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Virtual Logical Qubits: A Compact

Architecture for Fault-Tolerant Quantum
Computing
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Fault-tolerant quantum computing is required to execute many of the most
promising quantum applications. In recent years, numerous error correcting codes,
such as the surface code, have emerged which are well suited for current and future
limited connectivity 2-D devices. We find quantum memaory, particularly resonant
cavities with transmon qubits arranged in a 2.5-D architecture, can efficiently
implement surface codes with around 20 fewer transmons via this work. We
virtualize 2-D memory addresses by storing the code in layers of qubit memories
connected to each transmon. Distributing logical qubits across many memories has
minimal impact on fault tolerance and results in substantially more efficient logical
operations. Virtualized logical qubit (VLQ) systems can achieve fault tolerance
comparable to conventional 2-D transmon-only architectures while putting within
reach a proof-of-concept experimental demonstration of around ten logical qubits,

requiring only 11 transmons and 9 attached cavities.

uantum devices have improved significantly

in the last several years both in terms of

physical ermor rates and number of usable
guantum bits (qubits). Concurrently, great progress
has been made at the software level such as improved
compilation procedures reducing required overhead
for program execution. These efforts are directed at
enabling noisy intermediate-scale quantum (NISQ)
algorithms to demonstrate the power of quantum
computing and are expected to run some important
programs.

Despite this, these machines will be too small
for emor correction and wnable to run large-scale
programs due to unreliable qubits. The ultimate
goal is to construct fault-tolerant machines capable
of executing thousands of gates and in the long
term to execute large-scale algorithms with speed-
ups over classical algorithms. There are a number
of promising error correction schemes which have
been proposed such as the surface code® The
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surface code is a particularly appealing candidate
because of its low owverhead, high error threshold,
and its reliance on few nearest-neighbor interac-
tions in a 2-D array of qubits, a common feature of
currently popular hardware like superconducting
transmon gubits.

Current architectures for both NISQ and fault-tol-
erant quantum computers make no distinction
between the memory and processing of quantum
information. While currently viable, as larger devices
are built, the engineering challenges of scaling to hun-
dreds of gubits become readily apparent. For trans-
mon  technology, some of these issues include
fabrication consistency and crosstalk during parallel
operations. Every qubit needs dedicated control wires
and signal generators, which fill the refrigerator the
device runs in. To scale to the millions of qubits
needed for useful fault-tolerant machines® we need
to adopt a memory-based architecture to decouple
gubit count from transmon count.

We use a recently realized qubit memory technal-
ogy, which stores qubits in a superconducting cavity.®
Stored in cavity, qubits have a significantly longer life-
time (coherence time), but must be loaded into a
transmon for computation. We design and evaluate a
system-level organization of these components within
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FIGURE 1. Our fault-tolerant architecture with random-
access memory local to each transmon, On top is the typical
2-D grid of transmon qubits. Attached below each data trans-
mon is a resonant cavity storing error-prone data gubits
(shown as black circles). This pattern is tiled in 2-D to obtain
a 25-D array of logical qubits. Our key innovation here is stor-
ing the gqubits that make up each logical qubit (shown as
checkerboards) spread across many cavities to enable effi-
clent computation.

the context of a novel surface code embedding and
fault-tolerant quantum operations.

Our proposed 2.5-D memory-based design is a typi-
cal 2-D grid of transmons with memory added, Figure 1.
This can be compared with the traditional 2-D error
comection implementation in Figure 2, where the
checkerboards represent errorcorrected logical
qubits. The logical qubits in this system are stored at
unigue virtual addresses in memory cavities when not
in use. They are loaded to a physical address in the
transmons and made accessible for computation on
request and are pericdically loaded to correct errors,
similar to DRAM refresh. This design allows for more
efficient operations such as the transversal CNOT
between logical qubits sharing the same physical
address, i.e., colocated in the same cavities. This is not
possible on the surface code in 2-D, which requires
methods such as braiding or lattice surgery for a
CMOT operation.

We develop an embedding from the standard
representation to this new architecture, which
reduces the required number of physical transmon
qubits by a factor of approximately k, the number of
resonant modes per cavity which is expected to be at
least 10 and is expected to improve over time. We also
develop a Compact variant saving an additional 2=,
This means we can obtain a code distance 2k times
greater or use hardware with only 1/(2k) the required
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FIGURE 2. Typical 2-D superconducting qubit architecture.
The dots are transmon gubits where black are used as data
and gray are used as ancilla for emor correction. The lines
indicate physical connections between qubits that allow
operations between them. Four logical qubits, each consist-
ing of nine error-prone data qubits are shown here in the
rotated surface code with distance 3. 7 parity checks are
shaded yellow (light) and X parity checks are shaded blue
(dark) whera checks on only two data are drawn as half
circles.

physical transmons for a given algorithm. In the near-
to-intermediate term, when qubits are a highly con-
strained resource, this will accelerate a path toward
fault-tolerant computation. In fact, the smallest
instance of Compact requires only 11 transmons and 3
cavities for about ten logical qubits. Via simulation, we
determine the error correction threshold rates for
each and find they are all close to the baseline thresh-
old meaning the additional error sources do not signif-
icantly impact the perfformance.

Superconducting Qubit Architectures

In contrast to other leading qubit technologies such
as trapped ion devices with one or more fully con-
nected qubit chains, superconducting qubits are typi-
cally connected in nearest neighbor topologies, often
a 2-0 mesh on a regular square grid. This limitation
makes engineering these devices easier but results in
high communication costs, increasing the chance of
errors on NISQ devices, and communication conges-
tion for error corrected operations. More background
on superconducting hardware can be found by Krantz
et al®

Myl une 20

Authorized licensed use limited to: Uiniversity of Illinois. Downloaded on Juby 11 2021 at 21:16-20 UTC from IEEE Xplore. Restrictions apply.



Qubit Memory Technology
Recently, studies have demonstrated random access
memory for quantum information.® Qubit states can
be stored in the resonant modes of physical supercon-
ducting cavities attached to a transmon qubit and
depicted as the individual cylinders in Figure 1. Cur-
rently demonstrated error rates are promising, and
there is nothing fundamental preventing this technol-
ogy from becoming competitive with other transmaon
devices as it matures. We expect operation error rates
to improve, cavity sizes and coherence times to
increase and in general expect performance to
improve as it has with other quantum technologies.
Local memory is not free. Stored qubits cannot be
operated directly. Instead, operations are mediated
through the transmon. To operate on qubits stored in
memory, we first load the qubit from memory. Then,
we perform the desired operation on the transmons,
and store the qubit back in its original location. A two-
gubit operation such as a CNOT can also be per-
formed directly between the transmon and a qubit in
its connected cavity by manipulating higher states of
the transmon. Qubits stored in the same cavity cannot
be operated on in parallel. There are two primary bene-
fits of this technology. First, we are able to quickly per-
form two-gubit interactions between any pair of
qubits stored in the same cavity. Second, qubits
stored in the cavity are expected to have longer coher-
ence times by about one order of magnitude.

Surface Codes

The surface code” is one of the most promising guan-
tum emor correction protocols because it requires
only nearest neighbor connectivity between physical
qubits and improvements continue to be made.” The
surface code is implemented on a 2-D array of physical
qubits shown in Figure 2. These qubits are either data,
where the state of the logical qubit is stored, or ancilla
used for syndrome extraction (parity checks). These
ancilla qubits are measured to stabilize the entangled
state of the data. These ancilla fall into two categories,
measure-Z and measure-X for Z syndromes and X syn-
dromes designed to detect bit and phase errors,
respectively.

Each X (Z) plaguette corresponds to a single mea-
sure-X (Z) qubit and the four data, which it interacts
with. The corners of each plaquette are the data
qubits. For the baseline, we use standard Z and X syn-
drome extraction (parity measurement) circuits where
the qubits of this circuit are physical gubits. The Z-syn-
drome measures the bit-parity of its comer qubits and
the X-syndrome measures their phase parity. By
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repeatedly performing syndrome extraction and
detecting parity changes, we are able to locate ermrors.
This repeated syndrome extraction collapses any error
to a comectable Pauli error and forces the data to
remain in what is called the code state. We may detect
errors which oceur as changes in measurement out-
comes of the parity checks.

There are two primary ways to manipulate the logi-
cal qubits of the surface code to perform desired logi-
cal operations-braiding and lattice surgery. In this
article, we will primarily consider lattice surgery, which
has been shown to have some advantages over braid-
ing like using fewer physical qubits. For a more thor-
ough introduction to lattice surgery, we refer the
reader to Horsman et al.**? In our proposed scheme,
all primitive lattice surgery operations can be used
such as split and merge, which together perform a log-
ical CNOT. For universal quantum computation in sur-
face codes, we allow for the creation and use of magic
states such as |T) or |[CCZ).

Our proposed architecture is an embedding of the sur-
face code, which virtualizes logical qubits, saving in
required number of transmons. This takes advantage
of quantum resonant cavity memory technology to
store logical qubits, in the form of surface code
patches, in memory local to the computational
transmons.

Matural Surface Code Embedding

Our embedding slices the plane of surface code tiles
into many pieces, storing them flat in memory to
enable them to stitch together on-demand. This
embedding enables the fast transversal CNOT and
high connectivity.

For every transmon in this architecture (the com-
pute qubits in the top layer of Figure 1), there is a cav-
ity attached with a fixed number of resonant modes k.
Each cavity can store k gqubits, one per mode. Each
transmon can load and store qubits from its attached
cavity. All transmons can be operated on in parallel as
is the case in most superconducting hardware, We
expect this technology to allow cavity size k on the
order of 10 to 100 qubits.

Consider the rotated surface code of Figure 2 and
the high level view of this architecture in Figure 1. We
map each of the physical qubits of this logical qubit to
the same mode z of each cavity in this memory archi-
tecture. Another logical qubit can be mapped to a dif-
ferent mode of the same set of cavities. We view this
as stacking the surface code patches, the logical
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qubits, together under the same set of transmon
qubits. The transmons themselves are only used for
logical operations and error correction cycles per-
formed on the patches.

In this memory architecture, we are unable to
operate on qubits stored in the same cavity in parallel,
however we are permitted to operate on qubits stored
in different cavities in parallel. In order to detect mea-
surement errors, we require d, the distance of the
code, rounds of syndrome extraction before we per-
form our decoding algorithm and comrect errors. We
can load a logical qubit (meaning load all data in paral-
lel to each transmon), perform all d rounds of extrac-
tion, then store the gqubit, this is our Allat-once
strategy. Alternatively, we can interleave the extrac-
tion cycles by loading the logical qubit in index O, per-
forming one syndrome extraction step, then storing.
We execute this same procedure for every logical
qubit in the stack and repeat d times.

Up to k logical qubits share the same set of trans-
mons thereby more efficiently storing these gubits
than on a single large surface. To interact logical
qubits in different stacks, we load them in parallel to
the transmons then interact them via lattice surgery
operation. In these cases, all of the other stacks’ trans-
mons between the interacting logical qubits act as a
single logical ancilla. Furthermore, physical operations
between qubits in the same cavity enable our system
to perform fast transversal two-gubit interactions if
the logical qubits are colocated in the same stack.

Transversal CNOT
A major advantage of this 25-D architecture is the
ability to do two-qubit operations transversely using
the third dimension. The logical operation is per-
formed directly by doing the same physical gate to
every data qubit and correcting any resulting errors.
For typical 2-D error correcting codes like the surface
code, transversal two-qubits operations are not possi-
ble because the comresponding data qubits of two logi-
cal patches cannot be made adjacent. However, with
memory, it is possible to load one patch into the trans-
mons and apply two-qubit gates mediated by each
transmon onto the data qubits for a second qubit
stored in one mode of the cavities. The transversal
CMOT can be performed in a single round of d error
correction cycles while the lattice surgery CNOT takes
six rounds. This can translate to major savings in run-
time for algorithms.

The transversal CNOT is not limited to logical
qubits currently stored in the same 2-D address. With
an extra step, it is possible to transversely interact any
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two logical qubits. To do this, one of the qubits must
be moved to the same 2-D address as the other using
a move operation described by Litinski.® Once the two
gubits are in the same 2-D address, the transversal
CMNOT can be applied.

Compact Surface Code Embedding

In the previous scheme, half of the transmons did not
have attached cavities {or they did not make use of
them). An ancilla and data qubit could share a trans-
mon because the data are stored in the cavity the
majority of the time and the ancilla are reset every
cycle. This leads to a more efficient, Compact embed-
ding which halves the required number of transmons.
This comes at the cost of additional loads and stores
from memory due to contention during eror correc-
tion, effectively trading some error and time for signifi-
cant space savings.

This mapping results in plaquettes, which resemble
triangles rather than squares, where the center of the
hypotenuse of each triangle corresponds to both the
ancilla qubit and the data qubit, stored “beneath” in its
cavity. Every data qubit is still mapped to the same
index. We illustrate this transformation from our
undistorted Natural surface code patch to Compact in
Figure 3.

This new mapping also requires a new syndrome
extraction procedure because data cannot be loaded
while a transmon is in use as an ancilla. A single round
of syndrome extraction can be executed by dividing
the plaquettes into four groups, with each group con-
taining noninterfering plaquettes. Two plaguettes are
noninterfering if they do not share their ancilla with
any data qubits of the other plaquette. It is imperative
this process use both the minimum number of loads
and stores and keep data qubits loaded for as short a
time as possible as the error incurred during this cir-
cuit directly impacts the error threshold for the code.
Error correction can be performed interleaved or all-
at-once just as with natural.

Beyond the Surface Code
The surface code is an appealing choice for currently
available superconducting devices because of its rela-
tively low overhead and it requires only limited nearest
neighbor connectivity. For this new memony-based
architecture, there is a fortuitous match with the sur-
face code, making it an even more appealing candi-
date. However, there are many other candidate ermor
correction codes such as the color code.

One particularly relevant class of codes for this
architecture are Bosonic codes” The surface and
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FIGURE 3. Transformation from natural to compact. (a) Matural embedding: Only data have attached cavities (not shown). (b)
The transformation: £ ancilla (over yellow/light areas) merge with the upper-right data transmon and X ancilla (over blua/dark
areas) merge with the lower left data transmon. The opposite parings are key to keeping 4-way grid connectivity. (¢) Compact

embedding: All ancilla transmons without attached cavities have been removed. All remaining transmons have cavities and are

used as both data and ancilla.

color codes protect quantum information by using
mary physical gubits to construct a single logical
qubit. For Bosonic codes, instead we can create
redundancy by using many modes of a single physical
system. The modes of the cavities in the underlying
hardware of our systems can be used to implement
Bosonic codes directly. Unfortunately, Bosonic codes
in practice only approximately correct errors and do
not have the property that as you scale the size of the
code you can obtain an exponential reduction in the
logical error rate of the system. Bosonic codes can be
used effectively for error mitigation.

It is unclear, given an architecture, what the best
error correction scheme is. Ideally, we want a code
which takes full advantage of the high connectivity
between information stored in the same cavity. For
practical demonstrations, we also want a code which
requires a small number of transmons. Bosonic codes
are viable options for this architecture and have a
somewhat natural fit. It is yet to be seen what is the

Baseline Error Threshold

Matural (All-At-Once)

best choice, however we have shown the surface
code is a fortuitous match with this new memory-
based architecture.

Error Threshold Results

We detail our threshold results in Figure 4. We study
five different code distances in order to obtain the
phiysical eror threshold value. The threshold value
indicates at which point increasing the code distance,
d improves the logical eror rate instead of hurting it
This threshold is a function of both the physical sys-
tem model, the chosen syndrome extraction circuit,
and the specific decoding procedure. The major differ-
ence in each procedure is the additional error sources
and different syndrome extraction procedures. The
slopes for each code distance compared across the
various schemes is stable, indicating each scheme
improves at a similar rate, post emor threshold, and
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FIGURE 4. Error thresholds for the baseline 2-D architecture and natural and compact variants of our 2.5 D architecture. The
thrasholds are comparable to the baseline indicating the space savings obtained in our system does not substantially reduce
the error thresholds. The slopes of the lines in this figure indicate, postthreshold, how much improvement in physical error rates
improve logical eror rate, Except for the baseling, all use a cavity size of 10,
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FIGURE 5. Sensitivity of logical error rate to various error sources in compact (Interleaved). The logical error rates are most sen-
sitive to physical error of loads/stores and SC-5C (transmon-transmon) gates. The logical error rate is less sensitive to transmon
and cavity coherence times (not showr) and mostly insensitive to effects of cavity size.

showing that the logical error rate decays exponen-
tially with d as desired. This is significant because it
means we will be able to save on total number of
transmons without major degradation of the error
threshold.

Error Sensitivity Results

Different system-level details affect the threshold of
the code. Here we focus on compact, intedeaved as
the most efficient physical qubit mapping and subject
to a wide variety of errors. The results of these sensi-
tivity studies are found in Figure 5. The logical error
rate is sensitive to a particular error source’s probabil-
ity if the slope of the line is pronounced at the marked
reference value. The logical error rate for compact,
irterleaved is sensitive to all changes in system-level
details to some degree. The gate error rates show the
highest sensitivity, indicating improvement in these
will give the greatest benefit. Coherence times (plots
not shown) are not quite as sensitive but the slightly
over 10= offset between the cavity and transmon
plots shows that there is no benefit in transmon T,
being longer than 1/10 cavity T; when the cavity size is
10. The lines taper off, indicating other errors sources
eventually dominate. Initially, we expected the cavity
size to have a large impact on the logical error rate.
However, when coherence times are high and gate
error rates are fairly low below the threshold, the logi-
cal error rate does increase proportional to the length
of the cavity but the effect is very minor. Given cavi-
ties with good coherence times, this indicates our pro-
posed system will be able to scale smoothly into the
future as cavity sizes increase.

While larger cavity sizes will make this architecture
even more advantageous, there will be a point at
which it has a vanishing benefit because the delay
between error correction becomes too long and
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decoherence error dominates. For the error rates used
in the evaluation, we find that cavity decoherence
error starts dominating after cavity size k = 150. After
this point, it would be more beneficial to improve the
cavity coherence time.

CONCLUSION

Current NISQ machines are powerful demonstrations,
but fall short of many serous applications without
error correction. This article makes an error-corrected
machine 20 easier to build by exploiting gquantum
memory with a codesigned architecture to enable
medium-scale quantum machines (100-1000 trans-
mons) and allow the industry to realize the long-term
potential of scalable guantum machines.

Current quantum computers are noisy and they
are incapable of running sizable programs accurately.
There is currently a major gap between what is avail-
able on the market and what is required to execute
the famed guantum algorithms with quantum error
correction. Currently, approaches toward bridging this
gap fall into a few categories: either push the error
rates of current devices down below the error thresh-
old of known codes, or design new codes. Our work
bridges this gap in a completely different way by
exploring the use of new technology, resonant cavi-
ties, for the design of new architectures which better
support emror correction codes already available.

Locally accessible quantum memory can be used
to create a 2.5-D architecture better suited for the
code than traditional approaches. Our architecture
enables the execution of the surface codes with lat-
tice surgery operations with significantly lower physi-
cal requirements resulting in higher distance codes
with fewer total transmon gubits. What does this
mean? Given a fixed physical error rate below the
threshold, we can use larger codes to obtain strictly
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better logical error rates. This enables the execution of
longer input programs. Conversely, for a fixed desired
logical error rate, determined by the application, we
can run on hardware with worse error rates which will
be available years sooner. This demonstrates the ben-
efit of codesigning guantum architectures alongside
the applications and technologies.
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