Newton polygons arising from special
families of cyclic covers of the projective line

Wanlin Li, Elena Mantovan, Rachel Pries
& Yunqing Tang

Research in Number Theory

ISSN 2522-0160
Volume 5
Number 1

Res. number theory (2019) 5:1-31
DOI 10.1007/540993-018-0149-3

Research in
Number Theory

Editors-in-Chief:

Florian Luca - Ken Ono - Andrew V. Sutherland
Editorial Board: George E. Andrews - Matt Baker - Valentin Blomer
Kathrin Bringmann - Jan Hendrik Bruinier - YoungJu Choie

J. Brian Conrey - Chantal David - Amanda Folsom - Solomon Friedberg

Minhyong Kim - Barry Mazur - Federico Pellarin - Florian Pop
Rachel Pries - Kenneth A. Ribet - Shou-Wu Zhang

@ Springer

@ Springer



Your article is protected by copyright and

all rights are held exclusively by Springer
Nature Switzerland AG. This e-offprint is

for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer



Li et al. Res. Number Theory(2019)5:12 H
https://doi.org/10.1007/s40993-018-0149-3 @ Resea rCh In N um ber Theo ry

RESEARCH

Newton polygons arising from special @
families of cyclic covers of the projective
line

Wanlin Li', Elena Mantovan?, Rachel Pries3 and Yunging Tang“*

“Correspondence:
yungingt@math.princeton.edu

) ‘
Department of Mathematics, By a result of Moonen, there are exactly 20 positive-dimensional families of cyclic covers
Princeton University, Princeton,

NJ 08540, USA of the projective line for which the Torelliimage is open and dense in the associated
Full list of author information is Shimura variety. For each of these, we compute the Newton polygons, and the

available at the end of the article w-ordinary Ekedahl-Oort type, occurring in the characteristic p reduction of the
Shimura variety. We prove that all but a few of the Newton polygons appear on the
open Torelli locus. As an application, we produce multiple new examples of Newton
polygons and Ekedahl-Oort types of Jacobians of smooth curves in characteristic p.
Under certain congruence conditions on p, these include: the supersingular Newton
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5-7; eleven new Ekedahl-Oort types for genus 4-7 and, for all g > 6, the Newton
polygon with p-rank g — 6 with slopes 1/6 and 5/6.
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1 Introduction
A fundamental problem in arithmetic geometry is to determine which abelian varieties
arise as Jacobians of (smooth) curves. This question is equivalent to studying (the interior
of) the Torelli locus in certain Siegel varieties. For g = 1, 2, 3, the Torelli locus is open and
dense in the moduli space A; of principally polarized abelian varieties of dimension g.
For any family T of cyclic covers of the projective line, Deligne and Mostow construct the
smallest PEL-type Shimura variety containing the image of 7" under the Torelli morphism
[6]. In [25], Moonen shows that there are precisely twenty positive-dimensional families
of cyclic covers of P! for which the image of 7' under the Torelli morphism is open and
dense in the associated Shimura variety; these families are called special.

In positive characteristic p, the p-rank, Newton polygon, and Ekedahl-Oort type are
discrete invariants of an abelian variety. It is a natural question to ask which of these
invariants can be realized by the Jacobian of a smooth curve. As each discrete invariant
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yields a stratification of the reduction modulo p of the Siegel variety, this question is
equivalent to understanding which strata intersects the interior of the Torelli locus.

Ultimately, the goal is to understand the geometry of the induced stratifications of the
Torelli locus (e.g., the connected components of each stratum and their closures), in the
same way that the geometry of these stratifications is understood for Siegel varieties.
For example, for any prime p, genus g and integer f such that 0 < f < g, Faber and
van der Geer prove in [9] that the p-rank f stratum is non-empty and has the expected
codimension g — f in the moduli space M, of curves of genus g. See also [1,2,12].

Beyond genus 3, much less is known about the Newton polygon, more precisely the
Newton polygon of the characteristic polynomial of Frobenius. In [26, Expectation 8.5.4],
for g > 9, using a dimension count, Oort observed that the interior of the Torelli locus
is unlikely to intersect the supersingular locus or other Newton polygon stratum of high
codimension in 4,. This suggests that it is unlikely for all Newton polygons to occur for
Jacobians of smooth curves for each prime p.

In our earlier work [22], we studied Newton polygons of cyclic covers of the projective
line branched at 3 points. In this case, the Jacobian is an abelian variety with complex
multiplication and its Newton polygon can be computed using the Shimura—Taniyama
theorem. We used this to find several new Newton polygons having p-rank 0 which occur
for Jacobians of smooth curves.

The Newton polygon stratification of PEL-type Shimura varieties is well understood by
the work of Viehmann and Wedhorn [35], based on earlier work of Kottwitz et al. [16,17,
19,29]. In this paper, we demonstrate this theory by determining all the Newton polygons
of Jacobians that occur for the 20 special families of cyclic covers from Moonen’s paper
[25]. Furthermore, using [24], we compute the p-ordinary mod p Dieudonné modules
(e.g., Ekedahl-Oort types) for the 20 special families.

We then investigate which Newton polygons and Dieudonné modules on these lists
arise for a smooth curve in the family. We conclude affirmatively in three distinct cases:

(i) for the p-ordinary Newton polygon and Dieudonné module, Proposition 5.1;
(ii) for any PEL-indecomposable Newton polygon, Proposition 5.6; and
(iii) for the Newton polygon of the closed stratum (called the basic Newton polygon) if
the family has dimension 1 and if p is sufficiently large, Proposition 5.8.

For (iii), we refer to Theorem 8.1 in the Appendix, where we prove, under some restrictions
on the prime p, that the number of geometrically irreducible components of the basic locus
at p of certain unitary Shimura variety grows to infinity with p. More precisely, Theorem
8.1 holds for unitary Shimura varieties of signature (1, # — 1) at one real place and definite
signature at all other real places. In particular, our results hold for the simple Shimura
varieties considered by Harris—Taylor in [14]. Earlier instances of such a statement are due
to Vollaard [36], and Vollaard—Wedhorn [37] who prove a similar result under the further
assumption that the implicit CM field defining the unitary group is quadratic-imaginary,
and to Liu-Tian-Xiao-Zhang-Zhu [23] at primes which are totally split in the CM field.
Here, we only exclude the case of primes which are inert in the quadratic imaginary
extension for n even. We regard Theorem 8.1 to be of independent interest.

We calculate that these three criteria together with the de Jong—Oort purity result imply
that all but a few of the Newton polygons for Moonen’s special families occur for Jacobians
of smooth curves. More precisely, we prove the following result.
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Theorem 1.1 (See Theorem 5.11) Let (m, N, a) denote the monodromy datum for one of
Moonen’s special families from [25, Table 1]. Assume p 1 m. Let v € v(B(um, f)) be a
Newton polygon occuring on the closure in Aq of the image of the family under the Torelli
morphism. Then v occurs as the Newton polygon of the Jacobian of a smooth curve in the
family unless either:

(1) the dimension of the family is one, v is supersingular, and p is not sufficiently large; or
(2) the dimension of the family is at least two and v is supersingular.

In cases (1) and (2), we also expect that there exists a smooth curve in the family which
is supersingular; (we prove this for large p in [21, Theorem 6.1]).

We deduce the following applications.

First, we verify the existence of supersingular curves of genus 5 — 7 for primes satisfying
certain congruence conditions. See [22, Theorem 1.1] for a complementary result.

Theorem 1.2 (See Theorem 7.1) There exists a smooth supersingular curve of genus g
defined over Fp Sor all sufficiently large primes satisfying the given congruence condition:
g=5whenp=7mod 8 g =6whenp =234 mod 5 and g =7 whenp =2 mod 3.

The second application is in Theorems 7.3 and 7.4: under certain congruence conditions
on p, we verify that 14 new non-supersingular Newton polygons and 11 new Dieudonné
modules occur for Jacobians of smooth curves of genus 4 — 7.

Every abelian variety is isogenous to a factor of a Jacobian. Thus every A € [0,1] N Q
is known to occur as a slope for the Newton polygon of the Jacobian of a smooth curve.
Usually, however, there is no control over the other slopes. In the third application, for
p = 2,4mod 7 and g > 6, we show that the slopes 1/6 and 5/6 occur for a smooth
curve of genus g defined over Fp with the other slopes of the Newton polygon all 0 and 1,
Theorem 7.5.

As a final application, we consider one non-special family of curves in Sect. 7.2. Consider
aprimem = 3 mod 4 (withm # 3) and a prime p which is a quadratic non-residue modulo
m. In Theorem 7.8, we find smooth curves of genus g, = (m — 5)(m — 1)/4 defined over
Fp whose Newton polygon only has slopes 0, 1/2, and 1 and such that the multiplicity of
the slope 1/2 is at least 2., /g,

In future work, we solve questions about Newton polygons for curves of arbitrarily large
genera using a new induction argument for Newton polygons of cyclic covers of P!. We
use the Newton polygons from this paper as base cases in that induction process.

Organization of the paper
Section 2 recalls basic definitions and facts about group algebras, families of cyclic covers
of P1, Newton polygons, and mod p Dieudonné modules.

Section 3 contains information about Shimura varieties and positive-dimensional special
families of cyclic covers of the projective line.

In Sect. 4, we study the Newton polygon stratification of PEL-type Shimura varieties. We
demonstrate the general theory by computing the Newton polygons for several prototyp-
ical examples from [25] in Sect. 4.4. In Sect. 4.5, we determine the -ordinary Dieudonné
modules (Ekedahl-Oort types) for the special families.

Section 5 discusses which Newton polygon strata intersect the smooth Torelli locus.
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Section 6 contains tables of data, including the Newton polygons and the p-ordinary
Dieudonné modules for each of the twenty special families of cyclic covers from [25].

Section 7 contains the proofs of the main theorems.

In the appendix, we compute a lower bound for the number of irreducible components
of the basic locus of simple Shimura varieties.

2 Notation and background

2.1 The group algebra Q[um]

For an integer m > 2, let w;, := m(C) denote the group of m-th roots of unity in C. For
each positive integer d, we fix a primitive d-th root of unity {; = e’d e C.Let Ky = Q(¢q)
be the d-th cyclotomic field over Q of degree ¢(d).

Let Q[u,] denote the group algebra of uy,, over Q. Then Q[u;,] = ]_[0<d|m K,;. The
involution * on Q[u,] induced by the inverse map on wu,, preserves each cyclotomic
factor Kz, and for each d | m, the restriction of * to K; agrees with complex conjugation.

Set T := Homg(Q[xtm], C). Each (Q[um] ®g C)-module W has an eigenspace decom-
position W = @®;c7 W¢, where W, is the subspace of W on whicha ® 1 € Q[u,] ®¢ C
acts as t(a). We fix an identification 7 = Z/mZ by defining, for all n € Z/mZ,

1,(¢) =" forall ¢ € .

Foralln € Z/mZ, and a € Q[um], T—n(a) = t,(a*). We write 7,} := 1_,,.
For 1 = 1, € 7, the order of v is the order of #n in Z/mZ. The homomorphism
7 : Q[usm] — C factors via K if and only if © has order d.

. . . —al . . .
For each rational prime p, we fix an algebraic closure (@;gof Qp, and an identification
—al —
t: C = Cp, where C,, denotes the p-adic completion of Q;g. Let Q;n denote the maximal

unramified extension of Q, in @;lg, and by o the Frobenius of @;n.

If p { m, then Q[u ] is unramified at p. Via ¢, we identify 7 = Homg(Q[xm], @;n),
Hence, there is a natural action of ¢ on 7, defined by T + t° := ¢ o t. Note that
T, = Tpy for all m € Z/mZ. For each o-orbit 0 C T, the order of 7 is the same for all
T € 0. We write d, for the order of T € o.

Let O be the set of o-orbits 0 in 7. For each t € 7, let 0; denote its o-orbit. Each
T: Qluml — @;n determines a prime p of Q[u,,] above p, depending only on the orbit
0;. Hence, the set O is in bijection with the set of primes p of Q[u,,] above p. For an orbit
o € 7, we write p, for the associated prime above p and and K, ,,, for the completion of

Ky, along the prime p,.

2.2 Families of cyclic covers of the projective line
We follow [25, §§2,3]. Fix integers m > 2, N > 3 and an N-tuple of positive integers
a = (a(l),...,a(N)). Then a is an inertia type for m and (m, N, a) is a monodromy datum
if

(1) a(i) #20mod m, foralli=1,...,N,

(2) gcd(m, a(l),...,a(N))=1,and

(3) > ;a(i) =0 mod m.
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Fix a monodromy datum (m, N, a). Working over Z[1/m], let U C (ADN be the com-
plement of the weak diagonal, which consists of points where any two of the coordinates
are the same. Consider the smooth projective (relative) curve C over U whose fiber at
each point ¢t = (£(1), ..., £#(N)) € U has affine model

m

y" =T [ — e()*0. 2.1)

=

1

The function x on C yields a map C — P}, and there is a y,,-action on C over U given
by ¢ -(xy) = ¢ -y) forall¢ € py,. Thus C — ]P’b is a i ,;-Galois cover.

For a point t € U, the cover C; — P! is a u,,-Galois cover, branched at N points
t(1),...,t(N) in P!, and with local monodromy a(i) at £(i). By the hypotheses on the
monodromy datum, the fibers of C — U are geometrically irreducible curves of genus g,
where

(N —2)m — fil ged(a(i), m)‘

5 (2.2)

g=gmNa)=1+

Let M, denote the moduli space of smooth projective curves of genus g and let A,
denote the Siegel moduli space of principally polarized abelian varieties of dimension g
over Z.! The composition of the Torelli map with the morphism U/ — M, defined by
the curve C — U yields a morphism over Z[1/m] denoted by

j=jmNa):U— My — A,

Definition 2.1 If (m, N, a) is a monodromy datum, let Z°(m, N, a) be the image of
j(m, N, a) in Ag and let Z(m, N, a) be its closure in A,g.

Remark 2.2 By definition, Z(m, N, a) is a closed, reduced substack of Ay. It is also irre-
ducible [10, Corollary 7.5], [38, Corollary 4.2.3].

The substack Z(m, N, a) depends uniquely on the equivalence class of the monodromy
datum (m, N, a), where (m, N, a) and (m/, N’, a’) are equivalent if m = m’, N = N’, and
the images of a4, @’ in (Z/mZ)N are in the same orbit under (Z/mZ)* x Symy,.

Fix a point ¢ € U/(C) and let V be the first Betti cohomology group H'(C;(C), Q). Then
V has a Hodge structure of type (1, 0) + (0, 1) with the (1, 0) piece given by H°(C;(C), Qlcl)
via the Betti—de Rham comparison. Let V't (resp. V™) denote the (1, 0) (resp. (0, 1)) piece.

Then V, V', and V™ are Q[u,,]-modules and there are decompositions

VRQC=&erVe, VIi=&rerVy, V7 =&rerVs.
Set:

g(r) :=dimc V;, {§(r) :=dimc V;'. (2.3)

For any x € Q, let (x) denote the fractional part of x. By [25, Lemma 2.7, §3.2] (or [6]),

m

f(tn) =

{—1+Zﬁ1<ﬂ> if 7 % 0 mod m (2.4)

if =0 mod m.

"When we talk about universal families on the stacks, it means that we pass to a suitable level structure for such
universal objects to exist.
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The dimension f(t,) is independent of the choice of ¢ € U. The signature type of the
monodromy datum (m, N, a) is

f = (f(rl): ] f(fm—l))-

Remark 2.3 Forallt € 7, dim¢ V:; = dim¢ V" and thus g(z) = f(z) + f(z*). The value
g(7) is constant on the o-orbit of 7, so we sometimes write g(0) = g(t) for T € o.

2.3 Newton polygons

Let X denote a g-dimensional abelian scheme over an algebraically closed field IF of positive
characteristic p (e.g, X = &, where X is the universal abelian scheme on Ag, and
x € Ag(F)).

If F is an algebraic closure of I, the finite field of p elements, then there exists a finite
subfield Fy C I such that X is isomorphic to the base change to F of an abelian scheme X
over [Fy. Let W(Fo) denote the Witt vector ring of [Fy. Consider the action of Frobenius ¢
on the crystalline cohomology group H, clris (Xo/W (Fp)). There exists an integer # such that
¢", the composite of n Frobenius actions, is a linear map on H, Clris (Xo/W (Fp)). The Newton
polygon v(X) of X is defined as the multi-set of rational numbers A, called the slopes, such
that #A are the valuations at p of the eigenvalues of Frobenius for this action. Note that
the Newton polygon is independent of the choice of Xy, Fo, and n. For a more general F,
one can use the Dieudonné—Manin classification to define the Newton polygon.

The p-rank of X is the multiplicity of the slope 0 in v(X); it equals dimp, Hom(x, X).

If A is an abelian variety or p-divisible group defined over a local field of mixed charac-
teristic (0, p), we write v(A) for the Newton polygon of its special fiber.

For A € QN [0, 1], the multiplicity m, is the multiplicity of A in the multi-set; ifc,d € N
are relatively prime integers such that A = c¢/(c + d), then (¢ + d) divides m;,. The
Newton polygon is symmetric if my = mi_, for every A € Q N [0, 1]. The Newton
polygon is typically drawn as a lower convex polygon, with slopes equal to the values of A
occurring with multiplicity 7, . The Newton polygon of a g-dimensional abelian variety X
is symmetric and, when drawn as a polygon, it has endpoints (0, 0) and (2g g) and integral
break points.

Let ord denote the Newton polygon {0, 1} and ss denote the Newton polygon {1/2,1/2}.
Thus an ordinary (resp. supersingular) abelian variety of dimension g has Newton polygon
ord® (resp. ss¢). Fors, t € N, with s < t/2 and ged(s, £) = 1, let (s/¢t, (¢ — s)/t) denote the
Newton polygon with slopes s/t and (t — s)/¢, each with multiplicity ¢.

We denote the union of multi-sets by @, and for any multi-set v, and n € N, we write
v forv @ - - - @ v, n-times. For convex polygons, we write v; > vy if v, v share the same
endpoints and v; lies below vy. Under this convention, the ordinary Newton polygon is
maximal and the supersingular Newton polygon is minimal.

2.4 Dieudonné modules modulo p and Ekedahl-Oort types
The p-torsion X [p] of X is a symmetric BT;-group scheme (of rank 2¢) annihilated by p.
The a-number of X is dimp(ay, X[p]), where a, is the kernel of Frobenius on G,.

Let E denote the non-commutative ring over Fp, generated by a o-linear F and o ~!-
linear V with FV = VF = 0. The mod p Dieudonné module of X is an E-module of finite
dimension (2g). Over F, there is an equivalence of categories between finite commutative
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group schemes of rank 2¢ annihilated by p and E-modules of dimension 2g. These can
equivalently be classified by Ekedahl-Oort types.

Let E(w) denote the left ideal of E generated by w. The mod p Dieudonné module for
an ordinary elliptic curve is isomorphic to L := E/E(F,V — 1) @ E/E(V, F — 1); for a
supersingular elliptic curve, it is isomorphic to Ny ; := E/E(F — V).

3 Shimura varieties

Let (m, N, a) be a monodromy datum with N > 4, and f the associated signature type
given by (2.4). In [6] Deligne and Mostow construct the smallest PEL-type Shimura variety
containing Z(m, N, a), which we will denote by Sh(i,,, f). In this section, we recall the basic
setting for PEL-type Shimura varieties, and the construction of [6]. We follow [25].

3.1 Shimura datum for the moduli space of abelian varieties
Let V = Q%,and let ¥ : V x V — Q denote the standard symplectic form.? Let
G := GSp(V, V) denote the group of symplectic similitudes over Q. Let ) denote the
space of homomorphisms / : S = Resc/rG,; — Gr which define a Hodge structure of
type (-1,0)+(0,-1) on V7 such that £(27i)W is a polarization on V. The pair (G, b) is the
Shimura datum for A,.

Let H C G be an algebraic subgroup over Q such that the subspace

bu = {h € b | h factors through Hg}

is non-empty. Then H(R) acts on hj by conjugation, and for each H(R)-orbit Yy C bhp,
the Shimura datum (H, Yz/) defines an algebraic substack Sh(H, Yz;) of A, . In the following,
for h € Yy, we sometimes write (H, /) for the Shimura datum (H, Yy). For convenience,
we also write Sh(H, ) for the finite union of the Shimura stacks Sh(H, Yz), as Yy varies
among the H(R)-orbits in hy.

3.2 Shimura data of PEL-type
Now we focus on Shimura data of PEL-type. Let B be a semisimple QQ-algebra, together
with an involution *. Suppose there is an action of B on V' such that W(bv, w) = W (v, b*w),
forallb € Bandallv,w € V. Let

Hp := GLg(V) N GSp(V, W).
We assume that b, # @.

For each Hp(R)-orbit Yp := Yy, C bhpy,, the associated Shimura stack Sh(H3p, Y3) arise
as moduli spaces of polarized abelian varieties endowed with a B-action, and are called of
PEL-type. In the following, we also write Sh(B) := Sh(Hp, hy).

Each homomorphism % € Yp defines a decomposition of B¢-modules

Ve=Vite V™
where V7 (respectively, V™) is the subspace of V¢ on which /(z) acts by z (respectively,
by z). The isomorphism class of the Bc-module V't depends only on Yz. Moreover, Yp is
determined by the isomorphism class of V1 as a Bc-submodule of V. In the following,
we prescribe Yp in terms of the Bc-module VT, By construction, dim¢ V1 = g.

2In Sect. 2.2, we use V to denote H(Cy, Q) for x € U(C). Here, by the convention of Deligne, V is identified with
Hi (X, Q) for any x € Ag(C). The symplectic form will be identified with the one induced by the polarization on X.
This symplectic form, along with Poincaré duality, induces a natural isomorphism HY(C,, Q)(1) = H;(Cy, Q). Hence
the only difference between them is given by the Tate twist and we use the same notation V' for both.
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3.3 Shimura subvariety attached to a monodromy datum

We consider cyclic covers of the projective line branched at more than three points; fix
a monodromy datum (m, N, a) with N > 4. Take B = Q[u,] with involution * as in
Sect. 2.1.

As in Sect. 2.2, let C — U denote the universal family of u,,-covers of P! branched at
N points with inertia type a; let j = j(m, N, a) : U — Ag be the composition of the Torelli
map with the morphism U — M. From Definition 2.1, recall that Z = Z(m, N, a) is the
closure in A, of the image of j(m, N, a).

The pullback of the universal abelian scheme X’ on A, via is the relative Jacobian 7 of
C — U. Since ., acts on C, there is a natural action of the group algebra Z[u,,] on J. We
also use J to denote the pullback of X to Z. The action of Z[u,,] extends naturally to J
over Z. Hence the substack Z = Z(m, N, a) is contained in Sh(Q[u,,]) for an appropriate
choice of a structure of Q[x,,]-module on V. More precisely, fix x € Z(C), and let (Jy, 0)
denote the corresponding Jacobian with its principal polarization 8. Choose a symplectic

similitude, meaning an isomorphism

o (Hi(Jx Q) 1#9) — (V, W),

such that the pull back of the symplectic form ¥ to Hi(J,, Q) is a scalar multiple of vy,
where ¥y denotes the Riemannian form on Hi(Jy, Q) corresponding to the polarization

6. Via a, the Q[f4,,]-action on 7, induces an action on V. This action satisfies
DQUu # @5 and W(bv, w) = W (v, b*w),

forall b € Q[u,,),allv,w € V,and Z C Sh(Q[um]).

The isomorphism class of V' asa Q[14,,] ® C-module is determined by and determines
the signature type {f(r) = dim V'};c7. By [6,2.21, 2.23] (see also [25, §§3.2, 3.3, 4.5]), the
Hgu,,](R)-orbit Ygy,,,,] in hH@[um] such that

Z C Sh(Hgu,}» YOuu.))

corresponds to the isomorphism class of V* with § given by (2.4). From now on, since
Sh(Hgu,,1» Yo[u,,)) depends only on 1, and f, we denote it by Sh(ii, f).

The irreducible component of Sh(it,,, f) containing Z is the largest closed, reduced and
irreducible substack S of A, containing Z such that the action of Z[u,,] on J extends
to the universal abelian scheme over S. To emphasis the dependence on the monodromy
datum, we denote this irreducible substack by S(m, N, a).

4 Newton polygons for special Shimura varieties

In this section, we determine the Newton polygons and the jp-ordinary Dieudonné mod-
ules that occur for the special families of [25, Table 1]. We refer to [22, Section 3] for a
review of the Shimura—Taniyama method for computing the Newton polygon of a cyclic

cover of the projective line branched at exactly three points.

4.1 Newton polygon stratification for PEL-type Shimura varieties

We recall some of the key results about the Newton polygon stratification for PEL-type
Shimura varieties at unramified primes of good reduction from [35]. Similar results are
now known for abelian-type Shimura varieties by [31] and we refer to [15] for a survey of

previous work.
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Let (H, ) denote a Shimura datum of PEL-type, with H connected. Assume p is an
unramified prime of good reduction for (H, /), then the Shimura variety Sh(H, 4) has a
smooth canonical integral model at p, and we denote by Sh(H, h)Fp its special fiber (base
changed to Fp). 3 For the Shimura data introduced in Sect. 3.3, H is always connected and
p is an unramified prime of good reduction if p 1 m.

There exists a p-adic cocharacter ;& = pj, which factors through H (@p) and is conjugate
by an element in H to the Hodge cocharacter induced by .. Given the local datum (Hg,, 1),
in [17, §5] and [19, § 6], Kottwitz introduced a partially ordered set B(H@p, 1), and showed
that B(Hg,, ) has a canonical maximal element (called the u-ordinary element) and a
minimal one (called basic). For the Shimura datum (G = GSp(V, V), &) as in Sect. 3.1,
the set B(Gq,, u) is canonically isomorphic (as a partially ordered set) to the set of all
symmetric convex polygons, with endpoints (0, 0) and (2g g), integral breakpoints, and
slopes in Q N [0, 1] (see [16, §4]). Under this identification, the p-ordinary and basic
elements are respectively the ordinary and supersingular Newton polygons.

Furthermore, for a Shimura datum (H, /) C (G, &), Kottwitz constructed a canonical
map (the Newton map)

v: B(Hg,, 1) — B(Gg,, k).
For any b € B(Hg,, i), consider the Newton polygon stratum
Sh(H, h)z, (b) = {x € [Sh(H, M)z | | v(X) = v(b)),

where, as in Sect. 2.3, X denotes the universal abelian scheme over A,. Viehmann and
Wedhorn prove:

Theorem 4.1 [35, Theorem 1.6] For any b € B(Hg,, i) and any irreducible component
S of Sh(H, h), there exists x € |S]B—-p\ such that v(Xy) = v(b).

Definition 4.2 Let (m, N, a) be a monodromy datum with signature f. For the associated
Shimura datum (Hgj,,}» YQ[u,.]) as defined in Sect. 3.3, we write B(u, f) in place of

B((Hg[u,,))q, (7)) and denote by v(B(wm, f)) its image in B(Gg,, i)

We note that the sets B(ii,,, f) and v(B(um, f)) depend on p, specifically on the congru-
ence of p modulo m.

By Theorem 4.1, v(B(i4m, f)) is the set of Newton polygons appearing on the irreducible
component S = S(m, N, a). We refer to the images under v of the p-ordinary and basic
elements of B(,,, f) respectively as the p-ordinary and basic Newton polygons.

4.2 The p-ordinary Newton polygon
For a PEL-type Shimura variety, Moonen [24] explicitly computes the slopes of the j-
ordinary Newton polygon at an unramified prime of good reduction in terms of the
signature type. Here, for convenience, we recall the formula in the case of the Shimura
variety Sh(u,, f), following [7, §2.8].

3More precisely, for p an unramified prime for the datum (H, #), the group Hg, is the generic fiber of some reductive
group H over Z, with connected geometric fibers, and we assume that the level at p of the Shimura variety Sh(H, )
is the hyperspecial subgroup H(Z,) C H(Qp). The condition for p to be an unramified prime of good reduction for
(H, h) and the definition of the canonical integral model of Sh(H, /) at p can be found in [35, §1].
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Recall from Sects. 2.1 and 2.2 that o is the Frobenius action on 7 = Hom(Q[x], C)
and O is the set of o-orbits in 7. The signature type f is given by (2.4). For 7 € 7, recall
that f(t) is the dimension of the eigenspace of V't for 7 under the p,,-action.

For a o-orbit 0 € 9, let s(0) be the number of distinct values of {f(z) | T € o} in
[1,g(0) — 1]. Let E(1), .. ., E(s(0)) denote these distinct values, ordered such that

g(0) > E(1) > E(2) > --- > E(s(0)) > 0.

For convenience, we also write E(0) := g(o) and E(s(0) + 1) := 0.

Proposition 4.3 The w-ordinary Newton polygon for Sh(H, h) is given by vo = @oco it(0)
where the polygon 11(0) has exactly s(o) + 1 distinct slopes,

0<XA0) < A1) <---<A(s(0) <1,

and, for each integer t such that 0 <t < s(0), the slope

t
M) = S #r e o | f(r) = E@) (4.1)
#o0
=0

occurs in (o) with multiplicity
m(A(t)) = (#0) - (E(t) — E(t + 1)). (4.2)

Example 4.4 1f #0 = 1 with signature (f1), then n(0) has two slopes: 0 with multiplicity
g(0) — f1 and 1 with multiplicity f;.

Example 4.5 If o = {7, T*} with signature (f1, f2) and fi < f3, then (o) = ord? @ ss N,

Proof Iffi # 0and fi # f5, then s(o) = 2; also E(0) = f1 + fo, E(1) = f», and E(2) = fi.
Then A(0) = 0 with m(0) = 2f;; A(1) = 1/2 with m(1/2) = 2(f — fi); and A(2) = 1
with m(1) = 2. If i = 0 or fi = f5, then a similar calculation applies. In all cases,
v, = ord? @ s, |

A similar calculation applies for orbits with #0 = 2 that are not self-dual, again showing
that (o) has slopes in {0, 1/2, 1}. Hence, we focus on the orbits of length > 2 when
computing the p-ordinary Newton polygon.

4.3 The Kottwitz method

Recall that S = S(m, N, a) is an irreducible component of the smallest Shimura subvari-
ety of A, containing Z(m, N, a). In [25, Table 1], Moonen lists the 20 monodromy data
(m, N, a) (up to equivalence) for which Z(m, N,a) = S(m, N, a). He obtains the list by
comparing the dimensions of Z and S: on one hand, dim(Z) = N — 3 since 3 out of the
N branch points can be fixed via fractional linear transformations; on the other hand, the
signature type f determines dim(S) by [25, Equation (3.3.1)].

As above, p is a rational prime such that p { m. We now give an explicit description
of the set v(B(uy f)) of Newton polygons from Definition 4.2. Let M be the (contravari-
ant) Dieudonné module of an abelian variety X = X, for any »x € Sh(Hg,,,, ,u)(Fp).
The Q[um]-action on X induces a Q1] ®g Qp-action on X [p*>] and thus a canonical
decomposition

X[p™] = P x[p°]

0€eO
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There is an analogous decomposition of Dieudonné modules

M = P M.

ocO
Let v(0) denote the Newton polygon of X [pS°]. By (2.4), for 0 = {ro}, we have X[p°] = 0
and hence M, = 0. For convenience, we set v({tp}) = 0.

Theorem 4.6 (special case of [35, Theorem 1.6]) The Newton polygons that occur on
S(m, N, “)Fp are the Newton polygons @,co v(0) satisfying conditions (D), (WA), and (M)
below.

The polarization on X induces a prime-to-p isogeny X — X and the Rosati involution
acts on Q[u,,] via the involution *. Thus there is an isomorphism M = M"Y (1) compatible
with the decomposition and this isomorphism induces certain restrictions on v(o) in the
following sense:

condition (D):

(1) if o™ # o, then My = M.(1), i.e., v(0o) determines v(0*). More precisely, if v(0) has
slopes Ay, .. ., As with multiplicities m1, . . ., m;, then v(0*) hasslopes 1—Aj, ..., 1—Ag
with multiplicities m;, . . ., m;.

(2) if o* = o, then M, = MY (1), i.e., v(0) is symmetric. In other words, if X is a slope of
v(0) of multiplicity 1,, then 1 — X is a slope of v(o) of multiplicity m,.

By [29, Theorem 4.2], for any 0 € O, the Newton polygon v(o) satisfies the weakly
admissible condition:

condition (WA) : v(o) > u(o).

Recall that p, is a prime of K;, with inertia degree #0. Note that K, ., acts on M,,
which yields:

condition (M) : the multiplicities of slopes in v(o0) are divisible by #o.

4.4 Computation

We compute all possible Newton polygons for the 20 families from [25, Table 1]; the data
can be found in the tables in Sect. 6. Here, the label M[r] denotes the rth label in [25,
Table 1]. Since the computations are similar for all 20 cases, we give complete details for
two examples: first, family M[17] where m = 7 is prime; and second, family M[19] where
m = 9 is not a prime.

Set O = O — {{ro}}; from now on, 0 € O’. The Newton polygon for X is given by
Boecov(0). In the following two examples, since non-symmetric Newton polygons arise,
we use different notation from Sect. 2.3: when gcd(a, b) = 1, with small abuse of notation,
we use G, instead of v(G,,;) to denote the Newton polygon of pure slope a/(a + b) with
multiplicity a + b.

Example 4.7 We consider family M[17] where m = 7, N = 4, and a = (2,4,4, 4). The
signature type is (1,2, 0,2, 0, 1). Since N = 4, the Shimura variety is 1-dimensional. For

each congruence class of p # 7, there are exactly two possible Newton polygons.

(1) If p = 2,4 mod 7, then #0 = 3 and #O = 2. In this case, O = {03, 02}, where
01 = {11, T2, 4} and 03 = {13, 75, T6}. Since 0] = 02, by (D), M,, = Movz(l). By Sect.
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4.2, u(o2) = Gy, @ Gio. By (WA) and (M), if v(02) # (02), then v(02) = Gus.
Therefore, by (D),

Vo = Gg,l B G12DG1 P Gio, and v, = G1,5 ® Gs1.

(2) If p=3,5mod 7, then #0 = 6 and #O = 1 and there is only one orbit o = 7.
By Sect. 4.2,

v = 11(0) = G, ® G3 ;.

By (M), every eigenspace of the Frobenius action on the Dieudonné module M has
dimension divisible by 6. Since the interval (1/3,1/2) contains no rational number
with denominator 6, the basic Newton Polygon vy, is supersingular.

Example 4.8 We compute all possible Newton polygons for family M[19] where m = 9,
N =4anda = (3,5,5,5). The signatureis (1, 2,0,2,0, 1, 0, 1). Then 73, 76 have order 3 and
7; have order 6 for i = 1,2,4,5,7, 8. By (2.4) and Remark 2.3, g(13) = g(z5) =0+ 1 =1
andg(t;) =2fori=1,2,4,578.

Toillustrate the idea, we show the computation for p = 4, 7 mod 9. In this case, #0’ = 4,
with orbits 01 = {T1, T4, 7,'7}, 0 = {‘52, T5, ‘Eg}, 03 = {7:3}, 04 = {T6}.

By Sect. 4.2, u(03) = Go, and by (WA), this is the only possibility for the Newton
polygon of M,,. By (D), the only possible Newton polygon on M,, & M,, is Go1 @ Gi,0.
Again by Sect. 4.2, 1(01) = G1,2® Go,1 on M, . By (M), every slope in the Newton polygon
of M,, has multiplicity 3 or 6 and hence the denominator divides 6. By (WA), the first
slope lies in the interval [1/3, 1/2]. So, there are two possible Newton polygons

Vo(01) = G1,2 ® Go,1, and vp(01) = Gil.
Then, by (D), the only possible Newton polygons on M,, & M,, are
vo(01,02) = G1, ® G31, and vj(01, 02) = G35
In conclusion, the two possible Newton polygons of the Dieudonné module M are:

Vo = Go1 @ Gig @ Gil ® G1,0, and vy = Go1 @ Gil @ Gro.

4.5 The p-ordinary Ekedahl-Oort type
The Ekedahl-Oort type is a combinatorial invariant classifying the structure of the reduc-
tion modulo p of the Dieudonné module. In [24, Theorem 1.3.7], Moonen shows that the
largest Ekedahl-Oort stratum coincides with the j1-ordinary Newton stratum. We recall
the E-module structure of the mod p Dieudonné module for the p-ordinary locus, given
in [24, §1.2.3].

Fixo e Oandt € {0,...,s(0)}. We define the E-module:

Ni(0) i= @reoFper,
by
F(e;) = e if f(t) < E(t+ 1), 0 otherwise,
Viers) = er if f(r) > E(t + 1), 0 otherwise.

Then Ny(0) arises as the mod p-reduction of an isoclinic Dieudonné module of slope
A(L).
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The reduction modulo p of the p-ordinary Dieudonné module of Sh(H, h)Fp is

s(o)
N, = €D N(o), where N(o) = @5 N (o) ~F+D, (4.3)
0cO t=0

This agrees with the formula in [24, §1.2.3]: note that Moonen defines an E-module for
eachj e {1,...,g(0)}; ifg(o) — E(t + 1) <j < g(o0) — E(¢), then the E-modules have the
same structure, which determines the multiplicity of each factor N¢(o0) in (4.3).

Recall from Sect. 2.4 that L denotes the E-module of an ordinary elliptic curve, and Nj 1
that of a supersingular elliptic curve.

Example 4.9 1f o = {t, v* = 17} with signature (fy, f) with fi < f, then N(0) ~ L% @
S—fi
NS

Note that Example 4.9 is not automatic from Example 4.5 since several Dieudonné
modules can occur with Newton polygon ss”>/1; the one in Example 4.9 has a-number
fo — fi; it decomposes into dimension 2 subspaces stable under F and V.

Proof If fi # 0 and fi # f», then by the computation in Example 4.5 and (4.3) Ny(o) is
generated by er, e;c with F = id, the identity map, and V = 0; Na(o0) is generated by
er, exo with V = id and F = 0; and N1 (o) is generated by e, e;o with F(e;) = V(e;) = €0
and F(e;s) = V(ero) = 0. A similar calculation works when f; = f5 or fi = 0. In all cases,
N(o) = L% @ N3,

A similar calculation applies for all orbits with #0 = 2. Hence, we focus on orbits of

length > 2 when computing the p-ordinary mod p Dieudonné module.

Example 4.10 We compute the u-ordinary mod p Dieudonné module N, for family M[17]
where m = 7. The signature is (1,2,0,2,0, 1) and g(r) = 2.

(1) Ifp = 2,4 mod 7, then the p-rank is 3, and the local-local part of N, has 6 generators
with action of F and V given by:

t=0E(t+1)=1|ei|es]es t=1E(t+1) =0|ej|es|e;
F e2|0]0|and F esleg| 0
\% e4| 0 ey \% ec|0]0

Thus N, ~ L3 @ (E/E(F — V?))e; ® (E/E(F? — V))e;. One can compute that N, has
Ekedahl-Oort type [1, 2, 3, 3,4, 4].
(2) If p=3,5mod 7, then N, has 12 generators with the actions of F and V' given by:

t=0E(t+1)=1|e;|e3|ex|es|esles t=LE({t+1)=0]|e|es|e)|e|e|es
F e3lez| 0esa| O |er|and F 0]e5|0[0|0]e]
Vv 0/0]|0[ex|0|es 1% 0 [e]]0[e)]e; e

Thus N, =E(es, eg) /E(F3e5 — Ve, Ves —Feg) ® E(es, er) /E(Fe, — V3e’5, Ve, — Fey).
In total, N, has 4 generators, thus a-number 4. One can compute that N, has
Ekedahl-Oort type [0, 1, 2, 2, 2, 2].

Example 4.11 We compute the p-ordinary mod p Dieudonné module N, for family M [19]
where m = 9. The signature is (1,2,0,2,0,1,0, 1) and g(r1) = 2 and g(z3) = 1.

Page 13 of 31

12



12

Page 14 of 31 Li et al. Res. Number Theory(2019)5:12

(1) If p=2,5mod 9, there are two orbits 03 and 0;. By Example 4.9,
N(o3) >~ (E/E(F — V))es.

For the orbit 0; of 71, we see that N (o01) has 12 generators with the actions of F and

V given by:
t=0E(t+1)=1|er|ex]|es|es|er]|es t=1E(+1)=0[e|e)|e)|eg|e)|es
F er| 00 |e7|es|er|and F 0]0[0]0]e|ef
1% 0[0|exles|0]0 Vv 0 |e}|ey|e;]es| 0

Then N(01) = (B/E(F* — V?))eg & (E/E(V* — F2))e’7. The Ekedahl-Oort type of
N(01)is [0, 1,2,2,3,4]. In total, N, has 3 generators, thus a-number 3.
(2) If p=4,7 mod 9, there are four orbits. We check that:
N(o3) ®N(0g) ~ L
N(o1) = (E/E(F* — V))e; ® (E/E(F — V?)é,
N(03) = (E/E(F* — V))es ® (E/E(F — V?))ej.

[

One interesting feature is that the Newton polygon (1/3, 2/3)? matches with two differ-
ent Dieudonné modules in Examples 4.10(2) and 4.11(2).

5 Newton polygons of smooth curves
Let (m, N, a) be a monodromy datum. If it is the monodromy datum of one of the twenty
special families from [25, Table 1], we call it special. Fix a prime p with p 1 m.

For a Newton polygon v € v(B(m f)), by definition v occurs as the Newton polygon
of an abelian variety represented by a point of Z(m, N, a) C Ag. This abelian variety is
the Jacobian of a curve of compact type. One can ask whether v occurs as the Newton
polygon of the Jacobian of a curve that is smooth. By Definition 2.1, it is equivalent to ask
whether v occurs as the Newton polygon for a point of Z%(m, N; a). In general, this is a
subtle and difficult question. In this section, we provide an answer in three settings: when
the Newton polygon v is u-ordinary in Sect. 5.1, PEL-indecomposable in Sect. 5.2, or basic
in Sect. 5.3. In Sect. 5.4, we use these three criteria and the purity theorem to prove that
all of the Newton polygons for the special families in [25, Table 1] occur for Jacobians of
smooth curves except for a few of the supersingular ones.

When there is no risk of confusion, we write Z and Z° for Z(m, N, a) and Z°(m, N, a)
respectively.

5.1 The p-ordinary case

Proposition 5.1 Forany special monodromy datum (m, N, a), and any primep withp 1 m,
the p-ordinary Newton polygon v, € v(B(ium, ) and the p-ordinary mod p Dieudonné
module N, occur for the Jacobian of a smooth curve in Z(m, N, a).

Proof Both Z° and the y-ordinary Newton polygon (or Ekedahl-Oort) stratum Z(v,) are

open and dense in Z, thus their intersection is non-empty. O

5.2 PEL-indecomposable Newton polygons
Suppose C is a curve of genus g of compact type. If the Newton polygon of Jac(C) is
indecomposable as a symmetric Newton polygon of height 2g, (e.g., G141 ® Gg—1,1),
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then C is necessarily smooth. In this section, we refine that observation for curves of
compact type which are u,,-Galois covers of the projective line.

Remark 5.2 The following material is based on information about the boundary of the
Hurwitz space of cyclic covers of the projective line, see e.g., [38, Chapter 4] and [8]. A
point & of Z(m, N, a) — Z°(m, N, a) represents the Jacobian of a singular curve Y. This
curve Y is of compact type since Jac(Y) is an abelian variety. Furthermore, there is a ji,,-
cover ¥ : ¥ — X where X is a singular curve of genus 0. The cover y is the join of two
Wm-covers ¥ : Y1 — X7 and 2 : Yo — Xy, where the curves are clutched together in
ordinary double points. Since £ is in the closure of Z%m, N, a), the cover V¥ is admissible,
meaning that at each clutching point the canonical generators of inertia for y; and vy are
inverses. Since Y is connected, either Y7 or Y3 is connected; without loss of generality, say
Y is connected and let r be the number of components of Y5. Then v, is induced from a
Wm/r-cover ¥s° 1 Y7 — X, where Y5 is isomorphic to a connected component of Y>.
Finally, the fact that Y is of compact type implies that each component of Y5 is clutched
together with Y7 at exactly one point.

In the situation of Remark 5.2, the monodromy data for the covers satisfy certain numer-
ical conditions as follows.

Notation 5.3 Let (1, N, a) be the monodromy datum for . Let (11, Ny, «1) be the mon-
odromy datum for /1. Let (m/r, Na, ar2) be the monodromy datum for y5°. Write

o = (o1(1), ..., 1(N1)), ap = (a2(1), .. ., a2 (N2)).

Then N7 + Ny = N + 2. Let @y = Ind”, ay := (ras(1),...,raz(N>)); we call it the

m/r
monodromy datum for v, even if r # 1. The admissible condition is that

a1(N1) = —ras(1) mod m.
Then (possibly after rearranging)
a=(a1(1),...,01(N7 — 1), raa(2), ..., raz(Na)).
Finally, r = ged(m, a1 (N1)).

Definition 5.4 We say that the pair a1, & is a degeneration of compact type of the inertia
type a if the numerical conditions in Notation 5.3 are satisfied.

Suppose that «j, @ is a degeneration of compact type of a. For i = 1,2, write
Zy == Z(m Ny, 1) C Ag and Zy := Z(m/r, N2, az) C Ag,. The numerical conditions
imply that g1 4 rgo = g. We define @ : Ag; x Ay, — Ag, by (A1, A2) = Ay @ Al Let §
(resp. f1, f2) be the signature for a (resp. a1, a3). Consider Sh(i, f1) (resp. Sh(tm/rs §2)),
the smallest PEL-type Shimura stack containing Z; (resp. Z») as introduced in Sect. 3.3.
It follows from the definitions that

® (Sh(im 11) X Sh(tmyr §2)) S Sh(m 9.

Definition 5.5 Let (m, N, a) be a monodromy datum and let f be the corresponding sig-
nature. A Newton polygon v € v(B(um;, f)) is PEL-decomposable if v = vi @ vj for some
v1 € V(B(ims 1)) and vo € v(B(imr f2)), for some pair fy, f2 of signatures arising from a
degeneration of compact type of a.



12

Page 16 of 31 Li et al. Res. Number Theory(2019)5:12

We note that the condition of being PEL-decomposable depends on p modulo m.

Proposition 5.6 For a special monodromy datum (m, N, a), and a prime p with p 1 m,
if v e v(B(m 1)) is not PEL-decomposable, then v occurs as the Newton polygon of the
Jacobian of a smooth curve in Z(m, N, a).

Proof For a special monodromy datum, every Newton polygon v € v(B(i, f)) occurs for
a point of Z(m, N, a). By Remark 5.2, if this point is the Jacobian of a singular curve, then
v is PEL-decomposable by Notation 5.3 and Definitions 5.4 and 5.5.

We compute all PEL-decomposable Newton polygons, for families M[1 — 20] from [25,
Table 1]; the data for families M[3 — 20] can be found in Lemma 6.4. The computations
are similar in all cases, so we give complete details only for M[15].

Example 5.7 For family M[15] where m = 8, N = 4, and a = (2,4, 5, 5); the signature is
f=(1,10,0,2,0,1). There are two degenerations of compact type of a:

a1 =(2,51), ay = (7,4,5)or o} = (5,5,6), & = Ind3(1,21).
The corresponding partitions of the signature f are respectively:

fl == (1: 1; 0) 0; ]-; O; 0); f2 == (01 O; O: 0: 1; O; 1);
fi=(0,10,0,1,0,1), f, = (1,0,0,0,1,0,0).

Thus, for each non-trivial congruence class of p mod 8, there are at most two PEL-
decomposable Newton polygons 7, n’. We compute 7, n’ using the Kottwitz method.

(1) Ifp=1mod 8:n =1 =v, =Gy, &G,

(2) Ifp=3mod 8:n=r=v, =G5, &G}, G
(3) Ifp=5mod 8:n=n = vo=G8,1@Gi1®GiO.
(4) prz7mod8:n=n’=vb=Gi1.

We deduce that the following Newton polygons are not PEL-decomposable and thus
occur as the Newton polygon of the Jacobian of a smooth curve in Z°(8, 4, a):

(1) forp=1mod 8, v, = Gg,l & Gil &) Gio;
(2) forp=3mod 8,v, = G13D G31 D Gy,1;

(3) forp=5mod 8, v, = Go1 D G1,3 P G3,1 & G0

(4) forp=7mod 8, v, = Gél >} Gil &) Gio.

Thus, combining Propositions 5.1 and 5.6, in this example we conclude that all Newton
polygons v € B(iu, ) occur on Z9(8, 4, a), thus occur as Newton polygons of the Jacobian
of a smooth curve, except for p = 7 mod 8 and v = Gil. This last case is addressed by

Proposition 5.8.

5.3 Basic Newton polygons

Consider a special monodromy datum (1, N, a), and a prime p with p { m, such that the set
V(B(m f)) contains exactly two Newton polygons, namely the p-ordinary polygon v, and
the basic polygon vy. In other words, assume that the closed (basic) Newton stratum has
codimension 1. Note that this condition depends on p, as seen in the tables. For the special
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families of [25, Table 1], this condition implies that the dimension of Z = Z(m, N, a) is
either 1 or 2, or equivalently N = 4, 5.

Under this condition, we prove that the basic polygon vj, occurs as the Newton polygon
of a smooth curve in Z.

Proposition 5.8 For any special monodromy datum (m, N, a) with N = 4, and any suffi-
ciently large prime p with p 1 m, the basic polygon v, € v(B(iim, f)) occurs as the Newton
polygon of the Jacobian of a smooth curve in Z(m, N, a).

The key input of the proof is that the number of irreducible components of the basic
locus in the modp reduction of a simple unitary Shimura variety is unbounded as p goes
to co. We prove this statement in Theorem 8.1 in the appendix.

Proof For N = 4 (dimension 1), the set v(B(i,, f)) contains exactly two Newton polygons
for any prime p t m. We argue by contradiction; let us assume that the basic Newton
stratum Zy(vp) is contained in the mod p fiber 3Z, of the boundary 8Z := Z — Z9. Since
the closed substack Z,(v,) has codimension 1 in Z,, if Z,(v;) C 3Z,, then it is equal
to a union of irreducible components of 3Z,, which represent the singular curves in the
family. On one hand, the number of irreducible components of the mod p fiber 0Z, has
an natural upper bound which is independent of p.

On the other hand, the number of irreducible components of the basic Newton stra-
tum of the modp reduction of any irreducible component of the unitary Shimura variety
attached to the special monodromy datum (m, 4, a) grows to infinity with p (see appendix
Theorem 8.1, Corollary 8.3). Hence the contradiction, for p sufficiently large. ]

Example 5.9 For family M[17], the Shimura variety S(7, 4, (2,4, 4, 4)) has dimension 1.
We deduce that for p sufficiently large, and p = 3, 5, 6 mod 7, the basic Newton polygon
vp = Gil occurs as the Newton polygon of the Jacobian of a smooth curve in Z.

Remark 5.10 When N = 5 (dimension 2), to apply Theorem 8.1 we have to further
assume p is split in the quadratic imaginary extension. This condition excludes primes
p = —1 mod m for the special families M[6], M[8], and M[14], and primes p % 1 mod 5
for M[16].

5.4 Conclusion

We apply the three criteria above to the special families in [25, Table 1] to prove that all

but a few of the Newton polygons occur for the Jacobian of a smooth curve in the family.
Let M[r] denote one of the special families from [25, Table 1] and (m, N, a) its mon-

odromy datum. Section 6 contains the list of all the Newton polygons v € v(B(im, f))-

Note that dim(Z(m, N, a)) equals 3 for the family M[r] when r = 2,10, equals 2 for

r = 6,8, 14, 16, and equals 1 otherwise.

Theorem 5.11 Let (m, N, a) denote the monodromy datum for one of the special families
from [25, Table 1]. Assume p 1 m. Let v € v(B(iu, f)) be a Newton polygon occuring on
Z(m, N, a). Then v occurs on Z°(m, N, a), meaning that v occurs as the Newton polygon of

the Jacobian of a smooth curve in the family unless either:

(1) dim(Z(m, N, a)) = 1, v is supersingular, and p is not sufficiently large; or
(2) dim(Z(m, N, a)) > 2, and v is supersingular.
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In cases (1) and (2), we prove in [21, Theorem 6.1] that there exists a smooth curve in
the family which is supersingular for sufficiently large p.

Proof For the family M[1] (resp. M[2]), where m = 2, the Shimura variety Z(m, N, a) is
simply A; (resp. Ajy). Thus all Newton polygons for M[1] and M[2] are already known to
occur for Jacobians of smooth curves.

Consider one of the families M[3 — 20], where m > 3. For the p-ordinary Newton
polygon v,, the result follows from Proposition 5.1. Suppose that v € v(B(iy, f)) is not
pn-ordinary. We distinguish two cases: dim(Z(m, N, a)) = 1 and dim(Z(m, N, a)) > 2.

Suppose dim(Z(m, N, a)) = 1. Then the set v(B(i, f)) contains exactly two polygons;
since v is not p-ordinary, then v is the basic Newton polygon vj. Direct computations
(Lemma 6.4) show that if vj, is not supersingular, then it is PEL-indecomposable and the
result follows from Proposition 5.6. If vy, is supersingular, by Proposition 5.8, v, occurs for
a smooth curve if p is sufficiently large.

Suppose dim(Z(m, N, a)) > 2 and the basic Newton polygon v, € v(B(im, f)) is not
supersingular. From the tables in Sect. 6, this occurs exactly when p = 1 mod m. Again,
direct computations (Lemma 6.4) show that vj, is PEL-indecomposable. By Proposition
5.6, vj, occurs for the Jacobian of a smooth curve in the family, i.e., Z°[v,] # @, where
Z° = Z%(m, N, a). Furthermore, note that v(B(u,, f)) is totally ordered and

codim(Z°[v,], Z°) = #v(B(um, ) — 1.

By the de Jong—Oort purity result for the stratification by Newton polygons [5, Theo-
rem 4.1], we deduce that Z°[v] is non empty, for all v € V(B(im; f)).

Suppose dim(Z(m, N, a)) > 2 and the basic Newton polygon v, € v(B(um, f)) is super-
singular. The proof is complete unless v(B(i, f)) contains more than 2 Newton polygons.
From the tables in Sect. 6, this happens only for the family M[10] when p = 2 mod 3,
in which case v(B(u;, f)) contains exactly three polygons: the p-ordinary vp; the basic
Newton polygon vy; and n = (1/4, 3/4), which is PEL-indecomposable. By Proposition
5.6, n occurs for the Jacobian of a smooth curve in the family M[10]. |

6 Tables

The following tables contain all the Newton polygons and the p-ordinary Dieudonné
modules which occur for the cyclic covers of the projective line arising from the special
families of Moonen. The label M[r] denotes the rth label in [25, Table 1]. We organize
the tables for M[1] — M[20] by the value of m starting with the ones with ¢(m) = 1, 2.

Notation 6.1 The degree of the cover is m, the inertia type is a = (ay,...,an), the
signature is f = (f(1), ..., f(m — 1)). The prime orbits are denoted by O.

Notation 6.2 Letord = {0, 1} (resp. ss = {1/2, 1/2}) be the ordinary (resp. supersingular)
Newton polygon. For s, ¢ € N, with s < ¢ and ged(s, t) = 1, let (s/¢, (t — s)/t) denote the
Newton polygon with slopes s/t and (¢ — s)/t, each occuring with multiplicity £.

Notation 6.3 As in Sect. 2.4, let E denote the non-commutative ring generated by F and
V with FV = VF = 0. Let EO-type stand for Ekedahl-Oort type. Define:

o L=E/E(F,V —1)® E/E(V, F — 1); it has rank 2, p-rank 1, and EO-type [1];
¢ N1 = E/E(F" — V"); rank 2r, p-rank 0, a-number 1, and EO-type [0, 1,...,r — 1];
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o Ny = I[*E/IE(F’"_1 -V)® IE/IE(VV_1 — F); it has rank 2r, p-rank 0, a-number 2, and
EO-type [0,1,...,r —3,r —2,r —2].

6.1 Tablesformwithm =2,3,4,6

Here are the tables for Moonen’s special families when ¢(m) < 2. Because of previous

work, e.g., [3,22,28], we do not produce any new examples of Newton polygons and

Dieudonné modules for smooth curves in this subsection.

When ¢(m) < 2, each orbit of the eigenspaces under Frobenius has length 1 or 2. By

Examples4.4-and 4.5, this implies that the pt-ordinary Dieudonné module N, is determined

by the -ordinary Newton polygon v,; if v, = ord® @ ss, then N, ~ L* @ N1h,1-
For m = 2 with p odd: Family M[1] hasa = (1,1, 1, 1), f = (1), and ord and ss occur.
Family M[2] hasa = (1,1,1,1,1,1), f = (2), and ord?, ord @ ss, and ss® occur.

m=3 a f p=1mod3 p=2mod3
M][3] (1,1,22) 1,1) ord? ord?
SS2 552

M][6] (1,1,1,1,2) 2,1) ord® ord* & ss
ord @ ss® 583
(1/3,2/3)

MI[10] (1,1,1,1,1,1) (3,1) ord* ord?* @ ss>
ord? & ss® (1/4,3/4)
ord ® (1/3,2/3) sst
(1/4, 3/4)

m=4 a f p=1mod 4 p =3 mod 4

MI[4] (1,2,2,3) (1,0,1) ord? ord?

552 552
M([7] (1,1,1,1) (2,1,0) ord? ord @ ss*
ord? @ ss 583
M(8] (1,1,22,2) (2,0,1) ord3 ord® @ ss
ord & ss> 583
(1/3,2/3)
m=6 p 1 mod 6 5 mod 6
a f 9]
split (1,5),(24),3)

(2,3,3,4) (1,0,0,0,1) ord? ord?

M][5] 552 552

(1,3,4,4) (1,1,0,0,1) ord’ ord? @ ss

M]I9] ord @ ss® 583

(1,1,1,3) (2,1,1,0,0) ord* ord @ ss®

M[12] ord® @ ss ss*

(1,1,2,2) (2,1,0,1,0) ord* ord? @ ss*

M](13] ord? @ ss? ss*

(2,2,2,3,3) (2,0,0,1,1) ord* ord? @ ss*

M([14] ord? @ ss® ss*

ord & (1/3,2/3)

12
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6.2 Tables for mwithm =5,7,8,9,10,12

Here are the tables of Newton polygons for Moonen’s special families when ¢(m) > 2.
We include the p-ordinary Dieudonné module N, when the prime orbits have #0 > 2;
when #0 < 2, then N, can be computed from Examples 4.4 and 4.9.

m=>5 P 1 mod 5 2,3 mod 5 4 mod 5
a f 9]

split (1,23,4) (1,4),(2,3)
(1,3,3,3) (1,2,0,1) ord* (1/4,3/4) ord? @ ss?
MJ11] ord? @ ss* ss? ss*
(2,2,2,2,2) (2,0,3,1) ord® (1/4,3/4) @ ss® ord? @ ss*
MJ16] ord* @ ss? ss® ss®

ord® & (1/3,2/3)

When p = 2,3 mod 5: for M[11], N, 2 Ny ; for M[16], N, > Ny @ Na 1.

m=7 P 1 mod 7 2,4 mod 7 3,5mod 7 6 mod 7
a f )

split (1,2 4), (3,5,6) (1,23,4,56) (1,6),(25),(3 4)
(244,4) (1,2,02,0,1) ord® ord® ®(1/3,2/3) (1/3,2/3)? ord? @ ss*
MI[17] ord* ®ss>  (1/6,5/6) ss° ss®

By Example 4.10, for M[17]: when p = 2,4 mod 7, then N, ~ L3 @ N3; when p =
3,5 mod 7, then

N, = E(es, eg) /E(F3e5 — Veg, Ves — Feg) @ E(e}, ef) /E(Fey — V3el, Vel — Fef).

m=38 p 1 mod 8 3 mod 8 5 mod 8 7 mod 8
f 9}
split (1,3), (2,6) (1,5),(3,7) (1,7), (2,6)
(57), (4) (2), (4), (6) (3,5), (4)
(2,4,5,5) (1,1,0,0,2,0,1) ord® ord? @ ss3 ord® @ ss? ord? @ ss3
M]J15] ord® @ ss? (1/4,3/4) ® ss ord @ (1/4,3/4) ss°
m=9 p 1 mod 9 2,5 mod 9 4,7 mod 9 8 mod 9
a f 9]
split (1,2,4,8,7,5) (1,4,7),(2,85) (1,8),(2,7)
(3,6) (3) (6) (4,5), (3,6)
(3,555 (1,2,0,2,0,1,0,1) ord’ (1/3,2/3) @ss  ord ®(1/3,2/3)*  ord® @ ss®
MJ[19] ord® @ ss?  ss’ ord @ ss® ss’

By Example 4.11, for M[19]: when p = 4,7 mod 9, then N, ~ L & N32,2; when p =
2,5 mod 9, then N, ~ E/E(F* — V?) @ E/E(V* — F?) @ E/E(F — V).

m =10 p 1 mod 10 3,7 mod 10 9 mod 10
a f 9]
split 1,3,97) (1,9), (2, 8)
(2,6,8,4), (5) (3,7), (4, 6), (5)
(3,5,6,6) (1,1,0,1,0,0,2,0,1) ord® (1/4, 3/4) @ ss® ord? @ ss*

M][18] ord* @ ss? ss8 556
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For M[18]: when p = 3,7 mod 10, then N, >~ N2 @ No1.

m=12 p 1 mod 12 5 mod 12 7 mod 12 11 mod 12
a f )
split (1,7),(3,9) (1,11), (4, 8)
(1,5),(2,10), (3) (2), (4), (5,11) (3,9), (2, 10)
(4, 8),(6), (7,11), (9) (6), (8), (10) (5,7), (6)
4,6,7,7) (1,1,0,1,0, ord’ ord® @ ss* ord* @ ss3 ord? @ ss®
0,2,0,1,0,1)
M][20] ord® ®ss>  ord ®(1/4,3/4) ®ss>  ord> @ ss® ss’

6.3 PEL-decomposable Newton polygons

The next lemma contains the data of all the PEL-decomposable Newton polygons for
families M[3 — 20] from [25, Table 1]. We refer to Remark 5.2 and Notation 5.3 for

explanation and to Example 5.7 for a sample calculation.

Lemma 6.4 In the following tables, for the special families from [25, Table 1], the fourth
column lists the degenerations of compact type of the inertia type and the last column

lists the PEL-decomposable Newton polygons for the family under the given congruence

condition on p modulo m (excluding the p-ordinary Newton polygon when p = 1 mod m ).

label m inertiatype  degeneration PEL-decomp. NP (congruence class)
M][3] 3 (1,1,2,2) (1,1,1)+(2,2,2) ss?,p=2
M][6] 3 (1,1,1,1,2) (1,1,1)+(1,1,2,2) ord ®ss’,p=1
ord®> @ ss,p =2
553,19 =2
M[10] 3  (1,1,1,1,1,1) (1,1,1) +(2,1,1,1,1) ord> ®ss>,p=1,2
ord ®(1/3,2/3),p=1
554,p =2
M[4] 4 (1,2,2,3) (1,1,2)+(2,3,3) ss?,p=3
M([7] 4 (1,1,1,1) None None
M][8] 4 (1,1,2,2,2) (1,2,2,3)+(1,1,2) ord ®ss>,p=1
(1,1,2) + Ind3(1,1,1,1) ord®> ®ss,p =3
ss3,p=3
M[5] 6  (2,3,34) (1,2,3)+(3,4,5) ss?,p=5
M[9) 6  (1,3,4,4) (1,1,4)+(3,4,5) ss®,p=5
(1,2,3) + Ind$(2,2,2)
M[12] 6 (1,1,1,3) (1,1,4) + (2,1,3) sst,p=5
M[13] 6 (1,1,2,2) (1,1,4) + Ind§(1,1,1) sst,p=5
M[14] 6  (2,22,3,3) (2,3,1) + (5,3,2,2) ord> ®ss,p=1,5
(23,3,4)+Ind§(1,1,1) ss*,p=5

*The p-ordinary Newton polygon for p = 1 mod m is ordinary, and always PEL-decomposable.

12
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label m a degenerations PEL-dec. NP, congruence on p
M} 5 (1,3,3,3) (1,3,1) + (4.3,3) sst,p# 1
M[16] 5 (2,2,2,2,2) (2,2,2,4) + (1,2,2) (1/4,3/4) ®ss2, p=2,3

ord? @ 554‘,p =4
ord* @ ssz,p =1

ss®,p#E1
MI[17] 7 (2,4,4,4) (4,4,6) + (1,4,2) ord® ® (1/3,2/3), p = 2,4
556, p=356
M[15] 8 (2/4,5,5) (5,5,6) + Ind§(1,2,1) ord?> ®ss®,p=3
(5,2,1)+(7,4,5) ord® ®ss’,p=5
5%, p=7
M][19] 9 (3,5,5,5) (3,5,1) + (8,5,5) ord & (1/3,2/3)%, p=4,7
ss’,p=2,528
M][18] 10 (3,5,6,6) (3,5,2) + Ind:? (4,3,3) 5O, p#£1
(6,3,1) + (9,5,6)
M[20] 12 (4,6,7,7) (7,7,10) + Ind}?* (1,2,3) ord® ®ss*,p=5
(7,4,1) + (11,6,7) ord* ®ss®,p=7
ss7, p=11

7 Applications

The method of the previous sections produces numerous Newton polygons and mod
p Dieudonné modules that occur for the Jacobian of a smooth curve. In Sect. 7.1, we
collect a list of these, focusing on the ones which are new, and prove a result about curves
of arbitrary large genus whose Newton polygon has slopes 1/6,5/6. In Sect. 7.2, for an
infinite sequence of g € N and a set of primes of density 1/2, we produce an explicit family
of smooth curves of genus g such that the multiplicity of the slope 1/2 in the Newton

polygon is at least 4, /g.

7.1 Newton polygons and Dieudonné modules arising from special families
The label M[r] denotes the rth label in [25, Table 1].

Theorem 7.1 (Theorem 1.2) There exists a smooth supersingular curve of genus g defined
over Fp for p sufficiently large in the congruence class in the following cases:

o wheng =5, p =7 mod 8, from M[15];
o wheng =6, p =2,3,4 mod 5, from M[18];
o« wheng =7, p =2 mod 3, from M[19, 20].

Proof The results appear in Sect. 6 in the basic loci of families. By Proposition 5.8, for
p sufficiently large in each congruence class, each of the supersingular Newton polygons
above appears as the Newton polygon of the Jacobian of a smooth curve. O

Remark 7.2 (1) InTheorem 7.1, we could also include: genus 4 when p = 2 mod 3 from
M[12 — 13] or p = 2, 3,4 mod 5 from M[11]; and genus 6 when p = 3,5,6 mod 7
from M[17]. We do not include these cases since they already appear in [22, Theorem
1.1] for all p satisfying the congruence condition.

(2) We would like to thank Voight and Long for pointing out that the genus 6 case of
Theorem 7.1 can likely also be proven (without the hypothesis that p is sufficiently
large) using truncated hypergeometric functions.
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We collect new examples of Newton polygons and Dieudonné modules from the pu-
ordinary locus. The two Newton polygons with * appear earlier in [3,28].

Theorem 7.3 There exists a smooth curve of genus g defined over Fp with the given Newton
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polygon NP and mod p Dieudonné module DM in the following cases:

genus NP DM congruence on p where

4 x(1/4, 3/4) Ny» 2,3 mod 5 M[11]

5 ord? @ ss® L*@ N3, 3,7 mod 8 MJ15]

6 (1/4,3/4) @ ss* Ny @ Nojy 2,3 mod 5 M][16, 18]

6 ord? @ ss* LI?® Nfl 4 mod 5,6 mod 7, M]J16,17]
or 9 mod 10 M]J18]

6 xord® @ (1/3,2/3) L3 ® N3, 2,4 mod 7 M[17]

6 (1/3,2/3)% Example 4.10(2) 3,5 mod 7 M[17]

7 (1/3,2/3)> @ ss Example 4.11(1) 2,5 mod 9 M[19]

7 ord ® (1/3,2/3)? L® N3, 4,7 mod 9 M[19]

7 ord* @ ss3 L*e Nﬁl 7 mod 12 M][20]

7 ord® @ ss* L*® Nfl 5 mod 12 M][20]

7 ord? @ ss® L*® N}, 8 mod 9 or 11 mod 12 M]19, 20]

Proof The result follows from Proposition 5.1 since these Newton polygons and
Dieudonné modules occur in p-ordinary cases in Sect. 6 under these congruence con-
ditions. m]

Theorem 7.4 There exists a smooth curve of genus g defined over Fp with the given Newton
polygon NP in the following cases:

genus NP congruence on p where
5 (1/4,3/4) @ ss 3 mod 8 M]J15]
6 (1/6,5/6) 2,4 mod 7 M[17]
7 ord @ ss® 4,7 mod 9 M]J[19]
7 ord? @ ss° 7 mod 12 M][20]
7 ord & (1/4, 3/4) @ ss> 5 mod 12 M[20]

Proof These Newton polygons appear in basic loci cases from Sect. 6 under the given
congruence conditions. By Lemma 6.4, these cases are PEL-indecomposable. Thus, by
Proposition 5.6, they occur for Jacobians of smooth curves. ]

The p-divisible group Gy,4_1 ® G;_1,1 has slopes 1/d, (d — 1)/d. The next result was
proven for all p, when d = 2 [9, Theorem 2.6]; d = 3 [28, Theorem 4.3]; d = 4 [3,
Corollary 5.6]; and (under congruence conditions on p) when d = 5 or d = 11 in [22,
Theorem 5.6].

Theorem 7.5 Whend = 6 and p = 2,4 mod 7, for all g > d, there exists a smooth curve
of genus g defined over Fp whose Jacobian has p-divisible group isogenous to

(Gra—1® Gy_11) ® (Go1 ® Gro)¥ @ :

12
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Proof From the basic locus for M[17] when m = 7 in Sect. 6, there exists a curve of
genus d = 6 defined over Fp whose p-divisible group is isogenous to G141 ® G4_1,1.
By Proposition 5.6, this curve is smooth. The Newton polygon for Gy 41 ® G411 is
the lowest Newton polygon in dimension d with p-rank 0. Thus there is at least one
component of the p-rank 0 stratum of M whose generic geometric point has p-divisible
group isogenous to Gy 41 ® G4_1,1. The result is then immediate from [27, Corollary 6.4].

O

7.2 A non-special family
Let QR (resp. QNR) be an abbreviation for quadratic residue (resp. non-residue).

Notation 7.6 Let m > 7 be a prime such that m = 3 mod 4. Let p > m(m — 7)/2 be
a prime which is a QNR modulo m. Let N = (m — 1)/2. Let ay;, = (a1, ..., an) be an
ordering of the QRs modulo .

The triple (m, N, a;,) is a monodromy datum because Zfil a; =0 mod m.

Consider the family C = C(m, N, o) — U of curves defined as in (2.1). For ¢ € U, the
genus of the curve C; is g, = (m — 5)(m — 1)/4 by (2.2). Recall that Z(m, N, ;) is the
closure in A, of the image of C under the Torelli map, and S(m, N, @) is the smallest
Shimura subvariety in A, containing Z(m, N, a,,).

Proposition 7.7 Consider the monodromy datum (m, N, a,,) with m, p, N, &, as in Nota-
tion 7.6. There are explicitly computable constants E(1), E(2) € N, with E(1) > E(2) and
E(1) + E(2) = (m — 5)/2, such that the j-ordinary Newton polygon v, and j-ordinary
mod p Dieudonné module N, of the reduction modulo p of S(m, N, a,,,) are

vy = (ord??) @ ssF—E@)0m=1)/2, (7.1)
N, = (LZE(Z) @NIEEU—E(Z))(WI—I)/% (72)
Proof Letn € (Z/mZ)*. Since the inertia type «,, consists of all the QRs, by (2.4), there

exist ¢1, ¢ € Z”° such that f(t,) = ¢1 when n is a QR and {(t,) = c2 when 7z is a QNR.
Since m = 3 mod 4, exactly one of n and —#n is a QR. So

g(tn) = f(tn) + f(t—n) = c1 + 2 = (m = 5)/2.

Also ¢1 # ¢y since (m — 5)/2 is odd.
Since p is a QNR in (Z/mZ)*, each orbit o has the same number of QRs and QNRs. By
§4.2, s(0) = 2, E(0) = ¢1 + ¢2, E(1) = max{cy, c2} and E(2) = min{c), ¢3}. By (4.1)—(4.2):

1(0) = 0, m(A(0) = (#o) - E(2);

A1) =1/2, m(A(1)) = (#0) - (E(1) — E(2)); and

M2) =1, m(A(2)) = (#0) - E(2).
Hence, j1(0) = (ord*2@ @ssEM-EQ))#0/2 qnd ), = > u(o) = (ord*EQ@) gssEM)—EQ))(m=1)/2,
Because E(1) — E(2) # 0, the multiplicity of the slope 1/2 in v, is at least m — 1.

Since s(0) = 2 for any orbit 0 and E(1) = max{c), c2} and E(2) = min{cy, ¢3} are
independent of o, then N, = (L*(® @ NE(D —EQ) )=1/2 by Example 4.9. ]

For m > 7, the image of the Torelli morphism is not open and dense in S(m, N, oy,,).
This makes it extremely difficult to determine the generic Newton polygon for the curve
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C — U; In this case, a result of Bouw allows us to prove that the p-ordinary Newton
polygon v, occurs for the curves in the family.

Theorem 7.8 Counsider the monodromy datum (m, N, ay,,) with m, p, N, &y, as in Notation
7.6. Consider the family C(m, N, a,,) — U of curves of genus g, defined as in (2.1). For t
in an open dense subset of U, the curve C; is smooth and has Newton polygon (v, and mod
p Dieudonné module N, as in (7.1). In particular, the Newton polygon only has slopes 0,
1/2, and 1 and the multiplicity of the slope 1/2 is at least m — 1 > 2., /g,

Proof Let S, denote the reduction modulo p of S(m, N, a,); it has p-ordinary Newton
polygon 1, by Proposition 7.7. The Newton polygon i, is the lowest among all Newton
polygons of the same p-rank. Thus in S, the maximal p-rank stratum agrees with the u-
ordinary Newton polygon (and Dieudonné module) stratum. In particular, the Jacobian
of C; has Newton polygon v, if and only if it has maximal possible p-rank. By [4, Theorem
6.1], for p > m(N — 3) = m(m —7)/2, the maximal possible p-rank is achieved on an open
dense subset of U. O

In the first few examples, the multiplicity of the slope 1/2 in the Newton polygon matches
the lower bound (m — 1)/2.

Example 7.9 When m = 7 and a = (1,2,4), then ¢; = 1 and ¢ = 0. Thus, for
3

p = 3,5 6 mod 7, the Newton polygon is ss°.
Example 7.10 When m = 11 and a = (1,3,4,5,9), then ¢; = 2 and ¢y = 1. Thus, for
p=2672810mod 11, the Newton polygon is ord'® @ ss°.

Example 7.11 Whenm = 19anda = (1,4,5,6,7,9,11,16,17), then ¢; = 4 and ¢ = 3.
Thus, for p = 2, 3,8, 10, 12, 13, 14, 15, 18 mod 19, the Newton polygon is ord®* @ ss°.
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Appendix: Bounding the number of irreducible components of the basic locus
of simple Shimura varieties

In this section, we study the basic locus of a certain type of unitary Shimura variety.
Under some natural restrictions on the prime p, we prove that the number of irreducible

components of the basic locus of its reduction modulo p is unbounded as p goes to oco.

Notation

Let E be a CM field, Galois over QQ, and F its maximal totally real subfield. Recall from Sect.
3.1, that V = ng has a standard symplectic form W. There is an action of E on V which
is compatible with W. In other words, if we view V' as an E-vector space, the symplectic
form on V naturally induces an E/F-Hermitian form ¢ on V.
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Using the notation in Sect. 3.2, we consider the PEL-Shimura datum (Hp, /) for B = E.
In the following, we write G = HE. Note that we have an exact sequence

1—>Res@U(V,1/r)—>G—>Gm—>1

where U(V, ) is the unitary group over F with respect to . For example, in the notation
of Sect. 3.2, when E = K}, is a cyclotomic field, for each embedding 7 : Kj,, — C, then the
signature of ¥ at the real place of F induced by 7 is (f(7), f(r*)). Note that the reflex field
of the Shimura datum (G, /) is contained in E.

For any rational prime p, we fix a prime p of E above p. In the following, with some abuse
of notation, we still denote by p the corresponding primes of F and of the reflex field. We
write Ay for the finite adeles of Q. Let K C G(Ay) be an open compact subgroup, and
denote by Sh(G, &) the associated Shimura variety of level K. Assume p is unramified in E,
and K = K,K? C G(Qp) x G(A}’ ) with K, hyperspecial.> Note that this assumption holds
for any prime p sufficiently large. Then, we denote by S the canonical integral model of
Sh(G, h) at p, and write Sy, for the mod p reduction of S, and Sy (vp) for its basic locus.

Main theorem

Theorem 8.1 Assume that the signature of the unitary group U(V, V) is (1, n — 1) or
(n — 1,1) at one real place of F and is (0, n) or (n,0) at any other real place. If p | p is
inert in E/F, we further assume that n is even. Then for any such prime p, the number of
(geometrically) irreducible components of Sp(vp) grows to infinity with p.

Remark 8.2 When n is odd or when the signature has another form, the statement of
Theorem 8.1 does not hold in general. For example, when the center Zg of G is connected,
Xiao and Zhu show that if the dimension of the basic locus is half the dimension of a Hodge
type Shimura variety, then the number of its irreducible components is the same for all
unramified primes [39, Lemma 1.1.3, Theorem 1.1.4 (1), Remark 1.1.5 (2), Proposition
7.4.2]. This dimension requirement is satisfied for any unitary Shimura variety with the
signature as in Theorem 8.1 and # odd at inert prime p. For more examples, see [39,
Remark 4.2.11].
Related material is in [40].

Corollary 8.3 The statement of Theorem 8.1 holds true for any connected compo-
nent of a product of finitely many unitary Shimura varieties satisfying the assumptions
of Theorem 8.1.

Definition 8.4 The group of self-isogenies and certain open compact subgroups Fix a point
xin Sy (vp), and let A, denote the associated abelian variety, endowed with the additional
PEL-structure. We write I = I, for the group of quasi-isogenies of A, which are compatible
with the E-action and the Q-polarization. Then I is an inner form of the algebraic reductive
group G. Furthermore, I(Q,) = G(Qy) at any finite prime £ # p, and I(R)/R* is compact
(due to the positivity of the Rosati involution).

In the following, we construct an open compact subgroup C, of 1(Q,) such that the

mass of C,K? gives a lower bound of the number of irreducible components of Sy, (v}).

°If p is unramified in E, then Gg, admits a smooth reductive model G over Zj, and K}, = G(Z,) is hyperspecial.
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(1) Assume p is split in E/F. Then, I(Q,) decomposes as 1(Q,) = Q;f ]_[le 1,6 where
v runs through all places of F above p. Furthermore, I, = GL,(F,) for v # p,and I,
is isomorphic to D;p,n the division algebra over F, with invariant 1/n. We define
Cp as the maximal compact subgroup of 1(Q,) given by

G =205, ] GLiOk),
vipv#p
where OEFM C D;,,,n is the subgroup of elements with norm in O}(p. (For more
details, see for example [14, Chapter IL.1]).
(2) Assume p is inert in E/F. We generalize the discussion in [36, §2], where Vollaard
treats the case F = Q. Here, we follow [23] and recall that # is even in this case.
Let V'* be the n-dimensional E/F-Hermitian space such that

e V*'®rF Az Y =V Qr A; ¢ as Hermitian spaces; (we fix such an isomorphism);

+ V* has signature (1, 0) or (0, n) at all archimedean places (more precisely, we
only change the signature by 1 at the one indefinite place of V),

+ V*® ®F Fp is a ramified Hermitian space over Ey /Fp.

Fix an O ® Z,-lattice A;, C V* ®q Qp, such that the dual A;,’V of A;, with respect
to the Hermitian form satisfies A} C A;’V and AI’;V /A ~ Of/p (such lattice exists
due to the above assumption on V*). Then [ is the unitary similitude group of V*/
and we define C, C I(Qp) to be the stabilizer group of A,

Proposition 8.5 The number of irreducible components of S(vp)y is bounded below by
the mass of C,K?,

m(CpK?) := #1(Q\I(As)/CHK?.

Proof By Rapoport and Zink’s p-adic uniformization theorem [30, Theorem 6.30], to
prove the statement it suffices to show that the irreducible components (of a subset) of
the Rapoport—Zink space RZ are indexed by 1(Q,)/C,.

Assume p is split in E/F. By Theorem 4.6, there are # possible Newton polygons on Sy,
and hence by [13, Theorem 1.1], the basic locus is 0-dimensional. Note that the group C,
is the stabilizer of the Dieudonné lattice of A,. Hence 1(Qj) acts on RZ with stabilizer C,
and the number of irreducible components is bounded below by 1(Q,)/C,.

Assume p is inert in E/F. For F = Q, the statement is [37, Theorem 5.2 (2), Prop.
6.3]. For F totally split at p, the statement is proved in [23]. Here, we sketch a proof that
generalizes [23,37]. The proof is in three steps.

(1)  Constructa 0-dimensional Shimura variety Sh(GU (V'*)) of level C,K?, parametriz-
ing abelian varieties A® of dimension [F : Q]n with Og-action and polarization A®
satisfying Kottwitz’s determinant condition. Here we assume that the polarization
A*® admits the same polarization type as in Sh(G, /) outside p; at p we assume that
(Kerr®)[p*™°] = (KerA®)[p] and that the latter is a finite flat group scheme of order
#Og /p. To describe the Kottwitz’s condition, let ® € Hom(E, C) be the subset of t

°As a convention in the appendix, if we write G = H) Hy, it means that Hy, Hy are subgroups of G and every element g
in G can be written as i hy for h; € H;, i = 1, 2 with no assumption that such decomposition is unique. For instance,
we do not assume that Hy N Hy = {1}

7Step (2) of the inert case of the proof of Proposition 8.5 contains a proof for this well-known fact.
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such that the signature (f(z), f(z*)) of V'* is (1, 0). Note that ® LI ®* = Hom(E, C).
Kottwitz’s determinant condition says that the characteristic polynomial of the
action b € Of on Lie(A®) is given by [ [, .o (x — 7())".
We will construct a Deligne—Lusztig variety DL and, for a fixed A® as in (1), a
family of abelian varieties A in Sy(vp) together with a universal isogeny from A®
parametrized by DLP'f, the perfection of DL.

Let 1o denote the unique indefinite real place for U(V) and let f denote

the inertia degree of p in F. Consider the o-orbit 0, = {70,070, - Lol =
1:6‘,016*,~~,0f_115‘}. For t € o0y, define IN’f = Fro---F, where F;
HldR(A')gHm — HiiR(A.)gitO is equal to F if 6'"17 € ®, and to V! otherwise.®

Then, there exists a submodule M C H 1dR (A%)7, ® Fp of rank n/2 + 1 satisfying the
condition

F ()" cm,
where 1 is taken with respect to the pairing’
(==)° :H{lR(A.)To X HflR(A.)ré‘ - IF‘P'

The Deligne—Lusztig variety DL is the moduli of all submodules M satisfying the
above conditions.

To construct A over DLP®f, we use covariant Dieudonné theory and by a theorem
of Gabber (see for instance [20, Theorem D]), we only need realize the Dieudonné
module of A as a sub-Dieudonné module of D(A®).

We define D(A); C D(A®); as follows.

(@) For t ¢ og: we define D(A); = D(A®); if T ¢ ®, and D(A); = pD(A®); if
Ted.

(b) For T € o0g: let M be the preimage of M in D(A*®);, under the mod p map,
and M* the preimage of M~ in D(A')r5‘~ We define D(A)T(;s F(M) and
D(A)g, = V™HM*). For T = oltg, where 1 < i < f (resp.f + 1 < i < 2f), we
define D(A); = VD(A)M inductively from 7§ = o 1o (resp. o = Tgf ), where
V=Vifr ¢ ¢ and 1% = p~ 1V otherwise.

Note that by definition the submodule D(A) of D(A®) is invariant under F and V.
Hence, it is a sub-Dieudonné module.!? Furthemore, the abelian variety A inherits a
polarization and additional PEL-structures from those of A®, and satisfies Kottwitz’s
determinant condition.

Show that step (2) constructs an irreducible component of S (vp), or similarly of
RZ. Indeed, this can be proven by showing that the image of DL has the correct
dimension. On one hand, by the same argument as in the proof of [36, Proposition
2.13] (replacing the p-Frobenius by the g-Frobenius), the dimension of the Deligne—
Lusztig variety DL in step (2) is #/2 — 1. On the other hand, by Theorem 4.6, the

8We have that V : HfR (A%)or — H{iR(A‘)r is invertible if and only if T ¢ ®.
9For the totally split case, see [23]. To prove that such a submodule M exists, one can argue by induction on 7 as in

[23].

¥One may use the non-emptiness of basic locus due to Wedhorn and Viehmann to prove the existence of such M. The

argument goes the reverse way: let A be the abelian variety with v(A) = vj. As in [36], one can construct an F-invariant
lattice from D(A) and this lattice recovers A
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p-ordinary Newton polygon v,(0y,) has break points

24 1), (2f(n—1), (n = 1)f — 1), and (2fn, fn).

Hence all possible non-supersingular Newton polygons are in one-to-one corre-
spondence with integer points with abscissa 2ft, for some t € Z N [1,1n/2]. In
particular, by [13, Theorem 1.1] (combined with Theorem 4.6) the basic locus (i.e.,
the supersingular locus) has codim #/2, and thus dimension n/2 — 1.

To conclude, we observe that C, is the stabilizer of this irreducible component under
the action of 1(Q,) on RZ arising from its natural action on the associated Dieudonné
modules.

Proof of Theorem 8.1 By Proposition 8.5, the theorem follows once we provide an asymp-
totic lower bound for 71(C,K?) which grows to infinity with p. By [11, Proposition 2.13],1

m(C,K?) =c - Ag

where As = ]_[pe s Ap, for A, an explicit local factor at p and S the set of finite places v of

where [, 1s not isomorphic to G,, and ¢ = 2™ : c - 1) - T), where
Q where I, i i phic to Gy, and ¢ = 2-FEQHD L (M) - T(I), wh

» My is a motive of Artin—Tate type attached to I by Gross,

o L(Mj) is the value of the L-function of M at 0,

+ 7(J) is the Tamagawa number of 7, and

+ ¢’ depends only on the non-hyperspecial piece of the level K.

Note that in our case S = {p} (see Section 8.4). We claim that ¢ is independent of p.
Indeed, the constant L(M/) only depends on the quasi-split inner form of  over Q, which
is independent of p; by [18], (/) is independent of p because the center of the neutral
connected component of the Langlands dual group of [ is independent of p; since K is
hyperspecial at p, then ¢’ is independent of p.

Hence, to conclude, it suffices to prove that the local factor A, is unbounded as p grows
to infinity. In [11, Formula (2.12)], the local factor 1,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>