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Deterministic multi-qubit entanglement in a 
quantum network

Youpeng Zhong1,4, Hung-Shen Chang1, Audrey Bienfait1,5, Étienne Dumur1,2,6, Ming-Han Chou1,3,  
Christopher R. Conner1, Joel Grebel1, Rhys G. Povey1,3, Haoxiong Yan1, David I. Schuster1,3 & 
Andrew N. Cleland1,2 ✉

The generation of high-fidelity distributed multi-qubit entanglement is a challenging 
task for large-scale quantum communication and computational networks1–4. The 
deterministic entanglement of two remote qubits has recently been demonstrated 
with both photons5–10 and phonons11. However, the deterministic generation and 
transmission of multi-qubit entanglement has not been demonstrated, primarily 
owing to limited state-transfer fidelities. Here we report a quantum network 
comprising two superconducting quantum nodes connected by a one-metre-long 
superconducting coaxial cable, where each node includes three interconnected 
qubits. By directly connecting the cable to one qubit in each node, we transfer 
quantum states between the nodes with a process fidelity of 0.911 ± 0.008. We also 
prepare a three-qubit Greenberger–Horne–Zeilinger (GHZ) state12–14 in one node and 
deterministically transfer this state to the other node, with a transferred-state fidelity 
of 0.656 ± 0.014. We further use this system to deterministically generate a globally 
distributed two-node, six-qubit GHZ state with a state fidelity of 0.722 ± 0.021. The 
GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite 
entanglement15, showing that this architecture can be used to coherently link together 
multiple superconducting quantum processors, providing a modular approach for 
building large-scale quantum computers16,17.

Superposition and entanglement are key resources that enable 
both quantum computing and quantum communication. The 
deterministic generation and distribution of entanglement in a scal-
able architecture is therefore a central requirement underpinning 
these technologies. Superconducting qubits show great promise as 
a scalable approach to building practical quantum computers18,19, as 
well as for coherently linking superconducting processors within 
a cryostat5–8 or cryogenically linked cryostats20. Developments in 
microwave-to-optical transduction promise further extensions 
of superconducting quantum networks21,22, potentially allowing 
long-distance quantum communication23,24. However, fundamen-
tal challenges still remain. In particular, the fidelity of chip-to-chip 
quantum state transfers using microwave-frequency photons has 
been limited to ~0.8 owing to losses in the communication chan-
nels5–8,20, although experiments that minimize this loss point to the 
potential for high-fidelity communication9,25,26. Here, we demonstrate 
a very low-loss connection between two physically distant quantum 
nodes fabricated on separate dies, with which we demonstrate a 
state-transfer fidelity of 0.911 ± 0.008. This allows us to determinis-
tically transfer fully entangled GHZ states between the two nodes, 
as well as generate a full two-node entangled state, paving the way 
for modular approaches to large-scale quantum computing and 
intra-cryostat quantum communication16.

Our quantum network consists of two nodes A and B, shown in Fig. 1, 
where each node is a superconducting processor comprising three capac-
itively coupled superconducting qubits Qi

n(i = 1, 2, 3; n = A, B), with a tun-
able coupler27 Gn connected to Qn

2 (see Supplementary Information for 
device fabrication details). We use a 1-m-long niobium–titanium (NbTi) 
superconducting coaxial cable to connect the two nodes together, with 
a time-variable coupling strength gn(t) controlled by the tunable coupler 
Gn in each node. To build a high-quality communication channel, we avoid 
use of microwave connectors or circulators5–8, relying instead on direct 
superconducting aluminium wirebond connections between the coaxial 
cable and the processors; see Supplementary Information for more details.

We place the assembled quantum network in a magnetic shield 
attached to the mixing chamber of a dilution refrigerator with a base 
temperature below 10 mK (see Supplementary Information for exper-
imental details). We first tune up and calibrate the quantum state trans-
fer between Q2

A and Q2
B, with the other qubits biased far away in 

frequency. When the coupling is off, the coaxial cable is effectively 
shorted to ground on both ends, supporting an evenly spaced sequence 
of standing microwave modes, with a free spectral range of ωFSR/(2π) =  
105 MHz. The coupling strength gn between Qn

2 and each mode is deter-
mined by the superconducting phase δn across the Josephson junction 
of coupler Gn (see Supplementary Information for tunable coupler 
details). To tune up each qubit, we isolate the qubits from the cable by 
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Fig. 1 | Device description. a, False-colour 
micrograph of one quantum processor node 
consisting of three capacitively coupled 
superconducting qubits Qi (i = 1, 2, 3) with a  
tunable coupler G connected to Q2. b, c, Higher- 
magnification micrographs of the Q2 Josephson 
junctions (b) and the tunable coupler G (c). Scale 
bars are 50 μm. d, Schematic of the quantum 
network, consisting of two nodes A and B 
connected by a 1-m-long superconducting NbTi 
coaxial cable. Each node is a quantum processor of 
the type shown in panel a. e, Photograph of the 
quantum network assembly, where each node is in 
a machined-aluminium sample holder connected 
internally to the superconducting cable.
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Fig. 2 | Quantum state transfer between node A 
and node B. a, Vacuum Rabi oscillations between 
Q2

A and six standing modes in the coaxial cable, 
with coupling strength gA/(2π) ≈ 5.5 MHz. b, Slice 
through the data in a, showing the vacuum Rabi 
oscillation of Q2

A with the communication mode R 
at 5.798 GHz. Numerical simulations suggest that 
the effective qubit lifetime T1 is shortened to 1.4 μs 
during the interaction owing to loss associated 
with the cable connections; see Supplementary 
Information for details. c, Quantum state transfer 
from node A to node B using a hybrid transfer 
scheme, where Q2

A and Q2
B are resonantly coupled to 

R with the same coupling strength g0/(2π) = 4 MHz 
for a duration τ. At τ = 72 ns, we achieve a single- 
photon transfer efficiency of η = 0.881 ± 0.008. 
Grey lines denote numerical simulations.  
The inset shows the control pulse sequence.  
d, Process matrix χ for the quantum state  
transfer, corresponding to a process fidelity 
ℱp = 0.911 ± 0.008. The solid bars and red and grey 
frames are the measured, simulated and ideal 
values, respectively. The horizontal axes show the 
Pauli operators, I, X, Y, Z.
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biasing the coupler junction to δn = π/2, turning off the coupling, gn ≈ 0. 
We find that each qubit has an intrinsic lifetime of T1 ≈ 10 μs and a 
dephasing time of Tϕ ≈ 3 μs; see Supplementary Table 1 for details.

When we prepare qubit Q2
A in its excited state |e⟩ and subsequently 

turn on coupler GA to gA/(2π) ≈ 5.5 MHz, we observe a sequence of vacuum 
Rabi oscillations between Q2

A and the cable standing modes as we vary 
the qubit frequency and the interaction time, shown in Fig. 2a, where Pe 
is the probability of measuring the qubit in state |e⟩. Because the mode 
at 5.798 GHz (dashed line) has a slightly longer lifetime (T1r = 473 ns) than 
the other modes, we use this as the communication mode R. The 
on-resonant vacuum Rabi oscillation between Q2

A and R is shown in detail 
in Fig. 2b; more details are provided in Supplementary Information.

If both qubits Q2
A and Q2

B are resonantly coupled to R, the tripartite 
system has a ‘dark’ and two ‘bright’ eigenmodes, with very little occu-
pation of the cable in the dark eigenmode25. As proposed in ref. 28 and 
demonstrated in refs. 8,25, high-fidelity quantum state transfers can be 
achieved using the dark eigenmode even in the presence of consider-
able cable loss, albeit with limited transfer rates. Because we have both 
cable and qubit loss, we implement a hybrid state-transfer scheme28, 
which involves all three eigenmodes in a way that balances these dif-
ferent losses. The hybrid scheme involves setting both GA and GB to the 
same coupling strength of g0/(2π) = 4 MHz while tuning both Q2

A and 
Q2

B to be resonant with R for a duration of τ, shown in Fig. 2c. At τ = 72 ns, 
one photon is transferred from node A to node B with an efficiency of 
η = 0.881 ± 0.008 (all reported uncertainties represent the standard 
deviation of repeated measurements); numerical simulations includ-
ing the measured loss are in excellent agreement with the measure-
ments (see Supplementary Information for simulation details). We 
perform quantum process tomography to characterize this 
state-transfer process, yielding the process matrix χ shown in Fig. 2d, 
with a process fidelity of ℱp = tr(χχideal) = 0.911 ± 0.008, where χideal is 
the process matrix for the identity operation ℑ. Numerical simulations 
give a process fidelity of 0.920. These simulations imply that the 
state-transfer process could be further improved by reducing loss 
associated with the cable and its interconnects.

In addition to the single-qubit state-transfer process, we tune  
up controlled-NOT (CNOT) gates built from controlled-Z (CZ) gates 
combined with single-qubit π/2 rotations, as well as tuning up iSWAP 
gates. The iSWAP gate is implemented by biasing Q j

n (j  =  1, 3) to  
be resonant with Qn

2 for a duration of τ g= π/(2 ) ≈ 15 nsj
n

swap ,2
, where 

g /(2π) ≈ 16.7 MHzj
n

,2
 is the capacitive coupling strength between Q j

n 
and Qn

2; the iSWAP gate has a transfer efficiency of 0.99. The CZ gate is 
implemented29 by biasing Q j

n to be resonant with the |e⟩–| f ⟩ transition 
frequency of |e⟩ for a duration of τ g= π/( 2 ) ≈ 21 nsZ j

n
C ,2

, completing 
an |ee⟩ → −i|g f ⟩ → −|ee⟩ process that acquires an overall phase of π for 
the |ee⟩ state, leaving the other basis states unchanged; here |g⟩ and | f ⟩ 
are the ground state and the second excited state of the qubit, respec-
tively. We characterize the CZ gate using quantum process tomography, 
obtaining a process matrix χCZ with an average process fidelity of 
0.950 ± 0.006 (see Supplementary Information for more details about 
the iSWAP and CZ gates).

We use these gates to deterministically generate a GHZ state12–14  
in node A, ψ ggg eee| ⟩ = ( ⟩ + ⟩)/ 2GHZ  (written as |Q Q Q ⟩1

A
2
A

3
A ), which we  

then transfer to node B using the protocol shown in Fig. 3a. This involves 
two CNOT gates to prepare the state, followed by three sequential state 
transfers through the cable using Qn

2 (n = A, B), interleaved with iSWAPs 
with Qn

1  or Qn
3.

The density matrix ρA of the three-qubit GHZ state in node A is meas-
ured using quantum state tomography and shown in Fig. 3b, with a 
state fidelity of ℱA = ⟨ψGHZ|ρA|ψGHZ⟩ = 0.931 ± 0.012. Calculations using 
χCZ give a state fidelity of 0.938, in good agreement with the experiment. 
This state is then transferred to node B using three sequential state 
transfers with interleaved iSWAP gates, yielding the final state ρB in 
node B, as shown in Fig. 3c, with a GHZ state fidelity ℱB = 0.656 ± 0.014, 
clearly above the threshold of 1/2 for genuine multipartite entangle-
ment15. A calculation applying χ⊗3 and the expected decoherence 
process to ρA gives a state fidelity of 0.648, agreeing well with the 
experiment.

Finally, we demonstrate the step-by-step generation of a six-qubit 
entangled state distributed in the network, using the protocol shown 
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Fig. 3 | Deterministic transfer of a three-qubit GHZ state. a, Schematic of the 
GHZ state preparation and the sequential state-transfer (ST) protocol. Bumps 
in the horizontal lines are detuning pulses applied to Q j

n ( j = 1, 3) to minimize 
interactions between these qubits and Qn

2 during the state-transfer and CZ 
operations. Measurement of the qubits in node A is only done to characterize 

the prepared GHZ state, and is not performed when transferring the state to 
node B. b, Density matrix ρA of the GHZ state prepared in node A with a state 
fidelity of 0.931 ± 0.012. c, Density matrix ρB of the state received in node B with 
a state fidelity of 0.656 ± 0.014. Solid bars and red and grey frames are 
measured, simulated and ideal values, respectively.
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in Fig. 4a. In step I, we prepare a Bell triplet state B gg ee+⟩ = ( ⟩ + ⟩)/ 2  
(written as |Q Q ⟩2

A
2
B ), using an ST/2 process—similar to the state-transfer 

process, except the qubit frequencies and coupling parameters are 
adjusted so that an optimal Bell state fidelity is achieved at τ = 62.8 ns 
(see Supplementary Information for details regarding the ST/2 process). 
The density matrix ρI for this process is shown in Fig. 4b, with a state 
fidelity of 0.908 ± 0.012. Numerical simulations (see Supplementary 
Information) yield a state fidelity of 0.915. In step II, we apply CNOT 
gates between Qn

1  and Qn
2 to transform the Bell state into a four-qubit 

GHZ state gggg eeee( ⟩ + ⟩)/ 2  (written as |Q Q Q Q ⟩1
A

2
A

1
B

2
B ), with a density 

matrix ρII displayed in Fig. 4c with state fidelity 0.814 ± 0.008. We finally 

apply CNOT gates between Qn
2 and Qn

3, creating a six-qubit GHZ state 
gggggg eeeeee( ⟩ + ⟩)/ 2  (written as |Q Q Q Q Q Q ⟩1

A
2
A

3
A

1
B

2
B

3
B ). The density 

matrix ρIII of the entangled state is shown in Fig. 4d, with a state fidelity 
of 0.722 ± 0.021, clearly above the threshold of 1/2 for genuine multi-
partite entanglement15. Numerical calculations (see Supplementary 
Information) give ρII and ρIII with state fidelities of 0.829 and 0.738, 
respectively, agreeing well with the experiment.

In conclusion, we have built a two-node quantum network consist-
ing of two three-qubit superconducting processor nodes connected 
by a 1-m-long superconducting coaxial cable. Using this system, we 
achieve a state-transfer process fidelity of 0.911 ± 0.008 between the 
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Fig. 4 | Deterministic generation of multi-qubit entanglement in a 
quantum network. a, The step-by-step protocol for entangling the two nodes, 
A and B. Here the ST/2 process involves transmitting half a photon from Q2

A to 
Q2

B. Bumps in the horizontal lines are detuning pulses. b, The Bell triplet state 
between Q2

A and Q2
B created in step I, with a state fidelity of 0.908 ± 0.012. c, The 

four-qubit GHZ state created in step II, with a state fidelity of 0.814 ± 0.008. d, 
The six-qubit GHZ state created in step III, with a state fidelity of 0.722 ± 0.021. 
The solid bars and red and grey frames are the measured, simulated and ideal 
values, respectively.
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two nodes, which supports the deterministic generation and transfer 
of multi-qubit GHZ states. The transfer fidelity here is primarily limited 
by loss in the cable connections; improving these connections should 
yield considerable increases in the channel coherence and transfer 
fidelities. This architecture can be extended to coherently link more 
than two processor nodes, providing a modular solution for building 
large-scale quantum computers16,17.
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Methods

Quantum state-transfer and remote-entanglement protocols
Probabilistic remote entanglement has been realized with atomic 
ensembles30,31, single atoms32,33, defects in diamond23,34,35 and super-
conducting qubits36–39. The deterministic entanglement of two remote 
qubits has recently been demonstrated with microwave photons5–9, opti-
cal photons10 and surface acoustic wave phonons11. For short-distance 
communication—for example, with microwave cables shorter than a 
few metres—the free spectral range of the cable is large enough that a 
single standing mode can relay quantum states9,40,41, or state transfers 
can be via a ‘dark’ mode hybridized by a standing mode and the on-chip 
elements (qubits or resonators)8,25. Here, we use a hybrid scheme28 for 
state transfer, which balances the loss in the channel with that in the 
qubits, which might be further improved by optimizing the transfer 
process using shortcut-to-adiabatic-passage protocols42,43.

If the length of the cable is increased, the free spectral range of the 
standing modes in the cable becomes smaller, making single-mode 
quantum state transfers more challenging. For long-distance commu-
nication, the use of itinerant photons is preferable44–46 but challenging 
in practice. Using tunable couplers to shape the photon emission and 
capture in a time-reversal symmetric manner, high-fidelity quantum 
state transfers have been achieved with itinerant photons5–7,47–51; pro-
posals using chiral communication channels point to the potential 
for quantum state transfers over thermal microwave networks52,53. 
As demonstrated in earlier work9, the communication architecture 
here can also use itinerant photons to perform high-fidelity quantum 
state transfers.

Quantum state and process tomography
The density matrices of the Bell state and the GHZ states are character-
ized using quantum state tomography54. After the state preparation and 
transfer, gates from the set {I, X/2, Y/2} are applied to each qubit before 
the simultaneous readout of all qubits; the measured probabilities are 
corrected for readout errors, and the density matrix is reconstructed 
numerically. We use CVX, a Matlab package for specifying and solving 
convex programs, to reconstruct the density matrix while constraining 
it to be Hermitian, to have a unit trace and to be positive semidefinite. 
The single-shot simultaneous readout of the qubits is repeated 3 × 103 
times to obtain the measured probabilities; the state tomography is 
run repeatedly, and in each repeat we reconstruct the density matrix 
and obtain the state fidelity. The fidelities and uncertainties of the 
quantum states correspond to the mean and standard deviation of 
100 repeated measurements.

Quantum process tomography55 for the state transfer is carried out by  
preparing Q2

A in the input states g g e g e e{| ⟩, (| ⟩ − i| ⟩)/ 2 , (| ⟩ + | ⟩)/ 2 , | ⟩}, 
then performing the quantum state-transfer process. The correspond-
ing outcome density matrix in Q2

B is measured using quantum state 
tomography as described above. The process matrix is reconstructed 
using the input and outcome density matrices, and using the CVX pack-
age to constrain it to be Hermitian, unit trace and positive semidefinite.
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