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Abstract

We consider the problem of nonparametric regression with possibly incomplete co-

variate vectors. The proposed estimators, which are based on histogram methods, are

fully nonparametric and straightforward to implement. The presence of incomplete

covariates is handled by an inverse weighting method, where the weights are estimates

of the conditional probabilities of having incomplete covariate vectors. We also derive

various exponential bounds on the L1 norms of our estimators, which can be used to

establish strong consistency results for the corresponding, closely related, problem of

nonparametric classi�cation with missing covariates. As the main focus and appli-

cation of our results, we consider the problem of pattern recognition and statistical

classi�cation in the presence of incomplete covariates and propose histogram classi�ers

that are asymptotically optimal.
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1 Introduction

In this article we consider the problem of estimating a regression function where the main

interest and focus is to apply our results to classi�cation problems when the covariates

vectors in the data are not necessarily fully observable. Our proposed approach is based

on local averaging techniques and, in particular, involves histogram estimators. Since the

early 90's, there has been a growing interest in developing methods to tackle the presence

of incomplete data in estimation and inference. Although the great majority of the existing
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literature deals mainly with missingness in response variables, there have also been several

results dealing with missing covariate components (which is the setup of this paper). These

include Chen et al. (2016) who proposed an estimating equation method for logistic partially

linear models with missing covariates, Liu and Yuan (2016) who considered the estimation of

conditional quantiles with some covariates missing at random, and the results of Lukusa, et

al. (2016) on Poisson regression. Bravo (2015) considered the estimation of a general class of

semi-parametric models where the nonparametric component of the model is computed itera-

tively using local linear estimation. Sinha et al. (2014) proposed semi-parametric estimators

for the parameters in a parametric regression model with missing covariates, and Hu et al.

(2014) considered a two-stage multiple imputation approach for nonparametric estimation

in quantile regression. Guo et al. (2014) considered the estimation of a semi-parametric

multi-index model using a weighted estimating equation approach. Lee, et al. (2012) con-

sidered logistic regression models with missing covariates and outcome. Efromovich (2012)

dealt with adaptive orthogonal series estimators when the regression function belongs to a

Sobolev class. Wu and Wu (2007) studied generalized linear mixed models with missing

covariates. Liang et al. (2004) proposed estimators in partially linear models with missing

covariates, whereas Chen (2004) considered consistent maximum likelihood estimation of the

parameters of a regression function. Earlier results along these lines include Robins, et al.

(1994) as well as Lipsitz and Ibrahim (1996).

Virtually all of the results obtained by these authors are based on the assumption that the

data are missing at random, which is also used in this paper; this assumption will be formally

de�ned and addressed in the next section. Our results in this paper are fully nonparametric

in that the form of the underlying regression function is completely unknown. Our con-

tributions may be summarized as follows. In Section 2 we propose a histogram estimator

of the regression function that takes into account the fact that some of the covariates are

not fully observable. We also derive exponential bounds on the L1 norms of the proposed

estimators; however, our results readily extend to general Lp norms. These �ndings yield

various convergence results (and the strong consistency) of the proposed estimators, but

more importantly, they can be used to perform statistical classi�cation (nonparametrically)

with missing covariates. In fact, in Section 3 we consider the problem of classi�cation and

pattern recognition with incomplete covariates and construct histogram classi�ers that are

asymptotically optimal. To assess the �nite-sample performance of our proposed estimators
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and classi�ers, we provide some numerical work in Section 4. All proofs are deferred to

Section 5.

2 Main results

2.1 Histogram estimates of a regression function

Let (X; Y ) be a Rs � R-valued random vector, where s � 1, and consider the prob-

lem of estimating the regression function m(x) = E [Y jX = x] based on a random sam-

ple (the data) Dn = f(X1; Y1); � � � ; (Xn; Yn)g, where the (Xi; Yi)'s are independently and

identically distributed (i.i.d) random vectors with the same distribution as (X; Y ). Let

Pn = fAn1; An2; : : :g be a partition of Rs into cubes of length bn > 0, i.e., sets of the form

�
s

i=1

�
kibn; (ki+1)bn

�
, where ki's are integers. For every x 2 R

s, let An(x) denote the unique

cell of Pn that contains the point x. Cubic histogram estimates work by taking the average of

those Yj's whose corresponding Xj's fall in the cell An(x), and thus they are local averaging

estimators. More precisely, when the data are fully observable, the histogram estimator of

the regression function m(x) is de�ned by

mn(x) =

Pn
j=1 Yj IfXj 2 An(x)gPn
j=1 IfXj 2 An(x)g

; (1)

with the convention that 0=0 = 0. As for the performance of the estimator in (1), let � be

the probability measure of X. Then, by a classical result of Devroye and Gy�or� (1983), one

has the strong consistency property (in L2) that limn!1

R
(mn(x) � m(x))2�(dx) =a.s. 0 ;

under the shrinking cell condition

bn ! 0, as n!1, with nbsn !1, (2)

and Y is bounded. Gy�or� (1991) also considers a slightly revised version of (1) which is

strongly consistent without any boundedness assumption on the square integrable response

variable; see Gy�or� et al. (2002, Ch. 23) for further detail. In passing we note that the

histogram estimator in (1) is a local averaging estimator in the sense that it is of the form

mn(x) =
Pn

j=1Wn;j(x) � Yj with weights Wn;j(x) = IfXj 2 An(x)g=
Pn

j=1 IfXj 2 An(x)g.

Such estimators are quite popular in nonparametric estimation and also include the nearest

neighbor as well as kernel estimators.
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2.2 Missing covariates

In this section we consider the case where some components of the covariate vector X may be

unavailable (missing). More precisely, for j = 1; : : : ; n, let X0
j = (U0

j;V
0
j) 2 R

d+p, where

Uj 2 R
d, d � 1, is always observable, but Vj 2 R

p, p � 1, may be missing. Clearly, the

estimator in (1) is no longer available because some of the Vj's may be missing. In order

to revise (1) accordingly, we start by de�ning the independent Bernoulli random variables

�1; : : : ; �n, where �j = 1 if Vj is not missing, and �j = 0 otherwise. Then the data may be

represented by

Dn = f(X1; Y1); � � � ; (Xn; Yn)g = f(U1;V1; Y1; �1); � � � ; (Un;Vn; Yn; �n)g :

We also need to take into account the missing probability mechanism (i.e., the selection

property), which is the quantity Pf� = 1jX; Y g = E(�jX; Y ). If the missing probabil-

ity mechanism satis�es P
�
� = 1

��X; Y 	 = P f� = 1g = E(�) then we say V is Missing

Completely at Random (MCAR). However, in practice, the MCAR assumption is rather un-

realistic and restrictive. A more widely used assumption in the literature is the Missingness

at Random (MAR) assumption, which amounts to

P
�
� = 1

��X; Y 	 = P
�
� = 1

��U; Y 	 ; where X0 = (U0;V0) 2 Rd+p, (3)

i.e., the probability that V is missing does not depend on V itself. For a detailed account of

these and other missing patterns one can refer, for example, to Little and Rubin (2002). It

is straightforward to see that when the missing probability satis�es the MCAR assumption,

one can just use the complete cases to estimate m(x), where a complete case refers to a fully

observable Xj (i.e., when �j = 1). In other words, in this case the correct estimator is given

by

emn(x) =

Pn
j=1 �jYjI fXj 2 An(x)gPn
j=1 �jI fXj 2 An(x)g

: (4)

To appreciate this, let em1;n(x) =
Pn

j=1 �jI fXj 2 An(x)g =
Pn

j=1 I fXj 2 An(x)g and em2;n(x) =Pn
j=1 �jYjI fXj 2 An(x)g =

Pn
j=1 I fXj 2 An(x)g, with the convention that 0=0 = 0. Then

the simple estimator in (4) can be written as the ratio, em2;n(x)=em1;n(x). Now, since em2;n(x)

and em1;n(x) are just the histogram estimators of E(�Y jX = x) and E(�jX = x), respec-

tively, and since E(�Y jX)=E(�jX) = m(X) holds under the MCAR assumption, the ratio

in (4) is indeed a correct estimator of m(x). In fact more is true: it is a simple exercise to

show that in this case, the simple estimator in (4) is strongly consistent in the sense that
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limn!1

R
(emn(x) �m(x))2�(dx) =a.s. 0, under the same conditions that render (1) consis-

tent. Of course, in general, (4) is not the correct estimator of m(x) because the unrealistic

MCAR assumption may not hold in practice. In the next section we will focus on estimators

that relax this assumption.

2.3 The proposed histogram estimator

In this section we propose revised versions of (4) that take into account the MAR assumption.

One common approach to handle the presence of the missing cases is by weighting the

complete cases by the inverse of the probability that V is missing, i.e., �(U; Y ) := Pf� =

1jU; Y g (or its estimator, if the function � is unknown). This approach, which is originally

due to Horvitz and Thompson (1952), has been used in the literature on the analysis of

incomplete data extensively. See, for example, Lukusa, et al. (2016) and Robins, et al.

(1994). To motivate our approach, �rst consider the simple but unrealistic case where the

missing probability function �(U; Y ) = Pf� = 1jU; Y g is completely known (as a function

of U and Y ). In this case, our proposed estimator of m(x) is

mn(x) =

Pn
j=1

�jYj
�(Uj ;Yj)

I fXj 2 An(x)gPn
j=1

�j
�(Uj ;Yj)

I fXj 2 An(x)g
(5)

Observe that if we de�ne

m1;n(x) :=

Pn
j=1

�j
�(Uj ;Yj)

I fXj 2 An(x)gPn
j=1 I fXj 2 An(x)g

; m2;n(x) :=

Pn
j=1

�jYj
�(Uj ;Yj)

I fXj 2 An(x)gPn
j=1 I fXj 2 An(x)g

; (6)

then (5) can be written as mn(x) = m2;n(x)=m1;n(x). But m2;n and m1;n are the histogram

estimators of E[�Y=�(U; Y )jX] and E[�=�(U; Y )jX], respectively. Furthermore, under the

MAR assumption, E[�Y=�(U; Y )jX] = E(Y jX) and E[�=�(U; Y )jX] = E(1jX) = 1. There-

fore, the estimator mn(x) in (5) can be viewed as the histogram estimator of the regression

function E(Y jX = x) =: m(x).

In practice, the regression estimator mn(x) is not available because the function �(u; y) =

P
�
� = 1

��U = u; Y = y
	
that appears in (5) is almost always unknown and has to be es-

timated. In what follows, we consider two estimators of �(u; y); the �rst one is based on

kernel regression, whereas the second approach is based on the least-squares method.
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2.3.1 A local averaging estimator of the selection probability �(� ; �)

Let Z
0

= (U
0

; Y 0) and consider the kernel regression estimator of �(Uj; Yj) = E(�jjUj; Yj),

given by

b�(Uj; Yj) = b�(Zj) =

Pn
k=1;6=j �jH(

Zk�Zj
hn

)Pn
k=1;6=jH(

Zk�Zj
hn

)
(7)

with the convention 0=0 = 0, where the function H : Rd+1 ! R+ is the kernel used with

the smoothing parameter hn (hn ! 0 , as n ! 1). Here the choice of the kernel is at

the discretion of the practitioner. If Y is a discrete random variable taking values in a set

Y = fy1; y2; : : : g, we consider the following kernel-type estimator of �,

b�(Uj; Yj) =

Pn
k=1;6=j �kIfYk = YjgK(

Uk�Uj

hn
)Pn

k=1;6=j IfYk = YjgK(
Uk�Uj

hn
)
; (8)

where K : Rd ! R+ is the kernel with the smoothing parameter hn. Now consider the

following revised version of (5):

bmn(x) =

Pn
j=1

�j
b�(Uj ;Yj)

YjI fXj 2 An(x)gPn
j=1

�j
b�(Uj ;Yj)

I fXj 2 An(x)g
; (9)

where b�(Uj; Yj) can be taken to be either (7) or (8), depending on whether Y has a continuous

or a discrete distribution. To assess the performance of bmn(x) in (9), we �rst need to state

a number of conditions:

(A1) The shrinking cell condition (2) holds, where s = d+ p.

(A2) �min := infu;y �(u; y) > 0, where �(u; y) = Pf� = 1jU = u; Y = yg.

(A3) The kernel K is a probability density function and satis�es
R
jwjjK(w)dw < 1 ; j =

1 ; � � � ; d ; and jjKjj1 < 1. Furthermore, the smoothing parameter hn satis�es hn ! 0 and

nhdn !1, as n!1.

(A4) The random vector U has a compactly supported probability density function f(u) =P
y2Y pyfy(u) and is bounded away from zero on its support, where py = P (Y = y), and

fy(u) is the conditional density of U given Y = y. Furthermore, f is uniformly bounded on

its support and its �rst-order partial derivatives are bounded on the interior of the support.

(A5) The partial derivatives @
@uj

�(u; y); j = 1 ; � � � ; d exist and are bounded on the compact

support of f , uniformly in u.
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Here, condition (A2) essentially states thatV can be observed with a non-zero probability for

all u and y. Condition (A3) is not restrictive since the choice of the kernel is at our discretion,

whereas condition (A4) is often imposed in nonparametric regression in order to avoid having

unstable estimates in the tails of the pdf f of U. Condition (A5) is technical. The following

result gives bounds on the performance of the estimator bmn in (9) with b�(Uj; Yj) estimated

via (8).

Theorem 1 Let bmn be the estimator de�ned in (9) with b�(Uj; Yj) given by (8). Suppose

that conditions (A1){(A5) hold and that Y is a bounded random variable. Then for every

� > 0, there is an n0 > 0 such that for all n > n0,

P

�Z �� bmn(x)�m(x)
���(dx) > �

�
� 6 exp(�c1n�

2) + 16n exp(�c2nh
d
n) + 8n exp(�c3nh

d
n�

2)

where c1; c2; and c3 are positive constants not depending on n or �.

Remark 1 It is straightforward to note that Theorem 1 continues to hold for general Lp

norms (1 � p <1) of bmn(x) with the a bound of the form

P

�Z �� bmn(x)�m(x)
��p�(dx) > �

�
� 6 exp(�c1k

2
1n�

2) + 16n exp(�c3nh
d
n)

+ 8n exp(�c3k
2
1nh

d
n�

2) ;

where k1 = 1=(2L)p�1 and the constants c1; c2; and c3 are as in Theorem 1. Therefore, in

view of the Borel-Cantelli lemma,Z
jbmn(x)�m(x)jp�(dx) �!a.s. 0 whenever (nhdn)

�1 log n! 0:

If Y is a continuous random variable then we use (7) for the term b�(Uj; Yj) in the de�nition

of the estimator bmn(x) in (9). In this case the conclusion of Theorem 1 continues to hold

with d replaced by d+1 and di�erent constants c1, c2, and c3 provided that conditions (A3),

(A4), and (A5) are slightly revised as follows:

(A30) The kernel H in (7) is a probability density function satisfying
R
jwjjH(w)dw < 1,

j = 1 ; � � � ; d+ 1 ; and jjHjj1 <1. Furthermore, hn ! 0 and nhd+1n !1, as n!1.

(A40) The random vector Z0 = (U0; Y ) has a compactly supported probability density

function, f(z), which is bounded away from zero on its support. Furthermore, f and its �rst

order partial derivatives are uniformly bounded on the support of f .

(A50) The partial derivatives @
@zj

�(z); j = 1; � � � ; (d + 1), exist and are bounded on the

compact support of f , uniformly in z.
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Remark 2 When U is high-dimensional, one has to �nd ways to counter the curse of di-

mensionality from which a kernel estimator can su�er in the sense of having slower rates of

convergence. Here, PCA appears to be a popular dimension reduction technique for classi�-

cation with high-dimensional covariates.

2.3.2 The least-squares estimator of the selection probability �(� ; �)

Our second approach to estimate the selection probability �(U; Y ) := Pf� = 1jU; Y g =

E(�jU; Y ) uses the least-squares method. More speci�cally, suppose that the function �

belongs to a given known class P of functions of the form � : Rd � R ! [�min; 1], where

�min = infu;y �(u; y), as before. Then the least-squares estimator of � is given by

b�LS = argmin
�2P

1

n

nX
j=1

(�j � �(Uj; Yj))
2 ; (10)

with the corresponding least-squares based estimator of m(x) given by

bmLS(x) =

Pn
j=1

�jYj
b�LS(Uj ;Yj)

I fXj 2 An(x)gPn
j=1

�j
b�LS(Uj ;Yj)

I fXj 2 An(x)g
: (11)

In order to study the performance of bmLS(x) in (11), we need the following standard no-

tation and terminology from the empirical process theory (see, for example, Pollard (1984,

p. 25), or Gy�or�, et al (2002, p. 135)). For �x points (u1; y1); � � � ; (un; yn) in R
d � R, let

N1

�
�;P; (uj; yj)

n
j=1

�
be the �-covering number of the class P with respect to the empirical

L1 norm on the points (u1; y1); � � � ; (un; yn), i.e., N1

�
�;P; (uj; yj)

n
j=1

�
is the cardinality of

the smallest subclass of functions
�
�1; � � � ; �N : Rd � R! [�min; 1]

	
with the property that

for every � 2 P and every � > 0, one has min1�k�N
1
n

Pn
j=1 j�(uj; yj)� �k(uj; yj)j < �.

Then, with this notation, we have the following result on the performance of bmLS

Theorem 2 Let bmLS be as in (11). Suppose that conditions (A1) and (A2) hold and Y is

bounded. Then, for every � > 0, there is an n0 > 0 such that for all n > n0,

P

�Z
jbmLS(x)�m(x)j�(dx) > �

�
� 6 exp(�C1n�

2) + 16E
�
N1

�
a1�;P; (Uj; Yj)

n
j=1

��
exp(�C6n�

2)

+ 16E
�
N1

�
a2 �

2;P; (Uj; Yj)
n
j=1

��
exp(�C7n�

2) ;

where a1, a2, C1; C6, and C7 are positive constants not depending on n or �.

8



Remark 3 Theorem 2 can be used to establish the strong consistency of bmLS: Let C� =

min
�
a1� ; a2�

2
�
. If n�1 log

�
E
�
N1

�
C�;P; (Uj; Yj)

n
j=1

���
! 0, for all � > 0, then the bound

in Theorem 2 together with the Borel-Cantelli lemma yield the almost-sure convergence resultR
jbmLS(x) �m(x)j�(dx) !a.s. 0: In fact, as in Remark 1, it is straightforward to see that

the above results can be readily extended to general Lp norms
R
jbmLS(x)�m(x)jp�(dx) of the

estimator in (11) for all 1 � p <1.

3 Applications to problems in pattern recognition and

classi�cation

In this section we consider an application of the results developed in the previous section to

the problem of pattern recognition and statistical classi�cation. More speci�cally, let (X; Y )

be an Rs�f1; : : : ;Mg-valued random pair. The problem of statistical classi�cation involves

the prediction of the class variable, Y , based on the covariate vector X. In practice, one

wants to �nd a classi�er, i.e., a function of the form 	 : Rs �! f1; : : : ;Mg, for which the

probability of misclassi�cation, L(	) := Pf	(X) 6= Y g, is as small as possible. To present

the optimal classi�er, let Pk(x) := PfY = k j X = xg be the class conditional probability

corresponding to class k 2 f1; 2; : : : ;Mg. The classi�er with the lowest misclassi�cation

probability is given by the function 	B(x) which assigns x to class k 2 f1; 2; : : : ;Mg if

max1�i�M Pi(x) = Pk(x). More speci�cally, 	B(x) satis�es P	B(x)(x) = maxi Pi(x); see, for

example, Devroye and Gy�or� (1985, p. 253). The theoretically best classi�er 	B is almost

always unknown because it depends on the underlying distribution of (X; Y ) which is un-

known and, therefore, one has to use the data to construct a classi�er.

Given a random sample Dn =
�
(X1; Y1); : : : ; (Xn; Yn)

	
, one tries to construct a sample based

classi�er 	n in such a way that its misclas�cation error, Ln(	n) = P
�
	n(X) 6= Y j Dn

	
; is

in some sense as small as possible. Let L(	B) = P
�
	B(X) 6= Y

	
: The classi�er 	n is said

to be strongly consistent if Ln(	n)!
a.s. L(	B): If the convergence holds in probability, 	n

is said to be weakly consistent. We also note that, by the dominated convergence theorem,

if Pf	n(X) 6= Y jDng !
a.s. L(	B) then P

�
	n(X) 6= Y

	
! L(	B). To estimate the

Bayes classi�er 	B, we consider a plug-in estimator that works by replacing each conditional

probability Pk(x) := PfY = k j X = xg by an estimator (function of the data) Pk;n(x). The
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resulting classi�er, 	n, is de�ned by

P	n(x);n(x) = max
1�k�M

Pk;n(x); (12)

i.e., 	n(x) assigns x to class k 2 f1; 2; : : : ;Mg if max1�i�M Pi;n(x) = Pk;n(x). To study

the performance of 	n(x) de�ned via (12), we �rst state the following standard result (see,

for example, Devroye and Gy�or�, (1985, p. 254)): 0 � Ln(	n)� L(	B) �
PM

i=1

R
jPi(x)�

Pi;n(x)j�(dx): Therefore, the plug-in estimator of 	B is strongly consistent whenever
R
jPi(x)�

Pi;n(x)j�(dx)!
a.s. 0, for each i = 1; : : : ;M . Here, Pi;n(x) is just an estimator of the regres-

sion function Pi(x) = E
�
IfY = ig j X = x

�
, except that in our case there are missing covari-

ates in X. More speci�cally, let X0 = (U0;V
0

), where U 2 Rp is always observable, but V 2

R
d may be missing. We can represent the data by Dn = f(U1;V1; Y1; �1); : : : ; (Un;Vn; Yn; �n)g,

where �j = 0 if Vj is missing, and �j = 1 otherwise. Therefore, based on our earlier results,

we can use the following histogram estimator of Pk(x); k = 1; : : : ;M ,

bPk;n(x) =
Pn

j=1

�j � I fYj = kgb�(Uj; Yj)
I fXj 2 An(x)gPn

j=1

�jb�(Uj; Yj)
IfXj 2 An(x)g

; (13)

where one can take b� to be either the kernel-type estimator in (8), or, if it is known that

� 2 P (where P is a known class), then one may use the least-square estimator given by

(10). Now, in view of (12), we propose the classi�er b	n which is de�ned via

bP
b	n(x);n

(x) = max
1�k�M

bPk;n(x); (14)

i.e., b	n(x) assigns x to class k 2 f1; 2; : : : ;Mg if max1�i�M bPi;n(x) = bPk;n(x). As for the

asymptotic performance of this classi�er, we have the following strong consistency results.

The �rst result corresponds to the case where � is estimated by the kernel estimator in (8).

Theorem 3 Let b	n be the histogram classi�er de�ned via (14) in conjunction with (13)

and (8). If (nhdn)
�1 log n ! 0, as n ! 1, then under conditions (A1){(A5) one has

Ln(b	n) �!
a.s. L(	B), where Ln(b	n) = Pfb	n(X) 6= Y jDng.

If the selection � is estimated by the least-squares estimator (10), we have the following

corresponding strong consistency result.
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Theorem 4 Let b	n be the histogram classi�er de�ned via (14) in conjunction with (13) and

(10). If 8c > 0, n�1 log
�
E
�
N1

�
c;P; (Uj; Yj)

n
j=1

���
! 0, as n!1, then under conditions

(A1) and (A2) one has Ln(b	n) �!
a.s. L(	B), where Ln(b	n) = Pfb	n(X) 6= Y jDng.

In passing we note that regarding the optimal bandwidths for Theorem 3, it is well-understood

that for kernel-based classi�ers the optimal bandwidth that minimizes quantities such as

the MISE or ISE is not necessarily optimal in classi�cation (in the sense of minimizing

the misclassi�cation error); see Devroye et al. (1996; Sec. 25.9). In fact, an interesting

counter-example is given in Theorem 25.9 of the cited monograph, where it is shown that

the optimal bandwidth based on the MISE yields a rather poor misclassi�cation error. As

argued in Chapter 25 of the cited monograph, the optimal bandwidth hopt is the one that

minimizes the error Ln(b	n), which is unfortunately always unknown, as is the overall error,

E[Ln(b	n)]; see Devroye et al. (1996; Sec. 25.1). Additionally, Hall and Kang (2005) noted

that for kernel-based classi�cation with univariate distributions and just two classes, the op-

timal bandwidth can be di�erent for each class and its asymptotic magnitude can vary from

terms of order O(n�1=5) to O(n�1=9) depending on the conditions imposed on the relationship

between higher order derivatives of the marginal densities. Furthermore, their results show

that in general there are no closed form expression for any one of the bandwidths. These

di�culties are further compounded by the fact that �nding a data-dependent bandwidth

ĥopt which is in some sense close to hopt does not necessarily imply the closeness of the corre-

sponding misclassi�cation errors. Since, in classi�cation, consistency is often the minimum

requirement for any classi�er, ĥopt must be chosen in such a way that the resulting classi�er

will be consistent (either weakly or strongly); see Devroye et al. (1996; p. 424). To that

end, a number of methods have been proposed in the literature for �nding data-dependent

bandwidths that yield the minimum requirements; see Devroye et al. (1996; Ch. 25).

4 Numerical results

Here, we carry out some numerical studies in order to assess the performance of the following

estimators in both classi�cation and regression setups: (i) the estimator bmn(x) de�ned via

(9), (ii) the estimator bmLS(x) de�ned by (11), and (iii) the complete case estimator emn(x)

in (4) that discards all of the incomplete covariates. Our examples show that the proposed

estimators can perform well in the sense of having lower error rates.
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Example (A) [Simulated data.]

In what follows, we consider three di�erent models to generate our data from. These are of

the form

Y = mk(X) + �; k = 1; 2; 3; where � � N(0; 0:5); and � is independent of X:

Here X = (X1; X2)
0 in Model (I) and X = (X1; X2; X3; X4)

0 for Models (II) and (III), where

m1(X) = X1X2 +X2
2 Model (I)

m2(X) = � sin(2X1) +X2
2 +X3 � exp(�X4) Model (II)

m3(X) = X1 + (2X2 � 1)2 +
sin(2�X3)

2� sin(2�X3)
+ sin(2�X4) + 2 cos(2�X4) Model (III)

+ 3 sin2(2�X4) + 4 cos2(2�X4):

In all the above models, X has a multivariate normal distribution with mean zero and a

covariance matrix whose (ij)-th component is equal to 2�ji�jj, i; j � 1. Next a sample of

sizes n=150 was drawn from each of these models. In passing we also note that models 2

and 3 are similar to those of Meier et al. (2009), where as Model (I) is essentially a toy

example. As for the missing covariates, in Model (I) the variable X2 is allowed to be missing

at random according to the logistic selection probability

�(X1; Y ) := Pf� = 1jX1; Y g = exp(a0 + a1X1 + a2Y )=[1 + exp(a0 + a1X1 + a2Y )];

with (a0; a1; a2) = (1; 0:2;�0:5). However, in models II and III, both X3 and X4 are allowed

to be missing at random according to the logistic selection probability

�(X1; X2; Y ) = exp(b0 + b1X1 + b2X2 + b3Y )=[1 + exp(b0 + b1X1 + b2X2 + b3Y )];

where (b0; b1; b2; b3) is equal to (0:1;�0:2; 1; 0:2) in Model (II) and it is (0:8; 0:2; 0:2;�0:1) in

Model (III). Our choice of the numerical values of the coe�cients (a0; a1; a2) and (b0; b1; b2; b3)

yield 50% missing data (approximately) for each case. Next, the cross-validation approach of

Racine and Li (2004), which is available from the `R' package \np" (see Racine and Hay�eld

2008), was employed to compute the kernel estimator of the selection probabilities in (7).

Similarly, to �nd the least squares estimators of the parameters of the logistic selection

probabilities, we employed the nonlinear least squares package in `R' called \nls2". To

construct the histogram regression estimators bmn(x), bmLS(x), and emn(x), the leave-one-out

cross-validation was used to select the cube length, bn (see (2)), from the equally-spaced grid

12



f0:05; 0:10; : : : ; 0:95; 1:00g that minimized the empirical mean-squared error. Our initial pilot

study shows that increasing the upper limit of the grid from 1.00 to values as large as 2 or

even 3 does not change the results. Finally, the empirical Lp errors (p = 1; 2) were computed

for each method. The entire numerical work above was repeated 300 times, each time using

a sample of size n=150. Rows 1, 2, and 3 of Table 1 summarize the average empirical Lp

errors (p = 1; 2), over 300 runs, along with their standard errors (in parentheses) for the case

of logistic missingness mechanism.

Table 1 goes here.

Rows 1, 2, and 3 of Table 1 show that the estimators bmn(x) and bmLS(x) both have the

ability to outperform the estimator emn(x) which uses the complete cases only. Additionally,

a comparison of rows 2 and 3 shows that bmLS(x) that uses the least-squares estimator of

the selection probabilities has lower error rates than bmn(x) which uses kernel regression to

estimate the selection probabilities. This is to be expected because we are assuming that

we know the exact functional form of the underlying selection probability (which is logistic

here).

In addition to the logistic selection probabilities discussed above, we have also considered

some highly nonlinear trigonometric functions. More speci�cally, in Model (I), once again we

allowed X2 to be missing at random. However, instead of logistic, we consider the nonlinear

selection probability

�(X1; Y ) := Pf� = 1jX1; Y g = j cos(exp(0:6Y )� 0:1 sin(�2X1Y + Y 2))j:

Similarly, in models (II) and (III), once again X3 and X4 may be missing at random; the

MAR selection probability is taken to be

�(X1; X2; Y ) := Pf� = 1jX1; X2; Y g = 0:8 j cos(X1 +X2 � Y � 2 sin(X1X2Y ))j:

These selection probabilities yield approximately 50% missing data in each of the 3 models.

The corresponding results based on 300 Monte Carlo runs appear in rows 4, 5, and 6 of

Table 1. These rows show that the estimator bmn(x) continues to have lower error rates

than the complete case estimator emn(x). However, the estimator bmLS(x) fails to outperformemn(x) because of the obvious fact that the selection probabilities are no longer logistic (they

are trigonometric) and thus bmLS(x) is not even consistent. The reason for including this

13



comparison here is that, in practice, many practitioners tend to assume the popular logistic

selection probability when, in fact, it does not hold. Rows numbered 7, 8, and 9 in Table

1 correspond to the case where the covariates are missing completely at random (MCAR)

with

�(x; y) := Pf� = 1jX = x; Y = yg = Pf� = 1g = 0:5

for all three models. As rows 7, 8, and 9 show, although bmn(x) can typically perform

better than bmLS(x), none of the estimators is uniformly better than the other ones. This is

not surprising because, under the MCAR assumption, even the estimator emn(x) is strongly

convergent.

Example (B) [Real dataset: Pima Indian Diabetes and classi�cation.]

This data set involves 768 patients, 268 of whom have \tested positively for diabetes", which

are labeled as being in class 1, and the remaining 500 patients are in class 0. There are also

eight numeric-valued covariates measured on each patient. A full description of this data set

can be found at the University of California Irvine, repository of machine learning databases.

A close examination of this data set shows that many of the variables are reported to be

zero, some of which may be viewed as missing. Here, we focus on one dominant missing

pattern where the variables Triceps skin fold thickness and 2-Hour serum insulin are, jointly,

reported to be zero for 227 patients. Here, we consider the classi�cation of a patients diabetes

status, i.e., class 0 or class 1, based on the available covariates. The proposed classi�er used

is of the form b	n(x), de�ned via (14) and (13), where the estimated selection probabilityb�(�; �) in (13) can be either (8) or (10). More speci�cally, depending of whether (8) or (10)

is used to estimate �(�; �), the proposed histogram classi�er will be denoted by b	n(x) andb	LS(x), respectively. The complete case classi�er will be denoted by e	n(x). To estimate the

misclassi�cation error of various classi�ers, two di�erent procedures are employed: (i) the

resubstitution method, also called the apparent error rate, i.e., the approach based on the

error committed on the data itself, and (ii) the leave-one-out cross-validation method. The

results are summarized in Table 2.

Table 2 goes here.

Table 2 shows that the resubstitution-based estimates of the error rates are slightly lower

than those based on cross-validation. This is not surprising since the resubstitution estimates
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tend to be optimistically biased (they uses the same data set that was employed to construct

the classi�ers).

15



5 Proofs

To prove our results, we �rst state a number of lemmas.

Lemma 1 [Pollard (1984).] Let Z1; : : : ;Zn be iid Rd-valued random vectors. Let F be a

class of measurable functions g : Rd ! [0; B]; B <1. Then, for any n � 1 and any � > 0,

P

(
sup
f2F

����� 1n
nX

j=1

f(Zj)� E[f(Z)]

����� > �

)
� 8E

�
N1

�
�=8;F ; (Zj)

n
j=1

��
e�n�

2=(128B2) :

For more on Lemma 1 and its proof one may refer, for example, to Pollard (1984, p. 25) or

Gy�or� et al. (2002, p. 136).

Lemma 2 Let Pn = fAn1; An2; : : :g be a cubic partition of Rd. Let (X1; Y1); : : : ; (Xn; Yn) be

n iid Rd � [�L;L]-valued random vectors where 0 < L < 1. Let m(x) = E(Y jX = x) be

the regression function and put

m�
n(x) =

Pn
j=1 YjI fXj 2 An(x)g

n�(An(x))
; (15)

where An(x) denotes the unique cell of the partition that contains the point x, and where

�(An(x)) = P fX 2 An(x)g. Then, under conditions (A1) and (A2), for every � > 0, there

is a n0 > 0 such that for all n > n0

P

�Z ��m(x)�m�
n(x)

���(dx) > �

�
� exp(�n�2=(32L2)):

The proof of this lemma can be found, for example, in Gy�or� et al. (2002, p. 463).

Lemma 3 Let the iid random pairs (Uj; Yj); j = 1; : : : ; n and the kernel K (with the smooth-

ing parameter hn) be as in (8). De�ne S(Uj; Yj) := f(Uj)PfY = YjjYjg�(Uj; Yj) andbS(Uj; Yj) := (n � 1)�1h�dn
Pn

k=1;6=j �kIfYk = YjgK ((Uk �Uj)=hn). Then, under the condi-

tions of Theorem 1, jS(Uj; Yj) � E[bS(Uj; Yj)jUj; Yj]j
a.s.

� Chn, where the constant C > 0

does not depend on n.

The proof of Lemma 3 is similar to that of Mojirsheibani (2012, Lemma 3) and will not be

given here.
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Lemma 4 Let mn be as in (5) and suppose that conditions (A1) and (A2) hold. If Y is

bounded then, for every � > 0, there is an n0 > 0 such that for all n > n0,

P

�Z ��mn(x)�m(x)
���(dx) > �

�
� P

n
L
��m1;n(X)� 1

�� > �

2

o
+ P

n��m2;n(X)� E(Y jX)
�� > �

2

o
� 4 exp(�n�2�2min=512L

2) ;

where m1;n and m2;n are as in (6) and � is the probability measure of X.

PROOF OF LEMMA 4

Let m1;n and m2;n be as in (6). Also, let L <1 be the upper bound on jY j and observe that

jmn(X)�m(X)j =

����m2;n(X)

m1;n(X)
�
m(X)

1

���� = ����(m2;n(X)�m(X))�
m2;n(X)

m1;n(X)
(m1;n(X)� 1)

����
a.s.
� L jm1;n(X)� 1j+ jm2;n(X)� E(Y jX)j

a.s.
= L

����m1;n(X)� E

�
�

�(U; Y )

���X�����+ ����m2;n(X)� E

�
�Y

�(U; Y )

���X����� ;
where we have used the fact that

��m2;n(X)

m1;n(X)

�� �a.s. L. Therefore,Z ��mn(x)�m(x)
���(dx) �

Z ����m2;n(x)� E

�
�Y

�(U; Y )

���X = x

������(dx)
+ L

Z ����m1;n(x)� E

�
�

�(U; Y )

���X = x

������(dx)
:= I1;n + II1;n (16)

To deal with the term I1;n, �rst de�ne

m�
2;n(x) =

nX
j=1

�jYj
�(Uj; Yj)

I fXj 2 An(x)g =n�(An(x))

and note that

I1;n �

Z ��m2;n(x)�m�
2;n(x)

���(dx) + Z ����m�
2;n(x)� E

�
�Y

�(U; Y )
jX = x

������(dx): (17)
But by Lemma 2, for every � > 0, and n large enough,

P

�Z ����m�
2;n(x)� E

�
�Y

�(U; Y )
jX = x

������(dx) > �

4

�
� exp(�n(��min)

2=512L2) : (18)

As for the term
R ��m2;n(x)�m�

2;n(x)
���(dx) in (17), �rst note that��m2;n(x)�m�

2;n(x)
��
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=

�����
Pn

j=1
�jYj

�(Uj ;Yj)
I fXj 2 An(x)gPn

j=1 I fXj 2 An(x)g
�

Pn
j=1

�jYj
�(Uj ;Yj)

I fXj 2 An(x)g

n�(An(x))

�����
� L

nX
j=1

�j
�(Uj; Yj)

I fXj 2 An(x)g

����� 1Pn
j=1 IfXj 2 An(x)g

�
1

n�(An(x))

�����
�

L

�min

�����1�
Pn

j=1 IfXj 2 An(x)g

n�(An(x))

����� : (19)

But the term
Pn

j=1 IfXj 2 An(x)g=n�(An(x)) that appears in (19) is just a special case of

m�
n(x) given by (15) corresponding to the situation where Yj's and Y are all equal to 1 (with

probability one). Therefore, once again by Lemma 2, for every � > 0 (and n large enough),

P

�Z ��m2;n(x)�m�
2;n(x)

���(dx) > �

4

�
� P

(
L

�min

Z �����1�
Pn

j=1 IfXj 2 An(x)g

n�(An(x))

������(dx) > �

4

)
� exp

�
�n(��min)

2=521L2
�
:

Now this last bound together with (18) imply that

P fI1;n > �=2g � 2 exp
�
�n(��min)

2=512L2
�
: (20)

Next, to deal with the term II1;n in (16), de�ne

m�
1;n(x) =

nX
j=1

�j
�(Uj; Yj)

I fXj 2 An(x)g =n�(An(x))

and observe that

II1;n � L

Z ��m1;n(x)�m�
1;n(x)

���(dx) + L

Z ����m�
1;n(x)� E

�
�

�(U; Y )
jX = x

������(dx): (21)
Now, by Lemma 2, for every � > 0, and n large enough,

P

�
L

Z ����m�
1;n(x)� E

�
�

�(U; Y )
jX = x

������(dx) > �

4

�
� exp(�n(��min)

2=512L2) : (22)

To deal with the term L
R ��m1;n(x)�m�

1;n(x)
���(dx) in (21), �rst note that

L
��m1;n(x)�m�

1;n(x)
��

= L

�����
Pn

j=1
�j

�(Uj ;Yj)
I fXj 2 An(x)gPn

j=1 I fXj 2 An(x)g
�

Pn
j=1

�j
�(Uj ;Yj)

I fXj 2 An(x)g

n�(An(x))

�����
� L

nX
j=1

�j
�(Uj; Yj)

I fXj 2 An(x)g

����� 1Pn
j=1 IfXj 2 An(x)g

�
1

n�(An(x))

�����
�

L

�min

�����1�
Pn

j=1 IfXj 2 An(x)g

n�(An(x))

����� :
18



Thus, by Lemma 2, one has (for n large enough)

P

�
L

Z ��m1;n(x)�m�
1;n(x)

���(dx) > �

4

�
� P

(
L

�min

Z �����1�
Pn

j=1 IfXj 2 An(x)g

n�(An(x))

������(dx) > �

4

)
� exp

�
�n(��min)

2=512L2
�
: (23)

Therefore, in view of (22) and (23), one �nds P fII1;n > �=2g � 2 exp (�n(��min)
2=(512L2)) :

This fact together with (20) yields

P

�Z ��mn(x)�m(x)
���(dx) > �

�
� P

n
I1;n >

�

2

o
+ P

n
II1;n >

�

2

o
� 4 exp

�
�n(��min)

2=512L2
�
;

which completes the proof of Lemma 4.

2

PROOF OF THEOREM 1

Consider the case where b�(Uj; Yj) is taken to be the estimator in (8). Let

bm1;n(x) =

Pn
j=1

�j
b�(Uj ;Yj)

I fXi 2 An(x)gPn
j=1 I fXj 2 An(x)g

and bm2;n(x) =

Pn
j=1

�jYj
b�(Uj ;Yj)

I fXi 2 An(x)gPn
j=1 I fXj 2 An(x)g

:

Then bmn(x) in (9) can be written as bmn(x) =
bm2;n(x)

bm1;n(x)
. Furthermoe, it is straightforward to

see that

jbmn(x)�m(x)j =

���� bm2;n(x)bm1;n(x)
�
m(x)

1

���� = ����� bm2;n(x)bm1;n(x)
(bm1;n(x)� 1) + (jbmn(x)�m(x))

����
� L jbm1;n(x)� 1j+ jbm2;n(x)� E(Y jX = x)j

� L jbm1;n(x)�m1;n(x)j+ jbm2;n(x)�m2;n(x)j+ L jm1;n(x)� 1j

+
��m2;n(x)� E(Y

��X = x)
��

= �1(x) + �2(x) + �3(x) + �4(x) (24)

where m1;n(x) and m2;n(x) are as in (6). But by Lemma 4, one �nds

P

�Z
�3(x)�(dx) >

�

4

�
+ P

�Z
�4(x)�(dx) >

�

4

�
� 4 exp

�
�n(��min)

2=2048L2
�
:
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To deal with the term 42(x) in (24), �rst observe that

�2(x) =

�����
Pn

j=1
�j

b�(Uj ;Yj)
YjI fXj 2 An(x)gPn

j=1 I fXj 2 An(x)g
�

Pn
j=1

�j
�(Uj ;Yj)

YjI fXj 2 An(x)gPn
j=1 I fXj 2 An(x)g

�����
�

������
Pn

j=1

�
1

b�(Uj ;Yj)
� 1

�(Uj ;Yj)

�
�jYjI fXj 2 An(x)gPn

j=1 I fXj 2 An(x)g

������
�

����
Pn

j=1

�
1

b�(Uj ;Yj)
� 1

�(Uj ;Yj)

�
�jYjI fXj 2 An(x)gPn

j=1 I fXj 2 An(x)g

�

Pn
j=1

�
1

b�(Uj ;Yj)
� 1

�(Uj ;Yj)

�
�jYjI fXj 2 An(x)g

n�(An(x))

����
+

������
Pn

j=1

�
1

b�(Uj ;Yj)
� 1

�(Uj ;Yj)

�
�jYjI fXj 2 An(x)g

n�(An(x))

������
:= I2;n(x) + II2;n(x): (25)

However, we can write

I2;n(x) =

�����
nX

j=1

�
1b�(Uj; Yj)

�
1

�(Uj; Yj)

�
�jYjI fXj 2 An(x)g

�

 
1Pn

j=1 I fXj 2 An(x)g
�

1

n�(An(x))

!�����
� L max

1�j�n

���� 1b�(Uj; Yj)
�

1

�(Uj; Yj)

�����
Pn

j=1 I fXj 2 An(x)gPn
j=1 I fXj 2 An(x)g

�����1�
Pn

j=1 I fXj 2 An(x)g

n�(An(x))

�����
:= I3;n(x) :

Furthermore, the term II2;n(x) in (25) satis�es

II2;n(x) �
L

n

nX
j=1

���� 1b�(Uj; Yj)
�

1

�(Uj; Yj)

����� I fXj 2 An(x)g

�(An(x))
:= II3;n(x) :

Hence, for every � > 0 we have:

P

�Z
�2(x)�(dx) >

�

4

�
� P

�Z
I3;n(x)�(dx) >

�

8

�
+ P

�Z
II3;n(x)�(dx) >

�

8

�
:= I4;n + II4;n : (26)
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To deal with the term I4;n in (26), we start by writing

I4n � P

("
max
1�j�n

���� 1b�(Uj; Yj)
�

1

�(Uj; Yj)

���� Z
�����1�

Pn
j=1 I fXj 2 An(x)g

n�(An(x))

������(dx) > �

8L

#
n\

j=1

hb�(Uj; Yj) �
�min

2

i)
+ P

(
n[

j=1

hb�(Uj; Yj) <
�min

2

i)

� P

(
2

�min

Z �����1�
Pn

j=1 I fXj 2 An(x)g

n�(An(x))

������(dx) > �

8L

)
+

nX
j=1

P
nb�(Uj; Yj) <

�min

2

o
:= I5;n + II5;n : (27)

But by Lemma 2, and for n large enough,

I5;n = P

(Z �����1�
Pn

j=1 I fXj 2 An(x)g

n�(An(x))

������(dx) > ��min

16L

)
� exp(�n(��min)

2=8192L2)

As for the term II5;n in (27), let f be the density of U and put R(Uj; Yj) = f(Uj)PfY =

YjjYjg. Also take bR(Uj; Yj) = 1
n�1

1
hdn

Pn
k=16=j IfYk = YjgK(

Uk�Uj

hn
). Furthermore, letbS(Uj; Yj) and S(Uj; Yj) be as in Lemma 3, and observe that,

jb�(Uj; Yj)� �(Uj; Yj)j =

����� bS(Uj; Yj)bR(Uj; Yj)
�

S(Uj; Yj)

R(Uj; Yj)

�����
=

������bS(Uj; Yj)= bR(Uj; Yj)

R(Uj; Yj)

� bR(Uj; Yj)�R(Uj; Yj)
�
+
bS(Uj; Yj)� S(Uj; Yj)

R(Uj; Yj)

�����
�

����� bR(Uj; Yj)�R(Uj; Yj)

R(Uj; Yj)

�����+
����� bS(Uj; Yj)� S(Uj; Yj)

R(Uj; Yj)

����� : (28)

We also note that R(Uj; Yj) � miny2Y PfY = ygfmin, where fmin := infu f(u) > 0 by

condition (A6). Now, put p := miny2Y PfY = yg and observe that

P
nb�(Uj; Yj) <

�min

2

o
� P

n
jb�(Uj; Yj)� �(Uj; Yj)j >

�min

2

o
� P

n���bS(Uj; Yj)� S(Uj; Yj)
��� > p�min

4
fmin

o
+ P

n��� bR(Uj; Yj)�R(Uj; Yj)
��� > p�min

4
fmin

o
:= I6;j;n + II6;j;n : (29)
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But for n large enough, Lemma 3 implies that

I6;j;n � P
n���bS(Uj; Yj)� E

hbS(Uj; Yj)
��Uj; Yj

i���+ ���E hbS(Uj; Yj)
��Uj; Yj

i
� S(Uj; Yj)

��� > p�min

4
fmin

o
� P

n���bS(Uj; Yj)� E
hbS(Uj; Yj)

��Uj; Yj

i��� > p�min

8
fmin

o
= E

�
P

����bS(Uj; Yj)� E
hbS(Uj; Yj)

��Uj; Yj

i��� > p�min

8
fmin

����Uj; Yj

��
= E

"
P

(
1

n� 1

�����
nX

k=1;6=j

Tk(Uj; Yj)

����� > p�min

8
fmin

����Uj; Yj

)#
;

where

Tk(Uj; Yj) =
1

hdn

�
�kIfYk = YjgK

�
Uk �Uj

hn

�
� E

�
�kIfYk = YjgK

�
Uk �Uj

hn

� ����Uj; Yj

��
:

However, conditional on (Uj; Yj), the terms Tk(Uj; Yj); k = 1; � � � ; n; k 6= j, are indepen-

dent, zero mean random variables, bounded by �h�dn jjKjj1 and h�dn jjKjj1. Also, we note

that Var(Tk(Uj; Yj)jUj; Yj) = E(T 2
k (Uj; Yj)

��Uj; Yj) � jjKjj1 jjf jj1h
�d
n . Therefore if we let

D1 = p�minfmin=8 then by Bernestein's inequality,

P

(
1

n� 1

�����
nX

k=1;6=j

Tk(Uj; Yj)

����� > D1

����Uj; Yj

)
� 2 exp

�
�(n� 1)hdnD

2
1

2 jjKjj1 jjf jj1 +D1

�
; (30)

which implies that

I6;j;n � 2 exp

�
�(n� 1)hdnD

2
1

2 jjKjj1 jjf jj1 +D1

�
: (31)

Since bR(Uj; Yj) andR(Uj; Yj) are just the special cases of bS(Uj; Yj) and S(Uj; Yj) in Lemma

3 with � = 1, one �nds that for n large enough,

II6;j;n � 2 exp

�
�(n� 1)hdnD

2
1

2 jjKjj1 jjf jj1 +D1

�
: (32)

Now, let D2 = D2
1=[2 jjKjj1 jjf jj1 + D1] and observe that in view of (19) and (21) II5;n �Pn

j=1(I6;j;n + II6;j;n) � 4n expf�D2nh
d
ng. Therefore, the term I4;n in (26) can be bounded

according to

I4;n � I5;n + II5;n � exp
�
�n(��min)

2=8192L2
	
+ 4n exp

�
�D2nh

d
n

	
: (33)

As for the term II4;n in (26), it can be written as

II4;n = P

(
L

n

nX
j=1

���� 1b�(Uj; Yj)
�

1

�(Uj; Yj)

���� Z I fXj 2 An(x)g

�(An(x))
�(dx) >

�

8

)

= P

(
L

n

nX
j=1

���� 1b�(Uj; Yj)
�

1

�(Uj; Yj)

���� > �

8

)
;
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where we have used the fact that
R IfXj2An(x)g

�(An(x))
�(dx)

a.s.
= 1 (see for example, Gy�or� et al.

(2002, p. 462)). Consequently,

II4;n = P

(
1

n

nX
j=1

1b�(Uj; Yj)

����1� b�(Uj; Yj)

�(Uj; Yj)

���� > �

8L

)

� P

("
1

n

nX
j=1

1b�(Uj; Yj)

����b�(Uj; Yj)

�(Uj; Yj)
� 1

���� > �

8L

#\ n\
j=1

nb�(Uj; Yj) �
�min

2

o)

+ P

(
n[

j=1

nb�(Uj; Yj) <
�min

2

o)

�
nX

j=1

P

�
2

�2min

jb�(U; Yj)� �(Uj; Yj)j �
�

8L

�
+

nX
j=1

P
nb�(Uj; Yj) <

�min

2

o
:= I7;n + II7;n : (34)

Since II7;n = II5;n, one has II7;n � 4n expf�D2nh
d
ng. To handle the term I7;n, we note that

since

jb�(U; Yj)� �(Uj; Yj)j �

����� bR(Uj; Yj)�R(Uj; Yj)

R(Uj; Yj)

�����+
����� bS(Uj; Yj)� S(Uj; Yj)

R(Uj; Yj)

����� ;
one �nds

P

�
jb�(Uj; Yj)� �(Uj; Yj)j >

�2min�

16L

�
� P

����bS(Uj; Yj)� S(Uj; Yj)
��� > pfmin�

2
min�

32L

�
+ P

���� bR(Uj; Yj)�R(Uj; Yj)
��� > pfmin�

2
min�

32L

�
:= I8;j;n + II8;j;n (35)

Now Lemma 3 and the arguments that lead to (30) yield

I8;j;n � 2 exp

�
�(n� 1)hdnD

2
3�

2

2 jjKjj1 jjf jj1 +D3�

�
;

where D3 = pfmin�
2
min=(32L). Since jb�(Uj; Yj)� �(Uj; Yj)j � 2, one only needs to con-

sider the case where � < 32L=�2min in the probability statement on the far left side of (35).

Therefore, for n large enough, one has

I8;j;n � 2 exp

�
�(n� 1)hdnD

2
3�

2

2 jjKjj1 jjf jj1 + (D332L=�2min)

�
:

One can also show that for n larger enough,

II8;j;n � 2 exp

�
�(n� 1)hdnD

2
3�

2

2 jjKjj1 jjf jj1 + (D332L=�2min)

�
:
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Therefore, I7;n �
Pn

j=1(I8;j;n + II8;j;n) � 4n expf�nD44
d
n�

2g; where we can take D4 =

D2
3=[2 jjKjj1 jjf jj1 + (D332L=�

2
min)]. Putting all of the above together, one has

P

�Z
�2(x)�(dx)) >

�

4

�
� I4;n + II4;n � (I5;n + II5;n) + (I7;n + II7;n)

� expf�nD0�
2g+ 8n expf�nD2h

d
ng+ 4n expf�nD4h

d
n�

2g; (36)

where D0 = �2min=(8192L
2), and D2 and D4 are as stated before. Similarly, for n large

enough, we �nd

P

�Z
�1(x)�(dx) >

�

4

�
� expf�nD0�

2g+ 8n expf�nD2h
d
ng+ 4n expf�nD4h

d
n�

2g :

Therefore,

P

�Z
jbmn(x)�m(x)j�(dx) > �

�
� P

�Z
�1(x)�(dx) >

�

4

�
+ P

�Z
�2(x)�(dx) >

�

4

�
+ P

�Z
�3(x)�(dx) >

�

4

�
+ P

�Z
�4(x)�(dx) >

�

4

�
� 4 expf�C1n�

2g+ 2 expf�D0n�
2g+ 16n expf�D2nh

d
ng+ 8n expf�D4nh

d
n�

2g

� 6 expf�min(C1; D0)n�
2g+ 16n expf�D2nh

d
ng+ 8n expf�D4nh

d
n�

2g;

where C1 = �2min=(2048L
2). This completes the proof of Theorem 1.

2

PROOF OF THEOREM 2

De�ne

bmL1(x) =

Pn
j=1

�j
b�LS(Uj ;Yj)

I fXj 2 An(x)gPn
j=1 I fXj 2 An(x)g

:

and

bmL2(x) =

Pn
j=1

�jYj
b�LS(Uj ;Yj)

I fXj 2 An(x)gPn
j=1 I fXj 2 An(x)g

:

Then, as in the proof of Theorem 1, we can write

jbmLS(x)�m(x)j � L jbmL1(x)�m1;n(x)j+ L jm1;n(x)� 1j

+ jbmL2(x)�m2;n(x)j+ jm2;n(x)� E(Y jX = x)j

:= �5(x) + �6(x) + �7(x) + �8(x)
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where m1;n(x) and m2;n(x) are as in (6). Now by Lemma 4, we have

P

�Z
�6(x)�(dx) >

�

4

�
+ P

�Z
�8(x)�(dx) >

�

4

�
� 4 exp(�n(��min)

2=2048L2) :

Next, we note that

�7(x) =

�����
Pn

j=1
�jYj

b�LS(Uj ;Yj)
I fXj 2 An(x)gPn

j=1 I fXj 2 An(x)g
�

Pn
j=1

�jYj
�(Uj ;Yj)

I fXj 2 An(x)gPn
j=1 I fXj 2 An(x)g

�����
�

�����
Pn

j=1
�jYj

b�LS(Uj ;Yj)

h
b�LS(Uj ;Yj)

�(Uj ;Yj)
� 1
i
I fXj 2 An(x)gPn

j=1 I fXj 2 An(x)g

�

Pn
j=1

�jYj
b�LS(Uj ;Yj)

h
b�LS(Uj ;Yj)

�(Uj ;Yj)
� 1
i
I fXj 2 An(x)g

n�(An(x))

�����
+

������
Pn

j=1
�jYj

b�LS(Uj ;Yj)

h
b�LS(Uj ;Yj)

�(Uj ;Yj)
� 1
i
I fXj 2 An(x)g

n�(An(x))

������
:= I9;n(x) + II9;n(x) : (37)

Since
��[b�LS(Uj; Yj)=�(Uj; Yj)]� 1

��=b�LS(Uj; Yj) � 2=�min, one �nds that

I9;n(x) �

����� 2L�min

"Pn
j=1 I fXj 2 An(x)gPn
j=1 I fXj 2 An(x)g

�

Pn
j=1 I fXj 2 An(x)g

n�(An(x))

#�����
=

����� 2L�min

"
1�

Pn
j=1 I fXj 2 An(x)g

n�(An(x))

#����� : (38)

Furthermore, with I9;n(x) and II9;n(x) as in (37), one has

P

�Z
�7(x)�(dx) >

�

4

�
� P

�Z
I9;n(x)�(dx) >

�

8

�
+ P

�Z
II9;n(x)�(dx) >

�

8

�
:= I10;n + II10;n : (39)

Now, by (38) and Lemma 2, for every � > 0 and n larger enough,

I10;n � P

(
2L

�min

Z �����1�
Pn

j=1 I fXj 2 An(x)g

n�(An(x))

������(dx) > �

8

)
� exp(�n(��min)

2=(8192L2)) :
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To deal with the term II10;n in (39), �rst observe that,Z
II9;n(x)�(dx) =

L

n

nX
j=1

1b�LS(Uj; Yj)

����b�LS(Uj; Yj)

�(Uj; Yj)
� 1

���� Z I fXj 2 An(x)g

�(An(x))
�(dx)

a.s.
=

L

n

nX
j=1

1b�LS(Uj; Yj)

����b�LS(Uj; Yj)

�(Uj; Yj)
� 1

����
�

L

n�2min

nX
j=1

jb�LS(Uj; Yj)� �(U; Yj)j ;

where, once again, we have used the fact that
R IfXj2An(x)g

�(An(x))
�(dx)

a.s.
= 1. Therefore,

II10;n � P

(
L

n�2min

nX
j=1

jb�LS(Uj; Yj)� �(Uj; Yj)j >
�

8

)

= P

(
1

n

nX
j=1

jb�LS(Uj; Yj)� �(Uj; Yj)j � E
�
jb�LS(U1; Y1)� �(U1; Y1)j

��Dn

�
+ E

�
jb�LS(U1; Y1)� �(U1; Y1)j

��Dn

�
>
�2min�

8L

)

� P

(
sup
�02P

����� 1n
nX

j=1

����0

(Uj; Yj)� �(Uj; Yj)
���� E

�����0

(U1; Y1)� �(U1; Y1)
��������� > �2min�

16L

)

+ P

�
E
�
jb�LS(U1; Y1)� �(U1; Y1)j

��Dn

�
>
�2min�

16L

�
:= I11;n + II11;n:

Consequently, by Lemma 1, one �nds

I11;n � 8E

�
N1

�
�2min�

128L
;P; (Uj; Yj)

n
j=1

��
exp(�C6n�

2) ;

where C6 = �4min=(2
15L2). To deal with the term II11;n, put Sn(�) = n�1

Pn
j=1(�(Uj; Yj) �

�j)
2, and note that by the Cauchy-Schwarz inequality

II11;n � P

�
E
h
jb�LS(U1; Y1)� �(U1; Y1)j

2
���Dn

i
>
�4min�

2

256L2

�
(40)

= P

�
E
h
jb�LS(U1; Y1)� �1j

2
���Dn

i
� E j�(U1; Y1)� �1j

2 >
�4min�

2

256L2

�
� P

(
2 sup
�02P

����Sn(�0

)� E
����0

(U1; Y1)� �1

���2���� > �4min�
2

256L2

)
(41)
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Here, (41) follows because

E
h
jb�LS(U1; Y1)� �1j

2
���Dn

i
� E j�(U1; Y1)� �1j

2

= E
h
jb�LS(U1; Y1)� �1j

2
���Dn

i
� inf

�02P
E j�0(U1; Y1)� �1j

2

= sup
�02P

n
E
h
jb�LS(U1; Y1)� �1j

2
���Dn

i
� Sn(b�LS) + Sn(b�LS)� Sn(�

0) + Sn(�
0)� E j�0(U1; Y1)� �1j

2
o

� 2 sup
�02P

���Sn(�0)� E j�0(U1; Y1)� �1j
2
��� ;

where we have used the fact that Sn(b�LS) � Sn(�
0) � 0 by the de�nition of b�LS. Therefore,

by Lemma 1,

II11;n � 8E

�
N1

�
�4min�

2

4096L
;P; (Uj; Yj)

n
j=1

��
exp(�C7n�

4) ; (42)

where C7 = �8min=(2
25L4). Hence, one has

P

�Z
�7(x)�(dx) >

�

4

�
� I10;n + II10;n

� exp(�C5n�
2) + I11;n + II11;n

� exp(�C5n�
2) + 8E

�
N1

�
�2min�

128L
;P; (Uj; Yj)

n
j=1

��
exp(�C6n�

2)

+ 8E

�
N1

�
�4min�

2

4096L
;P; (Uj; Yj)

n
j=1

��
exp(�C7n�

4)

where C5 = �2min=(2
12L2), C6 = �4min=(2

15L2), and C7 = �8min=(2
25L4). Furthermore, using

arguments similar to those in the derivation of (37) - (42), one can show that

P

�Z
�5(x)�(dx) >

�

4

�
� exp(�C5n�

2) + 8E

�
N1

�
��2min

128L
;P; (Uj; Yj)

n
j=1

��
exp(�C6n�

2)

+ 8E

�
N1

�
�2�4min

4096L
;P; (Uj; Yj)

n
j=1

��
exp(�C7n�

4)
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Therefore,

P

�Z
jbmLS(x)�m(x)j�(dx) > �

�
� P

�Z
�5(x)�(dx) >

�

4

�
+ P

�Z
�6(x)�(dx) >

�

4

�
+ P

�Z
�7(x)�(dx) >

�

4

�
+ P

�Z
�8(x)�(dx) >

�

4

�
� 4 exp(�C1n�

2) + 2 exp(�C5n�
2) + 16E

�
N1

�
��2min

128L
;P; (Uj; Yj)

n
j=1

��
exp(�C6n�

2)

+ 16E

�
N1

�
�2�4min

4096L
;P; (Uj; Yj)

n
j=1

��
exp(�C7n�

4) ;

where C1 = �2min=(2
11L2), and C5; C6; and C7 are as above.

2

PROOF OF THEOREM 3

Standard arguments (such as those in the proof of Theorem 1 of Devroye and Gy�or� (1985,

p. 254)) can be used to show that for every � > 0,

P
n
Ln(b	n)� L(	B) > �

o
� P

(
MX
i=1

Z ��Pi(x)� bPi;n(x)���(dx) > "

)

�
MX
i=1

P

�Z ��Pi(x)� bPi;n(x)���(dx) > �

M

�
:

Now, the conditions of the theorem together with the Borel-Cantelli lemma yield the strong

consistency Ln(b	n)!
a.s. L(	B).

2

PROOF OF THEOREM 4

The proof is similar to that for Theorem 3.

2
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Table 1: Empirical errors of histogram regression estimators under various missing probability
mechanism: The results in rows 1, 2, and 3 correspond to logistic selection probabilities, those in
rows 4, 5, and 6 correspond to trigonometric selection probabilities, and those in rows 7, 8, and 9
correspond to MCAR selection probabilities.

Empirical L1 errors Empirical L2 errors
Estimator Model (I) Model (II) Model (III) Model (I) Model (II) Model (III)

1 emn(x) 0.465 0.387 1.082 0.352 0.300 1.932
(0.0063) (0.0098) (0.0219) (0.0073) (0.0120) (0.0493)

2 bmn(x) 0.450 0.375 1.076 0.343 0.286 1.900
(0.0071) (0.0111) (0.0244) (0.0092) (0.0129) (0.0594)

3 bmLS(x) 0.384 0.274 0.978 0.295 0.221 1.793
(0.0086) (0.0119) (0.0260) (0.0128) (0.0166) (0.0685)

4 emn(x) 0.536 0.341 1.083 0.456 0.270 1.916
(0.0078) (0.0101) (0.0203) (0.0086) (0.0142) (0.0529)

5 bmn(x) 0.457 0.275 1.003 0.353 0.261 1.822
(0.0093) (0.0102) (0.0226) (0.0183) (0.0146) (0.0638)

6 bmLS(x) 0.552 0.374 1.113 0.467 0.290 1.968
(0.0079) (0.0097) (0.0200) (0.0097) (0.0135) (0.0504)

7 emn(x) 0.491 0.347 1.098 0.381 0.297 2.098
(0.0072) (0.0105) (0.0211) (0.0082) (0.0121) (0.0531)

8 bmn(x) 0.484 0.325 1.133 0.381 0.291 2.100
(0.0079) (0.0112) (0.0217) (0.0098) (0.0127) (0.0704)

9 bmLS(x) 0.493 0.339 1.137 0.396 0.293 2.105
(0.0071) (0.0098) (0.0199) (0.0084) (0.0123) (0.0532)
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Table 2: Misclassi�cation errors of various classi�ers based on both resubstitution and leave-one-
out cross-validation methods.

Method e	n(x) b	n(x) b	LS(x)

Resubstitution 0.231 0.198 0.192

Cross-validation 0.245 0.207 0.198
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