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We introduce and study a new way to categorize supersingular abelian varieties 
defined over a finite field by classifying them as fully maximal, mixed or fully 
minimal. The type of A depends on the normalized Weil numbers of A and 
its twists. We analyze these types for supersingular abelian varieties and curves 
under conditions on the automorphism group. In particular, we present a complete 
analysis of these properties for supersingular elliptic curves and supersingular 
abelian surfaces in arbitrary characteristic, and for a one-dimensional family of 
supersingular curves of genus 3 in characteristic 2.
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1. Introduction

Suppose that X is a smooth projective connected curve of genus g ≥ 1 defined over a finite field Fq of 

characteristic p; write q = pr. The curve X is supersingular if the only slope of the Newton polygon of 

its L-polynomial is 1
2 or, equivalently, if its normalized Weil numbers are all roots of unity. If p = 2, there 

exists a supersingular curve over F2 of every genus [42]. If p is odd, it is not known whether there exists a 

supersingular curve over Fp of every genus. One says that X is minimal (resp. maximal) over Fqm if the 

number of Fqm-points of X realizes the lower (resp. upper) bound in the Hasse–Weil theorem.
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More generally, suppose that A is a principally polarized abelian variety of dimension g ≥ 1 defined 

over Fq. Then A is supersingular if the only slope of its p-divisible group A[p∞] is 1
2 or, equivalently, if its 

normalized Weil numbers are all roots of unity. One says that A is minimal (resp. maximal) over Fqm if 

Frobenius acts on its ℓ-adic Tate module by multiplication by 
√

qm (resp.-
√

qm). In fact, A (resp. X) is 

supersingular if and only if it is minimal over some finite extension of Fq.

Because of applications to cryptosystems and error-correcting codes, there are many papers in the lit-

erature about maximal curves but relatively few papers about minimal curves. This led to the motivating 

question: is a supersingular curve X/Fq more likely to be maximal or minimal? However, this question is not 

well-posed, since X may be neither until after a finite field extension. To resolve this, one says that X/Fq

has parity 1 if it is maximal after a finite extension of Fq, and parity −1 otherwise, cf. Definition 4.1. The 

proportion of supersingular elliptic curves with parity 1 can be determined using [32] (Remark 6.2), but the 

analogous question for curves of higher genus and abelian varieties of higher dimension is more difficult to 

answer, since the sizes of the isogeny classes are not known.

In this paper, we address a related question about supersingular curves and abelian varieties, based on 

the fact that most of the supersingular curves found in the literature have non-trivial automorphism groups 

and twists. The twists of X/Fq may have different arithmetic properties. Specifically, it is possible that 

X/Fq is not maximal over any extension of Fq but that it has a twist which is maximal over some extension 

of Fq. From a geometric perspective, there is no reason to prefer one twist over another.

The following definition addresses this subtlety. Suppose that X/Fq is a supersingular curve or abelian 

variety. We define X to be (i) fully maximal, (ii) fully minimal, (iii) mixed over Fq if (i) all, (ii) none, or (iii) 

some (but not all) of its Fq-twists have the property that they are maximal over some finite extension of Fq

(Definitions 4.2, 5.2). The type of X depends on its geometric automorphism group, its field of definition, and 

the normalized Weil numbers of its twists, leading to a fascinating interaction between algebra, geometry, 

and arithmetic.

It is a natural question to ask: under what conditions is a supersingular curve or abelian variety fully 

maximal, fully minimal, or mixed over Fq? We answer this question for dimension g = 1 in Section 6, proving 

that a supersingular elliptic curve is fully maximal over Fp if its j-invariant is in Fp and is mixed over Fp2

otherwise (Theorem 6.3). When g = 2 and p is odd, in Section 7, we give a complete analysis of the three 

types for simple supersingular abelian surfaces A; in particular, for A/Fpr with Aut
F̄p

(A) ≃ Z/2Z, then A

is not mixed over Fpr if r is odd and A is not fully minimal over Fpr if r is even (Proposition 7.2).

The results in Sections 6–7 depend on theoretical results in earlier sections which hold for all g and p. 

Section 2 introduces supersingular abelian varieties and curves. Section 3 contains information about twists, 

including the bijection between twists of A/Fq and Fq-Frobenius conjugacy classes of Aut
F̄p

(A) (Proposi-

tion 3.5) and the effect of twists on the relative Frobenius endomorphism (Proposition 3.9).

In Section 4, we study supersingular abelian varieties of arbitrary dimension g. We characterize the fully 

maximal, fully minimal, and mixed types in terms of arithmetic properties of the normalized Weil numbers 

of A/Fq. These are roots of unity; the key ingredient for the analysis is the 2-divisibility of their orders, 

encoded in a multiset e(A/Fq) (Definition 4.4). As an application, we show that A is not fully minimal over 

Fpr if A is simple and r is even (Proposition 4.7). We give a complete characterization of the three types 

under the hypothesis that |Aut
F̄p

(A)| = 2 (Corollary 4.8), and a criterion for the mixed case in terms of the 

orders of the twists and e(A/Fq) (Corollary 4.13).

In Section 5, we define the three types for a supersingular curve X. If s ≡ 0 mod 4 and p ≡ −1 mod s, 

we prove that the smooth plane curve X/Fp with equation xs + ys + zs = 0 is supersingular and of mixed 

type over Fp (Proposition 5.6). In Section 5.3, we study which automorphisms yield parity-changing twists.

Most of the supersingular curves found in the literature are constructed using Artin–Schreier theory. 

In many cases, the automorphism groups and normalized Weil numbers of these Artin–Schreier curves are 

known, e.g., in [41] and [2]. An open problem is to determine when these curves are fully maximal, fully 

minimal, or mixed. As a result in this direction, we end the paper in Section 8 by studying a one-dimensional 



V. Karemaker, R. Pries / Journal of Pure and Applied Algebra 223 (2019) 3031–3056 3033

family of supersingular curves X of genus 3 in characteristic 2, which are (Z/2Z × Z/2Z)-Galois covers of 

the projective line. For X/F2r , we prove that X is fully minimal if r ≡ 0 mod 4, X is fully minimal or 

mixed (with about equal probability) if r ≡ 2 mod 4, and X is fully maximal or mixed (with about equal 

probability) if r is odd (Theorem 8.1).

2. Background: supersingular abelian varieties and Weil numbers

Let k = Fp. Let A be an abelian variety of dimension g ≥ 1, a priori defined over k. Throughout the 

paper, we assume A is defined over a finite field K = Fq of cardinality q = pr. We write K instead of 

Spec(K) when this causes no ambiguity.

2.1. Frobenius and its characteristic polynomial

Definition 2.1. [30, 21.2] Consider the generator FrK : α → αq of the absolute Galois group GK = Gal(k/K)

of K. If R is a K-algebra and U = Spec(R), then the map which sends x �→ xq for x ∈ R induces a Frobenius 

map fU on U . The absolute Frobenius endomorphism fA : A → A of A/K is the gluing of fU over all open 

affine subschemes U of A.

For a morphism of K-schemes A → S, let A(p) be the fiber product of A → S
fS← S. The morphism fA

factors through A(p); this defines a morphism π = πA : A → A(p) called the relative Frobenius endomorphism. 

Then

πA = fA ⊗ Fr−1
K . (1)

By [39, pages 135–138], for any ℓ �= p, there is a bijection

EndK(A) ⊗ Qℓ → EndGK
(Tℓ(A) ⊗Zℓ

Qℓ), (2)

where Tℓ(A) denotes the ℓ-adic Tate module of A. Via this bijection, πA can be viewed as a linear operator 

on Tℓ(A) ⊗Zℓ
Qℓ. Since πA is semisimple (cf. [39, page 138]), this linear operator is diagonalizable over Qℓ. 

Moreover, the characteristic polynomial P (A/K, T ) of πA (in the sense of [21, page 110]) coincides with 

that of its corresponding linear operator, by e.g., [21, Chapter VII, Theorem 3].

2.2. Weil numbers and zeta functions

The characteristic polynomial P (A/Fq, T ) of πA is a monic polynomial in Z[T ] of degree 2g. Writing 

P (A/Fq, T ) =
∏2g

i=1(T − αi), the roots αi ∈ Q all satisfy |αi| =
√

q.

Definition 2.2. The roots {α1, . . . , α2g} = {α1, ᾱ1, . . . , αg, ᾱg} of P (A/Fq, T ) are the Weil numbers of A. 

The normalized Weil numbers of A/Fq are NWN(A/Fq) = {z1, ̄z1, . . . , zg, ̄zg}, where zi = αi√
q .

In writing the normalized Weil numbers, we use the convention that ζn = e2πi/n.

Theorem 2.3. [27, Chapter II, Section 1], [6, Theorem 1.6], [46, §IX, 71] The zeta function of A over Fq

satisfies

Z(A/Fq, T ) := exp

⎛

⎝

∑

m≥1

|A(Fqm)|T
m

m

⎞

⎠ =
P1(T ) · . . . · P2g−1(T )

P0(T )P2(T ) · . . . · P2g−2(T )P2g(T )
,
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where Ps(T ) ∈ Z[T ] and Ps(T ) =
∏

σ∈Ss
(1 − ασT ) where Ss is the set of subsets σ = {i1, . . . , is} of 

{1, . . . , 2g} of cardinality s and ασ = αi1
αi2

· . . . · αis
.

Note that P (A/Fq, T ) = T 2gP1(T −1). The polynomials Pi(T ) describe the action of Frobenius on the 

i-th étale cohomology of A/Fq. By [39, Theorem 1], two abelian varieties A1 and A2 over Fq have the same 

zeta function if and only if P (A1/Fq, T ) = P (A2/Fq, T ), which holds if and only if A1 and A2 are isogenous 

over Fq.

Corollary 2.4. [27, Chapter II, Theorem 1.1] The number of Fq-points of A satisfies

|A(Fq)| = deg(πA/Fq
− id) = P (A/Fq, 1) =

2g
∏

i=1

(1 − αi); and thus

||A(Fq)| − qg| ≤ 2gq(g− 1

2
) + (22g − 2g − 1)q(g−1).

2.3. Zeta functions of curves

Let X be a smooth projective connected curve of genus g defined over Fq.

Theorem 2.5. [45, §IV, 22], [46, §IX, 69] The zeta function of X/Fq can be written as

Z(X/Fq, T ) =
L(X/Fq, T )

(1 − T )(1 − qT )

where the L-polynomial L(X/Fq, T ) ∈ Z[T ] of X/Fq has degree 2g and factors as

L(X/Fq, T ) =

2g
∏

i=1

(1 − αiT ).

Then P (Jac(X)/Fq, T ) = T 2gL(X/Fq, T −1) is the characteristic polynomial of πJac(X). The (normalized) 

Weil numbers of X are the (normalized) roots of P (Jac(X)/Fq, T ).

Corollary 2.6. Let {α1, ᾱ1, . . . , αg, ᾱg} be the Weil numbers of X. The number of Fq-points of X satisfies 

|X(Fq)| = q + 1 − ∑g
i=1(αi + ᾱi), which implies the Hasse–Weil bound:

||X(Fq)| − (q + 1)| ≤ 2g
√

q.

2.4. Supersingular abelian varieties and curves

Definition 2.7. An abelian variety A is supersingular if the only slope of the p-divisible group A[p∞] is 1
2 . 

A curve X is supersingular if its Jacobian Jac(X) is supersingular.

Theorem 2.8. Suppose that A/Fq is an abelian variety of dimension g. The following properties are each 

equivalent to A being supersingular:

(1) the (q-normalized) Newton polygon of P (A/Fq, T ) is a line segment of slope 1
2 ;

(2) A is geometrically isogenous to a product of supersingular elliptic curves, i.e.,

A ×Fq
k ∼ Eg ×Fq

k for an elliptic curve E such that E[p](k) = {0}, [29, Theorem 4.2];

(3) the formal group of A is geometrically isogenous to (G1,1)g, [23, Section 1.4];

(4) the normalized Weil numbers of A/Fq are roots of unity, [25, Theorem 4.1].
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2.5. Maximal and minimal

Definition 2.9. An abelian variety A/Fq or a curve X/Fq is maximal (resp. minimal) if its normalized Weil 

numbers all equal −1 (resp. 1).

By Corollaries 2.4 or 2.6, |A(Fq)| or |X(Fq)| realizes its upper (resp. lower) bound exactly when A or X is 

maximal (resp. minimal). A necessary condition for maximality or minimality is that q is a square (i.e., r is 

even), by Theorem 2.3 or 2.5. Also X/Fq is maximal (resp. minimal) if and only if L(X/Fq, T ) = (1 +
√

qT )2g

(resp. (1 − √
qT )2g).

The following facts are well-known and hold for curves as well as for abelian varieties, cf. [43, Theorem 1.9]

and [37, Theorem V.1.15(f)].

Lemma 2.10.

(1) If P (A/Fq, T ) =
∏2g

i=1(T − αi), then P (A/Fqm , T ) =
∏2g

i=1(T − αm
i ).

(2) If A/Fq is minimal or maximal, then it is supersingular. Conversely, if A/Fq is supersingular, then it 

is minimal over some finite extension of Fq.

(3) (a) If A/Fq is maximal, then A/Fqm is maximal for odd m and minimal for even m.

(b) If A/Fq is minimal, then A/Fqm is minimal for all m ∈ N.

3. Twists

Let K = Fq with q = pr and let k = Fp. For m ∈ N, let Km be the unique extension of K of degree m. 

Let FrK be the generator of GK = Gal(k/K) as in Definition 2.1.

In this section, we review the theory of twists of abelian varieties following [34] and [5].

3.1. Twists, cocycles, and Frobenius conjugacy classes

Let A/K be a principally polarized abelian variety of dimension g ≥ 1. We restrict to automorphisms of 

A that are compatible with the principal polarization λ. For ease of notation, we write A instead of (A, λ)

and Autk(A) instead of Autk(A, λ).

Definition 3.1. A (K-)twist of A/K is an abelian variety A′/K for which there exists a geometric isomorphism

φ : Ā
≃−→ Ā′, (3)

where Ā = A ×K k and Ā′ = A′ ×K k. A twist A′/K is trivial if A ≃K A′. Let Θ(A/K) denote the set of 

K-isomorphism classes of twists A′/K of A/K.

Definition 3.2. Given σ ∈ GK and φ : Ā
≃−→ Ā′, let σφ : Ā

≃−→ Ā′ denote the (twisted) isomorphism which 

acts on x ∈ Ā(k) via σφ(x) = σ(φ(σ−1(x))) or, more precisely, via

σφ = (idA′ ×Spec(K) Spec(σ)) ◦ φ ◦ (idA ×Spec(K) Spec(σ))−1.

Similarly, if A′ = A and τ ∈ Autk(A), let F rK τ denote the (twisted) automorphism, which acts on 

x ∈ Ā(k) by

F rK τ(x) = FrK(τ(Fr−1
K (x))).
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Definition 3.3. Two automorphisms g, h ∈ Autk(A) are K-Frobenius conjugate if there exists τ ∈ Autk(A)

such that

g = τ−1h(F rK τ).

In particular, g is K-Frobenius conjugate to id if g = τ−1(F rK τ) for some τ ∈ Autk(A).

Remark 3.4. If all automorphisms of A are defined over K, then GK acts trivially on Autk(A). (By [39, 

Theorem 2(d)], this is true if A is maximal or minimal over K.) In this case, the K-Frobenius conjugacy 

classes are the same as standard conjugacy classes.

Proposition 3.5. [34, Proposition III.5], [33, Proposition 1], (see also [26, Propositions 5,9] for curves) 

Given φ : Ā
≃→ Ā′ as in (3), consider the cocycle ξφ : GK → Autk(A) defined by

ξφ(σ) = φ−1 ◦ σφ. (4)

Next, for any ξ ∈ C1(GK , Autk(A)), let

gξ = ξ(FrK) ∈ Autk(A). (5)

The maps taking φ �→ ξφ �→ gφ := gξφ
yield bijections:

Θ(A/K) → H1(GK , Autk(A)) → {K-Frobenius conjugacy classes of Autk(A)}. (6)

Given g ∈ Autk(A), let ξg ∈ C1(GK , Autk(A)) be the cocycle such that ξg(FrK) = g and let φg : Ā
≃−→ Ā′

be such that ξφg
= ξg. Note that φg is not uniquely determined: if τ ∈ Autk(A) is such that τ−1g F rK τ = g, 

then φ′ = φg ◦ τ : Ā
≃−→ Ā′ also has the property that ξφ′ = ξg. In this case, τ is defined over K, so φ ◦ τ

and φ have the same field of definition.

Definition 3.6. The order of a twist A′/K is the smallest m ∈ N such that over the degree m extension Km

of K there exists an isomorphism φ : A ×K Km
≃−→ A′ ×K Km.

If A′/K is a twist of order m and φ : Ā
≃−→ Ā′ is an isomorphism, then Definition 3.6 implies that φ ◦ τ

is defined over the degree m extension Km of K for some τ ∈ Autk(A).

Remark 3.7. If T ∈ N, then

ξg(FrT
K) = g(F rK g)(F r2

K g) · · · (F rT −1

K g). (7)

Given φ : Ā
≃−→ Ā′, write g := gφ and let Tg be the smallest T ∈ N such that ξg(FrT

K) = id. Then Tg is the 

degree of the field of definition of φ over K.

Lemma 3.8. Let cg be the smallest c ∈ N such that ξg(Frc
K) is defined over Kc. Then cg divides Tg and 

Tg/cg equals the order of G := g(F rK g)(F r2

K g) · · · (F r
cg−1

K g).

Proof. When cg = 1, the result is immediate, since g is defined over K and G = g.

Now suppose that cg > 1. By Remark 3.7, the twist is an element A′ of the set Θ(A, KTg
/K)

of twists A′/K of A/K such that A ×K KTg
≃KTg

A′ ×K KTg
. The bijection θ : Θ(A, KTg

/K) →
H1(Gal(KTg

/K), AutKTg
(A)) from [34, Proposition III.5] shows that A′ corresponds to the automorphism 

ξg(FrK) = g in AutKTg
(A). It follows that g (and thus G) is defined over KTg

. Hence, Kcg
⊂ KTg

and cg|Tg.
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The base changes Acg
= A ×K Kcg

and A′
cg

= A′ ×K Kcg
first become isomorphic over KTg

Kcg
= KTg

. So 

φ is defined over an extension of Kcg
of degree T ′ = [KTg

: Kcg
] = Tg/cg. The automorphism corresponding 

to the twist over Kcg
is G. Hence, replacing g by G, the conclusion follows from the case when cg = 1. ✷

3.2. Effect of a twist on the Frobenius endomorphism

In this section, let Kc be a finite field and suppose A is defined over Kc and G ∈ AutKc
(A). The notation 

is chosen to be compatible with Lemma 3.8: one can consider c = cg and Kc the unique extension of K

of degree c, and G as in Lemma 3.8. We study how twisting A/Kc by G affects the relative Frobenius 

endomorphism π = πA ∈ EndKc
(A) of A and the normalized Weil numbers of A over Kc.

Proposition 3.9. Suppose that A is defined over Kc and that φ : A ×Kc
k

≃−→ A′ ×Kc
k is a geometric 

isomorphism. Suppose that Gφ = ξφ(FrKc
) is in AutKc

(A). Then the relative Frobenius endomorphism π′

of A′ satisfies

φ−1 ◦ π′ ◦ φ = πA ◦ G−1
φ . (8)

Remark 3.10. The right hand side of (8) is defined over Kc, so the left hand side is as well. In particular, π′

and πA ◦ G−1
φ have the same characteristic polynomial.

Proof. Let f ′ = fA′ be the absolute Frobenius endomorphism of A′. By (1), πA = fA ⊗ Fr−1
Kc

and π′ =

fA′ ⊗ Fr−1
Kc

. Also, f = φ−1 ◦ f ′ ◦ φ. Furthermore, by (4),

G−1
φ = (idA ⊗ FrKc

) ◦ φ−1 ◦ (idA ⊗ Fr−1
Kc

) ◦ φ.

Hence, as in [26, Proposition 11],

φ−1 ◦ π′ ◦ φ = φ−1 ◦
(

f ′ ⊗ Fr−1
Kc

)

◦ φ

= φ−1 ◦
((

φ ◦ f ◦ φ−1
)

⊗ Fr−1
Kc

)

◦ φ

=
(

f ⊗ Fr−1
Kc

)

◦ (idA ⊗ FrKc
) ◦ φ−1 ◦

(

idA ⊗ Fr−1
Kc

)

◦ φ

= πA ◦ G−1
φ . ✷

3.3. Twists by automorphisms of order 2

Lemma 3.11. Given φ : Ā
≃−→ Ā′, if gφ ∈ AutK(A) has order 2, then the twist A′/K is either quadratic or 

trivial. It is trivial if and only if gφ is K-Frobenius conjugate to id.

Proof. Write g = gφ. By hypothesis, cg = 1, so by Lemma 3.8, Tg = |g| = 2. By Definition 3.6, the order of 

the twist is at most 2. The last statement follows from Proposition 3.5. ✷

The conclusion of Lemma 3.11 can be false if gφ is not defined over K.

Definition 3.12. Let ι ∈ EndK(A) ⊗ Qℓ correspond to [−1] ∈ EndGK
(Tℓ(A) ⊗Zℓ

Qℓ) under the bijection 

in (2). Let Aι denote the K-twist of A for ι.

Note that ι is defined over K and central in Autk(A). By Lemma 3.11, Aι/K is either a trivial or a 

quadratic twist.
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By Proposition 3.9, if A/K is maximal, then Aι/K is minimal, and vice versa. Conversely, the next 

result shows that ι is the only automorphism whose twist can switch between the maximal and minimal 

conditions. We generalize this result in Corollary 4.13.

Proposition 3.13. Suppose that φ : A ×K k
≃→ A′ ×K k where A/K is maximal and A′/K is minimal (or vice 

versa). Then gφ = ι and A′/K ≃ Aι/K is a quadratic twist of A/K.

Proof. By Definition 2.9, P (A/K, T ) and P (A′/K, T ) split completely into linear factors over Q. Thus the 

linear operators corresponding to πA and πA′ under (2) are diagonalizable over Qℓ. So πA =
√

q · ι and 

πA′ =
√

q ·id in EndK(A) ⊗Qℓ. By Proposition 3.9, this implies that gφ = ξφ(FrK) is K-Frobenius conjugate 

to ι. So gφ = τ−1ι F rK τ for some τ ∈ Autk(A).

Since A/K is maximal, Autk(A) = AutK(A) [39, Theorem 2d]. In particular, F rK τ = τ . Because ι

is central in Autk(A), the K-Frobenius conjugacy class of ι consists of one element. Thus gφ = ι and 

A′/K ≃ Aι/K. Moreover, ι satisfies the conditions of Lemma 3.11. Since A �≃K A′, the twist A′/K is 

nontrivial and thus quadratic. ✷

4. Fully maximal, fully minimal, and mixed abelian varieties

Let K = Fq with q = pr and let k = Fp. Let A be a principally polarized supersingular abelian variety 

of dimension g ≥ 1 defined over K. Let NWN(A/K) = {z1, ̄z1, . . . , zg, ̄zg} be the normalized Weil numbers 

of A/K, as in Definition 2.2.

4.1. Period, parity, and types

Definition 4.1.

(1) The Fq-period μ(A) of A is the smallest m ∈ N such that qm is square and

(i) zm
i = −1 for all 1 ≤ i ≤ g, or

(ii) zm
i = 1 for all 1 ≤ i ≤ g.

(2) The Fq-parity δ(A) is 1 in case (i) and is −1 in case (ii).

In other words, the period is the smallest m ∈ N such that πA/Fqm ∈ Q and πA/Fqm =
√

qm or −√
qm. 

The definition of the period and parity is compatible with [38, page 144]. Note that A is maximal (resp. 

minimal) over Fq if and only if μ(A) = 1 and δ(A) = 1 (resp. δ(A) = −1).

Let Θ(A/K) be the set of K-isomorphism classes of twists A′/K of A, see Definition 3.1.

Definition 4.2. A principally polarized supersingular abelian variety A/K is of one of the following types

over K:

(1) fully maximal if A′/K has K-parity δ = 1 for all A′ ∈ Θ(A/K);

(2) fully minimal if A′/K has K-parity δ = −1 for all A′ ∈ Θ(A/K);

(3) mixed if there exist A′, A′′ ∈ Θ(A/K) with K-parities δ(A′) = 1 and δ(A′′) = −1.

If A/K has K-period 1, then A/K is maximal or minimal and so A is mixed over K since Aι has the 

opposite parity. For this reason, the terminology is better suited for curves than for abelian varieties, see 

Lemmas 5.4 and 5.5. Also, it is most interesting to study the type of A/K over small fields of definition.

Example 4.3. Let p ≡ 3 mod 4 with p > 3. The supersingular elliptic curve E : y2 = x3 − x has Autk(E) ≃
Z/4Z. Then NWN(E/Fp) = {±i} and NWN(E/Fp2) = {−1, −1}. So E has two Fp-twists and is fully 
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maximal over Fp. It has four Fp2-twists and is mixed over Fp2 since an automorphism of order 4 acts on 

NWN(E/Fp2) by multiplication by ±i. Cf. Lemma 6.5.

Let n be odd. The parity is preserved under a degree n extension, i.e., δ(A ×K Kn) = δ(A). Hence, if A/K

is mixed, then A ×K Kn is also mixed: if A′/K is a twist with opposite parity from A/K, then A′ ×K Kn

is a twist of opposite parity from A ×K Kn. Motivated by this, we measure the 2-divisibility of the orders 

of the period in the next section.

4.2. Relationship between types and Weil numbers

By Theorem 2.8, the normalized Weil numbers {z1, . . . , zg} of a supersingular abelian variety A/K are 

roots of unity in C∗. If z ∈ C∗ is a root of unity, let o(z) denote its multiplicative order in C∗. We measure 

the 2-divisibility of o(zi) in the next definition.

Definition 4.4. Let ei = ord2(o(zi)). The 2-valuation vector of A/K is the multiset e = e(A/K) :=

{e1, . . . , eg}. The notation e = {e} means that ei = e for 1 ≤ i ≤ g.

Write o(zi) = 2eici with ci odd. Then zm
i = −1 for some m ∈ N if and only if ei ≥ 1. Also:

ord2(o(z)) = 1 ⇔ ord2(o(−z)) = 0; if ord2(o(z)) ≥ 2, then ord2(o(−z)) ≥ 2; (9)

If r is odd, then e �= {0}, {1}, because P (A/K, T ) ∈ Z[T ]. (10)

Remark 4.5. For the Fq-parity, note that δ(A) = 1 if and only if e = {e} with e ≥ 1 (or e ≥ 2 when r is 

odd). For the Fq-period, write μ(A) = 2Eμ̄ where μ̄ is odd. If e = {e}, then E = max(e − 1, 0). If e is not 

constant, then E = max{ei | 1 ≤ i ≤ g}.

Lemma 4.6. Let e = e(A/K).

(1) If A/K is fully maximal, then (i) e = {e} with e ≥ 2;

(2) If A/K is fully minimal, then (ii) the ei are not all equal;

(3) If (iii) e = {e} with e ∈ {0, 1} and r is even, then A/K is mixed.

Proof. (1) If A/K is fully maximal, then it has K-parity +1; so e = {e} for some e ≥ 1 (with e ≥ 2 if r is 

odd by (10)). Suppose that r is even and e = {1}. By (9), the twist Aι has the property that e = {0}. 

So Aι has K-parity −1, which contradicts the fact that A/K is fully maximal. Thus condition (i) holds.

(2) If A/K is fully minimal, then it has K-parity −1. By (10), either e = {0} with r even or the ei are 

not all the same. If r is even and e = {0}, then the twist by ι is maximal, giving a contradiction. Thus 

condition (ii) holds.

(3) This is the contrapositive of parts (1) and (2). ✷

Proposition 4.7. If A/Fq is simple and q = pr with r even, then A/Fq is not fully minimal.

Proof. If A/Fq is simple, the Weil numbers {√
qzi} are all conjugate over Q. Let n = o(z1) and e = ord2(n). 

Since r is even, 
√

q ∈ Q, so the conjugates of 
√

qz1 are precisely the φ(n) values 
√

qζj
n for j ∈ (Z/nZ)∗. So 

e = {e}. By Lemma 4.6(2), A/Fq is not fully minimal. ✷

4.3. Types of abelian varieties with small automorphism group

Corollary 4.8. Suppose that |Autk(A)| = 2. Then
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(1) A/K is fully maximal if and only if (i) e = {e} with e ≥ 2;

(2) A/K is fully minimal if and only if (ii) the ei are not all equal;

(3) A/K is mixed if and only if (iii) e = {e} with e ∈ {0, 1} and r is even.

Proof. One set of implications is Lemma 4.6. Conversely, if |Autk(A)| = 2, then AK has at most one 

nontrivial twist, which is Aι. Thus, A/K is fully maximal (resp. fully minimal) if and only if A and Aι both 

have K-parity +1 (resp. −1). The result follows because negation of {zi} preserves each of the conditions 

(i), (ii), (iii) for e, by (9). ✷

By Corollary 4.8, if |Autk(A)| = 2, then the type of A/K is preserved under odd degree extensions of K.

Remark 4.9. Let S be an irreducible component of the supersingular locus of the moduli space of principally 

polarized abelian varieties of dimension g. Among the abelian varieties A represented by Fq-points of S, the 

typical structure of Autk(A) is not known in general. For g ≥ 2 and p odd, one might expect that typically 

Autk(A) ≃ Z/2Z. For g = 2 and p odd, we prove that this is true in Proposition 7.6.

Remark 4.10. Let S and A be as in Remark 4.9 and K = Fq. If p is odd, one expects the proportion of A

with Z/2Z × Z/2Z ⊂ AutK(A) to be small. The reason is that if Z/2Z × Z/2Z ⊂ AutK(A), then A is not 

simple over K by [18, Theorem B]. So this condition implies that the a-number of A is at least two, by [7, 

Proposition 4]. However, for all g and p, it is known that A generically has a-number 1 [23, Section 4.9].

4.4. Parity-changing twists of abelian varieties

Suppose that A′/K ∈ Θ(A/K) is a K-twist of A of order T . Then there is an isomorphism φ : A ×K KT
≃−→

A′ ×K KT defined over KT . Denote NWN(A/K) = {zi, ̄zi}1≤i≤g and NWN(A′/K) = {wi, w̄i}1≤i≤g. After 

possibly reordering, zT
i = wT

i and hence

wi = λizi (11)

for some (not necessarily primitive) T -th root of unity λi. Let t = lcm{o(λi) | 1 ≤ i ≤ g}. By definition, 

t | T . In particular, if A′/K is a trivial twist, then t = 1 and zi = wi for all i. If t �= T , it means that A and 

A′ are isogenous but not isomorphic over Fqt .

Conversely, if A′/K ∈ Θ(A/K) is a K-twist of A of some order and if (11) holds, then A and A′ are 

isogenous, but not necessarily isomorphic, over KT .

Lemma 4.11. Let e be the 2-valuation vector of A/K. Suppose that A′/K is a K-twist of A/K of order T . 

Let ǫ = ord2(T ). If ǫ < min{ei | 1 ≤ i ≤ g}, then e(A′/K) = e.

Proof. If wi = λizi, then ord2(o(wi)) ≤ max(ord2(o(λi)), ord2(o(zi))), with equality if the two values are 

not equal. Then ord2(o(λi)) ≤ ord2(T ) = ǫ so the hypothesis implies that ord2(o(wi)) = ord2(o(zi)). ✷

Proposition 4.12. Suppose that A/K has K-period M and K-parity +1 and its K-twist A′/K has K-period 

N and K-parity −1. Let eM = ord2(M) and eN = ord2(N). If eN ≤ eM , then ord2(t) = 1 +eM ; if eN > eM , 

then ord2(t) = eN .

Proof. Write L = lcm(M, N). Recall that zM
i = −1 and wN

i = 1 for 1 ≤ i ≤ g.

Suppose that eN ≤ eM . Then ℓ2 = L/M is odd and ord2(L) = eM . Then

1 = wL
i = λL

i zL
i = λL

i (zM
i )ℓ2 = λL

i (−1)ℓ2 .
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This implies that λL
i = −1 and so ord2(o(λi)) = 1 + eM for 1 ≤ i ≤ g.

Suppose that eM < eN . For 1 ≤ i ≤ g, then ord2(o(zi)) = 1 + eM and ord2(o(wi)) ≤ eN . The equation 

wi = λizi implies that ord2(o(λi)) ≤ eN for 1 ≤ i ≤ g. To show that ord2(t) = eN , it thus suffices to show 

that ord2(o(λi)) = eN for some i.

When eM < eN , then rN/2 is even, because rM is even by definition of the period. So if r is odd, then 

eN > eM ≥ 1. By the minimality of N (such that rN is even), it cannot hold that w
N/2
i = 1 for all i. Thus, 

there is at least one value i0 such that ord2(o(wi0
)) = eN . Furthermore, since the K-parity is −1, it is not 

true that w
N/2
i = −1 for all i. So there is at least one value i1 such that ord2(o(wi1

)) < eN .

Note that zi = λ−1
i wi. If eN > 1 + eM , then substituting i = i0 shows that ord2(o(λ−1

i0
)) = eN . If 

eN = 1 + eM , then substituting i = i1 shows ord2(o(λ−1
i1

)) = 1 + eM . ✷

Corollary 4.13.

(1) Suppose that A/K has K-period M and K-parity +1. If A′/K is a K-twist of order T with ord2(T ) ≤
eM , then A′/K also has K-parity +1.

(2) Suppose that A′/K has K-period N and K-parity −1. If A/K is a twist of order T with either ord2(T ) <

eN or ord2(T ) = eN = 0, then A/K also has K-parity −1.

(3) In particular, if A/K and A′/K have different K-parities, then T is even.

Proof. Note that ord2(T ) ≥ ord2(t).

(1) Assume that A′/K has parity −1. By Proposition 4.12, ord2(t) = 1 + eM if eN ≤ eM and ord2(t) = eN

if eN > eM . So ord2(T ) > eM , which is a contradiction.

(2) Assume that A/K has parity 1. Applying Proposition 4.12 shows that ord2(t) = 1 + eM if eN ≤ eM

and ord2(t) = eN if eN > eM . This implies that either ord2(T ) ≥ eN or ord2(T ) > eN = 0, which is a 

contradiction.

(3) If T is odd, then ord2(T ) = 0. The hypotheses of items (1) and (2) are satisfied and so A/K and A′/K

have the same parity. ✷

5. Fully maximal, fully minimal, and mixed curves

Let K = Fq with q = pr and let k = Fp. Let X/K be a smooth projective connected supersingular curve 

of genus g ≥ 1. The Jacobian Jac(X) of X is a principally polarized abelian variety of dimension g. If X

is hyperelliptic, let ι denote its hyperelliptic involution, which acts on Jac(X) as the element ι defined in 

Definition 3.12.

5.1. Types for Jacobians

The theory of twists of X and definitions of the period and parity of X are almost identical to those 

of Jac(X), as studied in Sections 3 and 4. The normalized Weil numbers {zi, ̄zi}1≤i≤g and the 2-valuation 

vector e = {ei = ord2(o(zi))}1≤i≤g are the same for X and Jac(X). The main difference is that X may have 

fewer twists than Jac(X).

By [22, Appendice], Jac(X) has the same field of definition as X and

Autk(Jac(X)) ≃
{

Autk(X) if X is hyperelliptic,

〈ι〉 × Autk(X) if X is not hyperelliptic.
(12)

For completeness, consider the following analogue of Proposition 3.13.
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Proposition 5.1. Suppose that φ : X ×K k
≃→ X ′ ×K k where X/K is maximal and X ′/K is minimal (or 

vice versa). Then X is hyperelliptic and gφ = ι and X ′/K ≃ Xι/K is a quadratic twist of X/K.

Proof. Let A = Jac(X) and A′ = Jac(X ′). Since the normalized Weil numbers of a curve and its Jacobian 

are the same, A/K is maximal and A′/K is minimal (or vice-versa) by Definition 2.9. The automorphism 

gφ ∈ Autk(X) can be identified with an automorphism g′
φ ∈ Autk(A) under the isomorphism in (12). By 

Proposition 3.13, g′
φ = ι and A′/K ≃ Aι/K is a quadratic twist. The conclusions follow since gφ = ι ∈

Autk(X). ✷

Let Θ(X/K) denote the set of K-isomorphism classes of twists of X/K.

Definition 5.2. A supersingular curve X/K is of one of the following types over K:

(1) fully maximal if X ′/K has K-parity δ = 1 for all X ′ ∈ Θ(X/K);

(2) fully minimal if X ′/K has K-parity δ = −1 for all X ′ ∈ Θ(X/K);

(3) mixed if there exist X ′, X ′′ ∈ Θ(X/K) with K-parities δ(X ′) = 1 and δ(X ′′) = −1.

When X is hyperelliptic, then Θ(Jac(X)/K) = Θ(X/K), so X and Jac(X) have the same type over K. 

When X is not hyperelliptic, then X and Jac(X) might have different types.

Lemma 5.3. The types of X and Jac(X) over K are not the same if and only if: X is not hyperelliptic, 

Jac(X) is mixed over K, r is even, and e(X/K) = {e} with e ≤ 1.

Proof. If the types of X and Jac(X) over K are not the same, then Jac(X) has more twists than X, so 

(12) implies that X is not hyperelliptic. Also, since the extra twist corresponds to ι, then Jac(X) is mixed, 

with Jac(X) and Jac(X)ι having different parities.

Let e = e(X/K). If not all ei ∈ e are the same, then not all ei ∈ e(Jac(X)ι) are the same. Then both 

Jac(X) and Jac(X)ι would have parity −1, a contradiction. Thus e = {e}.

If e ≥ 2, then e(Jac(X)ι) = {e} and both Jac(X) and Jac(X)ι would have parity 1, a contradiction. 

Thus e ≤ 1 and r must be even by (10). We omit the converse direction. ✷

The following results are immediate from Definition 5.2, Proposition 3.13, and the remark below Defini-

tion 4.2.

Lemma 5.4. Suppose that X has K-period 1. Then X is mixed if and only if X is hyperelliptic; X is fully 

maximal if and only if it is not hyperelliptic and maximal; and X is fully minimal if and only if it is not 

hyperelliptic and minimal.

Lemma 5.5. If Autk(X) is trivial, then X is fully maximal over K if and only if it has K-parity 1 and is 

fully minimal if and only if it has K-parity −1.

In light of Lemmas 5.4 and 5.5, it is most interesting to study the types of curves which are non-

hyperelliptic, defined over small fields, or have non-trivial automorphism group.

5.2. Supersingular non-hyperelliptic curves of mixed type

Despite Proposition 3.13, the results in Sections 6 and 7 show that not all hyperelliptic curves are mixed. 

The next result illustrates that not all mixed curves are hyperelliptic.
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Proposition 5.6. Suppose that s ≡ 0 mod 4. Suppose that p is such that p + 1 ≡ 0 mod s. Then the smooth 

plane curve X/Fp of genus g = (s − 1)(s − 2)/2 given by the equation xs + ys + zs = 0 is supersingular and 

of mixed type over Fp.

Proof. The curve X/Fp is a smooth plane curve, of genus g = (s − 1)(s − 2)/2 by the Plucker formula.

The Hermitian curve X̃ : xp+1
1 + yp+1

1 + zp+1
1 = 0 is maximal over Fp2 . Let ǫ = (p + 1)/s. There is 

a cover ψ : X̃ → X given by (x1, y1, z1) �→ (xǫ
1, yǫ

1, zǫ
1). The cover is Galois, since there exists λ ∈ F∗

p2

with multiplicative order ǫ. So X is a quotient of X̃ by a group of automorphisms defined over Fp2 . By a 

result attributed to Serre, see [10, Theorem 10.2], X is also maximal over Fp2 and thus has Fp-parity 1. In 

particular, X is supersingular.

Let λ1 ∈ F∗
p2 be an element of multiplicative order s1 = s/2. Consider the automorphism h ∈ AutFp2

(X)

given by h(x, y, z) = (λ1y, x, z). Then

h F rFp h(x, y, z) = h(FrFp
(h(x1/p, y1/p, z1/p)))

= h(FrFp
(λ1y1/p, x1/p, z1/p)) = h(λp

1y, x, z)

= (λ1x, λp
1y, z) = (λ1x, λ−1

1 y, z),

where the last equality uses that p ≡ −1 mod s. In particular, h F rFp h has order s1.

Consider the action of h F rFp h on Jac(X)/Fp2 . The next claim is that the eigenvalues for this action 

include both 1 and a root of unity of order s1. To see this, it suffices to prove the same claim for the action 

on H1(X, O) (after lifting to characteristic 0, using that Jac(X) ≃ H0(X, Ω1)∗/H1(X, Z) and invoking 

Serre duality). Now H1(X, O) has a basis given by the monomials x−k1y−k2z−k3 where k1, k2, k3 ∈ N and 

k1 + k2 + k3 = r. Then h F rFp h acts via multiplication by λ−k1+k2

1 on x−k1y−k2z−k3 . The claim follows by 

taking (k1, k2) = (1, 1) and (k1, k2) = (1, 2).

The normalized Weil numbers of X/Fp2 are all −1 and so e(X/Fp2) = {1}. Let X ′ be the twist of X/Fp

corresponding to h. Then X ′/Fp2 is the twist of X/Fp2 by h F rFp h. Its set of normalized Weil numbers 

contains −1 and −λ1. By hypothesis, s1 is even. So −λ1 has odd order if s1 ≡ 2 mod 4 and −λ1 has order 

s1 if s1 ≡ 0 mod 4. Thus e(X ′/Fp2) contains the values 1 and 0 if s1 ≡ 2 mod 4 and the values 1 and 

ord2(s1) ≥ 2 if s1 ≡ 0 mod 4. In either case, e(X ′/Fp2) �= {e} and e(X ′/Fp) �= {e} for any e. Hence, X ′ has 

Fp-parity −1. Thus X is mixed over Fp. ✷

Example 5.7. For p ≡ 3 mod 4, the Fermat curve X/Fp : x4 +y4 +z4 = 0 is a non-hyperelliptic supersingular 

curve of genus 3 which is mixed over Fp.

Remark 5.8. Let p be odd. Let E/Fp be a supersingular elliptic curve with NWN(E/Fp) = {i, −i}. In 

[14, Theorem 1] (resp. [12, Proposition 15]), the authors construct a smooth plane quartic X/Fp such 

that Jac(X) ≃Fp2
E3 (resp. Jac(X) ∼Fp2

E3). In particular, X is maximal over Fp2 . The polarization 

on Jac(X) induces a non-product polarization on E3. To determine the type of X, it is necessary to 

determine which automorphisms of E3 are compatible with this polarization and the field of definition of 

these automorphisms.

5.3. Parity-changing twists of curves

Let X/K be a supersingular curve of genus g and let G = Autk(X). The normalized Weil numbers 

determine the K-parity of X. To determine the type over K, it is necessary to know whether X has a 

parity-changing K-twist.
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By Corollary 4.13, the 2-divisibility of the order T of a twist gives information about whether it can 

change the K-parity of X. However, this is not easy to control because the values of T depend on the 

K-Frobenius conjugacy classes of G and on the fields of definition of the automorphisms g ∈ G.

This section contains results that simplify the question of whether X has a parity-changing twist. This 

material is used in Section 8. Given g ∈ G, recall from Proposition 3.5 that φg : X ×K k → X ′ ×K k is a 

geometric isomorphism such that ξφ(FrK) = g.

Lemma 5.9. If h ∈ G has odd order and is defined over K, then φh is not a parity-changing twist.

Proof. This is immediate from Lemmas 3.8 and 4.13. ✷

Suppose that τ ∈ Autk(X) has order 2. Assume that τ is defined over K; this is true, for example, if 

τ = ι or if Autk(X) has a unique element of order 2. Let Z = X/τ be the quotient of X by τ , which is also 

defined over K. Thus, X → Z is a geometric Z/2Z-Galois cover. Let χ be the nontrivial character of Z/2Z; 

it satisfies χ(P ) = 1 if P ∈ Z is split in X and χ(P ) = −1 if P is inert in X. Consider the Artin L-series

L(Z/K, T, χ) =
∏

P ∈Z

(1 − χ(P )|P |−s)−1, where T = q−s. (13)

Lemma 5.10. Suppose that τ ∈ AutK(X) has order 2.

(1) There is a factorization L(X/K, T ) = L(Z/K, T )L(Z/K, T, χ) in Z[T ].

(2) The coefficient ρ1 of T in L(Z/K, T, χ) equals S1 − I1, where I1 (resp. S1) is the number of K-points 

of Z that are inert (resp. split) in X.

(3) τ negates the roots of L(Z/K, T, χ) and fixes the roots of L(Z/K, T ).

Proof. (1) This result follows from [31, Chapter 9, page 130].

(2) Recall that ζ(X/K, T ) =
∏

Q∈X(1 − |Q|−s)−1, where T = q−s. Similarly, ζ(Z/K, T ) =
∏

P ∈Z(1 −
|P |−s)−1. Write

ζ(X/K, T ) =
∏

(1 − |Pi|−2s)−1
∏

(1 − |Psp|−s)−2
∏

(1 − |Pr|−s)−1, (14)

where Pi, Psp, Pr range over points of Z that are inert, split, and ramified in X, respectively. Note that 

(1 − |P |−2s) = (1 − |P |−s)(1 + |P |−s). The result follows by comparing (13) and (14) and computing 

the coefficients of T .

(3) Since Z = X/τ , the involution τ acts trivially on Z and thus fixes the roots of L(Z/K, T ). There is an 

isogeny Jac(X) ∼K Jac(Z) ⊕ V where V/K is the nontrivial eigenspace for τ . Then L(Z/K, T, χ) =

L(V/K, T ). By Proposition 3.9, τ acts as −1 on the roots of L(V/K, T ) by the definition of V . ✷

Suppose that τ ∈ AutK(X) has order 2. Write e = e(Z/K) ∪ e(Z/K, χ) where e(Z/K, χ) denotes the 

multiset of 2-valuations of the normalized roots of L(Z/K, T, χ). If τ is the hyperelliptic involution, then 

e(Z/K) is empty and e = e(Z/K, χ).

Lemma 5.11. If τ ∈ AutK(X) has order 2, then φτ is a parity-changing twist if and only if r is even and 

either e(Z/K) = {1} and e(Z/K, χ) = {e} with e ≤ 1, or e(Z/K) = {0} and e(Z/K, χ) = ∅.

Proof. By Lemma 5.10, τ negates the roots of L(Z/K, T, χ) and fixes the roots of L(Z/K, T ). This changes 

the parity only under the given conditions. ✷
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Information about parity-changing twists can be determined from e in certain cases when Z/2Z ×Z/2Z ⊂
Autk(X) using the next remark. Section 8.4 uses this material.

Remark 5.12. Suppose that Autk(X) contains a subgroup S ≃ Z/2Z × Z/2Z. Write S = {id, τ1, τ2, τ3}. 

Suppose that S is stabilized by K-Frobenius conjugation, in which case the number γ of nontrivial involutions 

in S defined over K is either 3, 0, or 1.

(1) When γ = 3 and X/S has genus 0, let Ai = Jac(X/τi). Then Jac(X) ∼K A1 ⊕ A2 ⊕ A3 by [18, 

Theorem B]. Each τi acts by negating NWN(Ai/K) for exactly two values of i. Write ei = e(Ai) and 

e(X) =
⋃3

i=1 ei. The twist for τi ∈ S changes the parity if and only if e(X) = {1} or (after rearranging), 

e1 = {1}, e2 = {0}, and e3 = {0} or ∅.

(2) When γ = 0, K-Frobenius conjugation acts via a 3-cycle on S − {id}, so the twist for each τi has order 

3. By Corollary 4.13, these do not change the parity.

(3) When γ = 1, suppose τ = τ1 is defined over K while μ = τ2 and μτ = τ3 are not. Let Z = X/τ . Note 

that F rK μ = μτ and μ F rK μ = τ . Using Lemma 3.8, the twist for μ has c = 2 and |G| = 2. Moreover, 

the twist by μ over K corresponds to the twist Xτ by τ over K2, so it negates the roots of L(Z/K2, T, χ)

and fixes the roots of L(Z/K2, T ) by Lemma 5.10(3). To find the action of μ on e(X/K), it is necessary 

to take the square roots of the NWN(Xτ /K2). If ei ≤ 1 for any i, this leads to some ambiguity in 

e(Xμ/K), which can be partially resolved by the following observation.

Claim : When γ = 1, the coefficient ρ1 of T in L(Z/K, T, χ) equals 0. (15)

Proof. By Lemma 5.10(2), it suffices to prove S1 = I1. If p is odd, X → Z has an equation of the form 

y2 = F . Given a K-point P of Z, it suffices to show P is split in X if and only if μ(P ) is inert in X. The 

point P splits in X if and only if F (P ) is a square in K∗. Since μ and τ commute, μ acts on both X and Z. 

By assumption, the action of μ on the equation y2 = F is defined over K2 but not over K. The K-action of 

μ thus yields a quadratic twist of y2 = F . So μ(y) = wy for some w ∈ K∗
2 \ K∗ such that z = w2 is in K∗, 

and F (μ(P )) = zy. Thus, F (P ) is a square in K∗ if and only if F (μ(P )) is not.

The proof for p = 2 is the same, after replacing y2 by y2 − y, μ(y) = wy by μ(y) = y + w for some 

w ∈ K2 \ K such that z = w2 − w is in K, and F (μ(P )) = zF (P ) by F (μ(P )) = F (P ) + z. ✷

6. Analysis in low dimension: elliptic curves

Let K = Fq with q = pr and let k = Fp. If E/Fq is an elliptic curve, then L(E/Fq, T ) = 1 − βT + qT 2 for 

some β ∈ Z. Moreover, E is supersingular if and only if p | β. By Honda–Tate theory (cf. [40], [11], [39]), β

determines the Fq-isogeny class of E.

Lemma 6.1. Let q = pr. Table 6.1 lists each β ∈ Z which occurs for a supersingular elliptic curve E/Fq, 

together with the normalized Weil numbers z and z̄, the 2-adic valuation e = ord2(o(z)), the period, and the 

parity. We use the convention that ζn = e2πi/n.

Table 6.1

Isogeny classes and invariants of supersingular elliptic curves.

Case nE Conditions on r and p β NWN(E/Fq) ord2(o(z)) Period Parity
W 1± r even ±2

√
q (±1, ±1) 0 1 ∓1

W 2± r even, p �≡ 1 (mod 3) ±√
q (∓ζ3, ∓ζ

3
) 1 3 ±1

W 3 r even, p �≡ 1 (mod 4) or r odd 0 (i, −i) 2 2 1

W 4a r odd, p = 2 ±√
2q (±ζ8, ±ζ

8
) 3 4 1

W 4b r odd, p = 3 ±√
3q (±ζ12, ±ζ

12
) 2 6 1
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Proof. This is a short calculation based on the values of β in [44, Theorem 4.1]. ✷

The number of supersingular j-invariants is ⌊ p
12 ⌋ + ǫ (with ǫ = 0, 1, 1, 2 if p ≡ 1, 5, 7, 11 mod 12) [35, 

Theorem V.4.1(c)].

Remark 6.2. Let N(β) denote the number of Fq-isomorphism classes of elliptic curves in the Fq-isogeny 

class determined by β. The values of N(β) are found in [32, Theorem 4.6]; they depend only on p, not q, 

and N(−β) = N(β). Using this and Table 6.1, one can determine the probability that a given supersingular 

elliptic curve E/Fpr has Fpr -parity 1. If r is odd, then the Fpr -parity is always 1. If r is even, then N(0) =

1 −
(−4

p

)

is the difference between the number of isomorphism classes of E/Fpr with Fpr -parity 1 and −1.

Each supersingular j-invariant is in Fp2 . If E/Fp is a supersingular elliptic curve, then E descends to Fp

or Fp2 ; it descends to Fp if and only if the j-invariant of E is in Fp. The next result shows that in neither 

case is E fully minimal.

Theorem 6.3. Let E/Fp be a supersingular elliptic curve. If the j-invariant of E is in Fp, then E is fully 

maximal over Fp; if not, then E is mixed over Fp2 .

Proof. If p = 2, the result is proven in Lemma 6.4 (below). If p ≥ 3 and Autk(E) �≃ Z/2Z, the result is 

proven in Lemma 6.5 (below). This completes the proof for p = 3, since there is only one isomorphism class 

of supersingular elliptic curves over F3.

Finally, suppose that p ≥ 5 and Autk(E) ≃ Z/2Z, so that Eι is the only twist of E. If E is defined 

over Fp, then E and Eι are both in case W3 of Table 6.1, thus E is fully maximal over Fp. If E is instead 

defined over Fp2 , then E and Eι are either in cases W1± or in cases W2± of Table 6.1; note that E cannot 

be in case W3 because of the condition Autk(E) ≃ Z/2Z (and in that case E has j-invariant in Fp). Thus 

E is mixed over Fp2 . ✷

Lemma 6.4. If p = 2, the unique supersingular elliptic curve E/F2 is fully maximal over F2.

Proof. The uniqueness fact can be found in [35, Appendix A, Proposition 1.1]. So E is isomorphic over k

to the elliptic curve E/F2 with affine equation y2 = x3 − x with j-invariant 0. Then |E(F2)| = p + 1, so 

β = 0 (case W3 of Table 6.1). The F2-twists are also defined over F2, thus are in case W3, W4a or W4b of 

Table 6.1, which each have F2-parity +1. ✷

Lemma 6.5. Let p ≥ 3. If Autk(E) �≃ Z/2Z, then E is fully maximal over Fp.

Proof. If Autk(E) �≃ Z/2Z, then E is isomorphic over k to either:

(1) y2 = x3 − x (j-invariant 1728), which is supersingular if and only if p ≡ 3 mod 4; or

(2) y2 = x3 + 1, (j-invariant 0), which is supersingular if and only if p ≡ 2 mod 3.

In both cases, {z, ̄z} = {i, −i} (case W3 of Table 6.1) with e(E/Fp) = {2} and the curve is defined over Fp, 

so we consider its type over Fp.

For case (1), let g ∈ Autk(E) be the order 4 automorphism defined by g(x, y) = (−x, iy).

(a) If p > 3, then Autk(E) ≃ 〈g〉. Then E/Fp has only one nontrivial twist because the Fp-Frobenius 

conjugacy classes in Autk(E) are {id, ι} and {g, g3}. By Lemma 3.8, the latter of these yields a quadratic 

twist since c = 2 and G = g F rg = id. By Lemma 4.11, the twist has e = {2} as well.
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(b) If p = 3, then |Autk(E)| = 12 [35, Appendix A, Proposition 1.2]. Then Autk(A) = 〈g, σ〉
where σ(x, y) = (x + 1, y). The Fp-Frobenius conjugacy classes are {id, ι}, {σ2, σι}, {σ, σ2ι, }, and 

{g, g3, σg, σg3, σ2g, σ2g3}. The first (resp. last) of these yield a trivial (resp. quadratic) twist as in (a). 

Since σ and σ2 have order 3 and are defined over Fp, these yield twists of order 3 by Lemma 3.8 with 

e = {2} by Lemma 4.11.

For case (2), Autk(E) = 〈h〉 where h has order 6 and is defined by h(x, y) = (ζ3x, −y). The two 

Fp-Frobenius conjugacy classes are {id, h2, h4} and {h, h3, h5}. Since h3 = ι, the latter of these yields a 

quadratic twist. By Lemma 4.11, the twist has e = {2} as well.

Thus, in both case (1) and case (2), E is fully maximal over Fp. ✷

7. Analysis in low dimension: abelian surfaces

7.1. Parity table for simple supersingular abelian surfaces

Let q = pr and k = Fp. Suppose that A/Fq is a simple supersingular abelian surface, which is not 

necessarily principally polarized. The Fq-isogeny class of A is determined by (the conjugacy class of) its 

Weil numbers or, equivalently, by the coefficients (a1, a2) of

P (A/Fq, T ) = T 4 + a1T 3 + a2T 2 + qa1T + q2 ∈ Z[T ].

The next result builds on [24]. Let L be the minimal field extension of Fq over which A is not simple. 

Then A ∼L E ⊕ E, where E/L is a supersingular elliptic curve.

Table 7.1

Isogeny classes and invariants of simple supersingular abelian surfaces.

(a1, a2) Conditions on r and p t0 W z/L NWN(A/Fq) μ δ

1a (0, 0) r odd, p ≡ 3 mod 4
or r even, p �≡ 1 mod 4

2 3 i (ζ8, ζ7

8
, ζ3

8
, ζ5

8
) 4 1

1b (0, 0) r odd, p ≡ 1 mod 4
or r even, p ≡ 5 mod 8

4 1 −1 (ζ8, ζ7

8
, ζ3

8
, ζ5

8
) 4 1

2a (0, q) r odd, p �≡ 1 mod 3 2 2 ζ3 (ζ6, ζ5

6
, ζ2

6
, ζ4

6
) 6 −1

2b (0, q) r odd, p ≡ 1 mod 3 6 1 −1 (ζ12, ζ11

12
, ζ5

12
, ζ7

12
) 6 1

3a (0, −q) r odd and p ≡ 2 mod 3
or r even and p �≡ 1 mod 3

2 2 −ζ3 (ζ12, ζ11

12
, ζ5

12
, ζ7

12
) 6 1

3b (0, −q) r odd and p ≡ 1 mod 3
or r even and p ≡ 4, 7, 10 mod 12

3 3 i (ζ12, ζ11

12
, ζ5

12
, ζ7

12
) 6 1

4a (
√

q, q) r even and p �≡ 1 mod 5 5 1 1 (ζ5, ζ4

5
, ζ2

5
, ζ3

5
) 5 −1

4b (−√
q, q) r even and p �≡ 1 mod 5 5 1 −1 (ζ10, ζ9

10
, ζ3

10
, ζ7

10
) 5 1

5a (
√

5q, 3q) r odd and p = 5 10 1 1 (ζ3

10
, ζ7

10
, ζ2

5
, ζ3

5
) 10 −1

5b (−√
5q, 3q) r odd and p = 5 10 1 1 (ζ10, ζ9

10
, ζ5, ζ4

5
) 10 −1

6a (
√

2q, q) r odd and p = 2 4 2 −ζ3 (ζ13

24
, ζ11

24
, ζ19

24
, ζ5

24
) 12 1

6b (−√
2q, q) r odd and p = 2 4 2 −ζ3 (ζ24, ζ23

24
, ζ7

24
, ζ17

24
) 12 1

7a (0, −2q) r odd 2 1 1 (1, 1, −1 − 1) 2 −1

7b (0, 2q) r even and p ≡ 1 mod 4 2 2 −1 (i, −i, i, −i) 2 1

8a (2
√

q, 3q) r even and p ≡ 1 mod 3 3 1 1 (ζ3, ζ2

3
, ζ3, ζ2

3
) 3 −1

8b (−2
√

q, 3q) r even and p ≡ 1 mod 3 3 1 −1 (ζ6, ζ5

6
, ζ6, ζ5

6
) 3 1

Proposition 7.1. Table 7.1 classifies all (a1, a2) which occur as the coefficients of P (A/Fq, T ) for a simple 

supersingular abelian surface A/Fq, together with the data:

• t0 = deg(L/Fq);

• W , labeling E/L as in the first column of Table 6.1;
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• z/L, one of the normalized Weil numbers (z, z, z, z) of A/L (again ζn = e2πi/n);

• NWN(A/Fq), the normalized Weil numbers of A/Fq;

• μ and δ, the period and parity respectively of A/Fq.

Proof. The list of (a1, a2), conditions on r and p, and t0 are found in [24, Table 1, page 325].1 Applying [24, 

Lemma 2.13, Theorem 2.9], we compute the coefficients of P (A/L, T ) where L = Fqt0 and determine W . 

Then the values of z/L, the period, and the parity can be found using Table 6.1. The period is the product 

of t0 and the period of E over Fq and the parities of A and E are the same. To determine NWN(A/Fq), we 

solve P (A/Fq, T ) = 0 directly. ✷

We now give a full classification of the types of supersingular simple principally polarized abelian surfaces 

with Autk(A) ≃ Z/2Z, using Proposition 7.1.

Proposition 7.2. Let A be a supersingular simple principally polarized abelian surface defined over K = Fq. 

Assume that Autk(A) ≃ Z/2Z. In Proposition 7.1:

(1) if r is odd, then A/K is not mixed; cases (1), (2b), (3a), (6) are fully maximal and cases (2a), (5), (7a)

are fully minimal.

(2) if r is even, then A/K is not fully minimal; cases (1), (3a), and (7b) are fully maximal and cases (4)

and (8) are mixed.

Proof. By [13, Theorem 1], the principal polarization restriction excludes exactly case (3b). Since Autk(A) ≃
Z/2Z, the type of A over K is determined from e(A/K) by Corollary 4.8. This can be computed from the 

normalized Weil numbers found in Proposition 7.1. ✷

Remark 7.3. The sizes of the isogeny classes listed in Table 7.1 are not known. From [47], one could conjecture 

that a supersingular abelian surface over Fq most likely has mixed type.

7.2. Curves of genus 2 with extra automorphisms

By [17], there are six equations that describe all genus 2 curves X/K such that Autk(X) �≃ Z/2Z. The 

number of k-isomorphism classes of these X/K which are supersingular is known [16, Theorem 3.3]. The 

twists of X/K are studied in [3] and [4]. We determine the type for all supersingular genus 2 curves X

with Autk(X) �≃ Z/2Z, over the smallest field K = Fq containing the coefficients of their defining equation. 

Let |Θ| denote the number of K-twists of X. We first analyze the three equations which have no moduli 

parameters.

Proposition 7.4. Let p > 5. The types over Fp of the following genus 2 curves X/Fp with Autk(X) �≃ Z/2Z, 

which are supersingular under the listed condition on p, are as follows. 

Equation Condition Autk(X) |Θ| Type

1 y2 = x5 − 1 p �≡ 1 mod 5 Z/10Z 2 fully maximal
2 y2 = x6 − 1 p ≡ 2 mod 3 2D12 7 mixed

3 y2 = x5 − x p ≡ 5, 7 mod 8 S̃4 6 mixed

Here Dn is the dihedral group of order n and S̃4 is a 2-covering of S4.

1 We would like to thank a referee for pointing out that the value of t0 in Case 5 is incorrect in [24].
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Proof. The equations and automorphism groups are found in [4, Theorem 3.1]. The supersingular condition 

is found in [16, 1.11–1.13]. For equation (1), |Θ| = 2 by [3, Proposition 11]. For equation (2), when p ≡
2 mod 3, then −3 /∈ (F∗

p)2, so |Θ| = 7 by [3, Proposition 16]. For equation (3), when p ≡ 5, 7 mod 8, then 

−2 /∈ (F∗
p)2, so |Θ| = 6 by [3, Proposition 17].

The pairs (a1, a2) which occur for the twists of X are in [4, Sections 3.1–3.3, Tables 5, 9, 6, 7]. If 

(a1, a2) = (0, 2p), note that Jac(X) ∼Fp
E ⊕E where E/Fp is in case W 3 of Lemma 6.1, which has parity 1. 

Also, (a1, a2) = (0, −2p) has parity −1 by case (7a) of Proposition 7.1.

(1) When p ≡ 2, 3 mod 5, then (a1, a2) = (0, 0) for X and Xι; thus X is fully maximal. When p ≡ −1 mod 5, 

then (a1, a2) = (0, 2p) for X and Xι; thus X is fully maximal.

(2) When p ≡ 2 mod 3, let ǫ = (−1/p). The first two rows of [4, Table 9] show that the parity 1 case 

(a1, a2) = (0, 2p) occurs for X or one of its Fp-twists, regardless of the value of ǫ. The third and fourth 

lines of [4, Table 9] show that the parity −1 case (a1, a2) = (0, −2p) occurs for X or one of its Fp-twists, 

regardless of the value of ǫ, as long as there exists t ∈ Fp such that t2 + 4 is not a square in F∗
p; the 

existence of such a t can be verified using a Jacobi sum argument. So X is mixed.

(3) If p ≡ 5, 7 mod 8, then both (0, 2p) and (0, −2p) occur as (a1, a2) among the twists of X, so X is 

mixed. ✷

Next, we analyze the three equations with moduli parameters.

Proposition 7.5. Let p > 5. Any genus 2 curve X/Fq with Autk(X) �≃ Z/2Z is isomorphic over k to one of 

equations (1)–(3) in Proposition 7.4 or one of equations (4)–(6) below:

(4) y2 = x6 + ax4 + bx2 + 1 where a, b ∈ k are chosen such that P (c, d) �= 0, where c = ab, d = a3 + b3, and 

P (c, d) = (4c3 − d2)(c2 − 4d + 18c − 27)(c2 − 4d − 110c + 1125);

(5) y2 = x5 + x3 + ax, for a �= 0, 1/4, 9/100;

(6) y2 = x6 + x3 + a for p �= 3, a �= 0, 1/4, −1/50.

Let q = pr be such that a, b ∈ K = Fq. The types over Fq for equations (4)–(6) are as follows:

Autk(X) |Θ| Type

4 V4 4

{

fully maximal if r is odd

mixed if r is even

5 D8 3 or 5

{

fully maximal if r odd, a /∈ (K∗)2

mixed otherwise

6 D12 4 or 6

{

fully maximal if q ≡ 2 mod 3 and a ∈ (K∗)2

mixed otherwise

Proof. The equations and automorphism groups can be found in [4, Theorem 3.1]. In cases (5) and (6), the 

number |Θ| of twists of X is determined in [3, Propositions 12–13]. In case (4), by [4, Section 3.6], when X is 

supersingular, then |Θ| = 4. The pairs (a1, a2) for the twists of X are in [4, Sections 3.4–3.6, Tables 11–17]. 

We determine the types over Fq below:

(4) Since Jac(X) ∼k E1 ⊕ E2, the 4 twists of X correspond to quadratic twists of either E1 or E2, or both. 

When r is odd, E1 and E2 are both in case W 3 of Lemma 6.1, so X is fully maximal. When r is even, 

E1 and E2 are either both in case W 1+ (so X is minimal) or both in case W 1− (so X is maximal), 

depending on the L-polynomial of E1. Then X is mixed since the quadratic twist swaps the two cases.
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(5) When r is odd and a /∈ (K∗)2, then X and its twists have (a1, a2) equal to (0, 0) or (0, 2q). Since both 

cases have parity 1, the curve X is fully maximal.

When r is odd and a ∈ (K∗)2, there are twists of X with (a1, a2) being both (0, 2q) (parity 1) and 

(0, −2q) (parity −1), so X is mixed. When r is even, a similar argument shows that X is mixed.

(6) When q ≡ 2 mod 3, note that p ≡ 2 mod 3 as well and r is odd. Then X and its twists have (a1, a2)

among (0, 2q), (0, 2ǫq) and (0, −ǫq), where ǫ = 1 if a ∈ (K∗)2 and ǫ = −1 otherwise. These curves have 

respective parities 1, ǫ, and ǫ. So if ǫ = 1, then X is fully maximal and if ǫ = −1, then X is mixed.

When q ≡ 1 mod 3 and r is odd, then the coefficients (a1, a2) of the twists include (0, 2q) and (0, q) of 

parity 1 and (0, −2q) of parity −1, so X is mixed.

When q ≡ 1 mod 3 and r is even, let ǫ =
(

−3√
q

)

. Then the possibilities for (a1, a2) are (±4ǫ
√

q, 6q) of 

parity ±ǫ, (±2ǫ
√

q, 3q) of parity ∓ǫ, and (0, −2q) of parity −1. So X is mixed. ✷

7.3. The condition Autk(A) ≃ Z/2Z is not restrictive when p is odd

For general p, r, and g, the structure of the typical automorphism group of a g-dimensional supersingular 

abelian variety A over K = Fpr is unknown (cf. Remark 4.9). In this section, we resolve this question for 

g = 2 and p odd.

Let g = 2 and let A = (A, λ) be a principally polarized abelian surface. For p ≥ 3, we prove that the 

proportion of A over Fpr with Autk(A) �≃ Z/2Z tends to zero as r → ∞.

Let A2 = A2 ⊗ Fp denote the moduli space whose points represent the objects (A, λ) in characteristic p. 

Let A2,ss ⊂ A2 denote the supersingular locus whose points represent supersingular A. Recall that A is 

superspecial if and only if A ≃k E1 ⊕ E2.

Proposition 7.6. If p ≥ 3, then the proportion of Fpr -points in A2,ss which represent A with Autk(A) �≃ Z/2Z

tends to zero as r → ∞.

Proof. As observed in [1, Section 9], |A2,ss(Fpr )| ≪ pr+2, where the notation f(q) ≪ g(q) means that there 

is a constant C > 0 such that |f(q)| ≤ C|g(q)| for all sufficiently large q. This is because each irreducible 

component of A2,ss is geometrically isomorphic to P1 [29, proof of Corollary 4.7], and the number of 

irreducible components of A2,ss equals the class number H2(1, p) [19, Theorem 5.7], which is ≪ p2 by [9], 

see also [16, Remark 2.17].

By [8, Theorem 3.1], an Fpr -point A in A2,ss is one of the following canonically principally polarized 

objects: (i) the Jacobian of a smooth supersingular curve X over Fpr of genus 2; (ii) the sum E1 ⊕ E2 of 

two supersingular elliptic curves over Fpr ; (iii) the restriction of scalars ResFp2r /Fpr (E) of a supersingular 

elliptic curve E/Fp2r . By [1, Section 9], the number of objects in cases (ii) and (iii) is ≪ p2.

Thus, it suffices to restrict to case (i). Since X is hyperelliptic, the isomorphism A ∼=k Jac(X) descends 

to Fpr by [22, Appendix]. By (12), Autk(Jac(X)) ≃ Autk(X). The arithmetic Torelli map is injective 

on Fpr -points representing smooth curves [28, Corollary 12.2]. So for case (i), it suffices to bound the 

number of supersingular curves X of genus 2 with Autk(X) �≃ Z/2Z, which are described in cases (1)–(6) 

of Propositions 7.4 and 7.5 when p > 5; the cases p = 3 and p = 5 can be handled similarly. In case (1), 

there is at most one k-isomorphism class of curves, with at most four twists over Fpr .

In cases (2)–(6), the curves are superspecial by [16, Proposition 1.3]. The singularities of A2,ss are 

ordinary (p + 1)-points which occur precisely at the superspecial points [20, page 193]. There are ≪ p2

irreducible components of A2,ss, each containing p2 +1 superspecial points by [19, page 154]. So the number 

of superspecial points in A2,ss(k) is ≪ p2(p2 + 1)/(p + 1) ≪ p3. (See [15, Theorem 2] for an exact formula 

in terms of class numbers.)

Applying [1, Lemma 9.1], the number of Fq-models for superspecial curves of genus 2 is also ≪ p3. This 

completes the proof since limr→∞p3/pr = 0. ✷
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Remark 7.7. The conclusion of Proposition 7.6 is false when p = 2 by [41, Theorem 3.1].

8. Analysis in low dimension: genus 3 curves for p = 2

Let p = 2 and k = F2. For c, d ∈ k∗, consider the generalized Artin–Schreier curve Xc,d with affine 

equation

Xc,d : Z4 + (1 + c)Z2 + cZ = dS3. (16)

The cover γ : Xc,d → P1, taking (Z, S) �→ S is ramified only above S = ∞, where it is totally ramified. 

The filtration of higher ramification groups trivializes at index 3. So by the Riemann–Hurwitz formula, Xc,d

has genus 3. By Lemma 8.3, Xc,d is supersingular. Let q = 2r be such that c, d ∈ K = Fq.

In the main result of the section, we determine the type of Xc,d over K. To state this, we set some 

notation. Let K ′ = Fq(h), where h ∈ Fq2 is such that h2 + h = c. Then h ∈ Fq if and only if Trr(c) = 0, 

where Trr : F2r → F2 is the trace map. Let q′ = 2r′

= |K ′|.

Theorem 8.1. Let Xc,d, r and h be as defined above.

(1) If r is odd, then Xc,d/K is fully maximal if h ∈ Fq and mixed if h /∈ Fq.

(2) If r ≡ 2 mod 4, then Xc,d/K is mixed if h ∈ Fq and fully minimal if h /∈ Fq.

(3) If r ≡ 0 mod 4, then Xc,d/K is fully minimal.

Moreover, Jac(Xc,d) has the same type as Xc,d over K, unless r ≡ 0 mod 4 and h ∈ Fq, in which case 

Jac(Xc,d) is mixed.

Remark 8.2.

(1) If d = d1d3
2 with d1, d2 ∈ K, there is an Fq-isomorphism Xc,d

≃→ Xc,d1
, taking (Z, S) �→ (Z, S/d2). So d

can be replaced by any representative of the coset d(K∗)3 in K∗; if r is odd, then one can set d = 1.

(2) The supersingular locus S3 of the moduli space M3 ⊗F2 has dimension 2. By part (1), the curves in the 

family Xc,d are represented by a 1-dimensional subspace of S3. This 1-dimensional family is the same 

as the one given in [43, pages 56–57] by

X ′
a,b : x + y + a(x3y + xy3) + bx2y2 = 0,

via the change of coordinates: c = a/b, d = a3/b, S = 1/a(x + y), Z = x/(x + y).

(3) The proportion of c ∈ F∗
q for which Xc,d is mixed is a bit larger than 1

2 when r is odd and a bit smaller 

than 1
2 when r ≡ 2 mod 4 since #{c ∈ F∗

q | Trr(c) = 1} = q
2 .

8.1. Decomposition of the Jacobian

Define the values

c1 = d/c2, c2 = d/(h + 1)2, and c3 = d/h2, (17)

and corresponding elliptic curves

E1 : R2 + R = c1S3, E2 : T 2 + T = c2S3, E3 : U2 + U = c3S3. (18)

Also, define commuting order 2 automorphisms on Xc,d by:
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τ : (S, Z) �→ (S, Z + 1) and υ : (S, Z) �→ (S, Z + h). (19)

Note that τ is defined over K = Fq and υ is defined over K ′.

Lemma 8.3.

(1) Over K, the quotient of Xc,d by τ is E1.

Over K ′, the quotient of Xc,d by υ (resp. τυ) is E2 (resp. E3).

(2) Hence, Jac(Xc,d) ∼K′ E1 ⊕ E2 ⊕ E3 and Xc,d is supersingular.

(3) Thus L(Xc,d/K ′, T ) = L(E1/K ′, T )L(E2/K ′, T )L(E3/K ′, T ).

Proof. (1) The involution τ fixes the function R1 = Z(Z + 1). Similarly, the involutions υ and τυ fix the 

functions T1 = Z(Z + h) and U1 = Z(Z + (h + 1)) respectively. Direct calculations show that:

R2
1 + cR1 = Z4 + (1 + c)Z2 + cZ = dS3;

T 2
1 + (h + 1)T1 = Z4 + h2Z2 + (h + 1)(Z2 + hZ) = dS3;

U2
1 + hU1 = Z4 + (h + 1)2Z2 + h(Z2 + (h + 1)Z) = dS3.

Setting R1 = cR, T1 = (h + 1)T , and U1 = hU , then

R2 + R = (d/c2)S3, T 2 + T = (d/(h + 1)2)S3, U2 + U = (d/h2)S3.

(2) The decomposition is immediate from part (1) and [18, Theorem B]. By the Deuring–Shafarevich for-

mula, E1, E2, E3 have 2-rank 0 and hence are supersingular. Thus Xc,d is supersingular by Theorem 2.8.

(3) This is immediate from part (2). ✷

8.2. The normalized Weil numbers of E1, E2, and E3

Lemma 8.4. The elliptic curve E◦ : R2 + R = S3 is maximal over F22 and

L(E◦/F2, T ) = 1 + 2T 2 = (1 − (
√

2i)T )(1 − (−
√

2i)T ).

Lemma 8.5.

(1) If c1 is a cube in K∗, then NWN(E1/K) = {ir, (−i)r}.

(2) For j = 2, 3, if cj is a cube in (K ′)∗, then NWN(Ej/K ′) = {ir′

, (−i)r′}.

Proof. If c1 is a cube in K∗, then there is an isomorphism w : E1 → E◦ defined over K, so part (1) follows 

from Lemmas 2.10 and 8.4. The proof for part (2) is similar. ✷

Lemma 8.6.

(1) Suppose that c1 is not a cube in K∗. If r ≡ 2 mod 4, then NWN(E1/K) is {ζ6, ζ̄6} or {−1, −1}. If 

r ≡ 0 mod 4, then NWN(E1/K) is {ζ3, ζ̄3} or {1, 1}.

(2) Suppose that cj is not a cube in (K ′)∗ for j = 2, 3. If r′ ≡ 2 mod 4, then NWN(Ej/K ′) is {ζ6, ζ̄6} or 

{−1, −1}. If r′ ≡ 0 mod 4, then NWN(Ej/K ′) is {ζ3, ζ̄3} or {1, 1}.

Proof. For part (1), if c1 is not a cube in K∗, then it is a cube in K∗
3 , where K3 ≃ Fq3 . By Lemma 8.5(1), 

NWN(E1/K3) = {i3r, (−i)3r} = {ir, (−i)r}. If r ≡ 2 mod 4, then NWN(E1/K3) = {−1, −1}, while if r ≡
0 mod 4, then NWN(E1/K3) = {1, 1}. By Lemma 2.10, NWN(E1/K) are the cube roots of NWN(E1/K3)

and are complex conjugates. The proof for part (2) is similar. ✷
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Lemmas 8.3(3), 8.5, and 8.6 determine e(Xc,d/K ′). When h /∈ Fq, this is not quite strong enough to 

prove Theorem 8.1, because it only gives information about the normalized Weil numbers over Fq2 . We now 

determine more information using the Artin L-series L(E1/Fq, T, χ), where χ is the nontrivial character of 

Z/2Z. By Lemma 5.10(1) ([31, Chapter 9, page 130]),

L(Xc,d/Fq, T ) = L(E1/Fq, T )L(E1/Fq, T, χ). (20)

Let ρ1 be the coefficient of T in L(E1/K, T, χ). Let I1 (resp. S1) be the number of K-points of E1 that are 

inert (resp. split) in Xc,d. By Lemma 5.10(2), ρ1 = S1 − I1. The conditions of Remark 5.12(3) are satisfied 

if Trr(c) = 1, so ρ1 = 0 by (15).

Proposition 8.7. Let K = Fq where q = 2r. Let K ′ = K(h) where h is such that h2 + h = c. The 2-valuation 

vector e(Xc,d/K) = {e1, e2, e3} is determined below.

e r odd r ≡ 2 mod 4 r ≡ 0 mod 4
if h ∈ Fq {2, 2, 2} {1, 1, 1} {0, 0, 0}
if h /∈ Fq {2, 2, 2} {1, 0, 1} {0, 0, 1}

Proof. When h ∈ Fq, then K ′ = K. By Lemmas 8.5 and 8.6, NWN(Xc,d/K) are among the values (±i)r if 

r is odd, ζ6, ζ̄6, −1 if r ≡ 2 mod 4, and ζ3, ζ̄3, 1 if r ≡ 0 mod 4. Thus e(Xc,d/K) equals {2} if r is odd, {1}
if r ≡ 2 mod 4, and {0} if r ≡ 0 mod 4.

Suppose that h /∈ Fq. Then NWN(E1/K) are the same as before; in particular, e1 = 2 if r is odd, e1 = 1

if r ≡ 2 mod 4, and e1 = 0 if r ≡ 0 mod 4. By Lemmas 8.5 and 8.6, NWN(E2/K ′) and NWN(E3/K ′)

are among −1 and ζ±1
6 if r is odd, and 1 and ζ±1

3 if r is even. Since K ′ is a quadratic extension of K, 

NWN(E2/K) and NWN(E3/K) are among the square roots of these. The ambiguity in taking the square 

root is resolved by the fact that the four sum to zero by (15) and are invariant under complex conjugation. 

If r is odd, then NWN(E2/K) ∪ NWN(E3/K) is either {±i, ±i} or {ζ12, ζ5
12, ζ7

12, ζ11
12 }, which both yield 

{e2, e3} = {2, 2}. If r is even, then NWN(E2/K) ∪ NWN(E3/K) is either {1, 1, −1, −1} or {ζ6, ζ−1
6 , ζ3, ζ−1

3 }
which both yield {e2, e3} = {0, 1}. ✷

8.3. The automorphism group of Xc,d and K-Frobenius conjugacy classes

Let G = Autk(Xc,d). Recall τ and υ from (19). Let S0 = 〈τ, υ〉 ≃ Z/2Z × Z/2Z.

Consider the order 3 automorphism of Xc,d, given by σ : (S, Z) �→ (ζ2
3 S, Z). Note that σ is defined over 

Fq if r is even and over Fq2 if r is odd. Furthermore, σ centralizes S0.

Lemma 8.8. If c �= 1, then G = S0 × 〈σ〉 is an abelian group of order 12. If c = 1, then G is a semidirect 

product of the form S0 ⋊ H where H is a cyclic group of order 9.

Proof. The degree 4 equation (16) for Xc,d is of the type whose automorphism group is studied in [36], see 

also [10, Section 12.1]. By [10, Theorem 12.11], G fixes the unique point of Xc,d lying above S = ∞. Thus 

G ≃ S1 ⋊ H where S1 is the normal Sylow 2-subgroup of G and H is a cyclic group of odd order. By [10, 

Theorem 12.7], |S1| = 4 (so S1 = S0) and |H| divides 9. Then |H| = 3 or 9 since σ ∈ G.

If H contains an element κ of order 9, then κ(S) = ζ9S. Hence, κ acts on the right hand side of (16) by 

multiplication by ζ3. However, κ can only act on the left hand side of (16) by multiplication by ζ3 if the 

monomial (1 + c)x2 vanishes. Thus, κ lifts to an automorphism of Xc,d if and only if c = 1, in which case 

κ(Z) = ζ3Z and κ : (S, Z) �→ (ζ9S, ζ3Z). ✷
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If c = 1 and |H| = 9, note that κ3 = σ2; also G is non-abelian, since κτκ−1(Z) = Z + ζ−1
3 , so κτκ−1

is either υ or υτ , depending on the choice of h ∈ {ζ3, ζ2
3 }. In this case, κ permutes the three quotients 

E1, E2, E3 of Xc,d by the non-trivial involutions in S0.

Let Fr = FrK where K = Fq. We now determine the K-Frobenius conjugacy classes of G.

Lemma 8.9. Let f be the number of K-Frobenius conjugacy classes in G.

(1) Suppose that c �= 1. Then G is an abelian group of order 12.

(a) If r is even and h ∈ Fq, then f = 12.

(b) If r is even and h /∈ Fq, then f = 6.

The classes are {id, τ}, {υ, υτ}, {σ, στ}, {υσ, υτσ}, {σ2, σ2τ}, {υσ2, υτσ2}.

(c) If r is odd and h ∈ Fq, then f = 4.

The classes are {id, σ, σ2}, {υ, υσ, υσ2}, {τ, τσ, τσ2}, and {υτ, υτσ, υτσ2}.

(d) If r is odd and h /∈ Fq, then f = 2.

The classes are {id, σ, σ2, τ, τσ, τσ2} and {υ, υσ, υσ2, υτ, υτσ, υτσ2}.

(2) If c = 1, then G is a non-abelian group of order 36 and h ∈ F4 − F2.

(a) If r is even, then h ∈ Fq and f = 10.

The classes are {id}, {υ, τ, υτ}, and {κj , υκj , τκj , υτκj} for j = 1, . . . , 8.

(b) If r is odd, then h /∈ Fq and f = 2. Also, υ is not conjugate to id.

The first class is {id, τ, κ1, . . . , κ8, υτκ, υκ2, τκ3, υτκ4, υκ5, τκ6, υτκ7, υκ8}.

Proof. We omit most of the long calculation. Cases (1a) and (2a) follow from the fact that K-Frobenius 

conjugacy classes coincide with standard conjugacy classes when all automorphisms are defined over K.

For the other cases, note that F rτ = τ . If h ∈ Fq, then F rυ = υ. If h /∈ Fq, then hq = h +1 and F rυ = υτ ; 

in this case, υ−1τ(F rυ) = id, showing that τ is K-Frobenius conjugate to id, and υ is K-Frobenius conjugate 

to υτ .

Also, F rκ = κq. If r is even, then F rσ = σ. If r is odd, then F rσ = σ−1; in this case, σ−1id(F rσ) = σ, 

showing that σ is K-Frobenius conjugate to id. ✷

8.4. Proof of Theorem 8.1

Proof of Theorem 8.1. The results from Remark 5.12 apply here, by setting S = S0. By Lemma 8.3(2), 

Jac(Xc,d) ∼K′ E1 ⊕ E2 ⊕ E3. By Lemma 8.3(1) and Remark 5.12(1), over K ′, the automorphism τ acts 

trivially on E1 and by [−1] on E2 and E3; similarly, υ fixes E2 and acts by [−1] on E1 and E3, and υτ fixes 

E3 and acts by [−1] on E1 and E2.

When h /∈ Fq, the strategy in the proof below is to analyze the situation for the base change to K ′, where 

the automorphism g acts via gF rK g. The ambiguity caused by descending to K can be resolved using (15).

In each case below, the information on NWN(Xc,d/K) for K = Fq and their 2-adic valuations e =

e(Xc,d/K) = {e1, e2, e3} is from Proposition 8.7. The data on the number and representatives of the K-twists 

of Xc,d are found in Lemma 8.9.

(1) Let r be odd. Then e = {2, 2, 2} so Xc,d has parity +1.

(a) If h ∈ Fq, then there are three nontrivial twists, each of order 2. By Lemma 5.11, none of these 

changes the parity, so Xc,d is fully maximal.

(b) If h /∈ Fq, then K ′ = Fq2 . The nontrivial K-twist is represented by υ (which is not defined over 

Fq). Then e(Xc,d/K ′) = {1, 1, 1}. Over K ′, the twist for υ corresponds to υF rK υ = τ , which 

negates the two conjugate pairs of normalized Weil numbers for E2 and E3, thus the twist has 

e(X ′
c,d/K ′) = {1, 0, 0}. By (15), e(X ′

c,d/K) = {2, 0, 1}, of parity −1. Thus, Xc,d is mixed.
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In addition, Jac(Xc,d) and Xc,d have the same type, by Lemma 5.3.

(2) Let r ≡ 2 mod 4.

(a) If h ∈ Fq, then e = {1, 1, 1}, so Xc,d has parity +1. There are either twelve K-twists (if c �= 1) or 

ten K-twists (if c = 1). In both cases, the K-twist by υ has e = {0, 1, 0} and parity −1. Hence, 

both Xc,d and Jac(Xc,d) are mixed.

(b) If h /∈ Fq, then e = {1, 0, 1}, so Xc,d has parity −1. Also, e(Xc,d/K ′) = {0, 0, 0}. Since c �= 1, there 

are six K-twists, represented by id, υ, σ, υσ, σ2, and υσ2. Twisting by id, σ, σ2 does not change the 

parity by Lemma 5.9 since these automorphisms have odd order and are defined over K. The twist 

of Xc,d/K by υ (resp. υσ, υσ2) corresponds to the twist of Xc,d/K ′ by τ (resp. τσ2, τσ), which 

changes e(Xc,d/K ′) to {0, 1, 1}. So the K-twist for υ (resp. υσ, υσ2) has e(Xc,d/K) either {1, 2, 2}
or {0, 2, 2}, which both have parity −1. Thus Xc,d is fully minimal over K. The twist by [−1] has 

e = {0, 1, 0}, thus Jac(Xc,d) is fully minimal as well.

(3) Let r ≡ 0 mod 4.

(a) If h ∈ Fq, then e = {0, 0, 0}, so Xc,d has parity −1. There are either twelve K-twists (if c �= 1) or 

ten K-twists (if c = 1). The nontrivial elements of S0 yield twists such that e = {1, 1, 0}, of parity 

−1, cf. Remark 5.12(1). The odd order automorphisms σj do not change the parity by Lemma 5.9. 

If c �= 1, then all automorphisms are defined over K and the group is abelian, so no other twist 

changes the parity either. If c = 1, then the twists by κj permute E1, E2, E3 and thus do not change 

the parity either. So Xc,d is fully minimal. Since Jac(Xc,d) has a twist with e = {1, 1, 1} and parity 

+1, it is mixed.

(b) If h /∈ Fq, then e = {0, 0, 1}, so Xc,d has parity −1. The proof that both Xc,d and Jac(Xc,d) are 

fully minimal is very similar to case (2b). ✷
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