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1. Introduction

Suppose that X is a smooth projective connected curve of genus g > 1 defined over a finite field F, of
characteristic p; write ¢ = p". The curve X is supersingular if the only slope of the Newton polygon of
its L-polynomial is % or, equivalently, if its normalized Weil numbers are all roots of unity. If p = 2, there
exists a supersingular curve over Fy of every genus [42]. If p is odd, it is not known whether there exists a
supersingular curve over Fp of every genus. One says that X is minimal (resp. mazimal) over F,m if the
number of Fgm-points of X realizes the lower (resp. upper) bound in the Hasse-Weil theorem.
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More generally, suppose that A is a principally polarized abelian variety of dimension g > 1 defined
1

over Fy. Then A is supersingular if the only slope of its p-divisible group A[p>] is 35 or, equivalently, if its
normalized Weil numbers are all roots of unity. One says that A is minimal (resp. mazimal) over F,m if
Frobenius acts on its ¢-adic Tate module by multiplication by /g™ (resp.-/¢™). In fact, A (resp. X) is
supersingular if and only if it is minimal over some finite extension of F,.

Because of applications to cryptosystems and error-correcting codes, there are many papers in the lit-
erature about maximal curves but relatively few papers about minimal curves. This led to the motivating
question: is a supersingular curve X/IF; more likely to be maximal or minimal? However, this question is not
well-posed, since X may be neither until after a finite field extension. To resolve this, one says that X/F,
has parity 1 if it is maximal after a finite extension of Iy, and parity —1 otherwise, cf. Definition 4.1. The
proportion of supersingular elliptic curves with parity 1 can be determined using [32] (Remark 6.2), but the
analogous question for curves of higher genus and abelian varieties of higher dimension is more difficult to
answer, since the sizes of the isogeny classes are not known.

In this paper, we address a related question about supersingular curves and abelian varieties, based on
the fact that most of the supersingular curves found in the literature have non-trivial automorphism groups
and twists. The twists of X/F, may have different arithmetic properties. Specifically, it is possible that
X/F, is not maximal over any extension of Fy but that it has a twist which is maximal over some extension
of F,. From a geometric perspective, there is no reason to prefer one twist over another.

The following definition addresses this subtlety. Suppose that X/F, is a supersingular curve or abelian
variety. We define X to be (i) fully mazimal, (ii) fully minimal, (iii) mized over F, if (i) all, (ii) none, or (iii)
some (but not all) of its F-twists have the property that they are maximal over some finite extension of I,
(Definitions 4.2, 5.2). The type of X depends on its geometric automorphism group, its field of definition, and
the normalized Weil numbers of its twists, leading to a fascinating interaction between algebra, geometry,
and arithmetic.

It is a natural question to ask: under what conditions is a supersingular curve or abelian variety fully
maximal, fully minimal, or mixed over F,? We answer this question for dimension g = 1 in Section 6, proving
that a supersingular elliptic curve is fully maximal over F), if its j-invariant is in IF,, and is mixed over [F2
otherwise (Theorem 6.3). When g = 2 and p is odd, in Section 7, we give a complete analysis of the three
types for simple supersingular abelian surfaces A; in particular, for A/F,~ with Autﬁp (A) ~Z/27Z, then A
is not mixed over - if r is odd and A is not fully minimal over F,- if r is even (Proposition 7.2).

The results in Sections 6—7 depend on theoretical results in earlier sections which hold for all g and p.
Section 2 introduces supersingular abelian varieties and curves. Section 3 contains information about twists,
including the bijection between twists of A/F, and F,-Frobenius conjugacy classes of Autg (A) (Proposi-
tion 3.5) and the effect of twists on the relative Frobenius endomorphism (Proposition 3.9).

In Section 4, we study supersingular abelian varieties of arbitrary dimension g. We characterize the fully
maximal, fully minimal, and mixed types in terms of arithmetic properties of the normalized Weil numbers
of A/F,. These are roots of unity; the key ingredient for the analysis is the 2-divisibility of their orders,
encoded in a multiset e(A/F,) (Definition 4.4). As an application, we show that A is not fully minimal over
F,- if A is simple and r is even (Proposition 4.7). We give a complete characterization of the three types
under the hypothesis that |Autg (A)[ = 2 (Corollary 4.8), and a criterion for the mixed case in terms of the
orders of the twists and e(A/F,) (Corollary 4.13).

In Section 5, we define the three types for a supersingular curve X. If s = 0 mod 4 and p = —1 mod s,
we prove that the smooth plane curve X/, with equation z° 4+ y® + 2° = 0 is supersingular and of mixed
type over I, (Proposition 5.6). In Section 5.3, we study which automorphisms yield parity-changing twists.

Most of the supersingular curves found in the literature are constructed using Artin—Schreier theory.
In many cases, the automorphism groups and normalized Weil numbers of these Artin—Schreier curves are
known, e.g., in [41] and [2]. An open problem is to determine when these curves are fully maximal, fully
minimal, or mixed. As a result in this direction, we end the paper in Section 8 by studying a one-dimensional
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family of supersingular curves X of genus 3 in characteristic 2, which are (Z/2Z x Z/27)-Galois covers of
the projective line. For X/Far, we prove that X is fully minimal if » = 0 mod 4, X is fully minimal or
mixed (with about equal probability) if » = 2 mod 4, and X is fully maximal or mixed (with about equal
probability) if r is odd (Theorem 8.1).

2. Background: supersingular abelian varieties and Weil numbers

Let k = F,. Let A be an abelian variety of dimension g > 1, a priori defined over k. Throughout the
paper, we assume A is defined over a finite field K = I, of cardinality ¢ = p". We write K instead of
Spec(K) when this causes no ambiguity.

2.1. Frobenius and its characteristic polynomial

Definition 2.1. [30, 21.2] Consider the generator Fry : o« — a? of the absolute Galois group Gx = Gal(k/K)
of K. If Ris a K-algebra and U = Spec(R), then the map which sends z — 27 for € R induces a Frobenius
map fy on U. The absolute Frobenius endomorphism fa: A — A of A/K is the gluing of fy over all open
affine subschemes U of A.

For a morphism of K-schemes A — S, let A®) be the fiber product of A — S 15 5. The morphism f4
factors through A®); this defines a morphism 7 = 74: A — A®) called the relative Frobenius endomorphism.
Then

Ta=fa® Frit. (1)
By [39, pages 135-138], for any ¢ # p, there is a bijection
Endg(A) ® Q¢ — Endg, (Ty(A) ®@z, Qp), (2)

where Ty(A) denotes the ¢-adic Tate module of A. Via this bijection, m4 can be viewed as a linear operator
on Ty(A) ®z, Q. Since 74 is semisimple (cf. [39, page 138]), this linear operator is diagonalizable over Q.
Moreover, the characteristic polynomial P(A/K,T) of w4 (in the sense of [21, page 110]) coincides with
that of its corresponding linear operator, by e.g., [21, Chapter VII, Theorem 3].

2.2. Weil numbers and zeta functions

The characteristic polynomial P(A/F,,T) of m4 is a monic polynomial in Z[T] of degree 2g. Writing
P(A/F,,T) = H?il(T — ), the roots o; € Q all satisfy |a;| = /g

Definition 2.2. The roots {a,...,a05} = {1, 0u,..., 04,04} of P(A/F,,T) are the Weil numbers of A.
The normalized Weil numbers of A/F, are NWN(A/Fy) = {z1,21,...,24, 2¢}, Where z; = %.

In writing the normalized Weil numbers, we use the convention that ¢, = e>7%/™.

Theorem 2.3. [27, Chapter II, Section 1], [6, Theorem 1.6], [46, §IX, 71] The zeta function of A over F,
satisfies

™ Pi(T) ... Poy (T
Z(A/anT) = exp Z |A(qu)‘ﬁ = PO(T)P;((T))' 'P22g—21((T)>P2g(T)’

m>1
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where Ps(T) € Z[T] and Ps(T) = [[,eg.(1 — a;T) where Ss is the set of subsets o = {i1,...,is} of
{1,...,2g} of cardinality s and cg = iy iy ... Q;

s°

Note that P(A/F,,T) = T?9P(T~!). The polynomials P;(T) describe the action of Frobenius on the
i-th étale cohomology of A/F,. By [39, Theorem 1], two abelian varieties A; and Ay over F, have the same
zeta function if and only if P(A;/F,,T) = P(A3/F,,T), which holds if and only if A; and A, are isogenous
over [Fy.

Corollary 2.4. [27, Chapter II, Theorem 1.1] The number of F,-points of A satisfies

2g
|A(F,)| = deg(mayr, —id) = P(A/Fy,1) = [ (1 - o); and thus

=1
JA(F,)| — ¢7| < 29¢92) 4 (229 — 29 — 1)q\9~ V.

2.8. Zeta functions of curves

Let X be a smooth projective connected curve of genus g defined over IF,.

Theorem 2.5. [45, §IV, 22], [16, §IX, 69] The zeta function of X/F, can be written as

L(X/Fy,T)

S ey

where the L-polynomial L(X/F,,T) € Z[T| of X/F, has degree 29 and factors as

29
L(X/F,, T) = [[(1 - euT).
i=1
Then P(Jac(X)/Fq,T) = T?9L(X/F,, T') is the characteristic polynomial of 7jac(x). The (normalized)
Weil numbers of X are the (normalized) roots of P(Jac(X)/F,,T).

Corollary 2.6. Let {ay,0u,..., 04,04} be the Weil numbers of X. The number of Fy-points of X satisfies
I X(F)|l=q+1-=37 (i + &;), which implies the Hasse—Weil bound:

IX(Fg)| = (¢ + 1] < 29V/4.
2.4. Supersingular abelian varieties and curves
Definition 2.7. An abelian variety A is supersingular if the only slope of the p-divisible group A[p] is

1
5.
A curve X is supersingular if its Jacobian Jac(X) is supersingular.

Theorem 2.8. Suppose that A/F, is an abelian variety of dimension g. The following properties are each
equivalent to A being supersingular:

(1) the (g-normalized) Newton polygon of P(A/F,,T) is a line segment of slope % ;
(2) A is geometrically isogenous to a product of supersingular elliptic curves, i.e.,
A xp, k~ E9 xg, k for an elliptic curve E such that E[p](k) = {0}, [29, Theorem 4.2];
(3) the formal group of A is geometrically isogenous to (G11)9, [23, Section 1.4];
(4) the normalized Weil numbers of A/F, are roots of unity, [25, Theorem 4.1].
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2.5. Mazimal and minimal

Definition 2.9. An abelian variety A/F, or a curve X/F, is mazimal (resp. minimal) if its normalized Weil
numbers all equal —1 (resp. 1).

By Corollaries 2.4 or 2.6, |A(F,)| or | X (F,)| realizes its upper (resp. lower) bound exactly when A or X is
maximal (resp. minimal). A necessary condition for maximality or minimality is that ¢ is a square (i.e., 7 is
even), by Theorem 2.3 or 2.5. Also X/F, is maximal (resp. minimal) if and only if L(X/F,, T) = (1+,/qT)?
(resp. (1 — /qT)?9).

The following facts are well-known and hold for curves as well as for abelian varieties, cf. [43, Theorem 1.9]
and [37, Theorem V.1.15(f)].

Lemma 2.10.

(1) If P(A/Fy,T) = [I;2,(T — i), then P(A/Fgn, T) = T[22, (T — o).

(2) If A/F, is minimal or mazimal, then it is supersingular. Conversely, if A/F, is supersingular, then it
is minimal over some finite extension of F,.

(3) (a) If A/F, is mazimal, then A/Fqm is mazimal for odd m and minimal for even m.
(b) If A/F, is minimal, then A/Fqm is minimal for all m € N.

3. Twists

Let K = F, with ¢ = p” and let k = F,,. For m € N, let K,,, be the unique extension of K of degree m.
Let Fri be the generator of Gk = Gal(k/K) as in Definition 2.1.
In this section, we review the theory of twists of abelian varieties following [34] and [5].

3.1. Twists, cocycles, and Frobenius conjugacy classes

Let A/K be a principally polarized abelian variety of dimension g > 1. We restrict to automorphisms of
A that are compatible with the principal polarization A. For ease of notation, we write A instead of (A4, \)
and Auty(A) instead of Auty (A4, ).

Definition 3.1. A (K-)twist of A/K is an abelian variety A’/ K for which there exists a geometric isomorphism
p: A= A (3)

where A = A xg kand A’ = A’ xg k. A twist A’/ K is trivial if A ~x A’. Let ©(A/K) denote the set of
K-isomorphism classes of twists A’/K of A/K.

Definition 3.2. Given 0 € Gx and ¢ : A = A/, let “¢p: A = A’ denote the (twisted) isomorphism which
acts on x € A(k) via “¢(x) = o(¢(c 7 (x))) or, more precisely, via

U¢ = (idA/ X Spec(K) Spec(a)) © ¢ © (ldA X Spec(K) Spec(g))il'

Similarly, if A = A and 7 € Autg(A), let ™57 denote the (twisted) automorphism, which acts on
x € A(k) by

rice(z) = Fric(r(Fri (a)).
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Definition 3.3. Two automorphisms g, h € Auty(A) are K-Frobenius conjugate if there exists 7 € Auty(A)
such that

g=r1"h(Fr=T).
In particular, g is K-Frobenius conjugate to id if g = 771 (¥"% 1) for some 7 € Auty(A).

Remark 3.4. If all automorphisms of A are defined over K, then Gk acts trivially on Autg(A). (By [39,
Theorem 2(d)], this is true if A is maximal or minimal over K.) In this case, the K-Frobenius conjugacy
classes are the same as standard conjugacy classes.

Proposition 3.5. [3/, Proposition III.5], [33, Proposition 1], (see also [26, Propositions 5,9] for curves)
Given ¢ : A S A’ as in (3), consider the cocycle £4: G — Auty,(A) defined by

Es(0) =971 0. (4)
Next, for any € € CY(Gk, Autg(A)), let
ge = §(Fri) € Auty(A). (5)
The maps taking ¢ — &g = g¢ = ge, yield bijections:
O(A/K) — H*(Gg,Autg(A)) — {K-Frobenius conjugacy classes of Auty(A)}. (6)

Given g € Autg(A), let £, € C* (G, Auty(A)) be the cocycle such that £, (Frg) = g and let ¢, : A = A’
be such that s, = {,. Note that ¢, is not uniquely determined: if 7 € Auty(A) is such that rlgFrer =g,
then ¢/ = ¢go0 7 : A =5 A’ also has the property that &y = &4 In this case, 7 is defined over K, so ¢poT
and ¢ have the same field of definition.

Definition 3.6. The order of a twist A’/K is the smallest m € N such that over the degree m extension K,
of K there exists an isomorphism ¢ : A X g Ky, — A’ X ¢ Kpp,.

If A’/K is a twist of order m and ¢ : A =5 A’ is an isomorphism, then Definition 3.6 implies that ¢ o 7
is defined over the degree m extension K, of K for some 7 € Aut(A).

Remark 3.7. If T' € N, then

&(FrE) = g(Freg)(Fricg) .- (Fric ' g). (7)

Given ¢ : A =5 A’ write g := gy and let T, be the smallest T € N such that ,(Fr}) = id. Then 7} is the
degree of the field of definition of ¢ over K.

Lemma 3.8. Let ¢, be the smallest ¢ € N such that 5(Fr$) is defined over K.. Then ¢, divides T, and
Ty/cq equals the order of G := g(FTKg)(FTig) o (Fr;(g_lg)'

Proof. When ¢, = 1, the result is immediate, since g is defined over K and G = g.

Now suppose that ¢, > 1. By Remark 3.7, the twist is an element A’ of the set ©(A, Kr,/K)
of twists A'/K of A/K such that A xg Kr, ~Kr, A" xg Kr,. The bijection 0: ©(A, Kr,/K) —
H'(Gal(K7,/K), Autr,, (A)) from [34, Proposition II1.5] shows that A’ corresponds to the automorphism
§o(Fri) = g in Autg,, (A). It follows that g (and thus G) is defined over Kr,. Hence, K., C Kr, and ¢¢|T}.
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The base changes A., = Ax g K., and A’Cg = A’ x g K., first become isomorphic over K1, K., = Kr,. So
¢ is defined over an extension of K., of degree T" = [Kr, : K., ] = Tg/cy. The automorphism corresponding
to the twist over K., is G. Hence, replacing g by G, the conclusion follows from the case when ¢, = 1. O

3.2. Effect of a twist on the Frobenius endomorphism

In this section, let K. be a finite field and suppose A is defined over K, and G € Autg_(A). The notation
is chosen to be compatible with Lemma 3.8: one can consider ¢ = ¢, and K, the unique extension of K
of degree ¢, and G as in Lemma 3.8. We study how twisting A/K,. by G affects the relative Frobenius
endomorphism 7 = 74 € Endg,(A) of A and the normalized Weil numbers of A over K..

Proposition 3.9. Suppose that A is defined over K, and that ¢ : A xXg_k = A Xk, k is a geometric
isomorphism. Suppose that G4 = £4(Fri,) is in Autk,(A). Then the relative Frobenius endomorphism n’
of A’ satisfies

g lomop=maoG . (8)

Remark 3.10. The right hand side of (8) is defined over K., so the left hand side is as well. In particular, 7’/
and w4 o G;l have the same characteristic polynomial.

Proof. Let f' = fa be the absolute Frobenius endomorphism of A’. By (1), 74 = fa ® Fr;é and 7’ =
far® FT;(i. Also, f = ¢~ 1o f’ o ¢. Furthermore, by (4),

G;l =({da® Fri,)o¢ to(ids® Fr;(i) o ¢.
Hence, as in [26, Proposition 11],

¢_1OW'O¢=¢_1O(JU®FT;<§>O¢
=¢ o ((pofos )@ Fril)oe
= (f@Fri)o(ida® Frg,)o¢ ' o (ida ® Frgl) o¢

=T 0 G;l |
3.3. Tuwists by automorphisms of order 2

Lemma 3.11. Given ¢ : A = A, if 9o € Autg(A) has order 2, then the twist A'/K s either quadratic or
trivial. It is trivial if and only if g4 is K-Frobenius conjugate to id.

Proof. Write g = g4. By hypothesis, ¢, = 1, so by Lemma 3.8, T, = |g| = 2. By Definition 3.6, the order of
the twist is at most 2. The last statement follows from Proposition 3.5. O

The conclusion of Lemma 3.11 can be false if g4 is not defined over K.

Definition 3.12. Let ¢ € Endg(A) ® Qg correspond to [—1] € Endg, (T¢(A) ®z, Q¢) under the bijection
in (2). Let A, denote the K-twist of A for ¢.

Note that ¢ is defined over K and central in Auty(A). By Lemma 3.11, A,/K is either a trivial or a
quadratic twist.
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By Proposition 3.9, if A/K is maximal, then A,/K is minimal, and vice versa. Conversely, the next
result shows that ¢ is the only automorphism whose twist can switch between the maximal and minimal
conditions. We generalize this result in Corollary 4.13.

Proposition 3.13. Suppose that ¢ : A x g k = A’ x i k where AJ/K is mazimal and A’/ K is minimal (or vice
versa). Then g4 =1 and A'/K ~ A,/K is a quadratic twist of A/K.

Proof. By Definition 2.9, P(A/K,T) and P(A’/K,T) split completely into linear factors over Q. Thus the
linear operators corresponding to 74 and 74 under (2) are diagonalizable over Q. So 74 = /g - and
mar = /q-id in Endg (A) ® Q. By Proposition 3.9, this implies that g4 = {4 (Frx) is K-Frobenius conjugate
to t. So g = 771K for some T € Auty(A).

Since A/K is maximal, Autg(A) = Autg(A) [39, Theorem 2d]. In particular, "%+ = 7. Because ¢
is central in Autg(A), the K-Frobenius conjugacy class of ¢ consists of one element. Thus g4 = ¢ and
A'JK ~ A,/K. Moreover, ¢ satisfies the conditions of Lemma 3.11. Since A %y A’, the twist A'/K is
nontrivial and thus quadratic. O

4. Fully maximal, fully minimal, and mixed abelian varieties

Let K = F, with ¢ = p" and let k£ = Fp. Let A be a principally polarized supersingular abelian variety
of dimension g > 1 defined over K. Let NWN(A/K) = {21, 21,..., 24, Z4} be the normalized Weil numbers
of A/K, as in Definition 2.2.

4.1. Period, parity, and types

Definition 4.1.

(1) The F,-period 1(A) of A is the smallest m € N such that ¢ is square and
(i) 2" =—1forall1<i<g,or

(ii) 2z =1forall 1 <i<g.

7

(2) The Fq-parity 6(A) is 1 in case (i) and is —1 in case (ii).

In other words, the period is the smallest m € N such that 74/p,,. € Q and 745 .. = Vqm or —/q™.
The definition of the period and parity is compatible with [38, page 144]. Note that A is maximal (resp.
minimal) over I, if and only if (A) =1 and 6(A) =1 (resp. 6(A) = —1).

Let ©(A/K) be the set of K-isomorphism classes of twists A’/K of A, see Definition 3.1.

Definition 4.2. A principally polarized supersingular abelian variety A/K is of one of the following types
over K:

(1) fully maximal if A’/K has K-parity § = 1 for all A’ € ©(A/K);
(2) fully minimal if A’/K has K-parity 6 = —1 for all A’ € ©(A/K);
(3) mized if there exist A’, A” € O(A/K) with K-parities §(A’) =1 and §(A”) = —1.

If A/K has K-period 1, then A/K is maximal or minimal and so A is mixed over K since A, has the
opposite parity. For this reason, the terminology is better suited for curves than for abelian varieties, see
Lemmas 5.4 and 5.5. Also, it is most interesting to study the type of A/K over small fields of definition.

Example 4.3. Let p = 3 mod 4 with p > 3. The supersingular elliptic curve E : y? = 23 — x has Auty(E) ~
Z/AZ. Then NWN(E/F,) = {£i} and NWN(E/F,2) = {-1,—1}. So E has two F,-twists and is fully
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maximal over F,,. It has four [Fj2-twists and is mixed over [F» since an automorphism of order 4 acts on
NWN(E/F,2) by multiplication by +i. Cf. Lemma 6.5.

Let n be odd. The parity is preserved under a degree n extension, i.e., 6(Ax x K,,) = 6(A). Hence, if A/K
is mixed, then A X K, is also mixed: if A’/K is a twist with opposite parity from A/K, then A’ xx K,
is a twist of opposite parity from A x i K,,. Motivated by this, we measure the 2-divisibility of the orders
of the period in the next section.

4.2. Relationship between types and Weil numbers

By Theorem 2.8, the normalized Weil numbers {z1,...,z,} of a supersingular abelian variety A/K are
roots of unity in C*. If z € C* is a root of unity, let o(z) denote its multiplicative order in C*. We measure
the 2-divisibility of o(z;) in the next definition.

Definition 4.4. Let e; = ords(o(z;)). The 2-valuation vector of A/K is the multiset e = e(A/K) =
{e1,...,e4}. The notation e = {e} means that e; = e for 1 <1i < g.

Write o(z;) = 2%¢; with ¢; odd. Then z/™ = —1 for some m € N if and only if e; > 1. Also:

orda(0(2)) =1 < orda(o(—2)) = 0; if orda(o(z)) > 2, then ords(o(—z)) > 2; (9)
If r is odd, then e # {0}, {1}, because P(A/K,T) € Z[T]. (10)

Remark 4.5. For the F,-parity, note that 6(A) = 1 if and only if e = {e} with e > 1 (or e > 2 when r is
odd). For the F -period, write pu(A) = 2F i where i is odd. If ¢ = {e}, then F = max(e — 1,0). If ¢ is not
constant, then F = max{e; | 1 <i < g}.

Lemma 4.6. Let ¢ = ¢(A/K).

(1) If A/K is fully mazimal, then (i) e = {e} with e > 2;
(2) If A/K is fully minimal, then (ii) the e; are not all equal;
(3) If (iii) e = {e} with e € {0,1} and r is even, then A/K is mized.

Proof. (1) If A/K is fully maximal, then it has K-parity +1; so e = {e} for some e > 1 (with e > 2 if r is
odd by (10)). Suppose that r is even and e = {1}. By (9), the twist A, has the property that e = {0}.
So A, has K-parity —1, which contradicts the fact that A/K is fully maximal. Thus condition (i) holds.

(2) If A/K is fully minimal, then it has K-parity —1. By (10), either e = {0} with r even or the e; are
not all the same. If r is even and e = {0}, then the twist by ¢ is maximal, giving a contradiction. Thus
condition (ii) holds.

(3) This is the contrapositive of parts (1) and (2). O

Proposition 4.7. If A/F, is simple and g = p" with r even, then A/F, is not fully minimal.

Proof. If A/F, is simple, the Weil numbers {,/gz;} are all conjugate over Q. Let n = o(21) and e = orda(n).
Since 7 is even, /g € Q, so the conjugates of /gz; are precisely the ¢(n) values \/QC% for j € (Z/nZ)*. So
e = {e}. By Lemma 4.6(2), A/F, is not fully minimal. O

4.8. Types of abelian varieties with small automorphism group

Corollary 4.8. Suppose that |Auty(A)| = 2. Then
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(1) A/K is fully mazimal if and only if (i) e = {e} with e > 2;
(2) A/K is fully minimal if and only if (ii) the e; are not all equal;
(3) A/K is mized if and only if (iii) e = {e} with e € {0,1} and r is even.

Proof. One set of implications is Lemma 4.6. Conversely, if |Autg(A)| = 2, then Ax has at most one
nontrivial twist, which is A,. Thus, A/K is fully maximal (resp. fully minimal) if and only if A and A, both
have K-parity +1 (resp. —1). The result follows because negation of {z;} preserves each of the conditions
(i), (i), (i4) for e, by (9). O

By Corollary 4.8, if |Auty(A)| = 2, then the type of A/K is preserved under odd degree extensions of K.

Remark 4.9. Let S be an irreducible component of the supersingular locus of the moduli space of principally
polarized abelian varieties of dimension g. Among the abelian varieties A represented by F4-points of S, the
typical structure of Auty(A) is not known in general. For g > 2 and p odd, one might expect that typically
Autg(A) ~ Z/27. For g =2 and p odd, we prove that this is true in Proposition 7.6.

Remark 4.10. Let S and A be as in Remark 4.9 and K = F,. If p is odd, one expects the proportion of A
with Z/2Z x 7/27 C Autg(A) to be small. The reason is that if Z/2Z x Z /27 C Autk(A), then A is not
simple over K by [18, Theorem B]. So this condition implies that the a-number of A is at least two, by [7,
Proposition 4]. However, for all g and p, it is known that A generically has a-number 1 [23, Section 4.9].

4.4. Parity-changing twists of abelian varieties

Suppose that A'/K € ©(A/K) is a K-twist of A of order T'. Then there is an isomorphism ¢ : Ax g K7 —»
A" x i K7 defined over Kp. Denote NWN(A/K) = {2;,Zi }1<i<g and NWN(A'/K) = {w;, w; }1<i<y. After
possibly reordering, 2! = w! and hence

w; = )\izi (11)

for some (not necessarily primitive) T-th root of unity A;. Let ¢ = lem{o()\;) | 1 < i < g}. By definition,
t | T. In particular, if A’/K is a trivial twist, then t = 1 and 2z; = w; for all 4. If ¢ # T, it means that A and
A’ are isogenous but not isomorphic over F:.

Conversely, if A’/K € ©(A/K) is a K-twist of A of some order and if (11) holds, then A and A’ are

isogenous, but not necessarily isomorphic, over K.

Lemma 4.11. Let e be the 2-valuation vector of A/K. Suppose that A'/K is a K-twist of A/K of order T.
Let e = orda(T). If e < minfe; | 1 <i < g}, then e(A'/K) =e.

Proof. If w; = A\;z;, then ords(o(w;)) < max(orda(o()\;)),orda(o(z;))), with equality if the two values are
not equal. Then ordz(o(A;)) < orda(T') = € so the hypothesis implies that orda(o(w;)) = ordz(o(z;)). O

Proposition 4.12. Suppose that A/K has K-period M and K -parity +1 and its K-twist A’/ K has K-period
N and K-parity —1. Let eps = orda (M) and ey = orda(N). If en < enr, thenorda(t) = 1+en; ifen > e,
then ords(t) = en.

Proof. Write L = lem(M, N). Recall that 2 = —1 and w)¥ =1for 1 <i < g.
Suppose that ey < eps. Then €9 = L/M is odd and ords(L) = epr. Then

L=wf = Az =\ (1) =\ (-1
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This implies that AX = —1 and so orda(0o(\;)) =1 +epr for 1 <i < g.

Suppose that ey < ey. For 1 < i < g, then ords(o(z;)) = 1 + ep and orda(o(w;)) < en. The equation
w; = A;z; implies that ords(o()\;)) < en for 1 < i < g. To show that ords(t) = ey, it thus suffices to show
that ords(o()\;)) = en for some i.

When e < en, then rN/2 is even, because rM is even by definition of the period. So if r is odd, then
en > ey > 1. By the minimality of N (such that rN is even), it cannot hold that wZN/ 2 1foralli. T hus,
there is at least one value iy such that ordsy(o(w;,)) = en. Furthermore, since the K-parity is —1, it is not
true that wZN/2 = —1 for all 4. So there is at least one value 4; such that ordz(o(w;,)) < en.

Note that z; = /\i_lw,-. If ey > 1+ ey, then substituting ¢ = ig shows that ordg(o()\i_ol)) = en. If
en = 1+ ey, then substituting ¢ = i1 shows ordg(o(/\i_ll)) =l4ey. O

Corollary 4.13.

(1) Suppose that A/K has K-period M and K -parity +1. If A’/ K is a K-twist of order T with ords(T) <
em, then A'/K also has K -parity +1.

(2) Suppose that A’/ K has K -period N and K -parity —1. If A/K is a twist of order T with either ordy(T) <
en orordy(T) =eny =0, then A/K also has K-parity —1.

(3) In particular, if AJ/K and A'/K have different K-parities, then T is even.

Proof. Note that ords(T") > orda(t).

(1) Assume that A’/K has parity —1. By Proposition 4.12, ords(t) = 1+ eps if ey < epr and orda(t) = en
if ey > epr. So ords(T) > epr, which is a contradiction.

(2) Assume that A/K has parity 1. Applying Proposition 4.12 shows that ords(t) = 1 4+ eps if exy < en
and ords(t) = en if ey > epr. This implies that either ords(T) > ey or ords(T) > ey = 0, which is a
contradiction.

(3) If T is odd, then ords(T) = 0. The hypotheses of items (1) and (2) are satisfied and so A/K and A’'/K
have the same parity. O

5. Fully maximal, fully minimal, and mixed curves

Let K =F, with ¢ = p" and let k = Fp. Let X/K be a smooth projective connected supersingular curve
of genus g > 1. The Jacobian Jac(X) of X is a principally polarized abelian variety of dimension g. If X
is hyperelliptic, let ¢ denote its hyperelliptic involution, which acts on Jac(X) as the element ¢ defined in
Definition 3.12.

5.1. Types for Jacobians

The theory of twists of X and definitions of the period and parity of X are almost identical to those
of Jac(X), as studied in Sections 3 and 4. The normalized Weil numbers {z;, Z; }1<i<4 and the 2-valuation
vector e = {e; = orda(0(z;)) }1<i<y are the same for X and Jac(X). The main difference is that X may have
fewer twists than Jac(X).

By [22, Appendice], Jac(X) has the same field of definition as X and

Auty(X) if X is hyperelliptic,
Auty (Jac(X)) ~ uty (X) if X is hyperelliptic (12)
(1) x Autg(X) if X is not hyperelliptic.

For completeness, consider the following analogue of Proposition 3.13.
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Proposition 5.1. Suppose that ¢ : X xx k = X' xx k where X/K is mazimal and X' /K is minimal (or
vice versa). Then X is hyperelliptic and g4 = and X' /K ~ X, /K is a quadratic twist of X/K.

Proof. Let A = Jac(X) and A’ = Jac(X’). Since the normalized Weil numbers of a curve and its Jacobian
are the same, A/K is maximal and A’/K is minimal (or vice-versa) by Definition 2.9. The automorphism
9o € Aut(X) can be identified with an automorphism gj, € Auty(A) under the isomorphism in (12). By
Proposition 3.13, g;ﬁ = and A'/K ~ A, /K is a quadratic twist. The conclusions follow since g, = ¢ €
Autg(X). O

Let ©(X/K) denote the set of K-isomorphism classes of twists of X/K.
Definition 5.2. A supersingular curve X/K is of one of the following types over K:

(1) fully maximal if X'/K has K-parity 6 =1 for all X’ € O(X/K);
(2) fully minimal if X'/K has K-parity § = —1 for all X' € ©(X/K);
(3) mized if there exist X', X" € O(X/K) with K-parities §(X’) = 1 and §(X") = —1.

When X is hyperelliptic, then O(Jac(X)/K) = ©O(X/K), so X and Jac(X) have the same type over K.
When X is not hyperelliptic, then X and Jac(X) might have different types.

Lemma 5.3. The types of X and Jac(X) over K are not the same if and only if: X is not hyperelliptic,
Jac(X) is mized over K, r is even, and e(X/K) = {e} with e <1.

Proof. If the types of X and Jac(X) over K are not the same, then Jac(X) has more twists than X, so
(12) implies that X is not hyperelliptic. Also, since the extra twist corresponds to ¢, then Jac(X) is mixed,
with Jac(X) and Jac(X), having different parities.

Let e = e(X/K). If not all e; € e are the same, then not all e; € e(Jac(X),) are the same. Then both
Jac(X) and Jac(X), would have parity —1, a contradiction. Thus e = {e}.

If e > 2, then e(Jac(X),) = {e} and both Jac(X) and Jac(X), would have parity 1, a contradiction.
Thus e < 1 and r must be even by (10). We omit the converse direction. O

The following results are immediate from Definition 5.2, Proposition 3.13, and the remark below Defini-
tion 4.2.
Lemma 5.4. Suppose that X has K-period 1. Then X is mized if and only if X is hyperelliptic; X is fully
mazimal if and only if it is not hyperelliptic and mazimal; and X is fully minimal if and only if it is not

hyperelliptic and minimal.

Lemma 5.5. If Aut,(X) is trivial, then X is fully maximal over K if and only if it has K-parity 1 and is
Sfully minimal if and only if it has K -parity —1.

In light of Lemmas 5.4 and 5.5, it is most interesting to study the types of curves which are non-
hyperelliptic, defined over small fields, or have non-trivial automorphism group.

5.2. Supersingular non-hyperelliptic curves of mized type

Despite Proposition 3.13, the results in Sections 6 and 7 show that not all hyperelliptic curves are mixed.
The next result illustrates that not all mixed curves are hyperelliptic.
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Proposition 5.6. Suppose that s = 0 mod 4. Suppose that p is such that p+ 1 = 0 mod s. Then the smooth
plane curve X/F, of genus g = (s —1)(s —2)/2 given by the equation x° +y® + 2° = 0 is supersingular and
of mized type over F,.

Proof. The curve X/F, is a smooth plane curve, of genus g = (s — 1)(s — 2)/2 by the Plucker formula.
The Hermitian curve X : 22t 4 ¢#*t" 4 2P*1 — 0 is maximal over Fj2. Let € = (p + 1)/s. There is
a cover 1 : X — X given by (x1,y1,21) — (25,55, 25). The cover is Galois, since there exists A\ € F
with multiplicative order e. So X is a quotient of X by a group of automorphisms defined over F,.. By a
result attributed to Serre, see [10, Theorem 10.2], X is also maximal over Fj2 and thus has F,-parity 1. In
particular, X is supersingular.

Let A1 € Fy. be an element of multiplicative order s; = s/2. Consider the automorphism h € Autg , (X)

given by h(z,y,z) = (My,x,2). Then

BT h(zx,y,z) = h(F’I"[[rp(h(xl/p, yl/p, zl/p)))
= h(Fer()\lyl/p,xl/p, zl/p)) =h(Ny,z,2)
= Mz, Ny, 2) = iz, A\ My, 2),

where the last equality uses that p = —1 mod s. In particular, hE7 b has order s;.

Consider the action of hX™»h on Jac(X)/Fp2. The next claim is that the eigenvalues for this action
include both 1 and a root of unity of order s;. To see this, it suffices to prove the same claim for the action
on H(X,0) (after lifting to characteristic 0, using that Jac(X) ~ H®(X,Q')*/H;(X,Z) and invoking
Serre duality). Now H'(X, ) has a basis given by the monomials x=*1y~%227%s where ki, ko, k3 € N and
ki + ko + ks = . Then h ™™ h acts via multiplication by A\**™*2 on z=F1y=*2,=ks The claim follows by
taking (k1, ko) = (1,1) and (k1, k2) = (1, 2).

The normalized Weil numbers of X/FF,2 are all —1 and so e(X/Fj2) = {1}. Let X’ be the twist of X/F,
corresponding to h. Then X'/F,2 is the twist of X/F,2 by YT . Tts set of normalized Weil numbers
contains —1 and —\;. By hypothesis, s; is even. So —\; has odd order if s; = 2 mod 4 and —\; has order
s1 if s1 = 0 mod 4. Thus e(X'/F,2) contains the values 1 and 0 if s; = 2 mod 4 and the values 1 and
ords(sy) > 2 if sy = 0 mod 4. In either case, e(X'/F,2) # {e} and e(X'/F,) # {e} for any e. Hence, X’ has
F,-parity —1. Thus X is mixed over F,. O

Example 5.7. For p = 3 mod 4, the Fermat curve X/F), : 2 +y* + 2% = 0 is a non-hyperelliptic supersingular
curve of genus 3 which is mixed over IF),.

Remark 5.8. Let p be odd. Let E/F, be a supersingular elliptic curve with NWN(E/F,,) = {i,—i}. In
[14, Theorem 1] (resp. [12, Proposition 15]), the authors construct a smooth plane quartic X/F, such
that Jac(X) ~p , E3 (resp. Jac(X) ~F 2 E3). In particular, X is maximal over F,2. The polarization
on Jac(X) induces a non-product polarization on E3. To determine the type of X, it is necessary to
determine which automorphisms of E? are compatible with this polarization and the field of definition of
these automorphisms.

5.8. Parity-changing twists of curves

Let X/K be a supersingular curve of genus g and let G = Auty(X). The normalized Weil numbers
determine the K-parity of X. To determine the type over K, it is necessary to know whether X has a
parity-changing K-twist.
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By Corollary 4.13, the 2-divisibility of the order T' of a twist gives information about whether it can
change the K-parity of X. However, this is not easy to control because the values of T" depend on the
K-Frobenius conjugacy classes of G and on the fields of definition of the automorphisms g € G.

This section contains results that simplify the question of whether X has a parity-changing twist. This
material is used in Section 8. Given g € G, recall from Proposition 3.5 that ¢, : X xx k — X' xg k is a
geometric isomorphism such that £, (Frg) = g.

Lemma 5.9. If h € G has odd order and is defined over K, then ¢ is not a parity-changing twist.
Proof. This is immediate from Lemmas 3.8 and 4.13. O

Suppose that 7 € Auty(X) has order 2. Assume that 7 is defined over K this is true, for example, if
7 = or if Autg(X) has a unique element of order 2. Let Z = X/7 be the quotient of X by 7, which is also
defined over K. Thus, X — Z is a geometric Z/2Z-Galois cover. Let x be the nontrivial character of Z/2Z;
it satisfies x(P) =11if P € Z is split in X and x(P) = —1 if P is inert in X. Consider the Artin L-series

L(Z/K,T,x) = [[ @ = x(P)|P|~*)"", where T =q*. (13)
PeZ

Lemma 5.10. Suppose that 7 € Autg (X) has order 2.

(1) There is a factorization L(X/K,T) = L(Z/K,T)L(Z/K, T, x) in Z[T)].

(2) The coefficient p1 of T in L(Z/K, T, x) equals S1 — I, where Iy (resp. S1) is the number of K-points
of Z that are inert (resp. split) in X.

(3) T negates the roots of L(Z/K, T, x) and fizes the roots of L(Z/K,T).

Proof. (1) This result follows from [31, Chapter 9, page 130].
(2) Recall that ((X/K,T) = [[gex (1 — |Q|7*)~t, where T' = ¢~*. Similarly, ((Z/K.T) = [pe,(1 —
|P|=*)~L. Write

CX/K,T)= [ - P72 [TA —1Pp™) 2 [TA — 1P 7) 7, (14)

where P;, P;,, P, range over points of Z that are inert, split, and ramified in X, respectively. Note that
(1—|P|72%) = (1 — |P|=*)(1 + |P|~*). The result follows by comparing (13) and (14) and computing
the coefficients of T'.

(3) Since Z = X/, the involution 7 acts trivially on Z and thus fixes the roots of L(Z/K,T). There is an
isogeny Jac(X) ~x Jac(Z) @ V where V/K is the nontrivial eigenspace for 7. Then L(Z/K,T,x) =
L(V/K,T). By Proposition 3.9, 7 acts as —1 on the roots of L(V/K,T) by the definition of V. O

Suppose that 7 € Autg(X) has order 2. Write e = e(Z/K) U e(Z/K, x) where e(Z/K, x) denotes the
multiset of 2-valuations of the normalized roots of L(Z/K, T, x). If 7 is the hyperelliptic involution, then
e(Z/K) is empty and e = e(Z/ K, X).

Lemma 5.11. If 7 € Autg (X) has order 2, then ¢, is a parity-changing twist if and only if r is even and
either e(Z/K) = {1} and e(Z/K,x) = {e} withe <1, ore(Z/K) = {0} and e(Z/K,x) = 0.

Proof. By Lemma 5.10, 7 negates the roots of L(Z/K, T, x) and fixes the roots of L(Z/K,T). This changes
the parity only under the given conditions. O
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Information about parity-changing twists can be determined from e in certain cases when Z /27 x Z./27, C
Auty(X) using the next remark. Section 8.4 uses this material.

Remark 5.12. Suppose that Auty(X) contains a subgroup S ~ Z/27Z x Z/27Z. Write S = {id, 71,72, 73}.
Suppose that S is stabilized by K-Frobenius conjugation, in which case the number v of nontrivial involutions
in S defined over K is either 3, 0, or 1.

(1) When v = 3 and X/S has genus 0, let 4; = Jac(X/7;). Then Jac(X) ~x A1 ® Ax @ As by [18,
Theorem B]. Each 7; acts by negating NWN(A4;/K) for exactly two values of i. Write e; = e(A;) and
e(X) = U?:1 ¢,;. The twist for 7; € S changes the parity if and only if e(X) = {1} or (after rearranging),
e; = {1}, e; = {0}, and ¢3 = {0} or 0.

(2) When v = 0, K-Frobenius conjugation acts via a 3-cycle on S — {id}, so the twist for each 7; has order
3. By Corollary 4.13, these do not change the parity.

(3) When v = 1, suppose 7 = 7 is defined over K while yu = 7 and ur = 73 are not. Let Z = X /7. Note
that ¥% y = pr and p "% = 7. Using Lemma 3.8, the twist for u has ¢ = 2 and |G| = 2. Moreover,
the twist by p over K corresponds to the twist X by 7 over K>, so it negates the roots of L(Z/Ks,T, x)
and fixes the roots of L(Z/K2,T) by Lemma 5.10(3). To find the action of u on e(X/K), it is necessary
to take the square roots of the NWN(X, /K>). If e; < 1 for any ¢, this leads to some ambiguity in
e(X,/K), which can be partially resolved by the following observation.

Claim : When v = 1, the coefficient p; of T in L(Z/K, T, x) equals 0. (15)

Proof. By Lemma 5.10(2), it suffices to prove S; = I . If p is odd, X — Z has an equation of the form
y? = F. Given a K-point P of Z, it suffices to show P is split in X if and only if p(P) is inert in X. The
point P splits in X if and only if F/(P) is a square in K*. Since u and 7 commute, u acts on both X and Z.
By assumption, the action of 1 on the equation y? = F is defined over K5 but not over K. The K-action of
p thus yields a quadratic twist of 42 = F. So u(y) = wy for some w € K} \ K* such that z = w? is in K*,
and F(u(P)) = zy. Thus, F(P) is a square in K* if and only if F(u(P)) is not.

The proof for p = 2 is the same, after replacing y* by v — y, u(y) = wy by u(y) = y + w for some
w € Ky \ K such that 2 = w? —w is in K, and F(u(P)) = 2F(P) by F(u(P)) = F(P)+ 2. O

6. Analysis in low dimension: elliptic curves

Let K = F, with ¢ = p" and let k = F,,. If E/F, is an elliptic curve, then L(E/F,,T) = 1 — 3T + qT? for
some f € Z. Moreover, E is supersingular if and only if p | 8. By Honda-Tate theory (cf. [40], [11], [39]), 8
determines the IFy-isogeny class of E.

Lemma 6.1. Let ¢ = p". Table 6.1 lists each B € Z which occurs for a supersingular elliptic curve E/F,,

together with the normalized Weil numbers z and z, the 2-adic valuation e = ords(o(2)), the period, and the

parity. We use the convention that ¢, = e>™/"™.

Table 6.1
Isogeny classes and invariants of supersingular elliptic curves.

Case ng Conditions on r and p B NWN(E/F,) orda(o(z)) Period Parity
Wit T even +2./q (£1,£1) 0 1 F1
w2+ r even, p Z1 (mod 3) +4q (F¢s, F¢3) 1 3 +1
W3 r even, pZ 1 (mod 4) or r odd 0 (i, —1) 2 2 1
Wia rodd, p=2 +/2q (£Cs, £(g) 3 4 1

W 4b rodd,p=3 +/3q (£C12, £¢40) 2 6 1
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Proof. This is a short calculation based on the values of § in [44, Theorem 4.1]. O

The number of supersingular j-invariants is |{5| + ¢ (with € = 0,1,1,2 if p = 1,5,7,11 mod 12) [35,
Theorem V.4.1(c)].

Remark 6.2. Let N(3) denote the number of F,-isomorphism classes of elliptic curves in the F,-isogeny
class determined by . The values of N(3) are found in [32, Theorem 4.6]; they depend only on p, not ¢,
and N(—p) = N(f). Using this and Table 6.1, one can determine the probability that a given supersingular
elliptic curve E/F,- has F,--parity 1. If r is odd, then the F,--parity is always 1. If r is even, then N(0) =
1-— (;4) is the difference between the number of isomorphism classes of E/F,~ with F,r-parity 1 and —1.

Each supersingular j-invariant is in Fp.. If &/ /Fp is a supersingular elliptic curve, then E descends to ),
or Fp2; it descends to I, if and only if the j-invariant of E is in F,. The next result shows that in neither

case is F fully minimal.

Theorem 6.3. Let E/Fp be a supersingular elliptic curve. If the j-invariant of E is in F,, then E is fully
mazimal over Fy,; if not, then E is mized over [F2.

Proof. If p = 2, the result is proven in Lemma 6.4 (below). If p > 3 and Autg(E) % Z/2Z, the result is
proven in Lemma 6.5 (below). This completes the proof for p = 3, since there is only one isomorphism class
of supersingular elliptic curves over Fs.

Finally, suppose that p > 5 and Autg(F) ~ Z/2Z, so that E, is the only twist of E. If E is defined
over Fy,, then F and E, are both in case W3 of Table 6.1, thus E is fully maximal over F,. If E is instead
defined over F,2, then F and E, are either in cases W14 or in cases W2=£ of Table 6.1; note that £ cannot
be in case W3 because of the condition Auty(E) ~ Z/2Z (and in that case E has j-invariant in F,). Thus
E is mixed over Fp2. O

Lemma 6.4. If p = 2, the unique supersingular elliptic curve E/Fy is fully mazimal over Fy.

Proof. The uniqueness fact can be found in [35, Appendix A, Proposition 1.1]. So E is isomorphic over k
to the elliptic curve E/Fy with affine equation y? = 2% — x with j-invariant 0. Then |E(Fs)| = p + 1, so
B =0 (case W3 of Table 6.1). The Fo-twists are also defined over Fy, thus are in case W3, W4a or W4b of
Table 6.1, which each have Fo-parity +1. O

Lemma 6.5. Let p > 3. If Auty(E) % Z/2Z, then E is fully mazimal over Fp,.

Proof. If Auty(E) % Z/2Z, then E is isomorphic over k to either:

(1) y* = 23 — x (j-invariant 1728), which is supersingular if and only if p = 3 mod 4; or
(2) y? = 23 + 1, (j-invariant 0), which is supersingular if and only if p = 2 mod 3.

In both cases, {z,z} = {i, —i} (case W3 of Table 6.1) with e(E/F,) = {2} and the curve is defined over F,,

so we consider its type over IF,,.
For case (1), let g € Auty(E) be the order 4 automorphism defined by g(x,y) = (—z,iy).

(a) If p > 3, then Auty(E) ~ (g). Then E/F, has only one nontrivial twist because the F,-Frobenius
conjugacy classes in Auty(FE) are {id,:} and {g, ¢®}. By Lemma 3.8, the latter of these yields a quadratic
twist since ¢ =2 and G = g "¢ = id. By Lemma 4.11, the twist has e = {2} as well.
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(b) If p = 3, then |Autx(E)| = 12 [35, Appendix A, Proposition 1.2]. Then Auti(A) = (g,0)
where o(z,y) = (z + 1,y). The F,-Frobenius conjugacy classes are {id,}, {02, 01}, {0,0%,}, and
{9,9%, 09,093, 0%g,02g}. The first (resp. last) of these yield a trivial (resp. quadratic) twist as in (a).
Since o and 02 have order 3 and are defined over F,, these yield twists of order 3 by Lemma 3.8 with
e = {2} by Lemma 4.11.

For case (2), Auty(E) = (h) where h has order 6 and is defined by h(z,y) = ((32,—y). The two
F,-Frobenius conjugacy classes are {id, h? h*} and {h,h® h%}. Since h® = ¢, the latter of these yields a
quadratic twist. By Lemma 4.11, the twist has e = {2} as well.

Thus, in both case (1) and case (2), E is fully maximal over F,. O

7. Analysis in low dimension: abelian surfaces
7.1. Parity table for simple supersingular abelian surfaces

Let ¢ = p" and k = Fp. Suppose that A/F, is a simple supersingular abelian surface, which is not
necessarily principally polarized. The F4-isogeny class of A is determined by (the conjugacy class of) its
Weil numbers or, equivalently, by the coefficients (a;, as) of

P(AJF,,T) =T* + ayT® + axT? + qa, T + ¢* € Z[T).

The next result builds on [24]. Let L be the minimal field extension of F, over which A is not simple.
Then A ~;, E® E, where E/L is a supersingular elliptic curve.

Table 7.1
Isogeny classes and invariants of simple supersingular abelian surfaces.
(a1,a2) Conditions on r and p to w z/L NWN(A/F,) m é

la (0,0) r odd, p = 3 mod 4 2 3 i (Cs, Cay €, ¢8) 4 1
or r even, p Z 1 mod 4

1b (0,0) r odd, p = 1 mod 4 4 1 -1 (Cs, Ca, ¢S, ¢8) 4 1
or r even, p = 5 mod 8

2a  (0,q) r odd, p Z 1 mod 3 2 2 ¢s (C6,¢5,¢2,¢8) 6 -1

26 (0,q) r odd, p =1 mod 3 6 1 -1 (G125 Clas Py CTa) 6 1

3a  (0,—q) r odd and p = 2 mod 3 2 2 —(3 (C12,Cia, €Dy, CTo) 6 1
or r even and p Z 1 mod 3

3b 0, —q) r odd and p = 1 mod 3 3 3 9 (¢12, 41121, 4152, C172) 6 1
or r even and p = 4,7,10 mod 12

4a (Va,q) r even and p Z 1 mod 5 5 1 1 ¢s, Cg, Cg, Cg) 5 —1

4b (=4, q) r even and p Z 1 mod 5 1 -1 (§107Cf0,(f0,{ﬂ)) 5 1

5a (v/54,39) roddand p=5 10 1 1 (¢35, ¢T0,C2,¢D) 10 -1

5b (—+/54, 39) roddand p=5 10 1 1 (¢10,¢3, ¢5, ¢ 10 -1

6a  (v/24,9) r odd and p = 2 4 2 —G (G5 G Gnh ) 121

6b (—v24q,q) 7 odd and p = 2 4 2 —(3 (Caa, €33, ¢3,, CATY 12 1

7a  (0,-2q) r odd 2 1 1 (1,1,-1—1) 2 -1

7b (0,2q) r even and p = 1 mod 4 2 2 —1 (¢, —i,1, —1) 2 1

8a (24/9,39) r even and p = 1 mod 3 3 1 1 (¢3,¢3,¢3,€3) 3 -1

8b (—2v/4,3q) r even and p = 1 mod 3 3 1 -1 (C6,€51C6,CO) 3 1

Proposition 7.1. Table 7.1 classifies all (a1, as) which occur as the coefficients of P(A/Fq,T) for a simple

supersingular abelian surface A/Fy, together with the data:

o to=deg(L/Fy);

e W, labeling E/L as in the first column of Table 6.1;
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o z/L, one of the normalized Weil numbers (z,%,2,%Z) of AJL (again ¢, = e*™/");
o NWN(A/F,), the normalized Weil numbers of A/Fy;
o p and 0, the period and parity respectively of A/F,.

Proof. The list of (a;,az), conditions on 7 and p, and ¢y are found in [24, Table 1, page 325].> Applying [24,
Lemma 2.13, Theorem 2.9], we compute the coefficients of P(A/L,T) where L = F:, and determine W.
Then the values of z/L, the period, and the parity can be found using Table 6.1. The period is the product
of ¢ty and the period of E over F, and the parities of A and E are the same. To determine NWN(A/F,), we
solve P(A/F,,T) = 0 directly. O

We now give a full classification of the types of supersingular simple principally polarized abelian surfaces
with Auty(A) ~ Z/2Z, using Proposition 7.1.

Proposition 7.2. Let A be a supersingular simple principally polarized abelian surface defined over K =TF,.
Assume that Auty(A) ~ Z/27Z. In Proposition 7.1:

(1) if r is odd, then A/K is not mized; cases (1), (2b), (3a), (6) are fully mazimal and cases (2a), (5), (7a)
are fully minimal.

(2) if r is even, then A/K is not fully minimal; cases (1), (3a), and (7b) are fully maximal and cases (4)
and (8) are mized.

Proof. By [13, Theorem 1], the principal polarization restriction excludes exactly case (3b). Since Auty(A) ~
Z/27Z, the type of A over K is determined from e(A/K) by Corollary 4.8. This can be computed from the
normalized Weil numbers found in Proposition 7.1. 0O

Remark 7.3. The sizes of the isogeny classes listed in Table 7.1 are not known. From [47], one could conjecture
that a supersingular abelian surface over F, most likely has mixed type.

7.2. Curves of genus 2 with extra automorphisms

By [17], there are six equations that describe all genus 2 curves X/K such that Auty(X) % Z/2Z. The
number of k-isomorphism classes of these X/K which are supersingular is known [16, Theorem 3.3]. The
twists of X/K are studied in [3] and [4]. We determine the type for all supersingular genus 2 curves X
with Auty(X) % Z/2Z, over the smallest field K = F, containing the coefficients of their defining equation.
Let |©| denote the number of K-twists of X. We first analyze the three equations which have no moduli
parameters.

Proposition 7.4. Let p > 5. The types over F,, of the following genus 2 curves X/F, with Auty(X) # Z/2Z,
which are supersingular under the listed condition on p, are as follows.

Equation Condition Auty (X) O] Type

1 y=a" -1 pZ 1mod5H Z/10Z 2 fully maximal
2 y? =z -1 p =2mod 3 2Dq5 7 mixed
3 y:=z®—z p =5,7 mod 8 Sa 6 mixed

Here D, is the dihedral group of order n and Sy is a 2-covering of Sy.

1 'We would like to thank a referee for pointing out that the value of to in Case 5 is incorrect in [24].
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Proof. The equations and automorphism groups are found in [4, Theorem 3.1]. The supersingular condition
is found in [16, 1.11-1.13]. For equation (1), |®| = 2 by [3, Proposition 11]. For equation (2), when p =
2 mod 3, then —3 ¢ (IE";)Z, so |®| = 7 by [3, Proposition 16]. For equation (3), when p = 5,7 mod 8, then
—2 ¢ (F3)?, so |©] = 6 by [3, Proposition 17].

The pairs (a1, a2) which occur for the twists of X are in [4, Sections 3.1-3.3, Tables 5, 9, 6, 7]. If
(a1,a2) = (0,2p), note that Jac(X) ~r, E® E where E/F, is in case W3 of Lemma 6.1, which has parity 1.
Also, (a1, az2) = (0, —2p) has parity —1 by case (7a) of Proposition 7.1.

(1) When p = 2,3 mod 5, then (a1, az) = (0,0) for X and X,; thus X is fully maximal. When p = —1 mod 5,
then (a1, as) = (0,2p) for X and X,; thus X is fully maximal.

(2) When p = 2mod 3, let ¢ = (—1/p). The first two rows of [4, Table 9] show that the parity 1 case
(a1,a2) = (0,2p) occurs for X or one of its [F,-twists, regardless of the value of €. The third and fourth
lines of [4, Table 9] show that the parity —1 case (a1, a2) = (0, —2p) occurs for X or one of its F,-twists,
regardless of the value of ¢, as long as there exists ¢ € ), such that t2 + 4 is not a square in Fy; the
existence of such a t can be verified using a Jacobi sum argument. So X is mixed.

(3) If p = 5,7mod 8, then both (0,2p) and (0, —2p) occur as (a1,az) among the twists of X, so X is
mixed. O

Next, we analyze the three equations with moduli parameters.

Proposition 7.5. Let p > 5. Any genus 2 curve X/F, with Auty(X) % Z/27Z is isomorphic over k to one of
equations (1)-(8) in Proposition 7./ or one of equations (4)—(6) below:

(4) y? = 2%+ az* + bw® +1 where a,b € k are chosen such that P(c,d) # 0, where ¢ = ab, d = a® + b3, and
P(e,d) = (4¢3 — d?)(c® — 4d + 18¢c — 27)(c? — 4d — 110c + 1125);

(5) y? = 2% + 2 + ax, for a #0, 1/4, 9/100;

(6) > =aS +a° +a forp#3,a#0,1/4, —1/50.

Let ¢ = p” be such that a,b € K =F,. The types over Fy for equations (4)-(6) are as follows:

Autp(X)  [©] Type

4 Vi 4 quIIy maximal %f r Ts odd
mixed if r is even
full imal  if K*)?

5 De 3 or 5 u‘ y maximal if r odt.i, a¢ (K")
mixed otherwise

6 D doré fu411y maximal if ¢ = 2 mod 3 and a € (K*)?
mixed otherwise

Proof. The equations and automorphism groups can be found in [4, Theorem 3.1]. In cases (5) and (6), the
number |©] of twists of X is determined in [3, Propositions 12-13]. In case (4), by [4, Section 3.6], when X is
supersingular, then |©| = 4. The pairs (a1, az) for the twists of X are in [4, Sections 3.4-3.6, Tables 11-17].
We determine the types over IF; below:

(4) Since Jac(X) ~p E1 @ Ea, the 4 twists of X correspond to quadratic twists of either Fy or Es, or both.
When r is odd, F; and Fs are both in case W3 of Lemma 6.1, so X is fully maximal. When r is even,
E, and E5 are either both in case W1+ (so X is minimal) or both in case W1— (so X is maximal),
depending on the L-polynomial of E;. Then X is mixed since the quadratic twist swaps the two cases.
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(5) When r is odd and a ¢ (K*)?, then X and its twists have (a1, az) equal to (0,0) or (0,2q). Since both
cases have parity 1, the curve X is fully maximal.

When r is odd and a € (K*)?, there are twists of X with (a1,az) being both (0,2q) (parity 1) and
(0, —2q) (parity —1), so X is mixed. When r is even, a similar argument shows that X is mixed.

(6) When ¢ = 2 mod 3, note that p = 2 mod 3 as well and r is odd. Then X and its twists have (a1, as)
among (0,2q), (0,2¢q) and (0, —eq), where e = 1 if a € (K*)? and € = —1 otherwise. These curves have
respective parities 1, €, and €. So if e = 1, then X is fully maximal and if e = —1, then X is mixed.
When ¢ = 1 mod 3 and r is odd, then the coefficients (a1, az) of the twists include (0,2¢) and (0, ¢) of
parity 1 and (0, —2q) of parity —1, so X is mixed.

When ¢ = 1 mod 3 and r is even, let € = (;3) Then the possibilities for (a1, a2) are (+4€,/q,6q) of

Va
parity +e, (2¢,/q, 3q) of parity Fe, and (0, —2q) of parity —1. So X is mixed. O

7.8. The condition Auty(A) ~ Z/27 is not restrictive when p is odd

For general p, r, and g, the structure of the typical automorphism group of a g-dimensional supersingular
abelian variety A over K = Fp» is unknown (cf. Remark 4.9). In this section, we resolve this question for
g =2 and p odd.

Let g = 2 and let A = (A, \) be a principally polarized abelian surface. For p > 3, we prove that the
proportion of A over Fp,r with Auty(A) % Z/27Z tends to zero as r — oo.

Let Ay = A; ® F), denote the moduli space whose points represent the objects (A4, \) in characteristic p.
Let As 45 C Ay denote the supersingular locus whose points represent supersingular A. Recall that A is
superspecial if and only if A ~y FE1 & Es.

Proposition 7.6. If p > 3, then the proportion of Fpr-points in As o5 which represent A with Auty(A) # Z/27
tends to zero as r — 0.

Proof. As observed in [1, Section 9], | Az ss(Fpr)| < p" T2, where the notation f(g) < g(g) means that there
is a constant C' > 0 such that |f(¢)| < C|g(q)| for all sufficiently large ¢. This is because each irreducible
component of A gs is geometrically isomorphic to P! [29, proof of Corollary 4.7], and the number of
irreducible components of Aj ss equals the class number Ha(1,p) [19, Theorem 5.7], which is < p? by [9],
see also [16, Remark 2.17].

By [8, Theorem 3.1], an F,--point A in Ajs s is one of the following canonically principally polarized
objects: (i) the Jacobian of a smooth supersingular curve X over F,- of genus 2; (ii) the sum E; & E of
two supersingular elliptic curves over Fp; (iii) the restriction of scalars RGSFPQT JF,~ (E) of a supersingular
elliptic curve E/F,2-. By [1, Section 9], the number of objects in cases (ii) and (iii) is < p®.

Thus, it suffices to restrict to case (i). Since X is hyperelliptic, the isomorphism A 2}, Jac(X) descends
to Fpr by [22, Appendix]. By (12), Auty(Jac(X)) ~ Auty(X). The arithmetic Torelli map is injective
on F,--points representing smooth curves [28, Corollary 12.2]. So for case (i), it suffices to bound the
number of supersingular curves X of genus 2 with Auty(X) % Z/2Z, which are described in cases (1)—(6)
of Propositions 7.4 and 7.5 when p > 5; the cases p = 3 and p = 5 can be handled similarly. In case (1),
there is at most one k-isomorphism class of curves, with at most four twists over [F,-.

In cases (2)—(6), the curves are superspecial by [16, Proposition 1.3]. The singularities of Ay s, are
ordinary (p + 1)-points which occur precisely at the superspecial points [20, page 193]. There are < p?
irreducible components of Aj s, each containing p? + 1 superspecial points by [19, page 154]. So the number
of superspecial points in As s5(k) is < p?(p? +1)/(p + 1) < p®. (See [15, Theorem 2] for an exact formula
in terms of class numbers.)

Applying [1, Lemma 9.1], the number of F,-models for superspecial curves of genus 2 is also < p®. This
completes the proof since lim,_,.p®/p" =0. O
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Remark 7.7. The conclusion of Proposition 7.6 is false when p = 2 by [41, Theorem 3.1].
8. Analysis in low dimension: genus 3 curves for p = 2

Let p = 2 and k = Fy. For ¢,d € k*, consider the generalized Artin-Schreier curve X, 4 with affine
equation

Xea: Z*+ (14 0)Z2 +cZ = dS>. (16)

The cover 7 : X. 4 — P!, taking (Z,5) + S is ramified only above S = oo, where it is totally ramified.
The filtration of higher ramification groups trivializes at index 3. So by the Riemann-Hurwitz formula, X, 4
has genus 3. By Lemma 8.3, X, 4 is supersingular. Let ¢ = 2" be such that ¢,d € K =TF,,.

In the main result of the section, we determine the type of X.4 over K. To state this, we set some
notation. Let K’ = F,(h), where h € F,2 is such that h? + h = c. Then h € F, if and only if Tr,(c) = 0,
where Tr,. : For — Fy is the trace map. Let ¢/ = 2" = |K’|.

Theorem 8.1. Let X, 4, 7 and h be as defined above.

(1) Ifr is odd, then X. q4/K is fully mazimal if h € Fy and mized if h ¢ Fg.
(2) Ifr =2mod 4, then X.q/K is mized if h € Fq and fully minimal if h ¢ Fy.
(3) If r =0 mod 4, then X, q4/K is fully minimal.

Moreover, Jac(X..q) has the same type as X.q4 over K, unless 1 = Omod 4 and h € Fq, in which case
Jac(X¢q) is mized.

Remark 8.2.

(1) If d = dyd3 with dy,dy € K, there is an F-isomorphism X, 4 — X.4,, taking (Z,S) ~ (Z, S/dz). So d
can be replaced by any representative of the coset d(K*)3 in K*; if r is odd, then one can set d = 1.

(2) The supersingular locus S5 of the moduli space M3 ®Fg has dimension 2. By part (1), the curves in the
family X, 4 are represented by a 1-dimensional subspace of S3. This 1-dimensional family is the same
as the one given in [43, pages 56-57] by

Xop @ +y+al@’y +2y’) + ba?y® = 0,
via the change of coordinates: ¢ = a/b, d =a®/b, S =1/a(x +vy), Z = z/(z +y).
(3) The proportion of ¢ € [F; for which X, 4 is mixed is a bit larger than % when r is odd and a bit smaller
than & when r = 2 mod 4 since #{c € F} | Tr,(c) = 1} = £.
8.1. Decomposition of the Jacobian
Define the values
c1 =d/c?, ca=d/(h+1)? and c3 = d/h?, (17)
and corresponding elliptic curves
Ei R+ R=0c15% Ey :T?+T =52, E3:U?+U = ¢35°. (18)

Also, define commuting order 2 automorphisms on X, 4 by:
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T:(8,2)— (S, Z+1)and v: (S,2) — (S,Z +h). (19)
Note that 7 is defined over K = F, and v is defined over K.

Lemma 8.3.
(1) Over K, the quotient of X, q by T is Ej.

Over K', the quotient of X, 4 by v (resp. Tv) is Eo (resp. E3).
(2) Hence, Jac(X¢,q) ~x' E1 ® E2 ® Es and X, 4 is supersingular.
(3) Thus L(X.q/K',T) = L(E1/K',T)L(Ez/K', T)L(Es/K',T).

Proof. (1) The involution 7 fixes the function Ry = Z(Z + 1). Similarly, the involutions v and 7v fix the
functions Ty = Z(Z + h) and Uy = Z(Z 4 (h + 1)) respectively. Direct calculations show that:

R? +cRy =24+ (1 +¢) 2%+ cZ = dS?,
T+ (h+ )Ty = Z* + h*Z% + (h+ 1)(Z2* + hZ) = dS?;
U +hUy =Z*+ (h+ 122 + WZ? + (h+1)Z) = dS>.

Setting Ry = c¢R, Ty = (h+ 1)T, and U; = hU, then
B2+ R= (d/c*)S%, T2 +T = (d(h+ 1)*)S°, U + U = (a/h%)S°.

(2) The decomposition is immediate from part (1) and [18, Theorem B]. By the Deuring-Shafarevich for-
mula, Fy, Ey, F3 have 2-rank 0 and hence are supersingular. Thus X 4 is supersingular by Theorem 2.8.
(3) This is immediate from part (2). O

8.2. The normalized Weil numbers of E1, FEs, and E3

Lemma 8.4. The elliptic curve E, : R?> + R = S2 is maximal over Fy2 and
L(BE,/Fy,T) =14 2T = (1 — (vV2)T)(1 — (—V2i)T).

Lemma 8.5.
(1) If c1 is a cube in K*, then NWN(E,/K) = {i", (—i)"}.
(2) Forj=2,3, if ¢; is a cube in (K')*, then NWN(E;/K') = {i", (=i)"'}.

Proof. If ¢; is a cube in K*, then there is an isomorphism w : F; — E, defined over K, so part (1) follows
from Lemmas 2.10 and 8.4. The proof for part (2) is similar. O

Lemma 8.6.

(1) Suppose that ¢y is not a cube in K*. If r = 2 mod 4, then NWN(E,/K) is {(s,(s} or {—1,—1}. If
r =0mod 4, then NWN(E,/K) is {(3,(3} or {1,1}.

(2) Suppose that c; is not a cube in (K')* for j = 2,3. If ' = 2mod 4, then NWN(E,;/K") is {(s,(6} or
{-1,—-1}. If " = 0 mod 4, then NWN(E;/K") is {(3,(3} or {1,1}.

Proof. For part (1), if ¢; is not a cube in K*, then it is a cube in K3, where K3 ~ F 5. By Lemma 8.5(1),
NWN(E, /K3) = {i3", (=i)3"} = {i", (—i)"}. If r = 2 mod 4, then NWN(E) /K3) = {—1,—1}, while if r =
0 mod 4, then NWN(E,/K3) = {1,1}. By Lemma 2.10, NWN(FE;/K) are the cube roots of NWN(E; /K3)
and are complex conjugates. The proof for part (2) is similar. O
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Lemmas 8.3(3), 8.5, and 8.6 determine e(X. q/K’). When h ¢ F,, this is not quite strong enough to
prove Theorem 8.1, because it only gives information about the normalized Weil numbers over Fg2. We now
determine more information using the Artin L-series L(Ey/F,, T, x), where x is the nontrivial character of
Z/27Z. By Lemma 5.10(1) ([31, Chapter 9, page 130]),

L(Xc,d/quT) :L(El/FCDT)L(El/IFQaTvX) (20)
Let py be the coefficient of T in L(E; /K, T, x). Let I; (resp. S1) be the number of K-points of F; that are
inert (resp. split) in X, 4. By Lemma 5.10(2), p1 = S1 — I;. The conditions of Remark 5.12(3) are satisfied

if Tr,(¢) =1, so p1 = 0 by (15).

Proposition 8.7. Let K = F, where ¢ = 2". Let K' = K (h) where h is such that h? + h = c. The 2-valuation
vector e(X,q/K) = {e1, ez, e3} is determined below.

e r odd r=2mod 4 r =0 mod 4
if h € Fy {2,2,2} {1,1,1} {0,0,0}
if h ¢ Fy {2,2,2} {1,0,1} {0,0,1}

Proof. When h € Fy, then K’ = K. By Lemmas 8.5 and 8.6, NWN(X, 4/K) are among the values (+:)" if
ris odd, Cs,(s, —1 if 7 = 2 mod 4, and (3, (3,1 if r = 0 mod 4. Thus e(X. 4/K) equals {2} if r is odd, {1}
if r = 2 mod 4, and {0} if r = 0 mod 4.

Suppose that h ¢ F,. Then NWN(E;/K) are the same as before; in particular, e; =2 if r is odd, e; =1
if r = 2mod4, and e; = 0 if » = 0 mod 4. By Lemmas 8.5 and 8.6, NWN(FE,/K’) and NWN(FE3/K’)
are among —1 and C6il if r is odd, and 1 and C3il if 7 is even. Since K’ is a quadratic extension of K,
NWN(E,/K) and NWN(E3/K) are among the square roots of these. The ambiguity in taking the square
root is resolved by the fact that the four sum to zero by (15) and are invariant under complex conjugation.
If r is odd, then NWN(Ey/K) U NWN(E3/K) is either {#i,+i} or {(12,(3, ({5, (32}, which both yield
{ea,e3} = {2,2}. If 7 is even, then NWN(Ey/K) UNWN(FE3/K) is either {1,1, 1,1} or {¢s,¢5 ", ¢3, ¢35}
which both yield {ez,e3} ={0,1}. O

8.3. The automorphism group of X.q and K-Frobenius conjugacy classes

Let G = Autp(X,q4). Recall 7 and v from (19). Let Sy = (1,v) ~ Z/2Z x Z/2Z.
Consider the order 3 automorphism of X, 4, given by o : (S, Z) — (¢3S, Z). Note that o is defined over
F, if 7 is even and over g2 if r is odd. Furthermore, o centralizes Sy.

Lemma 8.8. If ¢ # 1, then G = Sy x (o) is an abelian group of order 12. If c = 1, then G is a semidirect
product of the form Sy x H where H is a cyclic group of order 9.

Proof. The degree 4 equation (16) for X, 4 is of the type whose automorphism group is studied in [36], see
also [10, Section 12.1]. By [10, Theorem 12.11], G fixes the unique point of X, 4 lying above S = co. Thus
G ~ S; x H where 5] is the normal Sylow 2-subgroup of G and H is a cyclic group of odd order. By [10,
Theorem 12.7], |S1| =4 (so S; = Sp) and |H| divides 9. Then |H| =3 or 9 since o € G.

If H contains an element  of order 9, then x(S) = (oS. Hence, x acts on the right hand side of (16) by
multiplication by (3. However,  can only act on the left hand side of (16) by multiplication by (3 if the
monomial (1 + ¢)z? vanishes. Thus,  lifts to an automorphism of X, 4 if and only if ¢ = 1, in which case

K(Z)=(Z and k: (S,Z) — ((0S5,(3Z). O
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If c = 1 and |H| = 9, note that k% = ¢2; also G is non-abelian, since k7~ (Z) = Z + (3, so kK"
is either v or vr, depending on the choice of h € {(3,(2}. In this case, x permutes the three quotients
Ey, Ey, E3 of X 4 by the non-trivial involutions in Sp.

Let Fr = Frg where K = F,;. We now determine the K-Frobenius conjugacy classes of G.

Lemma 8.9. Let f be the number of K-Frobenius conjugacy classes in G.

(1) Suppose that ¢ # 1. Then G is an abelian group of order 12.
(a) If r is even and h € Fy, then f =12.
(b) Ifr is even and h ¢ F,, then f = 6.
The classes are {id, 7}, {v,v7}, {0,07}, {vo,vro}, {02,027}, {vo?,vTo?}.
(c) If r is odd and h € Fy, then f = 4.
The classes are {id, 0,0}, {v,vo,v0?}, {1,70,702}, and {vT,vT0,V70?}.
(d) Ifr is odd and h ¢ Fy, then f = 2.
The classes are {id, 0,02, 1,70, 70} and {v,vo,vo? vr,v70, V702 }.
(2) If c=1, then G is a non-abelian group of order 36 and h € Fy — Fo.
(a) If r is even, then h € F, and f = 10.

The classes are {id}, {v,7,v7}, and {r’/,vK), 7K, vTKI} for j =1,...,8.
(b) Ifr is odd, then h ¢ F, and f = 2. Also, v is not conjugate to id.
The first class is {id, 7, k', ... K% vTr, vK2, 73 vTKY, VKRS TS UTKT UKBY.

Proof. We omit most of the long calculation. Cases (1a) and (2a) follow from the fact that K-Frobenius
conjugacy classes coincide with standard conjugacy classes when all automorphisms are defined over K.
For the other cases, note that 7r = 7. If h € F,, then Fro=v.Ifh ¢ F,, then h9 = h+1 and Fry = or;
in this case, v 17(¥"v) = id, showing that 7 is K-Frobenius conjugate to id, and v is K-Frobenius conjugate
to vT.
Also, "k = k9. If 7 is even, then "o = o. If r is odd, then ¥"o = o~1; in this case, o~ 1id(!"0) = o,

showing that o is K-Frobenius conjugate to id. O
8.4. Proof of Theorem 8.1

Proof of Theorem 8.1. The results from Remark 5.12 apply here, by setting S = Sp. By Lemma 8.3(2),
Jac(Xcq) ~x E1 @ E2 @ E3. By Lemma 8.3(1) and Remark 5.12(1), over K’, the automorphism 7 acts
trivially on Fy and by [—1] on E5 and Ej3; similarly, v fixes F5 and acts by [—1] on Ey and E3, and v fixes
E5 and acts by [—1] on E; and Es.

When h ¢ F,, the strategy in the proof below is to analyze the situation for the base change to K', where
the automorphism g acts via g% g. The ambiguity caused by descending to K can be resolved using (15).

In each case below, the information on NWN(X, 4/K) for K = F, and their 2-adic valuations e =
e(Xca/K) = {e1, ez, e3} is from Proposition 8.7. The data on the number and representatives of the K-twists
of X, 4 are found in Lemma 8.9.

(1) Let r be odd. Then e = {2,2,2} so X, 4 has parity +1.

(a) If h € F,, then there are three nontrivial twists, each of order 2. By Lemma 5.11, none of these
changes the parity, so X, 4 is fully maximal.

(b) If h ¢ Fy, then K’ = F,2. The nontrivial K-twist is represented by v (which is not defined over
F,). Then e(X.q/K') = {1,1,1}. Over K’, the twist for v corresponds to v'"%v = 7, which
negates the two conjugate pairs of normalized Weil numbers for Fy and Fj3, thus the twist has
Q(Xéd/K/) ={1,0,0}. By (15), e(X] 4/ K) = {2,0,1}, of parity —1. Thus, X, 4 is mixed.
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In addition, Jac(X, 4) and X, 4 have the same type, by Lemma 5.3.
(2) Let r =2 mod 4.

(a) If h € Fy, then e = {1,1,1}, so X, 4 has parity +1. There are either twelve K-twists (if ¢ # 1) or
ten K-twists (if ¢ = 1). In both cases, the K-twist by v has e = {0,1,0} and parity —1. Hence,
both X, 4 and Jac(X, q) are mixed.

(b) If h ¢ Fy, then e = {1,0, 1}, so X, 4 has parity —1. Also, e(X.q/K’) = {0,0,0}. Since ¢ # 1, there
are six K-twists, represented by id, v, o, vo, 02, and vo?. Twisting by id, o, 0% does not change the
parity by Lemma 5.9 since these automorphisms have odd order and are defined over K. The twist
of X.4/K by v (resp. vo, va?) corresponds to the twist of X. /K’ by 7 (resp. 702, 7o), which
changes e(X.4/K’) to {0,1,1}. So the K-twist for v (resp. vo, vo?) has e(X.q/K) either {1,2,2}
or {0,2,2}, which both have parity —1. Thus X, 4 is fully minimal over K. The twist by [—1] has
e ={0,1,0}, thus Jac(X, q) is fully minimal as well.

(3) Let r =0 mod 4.

(a) If h € Fy, then e = {0,0,0}, so X, 4 has parity —1. There are either twelve K-twists (if ¢ # 1) or
ten K-twists (if ¢ = 1). The nontrivial elements of Sy yield twists such that e = {1,1,0}, of parity
—1, cf. Remark 5.12(1). The odd order automorphisms o7 do not change the parity by Lemma 5.9.
If ¢ # 1, then all automorphisms are defined over K and the group is abelian, so no other twist
changes the parity either. If ¢ = 1, then the twists by x? permute E;, Es, E5 and thus do not change
the parity either. So X, 4 is fully minimal. Since Jac(X, 4) has a twist with e = {1,1, 1} and parity
+1, it is mixed.

(b) If h ¢ Fy, then e = {0,0,1}, so X, 4 has parity —1. The proof that both X 4 and Jac(X, q) are
fully minimal is very similar to case (2b). O

References

[1] Jeffrey D. Achter, Everett W. Howe, Split abelian surfaces over finite fields and reductions of genus-2 curves, Algebra
Number Theory 11 (1) (2017) 39-76.

[2] Irene Bouw, Wei Ho, Beth Malmskog, Renate Scheidler, Padmavathi Srinivasan, Christelle Vincent, Zeta Functions of
a Class of Artin—Schreier Curves with Many Automorphisms, Directions in Number Theory, Assoc. Women Math. Ser.,
vol. 3, Springer, Cham, 2016, pp. 87124, MR 3596578.

[3] Gabriel Cardona, On the number of curves of genus 2 over a finite field, Finite Fields Appl. 9 (4) (2003) 505-526.

[4] Gabriel Cardona, Enric Nart, Zeta Function and Cryptographic Exponent of Supersingular Curves of Genus 2, Pairing-
Based Cryptography—Pairing 2007, Lecture Notes in Comput. Sci., vol. 4575, Springer, Berlin, 2007, pp. 132-151.

[5] Jean-Marc Couveignes, Emmanuel Hallouin, Global descent obstructions for varieties, Algebra Number Theory 5 (4) (2011)
431-463.

[6] Pierre Deligne, La conjecture de Weil. I, Publ. Math. THES 43 (1974) 273-307.

[7] Darren Glass, Rachel Pries, Hyperelliptic curves with prescribed p-torsion, Manuscr. Math. 117 (3) (2005) 299-317.

[8] Josep Gonzdlez, Jordi Guardia, Victor Rotger, Abelian surfaces of GLo-type as Jacobians of curves, Acta Arith. 116 (3)
(2005) 263-287.

[9] Ki-ichiro Hashimoto, Tomoyoshi Ibukiyama, On class numbers of positive definite binary quaternion Hermitian forms. II,
J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 28 (3) (1981) 695-699.

[10] J.W.P. Hirschfeld, G. Korchméros, F. Torres, Algebraic Curves over a Finite Field, Princeton Series in Applied Mathe-
matics, Princeton University Press, Princeton, NJ, 2008, MR 2386879.

[11] Taira Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Jpn. 20 (1968) 83-95.

[12] Everett W. Howe, Franck Leprévost, Bjorn Poonen, Large torsion subgroups of split Jacobians of curves of genus two or
three, Forum Math. 12 (3) (2000) 315-364.

[13] Everett W. Howe, Daniel Maisner, Enric Nart, Christophe Ritzenthaler, Principally polarizable isogeny classes of abelian
surfaces over finite fields, Math. Res. Lett. 15 (1) (2008) 121-127.

[14] Tomoyoshi Ibukiyama, On rational points of curves of genus 3 over finite fields, Tohoku Math. J. (2) 45 (3) (1993) 311-329.

[15] Tomoyoshi Ibukiyama, Toshiyuki Katsura, On the field of definition of superspecial polarized abelian varieties and type
numbers, Compos. Math. 91 (1) (1994) 37-46.

[16] Tomoyoshi Ibukiyama, Toshiyuki Katsura, Frans Oort, Supersingular curves of genus two and class numbers, Compos.
Math. 57 (2) (1986) 127-152.

[17] Jun-ichi Igusa, Class number of a definite quaternion with prime discriminant, Proc. Natl. Acad. Sci. USA 44 (1958)
312-314.

[18] E. Kani, M. Rosen, Idempotent relations and factors of Jacobians, Math. Ann. 284 (2) (1989) 307-327.

[19] Toshiyuki Katsura, Frans Oort, Families of supersingular abelian surfaces, Compos. Math. 62 (2) (1987) 107-167.



3056 V. Karemaker, R. Pries / Journal of Pure and Applied Algebra 228 (2019) 3031-3056

[20] Neal Koblitz, p-adic variation of the zeta-function over families of varieties defined over finite fields, Compos. Math. 31 (2)
(1975) 119-218.

[21] Serge Lang, Abelian Varieties, Interscience Tracts in Pure and Applied Mathematics, vol. 7, Interscience Publishers, Inc.,
Interscience Publishers Ltd., New York, London, 1959.

[22] Kristin Lauter, Geometric methods for improving the upper bounds on the number of rational points on algebraic curves
over finite fields, J. Algebraic Geom. 10 (1) (2001) 19-36, with an appendix in French by J.-P. Serre.

[23] Ke-Zheng Li, Frans Oort, Moduli of Supersingular Abelian Varieties, Lecture Notes in Mathematics, vol. 1680, Springer-
Verlag, Berlin, 1998.

[24] Daniel Maisner, Enric Nart, Abelian surfaces over finite fields as Jacobians, Exp. Math. 11 (3) (2002) 321-337, with an
appendix by Everett W. Howe.

[25] Ju.I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspehi Mat. Nauk 18 (6(114)) (1963)
3-90.

[26] Stephen Meagher, Jaap Top, Twists of genus three curves over finite fields, Finite Fields Appl. 16 (5) (2010) 347-368.

[27] James S. Milne, Abelian varieties (v2.00), available at: www.jmilne.org/math/, 2008.

[28] James S. Milne, Jacobian varieties, available at: http://www.jmilne.org/math/, 2012.

[29] Frans Oort, Subvarieties of moduli spaces, Invent. Math. 24 (1974) 95-119.

(30]

Ser. D Inf. Commun. Secur., vol. 16, IOS, Amsterdam, 2008, pp. 123-188.

[31] Michael Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York,
2002.

[32] René Schoof, Nonsingular plane cubic curves over finite fields, J. Comb. Theory, Ser. A 46 (2) (1987) 183-211.

[33] Jean-Pierre Serre, Local Fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York—Berlin, 1979, trans-
lated from the French by Marvin Jay Greenberg.

[34] Jean-Pierre Serre, Galois Cohomology, Springer-Verlag, Berlin, 1997, translated from the French by Patrick Ion and revised
by the author.

[35] Joseph H. Silverman, The Arithmetic of Elliptic Curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer,
Dordrecht, 2009.

[36] Henning Stichtenoth, Uber die Automorphismengruppe eines algebraischen Funktionenkérpers von Primzahlcharakteristik.
II. Ein spezieller Typ von Funktionenkérpern, Arch. Math. (Basel) 24 (1973) 615-631.

[37] Henning Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin, 1993.

[38] Henning Stichtenoth, Chao Ping Xing, On the structure of the divisor class group of a class of curves over finite fields,
Arch. Math. (Basel) 65 (2) (1995) 141-150.

[39] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966) 134-144.

[40] John Tate, Classes d’isogénie des variétés abéliennes sur un corps fini (d’aprés T. Honda), Séminaire Bourbaki, Vol.
1968/69: Exposés 347-363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. 95-110.

[41] Gerard van der Geer, Marcel van der Vlugt, Supersingular curves of genus 2 over finite fields of characteristic 2, Math.
Nachr. 159 (1992) 73-81.

[42] Gerard van der Geer, Marcel van der Vlugt, On the existence of supersingular curves of given genus, J. Reine Angew.
Math. 458 (1995) 53-61.

[43] Paulo H. Viana, Jaime E.A. Rodriguez, Eventually minimal curves, Bull. Braz. Math. Soc. (N. S.) 36 (1) (2005) 39-58.

[44] William C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ec. Norm. Supér. (4) 2 (1969) 521-560.

[45] André Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Actual. Sci. Ind., vol. 1041, Hermann et Cie,
Paris, 1948.

[46] André Weil, Variétés abéliennes et courbes algébriques, Actual. Sci. Ind., vol. 1064, Hermann & Cie, Paris, 1948.

[47] Jiangwei Xue, Tse-Chung Yang, Chia-Fu Yu, On superspecial abelian surfaces over finite fields, Doc. Math. 21 (2016)
1607-1643, MR 3603930.



	Fully maximal and fully minimal abelian varieties
	1 Introduction
	2 Background: supersingular abelian varieties and Weil numbers
	2.1 Frobenius and its characteristic polynomial
	2.2 Weil numbers and zeta functions
	2.3 Zeta functions of curves
	2.4 Supersingular abelian varieties and curves
	2.5 Maximal and minimal

	3 Twists
	3.1 Twists, cocycles, and Frobenius conjugacy classes
	3.2 Effect of a twist on the Frobenius endomorphism
	3.3 Twists by automorphisms of order 2

	4 Fully maximal, fully minimal, and mixed abelian varieties
	4.1 Period, parity, and types
	4.2 Relationship between types and Weil numbers
	4.3 Types of abelian varieties with small automorphism group
	4.4 Parity-changing twists of abelian varieties

	5 Fully maximal, fully minimal, and mixed curves
	5.1 Types for Jacobians
	5.2 Supersingular non-hyperelliptic curves of mixed type
	5.3 Parity-changing twists of curves

	6 Analysis in low dimension: elliptic curves
	7 Analysis in low dimension: abelian surfaces
	7.1 Parity table for simple supersingular abelian surfaces
	7.2 Curves of genus 2 with extra automorphisms
	7.3 The condition Autk(A) ≃Z/2 Z is not restrictive when p is odd

	8 Analysis in low dimension: genus 3 curves for p=2
	8.1 Decomposition of the Jacobian
	8.2 The normalized Weil numbers of E1, E2, and E3
	8.3 The automorphism group of Xc,d and K-Frobenius conjugacy classes
	8.4 Proof of Theorem 8.1

	References


