

Note that the key property used in [AKTO01] is the existence of some positive
integer j such that ,
p’ = —1 mod m. (7)

Remark 4.10. Under the requirements ¢ = 1, or ged(n,?) = 1 and m prime,
the results in [AKTO01] and [Tafl0, Theorem 5] show that F,, is maximal over
Fg2 if and only if H,, ¢ is maximal over Fg.

We consider the case when H,, o and F,, are minimal.
Corollary 4.11. If{ =1, orn and ¢ are relatively prime and m is prime, Hy ¢

is minimal over Fyai if and only if Fy, is minimal over .

10



Proof. First suppose JF,, is minimal over [F,«i with set N of normalized Weil
numbers. Then the normalized Weil numbers of H, , are a subset of N. Thus
H,, ¢ will also be minimal over F 4.

Now assume H,, ; is minimal over Fjs:. Minimality implies supersingularity,
thus H,, , must also be supersingular. By Theorem 4.3 supersingularity of H,,
over FF,, implies p’ = —1 mod m for some positive integer j. Choose a minimal
such j. Then Corollary 4.6 shows H, , is maximal over IF,,»; thus minimal over
[Fp45. Minimality of j implies that F,4; is a subfield of ;. Consequently, j | i.

Now, by [AKTO01] p? = —1 mod m implies that 7, is maximal over Fz;.
Hence, F,, is minimal over F,4;. Because j | i, Fy, is minimal over Fa:. O

P

Remark 4.12. The curve Hs 3 is maximal over F52 but Fy is not. The above
theorems show a supersingular Hurwitz curve and its covering Fermat curve
will both be maximal over F,2:. This does not imply that the Fermat curve
will always be maximal over the same field extension that the Hurwitz curve is.
The Hurwitz curve could also be maximal over F,2; where j | i with i/j odd.
In this case the Fermat curve may not be maximal over this field because it
has a higher genus. Unfortunately our example of this does not have n and ¢
being relatively prime. It is difficult to find an example with n and ¢ relatively
prime, as the genera of Hurwitz curves grow quickly causing the point counts
to become computationally expensive.

[Taf10] K

Fm s8./F, ——— Fy, max/Fp ———  F;;, min/Fga
Corollary 4.7 [AKTO1] Corollary 4.11
[Ser85] [Ser85] [Ser85]

Hy,yss./F, &—————= H, 4 max/Fp ———  H, , min/F
v Corollary 4.6 N

Figure 1: Current results regarding supersingularity, minimality, and maximal-
ity of Hurwitz and Fermat curves.

Figure 1 illustrates how the current theory fits together. The straight, dotted
arrows are under the conditions £ = 1, or ged(n,f) = 1 and m prime. The
notation max/F 2 means, for some power ¢ of p, the curve is maximal over F 2. If
a curve is maximal over F > then it is minimal over Fg4. The curved arrows show
that under appropriate conditions a Hurwitz or Fermat curve is supersingular
if and only if it is minimal over some field extension. Corollaries 4.6 and 4.7 are

11



under the condition that ged(n, ) = 1, while [AKTO01] and Corollary 4.11 are
under the condition that £ = 1, or ged(n,¢) =1 and m is prime.

5 Which Genera Occur and Data

Here we provide information about which genera occur for Hurwitz curves and
provide a classification of supersingular Hurwitz curves having genus less than
5 defined over ), when p < 37.

Recall that the genus of the Hurwitz curve H, , has the following equation

= n? —nl + 02 — 3ged(n, l) + 2
= 5 :

From this, it can be seen that the genus is determined by the quadratic form
q(z,y) = 2 — 2y + y? and ged(z,y). In this section, we provide information
about which genera can appear as a result of these equations.

Theorem 5.1 ([Fer99, Vol. 11, pages 310-314]). The equation m = x* —zy+y>
has solutions x,y € Z if and only if for every prime p in the prime decomposition
of m, either p=0,1 mod 3 or p is raised to an even power.

There is no restriction in Theorem 5.1 on what the values z and y are.
However, for Hurwitz curves we require n and ¢ to be positive. The question
remains as to when the equation m = g¢(z,y) has solutions in the positive
integers. To solve this we study the following automorphisms of ¢(z,y) = m.

D 2P = 2P fla,y) = (y,@)
D 2P = 2| g(z,y) = (—a, —y)
D 2P = 2P| p(,y) = (2,2 —y)
D 22— 72| I(z,y) = (2,y)

~ S e =

To see that ¢(x,y) is an automorphism, compute the following
gop(r,y) =a® —a(z —y) + (z —y)?
=a? -2 4oy +2? — 22y + ¢
=22 —ry+y?
= q(z,y).

Corollary 5.2. If the equation m = q(x,y) has a solution (x,y) € Z* then
there is a solution with (z',y’) € N2

Proof. We separate into cases, depending on the values of  and y.
1. If both = and y are negative, then g(x,y) = (—x, —y) € N2,

2. If y negative and z positive, then (z,y) = (x,z —y) € N2,

12



3. If x negative and y positive, then o(f(z,y)) = (y,y — z) € N2

4. If z is 0, then ¢ o f(0,y) = (y,y) and if y is 0, then ©(y,0) = (y,y).

O

By counting points and using Lemma 2.6 we computed, using [Sagl6], the
L-polynomials and normalized Weil numbers of many supersingular Hurwitz
curves over IF),.
certain points of the equation for H,, , are singular. Resolving these singularities
requires taking a field extension of IF,.
1 mod ged(n, £) and count the multiplicities of singular points. This gives the
correct point counts to compute the L-polynomial of the normalization of the
equation. The table has all supersingular Hurwitz curves H,, ; of genus less than
5 for primes less than 37. The table also includes some curves of genus 6.

When n and ¢ are not relatively prime, it is possible that

To adjust for this we check if ¢ =

n|l | p | g| L-Polynomial NWNs (multiplicity)
2115 [1]57T%+1 i, -i

2 1|11 ]1]117°+1 i, -i

201|171 | 17T?+1 i, -i

2 111231 237?+1 i, -i

2 1112912972 +1 i, -i

3135 [1]577°+1 i, i

303111 |117T?+1 i, -i

313|171 | 17T?+1 i, -i

313231 237?+1 i, -i

3131291 |297?+1 i, -i

3113 [3]21T°+1 i1, Ci2, (2, (o2, (1o

3 1 5 3 125T6 + 1 i7_i7 C127 C152> §1727 <1121
311|133 | 21977% 4 507T* 4+ 3972 4 1 i(3), -i(3)
301|173 49137° +1 i, -1, C12, (s (ay Cia
30111]19/| 3| 68597° +1 i, -1, C12, (s oy Cia
301|313 297917° + 1 i, -i, C12, (2, (o, (1o
3123 [3]21T°+1 i, Ci2, (Pos (o (1o
31205 | 3] 1257°+1 i, Ci2, (P2, (2, (i3
312|133 | 21977°% 4+ 507T* + 3972 + 1 i(3), -i(3)
312|173 | 49137° +1 i, -1, C12, (s oy Cia
312193 68597°+1 i, -i, C12, (P2, (o Cia
312313/ 297917% +1 i, -i, C12,¢Da, ¢, Cia

4 121]5 |4]6257°+500T° + 150" + 2077 + 1 i(4), -i(4)

4 12| 17| 4| 8352178 +196527° + 1734T* + 6872 + 1 i(4), -i(4)

4 | 2|29 |4 | 707281T® + 97556T° + 5046T* + 11672 + 1 | i(4), -i(4)

4115 6] 1562572 + 187575 + 75T + 1 ¢s(3),¢3(3),¢3(3),¢2(3)
4 1315 |61 15625772 +1875T° + 75T +1 (s(3),¢3(3),¢2(3),¢4(3)
5 513 |6 729772 +243T% + 27T + 1 (s(3),¢3(3),¢2(3),¢5(3)
5 15| 7 | 6| 11764972 + 7203T% + 147T* + 1 (s(3),C3(3),¢2(3),¢2(3)
5|5 | 13| 6 | 482680972 4 856837 + 5077 + 1 ¢s(3),¢3(3),¢3(3),¢2(3)

Table 1: Supersingular Hurwitz curves in characteristic p < 37 with genus < 5.
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