On histogram-based regression and classification with

incomplete data

Eric Han'! and Majid Mojirsheibani®
Department of Mathematics, California State University Northridge, CA,
91330, USA

Abstract

We consider the problem of nonparametric regression with possibly incomplete co-
variate vectors. The proposed estimators, which are based on histogram methods, are
fully nonparametric and straightforward to implement. The presence of incomplete
covariates is handled by an inverse weighting method, where the weights are estimates
of the conditional probabilities of having incomplete covariate vectors. We also derive
various exponential bounds on the L; norms of our estimators, which can be used to
establish strong consistency results for the corresponding, closely related, problem of
nonparametric classification with missing covariates. As the main focus and appli-
cation of our results, we consider the problem of pattern recognition and statistical
classification in the presence of incomplete covariates and propose histogram classifiers

that are asymptotically optimal.
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1 Introduction

In this article we consider the problem of estimating a regression function where the main
interest and focus is to apply our results to classification problems when the covariates
vectors in the data are not necessarily fully observable. Our proposed approach is based
on local averaging techniques and, in particular, involves histogram estimators. Since the
early 90’s, there has been a growing interest in developing methods to tackle the presence

of incomplete data in estimation and inference. Although the great majority of the existing
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literature deals mainly with missingness in response variables, there have also been several
results dealing with missing covariate components (which is the setup of this paper). These
include Chen et al. (2016) who proposed an estimating equation method for logistic partially
linear models with missing covariates, Liu and Yuan (2016) who considered the estimation of
conditional quantiles with some covariates missing at random, and the results of Lukusa, et
al. (2016) on Poisson regression. Bravo (2015) considered the estimation of a general class of
semi-parametric models where the nonparametric component of the model is computed itera-
tively using local linear estimation. Sinha et al. (2014) proposed semi-parametric estimators
for the parameters in a parametric regression model with missing covariates, and Hu et al.
(2014) considered a two-stage multiple imputation approach for nonparametric estimation
in quantile regression. Guo et al. (2014) considered the estimation of a semi-parametric
multi-index model using a weighted estimating equation approach. Lee, et al. (2012) con-
sidered logistic regression models with missing covariates and outcome. Efromovich (2012)
dealt with adaptive orthogonal series estimators when the regression function belongs to a
Sobolev class. Wu and Wu (2007) studied generalized linear mixed models with missing
covariates. Liang et al. (2004) proposed estimators in partially linear models with missing
covariates, whereas Chen (2004) considered consistent maximum likelihood estimation of the
parameters of a regression function. Earlier results along these lines include Robins, et al.
(1994) as well as Lipsitz and Ibrahim (1996).

Virtually all of the results obtained by these authors are based on the assumption that the
data are missing at random, which is also used in this paper; this assumption will be formally
defined and addressed in the next section. Our results in this paper are fully nonparametric
in that the form of the underlying regression function is completely unknown. Our con-
tributions may be summarized as follows. In Section 2 we propose a histogram estimator
of the regression function that takes into account the fact that some of the covariates are
not fully observable. We also derive exponential bounds on the L; norms of the proposed
estimators; however, our results readily extend to general L, norms. These findings yield
various convergence results (and the strong consistency) of the proposed estimators, but
more importantly, they can be used to perform statistical classification (nonparametrically)
with missing covariates. In fact, in Section 3 we consider the problem of classification and
pattern recognition with incomplete covariates and construct histogram classifiers that are

asymptotically optimal. To assess the finite-sample performance of our proposed estimators



and classifiers, we provide some numerical work in Section 4. All proofs are deferred to

Section 5.

2 Main results

2.1 Histogram estimates of a regression function

Let (X,Y) be a R® x R-valued random vector, where s > 1, and consider the prob-
lem of estimating the regression function m(x) = FE[Y|X = x] based on a random sam-
ple (the data) D, = {(X1,Y1), - ,(X,,Y,)}, where the (X;,Y;)’s are independently and
identically distributed (i.i.d) random vectors with the same distribution as (X,Y’). Let
Pn = {An1, Ana, ...} be a partition of R® into cubes of length b, > 0, i.e., sets of the form
X:Zl [kz-bn, (ki—i-l)bn), where k;’s are integers. For every x € R®, let A, (x) denote the unique
cell of P, that contains the point x. Cubic histogram estimates work by taking the average of
those Y;’s whose corresponding X,’s fall in the cell A, (x), and thus they are local averaging
estimators. More precisely, when the data are fully observable, the histogram estimator of

the regression function m(x) is defined by

_ 2 X € Aux)}
XX e A}

with the convention that 0/0 = 0. As for the performance of the estimator in (1), let u be

M (x) (1)

the probability measure of X. Then, by a classical result of Devroye and Gyorfi (1983), one
has the strong consistency property (in Lo) that lim, o [(m,(x) — m(x))?u(dx) = 0,

under the shrinking cell condition
b, — 0, as n — oo, with nb’ — oo, (2)

and Y is bounded. Gyorfi (1991) also considers a slightly revised version of (1) which is
strongly consistent without any boundedness assumption on the square integrable response
variable; see Gyorfi et al. (2002, Ch. 23) for further detail. In passing we note that the
histogram estimator in (1) is a local averaging estimator in the sense that it is of the form
mp(x) = >0 Whi(x) - Y; with weights W, ;(x) = I{X; € A.(x)}/ > 7 I{X; € A.(x)}.
Such estimators are quite popular in nonparametric estimation and also include the nearest

neighbor as well as kernel estimators.



2.2 Missing covariates

In this section we consider the case where some components of the covariate vector X may be
unavailable (missing). More precisely, for j = 1,...,n, let X'; = (U}, V';) € R where
U; € R¢, d > 1, is always observable, but V; € R?, p > 1, may be missing. Clearly, the
estimator in (1) is no longer available because some of the V,’s may be missing. In order
to revise (1) accordingly, we start by defining the independent Bernoulli random variables
01,...,0p,, where 6; = 1 if V; is not missing, and ¢; = 0 otherwise. Then the data may be

represented by
]D)n = {(Xla}/l)a o 7(Xn>Yn)} = {(UthYL(sl)? o a(Un7Vn;Yn>5n)} .

We also need to take into account the missing probability mechanism (i.e., the selection
property), which is the quantity P{§d = 1|X,Y} = E(6|X,Y). If the missing probabil-
ity mechanism satisfies P {6 =1|X,Y} = P{0 =1} = E(0) then we say V is Missing
Completely at Random (MCAR). However, in practice, the MCAR assumption is rather un-
realistic and restrictive. A more widely used assumption in the literature is the Missingness

at Random (MAR) assumption, which amounts to
P{§=1X,Y}=P{6=1|U,Y}, where X' = (U, V') € R4, (3)

i.e., the probability that V is missing does not depend on V itself. For a detailed account of
these and other missing patterns one can refer, for example, to Little and Rubin (2002). It
is straightforward to see that when the missing probability satisfies the MCAR assumption,
one can just use the complete cases to estimate m(x), where a complete case refers to a fully
observable X; (i.e., when 0, = 1). In other words, in this case the correct estimator is given
by .

iy So BT X € ) "

Zj:l 0;1{X; € An(x)}

To appreciate this, let my ,(x) = Y77, 6,1 {X; € An(x)} /D27 T{X; € An(x)} and g (x)
> Yl {X € Ay(x)} /370, 1 {X; € Au(x)}, with the convention that 0/0 = 0. Then

the simple estimator in (4) can be written as the ratio, ms ,(x)/m1 ,(x). Now, since ma ,(x)

and my ,(x) are just the histogram estimators of E(JY|X = x) and E(6|X = x), respec-
tively, and since E(0Y|X)/E(0]X) = m(X) holds under the MCAR assumption, the ratio
in (4) is indeed a correct estimator of m(x). In fact more is true: it is a simple exercise to

show that in this case, the simple estimator in (4) is strongly consistent in the sense that
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limy, o0 [ (M (x) — m(x))?p(dx) =5 0, under the same conditions that render (1) consis-
tent. Of course, in general, (4) is not the correct estimator of m(x) because the unrealistic
MCAR assumption may not hold in practice. In the next section we will focus on estimators

that relax this assumption.

2.3 The proposed histogram estimator

In this section we propose revised versions of (4) that take into account the MAR assumption.
One common approach to handle the presence of the missing cases is by weighting the
complete cases by the inverse of the probability that V is missing, i.e., 7(U,Y) := P{§ =
1|U, Y} (or its estimator, if the function 7 is unknown). This approach, which is originally
due to Horvitz and Thompson (1952), has been used in the literature on the analysis of
incomplete data extensively. See, for example, Lukusa, et al. (2016) and Robins, et al.
(1994). To motivate our approach, first consider the simple but unrealistic case where the
missing probability function #(U,Y) = P{6 = 1|U,Y} is completely known (as a function

of U and Y). In this case, our proposed estimator of m(x) is

Y o X € Au(x))

7 (x) = i=1 7(U;,Y;) 5
) Z?IWUYI{XGA(X)} ®)

Observe that if we define

o S ) Sl e}

T X e A (x) T T T Y T{X e Au(x))

then (5) can be written as M, (x) = Mo, (x)/ M1 ,(x). But My, and 7, , are the histogram
estimators of E[§Y/7(U,Y)|X] and E[0/7(U,Y)|X], respectively. Furthermore, under the
MAR assumption, E[0Y/7(U,Y)|X] = E(Y|X) and E[0/7(U,Y)|X] = E(1|X) =1. There-
fore, the estimator m,,(x) in (5) can be viewed as the histogram estimator of the regression
function EF(Y|X = x) =: m(x).

In practice, the regression estimator 7, (x) is not available because the function 7(u,y) =
P {5 = 1‘U =uY = y} that appears in (5) is almost always unknown and has to be es-
timated. In what follows, we consider two estimators of 7(u,y); the first one is based on

kernel regression, whereas the second approach is based on the least-squares method.



2.3.1 A local averaging estimator of the selection probability 7(-,-)

Let Z' = (U, Y") and consider the kernel regression estimator of (U}, Y;) = E(5;|U;,Y;),

given by

S SR -
Zk 1,45 (h—nL)

with the convention 0/0 = 0, where the function H : R*"! — R, is the kernel used with

(UJ=YJ) (Zj) =

the smoothing parameter h,, (h, — 0, as n — oc). Here the choice of the kernel is at
the discretion of the practitioner. If YV is a discrete random variable taking values in a set

Y ={y1,v0,...}, we consider the following kernel-type estimator of r,

Shorasy Ol (¥ = VIR
Sy HY = V(O

where K : R? — R, is the kernel with the smoothing parameter h,. Now consider the

(U, Y)) =

Jr

: (8)

following revised version of (5):

Y1 sy Vi X € Au(x)}
Y w15 € Au(x)}

where (U, Y;) can be taken to be either (7) or (8), depending on whether Y has a continuous

M (x) = (9)

or a discrete distribution. To assess the performance of M, (x) in (9), we first need to state

a number of conditions:
(A1) The shrinking cell condition (2) holds, where s = d + p.
(A2) 7y =inf,, 7(u,y) > 0, where 7(u,y) = P{0 =1|{U = u,Y = y}.

(A3) The kernel K is a probability density function and satisfies [ |w;|(w)dw < co,j =
1,---,d, and ||| < co. Furthermore, the smoothing parameter h, satisfies h,, — 0 and

nhd — oo, as n — oo.

(A4) The random vector U has a compactly supported probability density function f(u) =
Zyey pyfy(u) and is bounded away from zero on its support, where p, = P(Y = y), and
fy(u) is the conditional density of U given Y = y. Furthermore, f is uniformly bounded on

its support and its first-order partial derivatives are bounded on the interior of the support.

(A5) The partial derivatives %W(u, y),j =1,---  dexist and are bounded on the compact

support of f, uniformly in u.



Here, condition (A2) essentially states that V can be observed with a non-zero probability for
all u and y. Condition (A3) is not restrictive since the choice of the kernel is at our discretion,
whereas condition (A4) is often imposed in nonparametric regression in order to avoid having
unstable estimates in the tails of the pdf f of U. Condition (A5) is technical. The following
result gives bounds on the performance of the estimator m,, in (9) with 7(U;, Y;) estimated

IRE
via (8).

Theorem 1 Let m, be the estimator defined in (9) with 7(U;,Y;) given by (8). Suppose
that conditions (A1)-(A5) hold and that Y is a bounded random variable. Then for every
e > 0, there is an ng > 0 such that for all n > ng,

P {/ | (%) — m(x) | p(dx) > e} < 6exp(—cine®) + 16n exp(—conh?) + 8nexp(—csnhle?)
where cq, co, and c3 are positive constants not depending on n or .

Remark 1 It is straightforward to note that Theorem 1 continues to hold for general L,

norms (1 < p < o0) of My (x) with the a bound of the form

P {/ |7 (x) — m(x)‘pu(dx) > e} < 6exp(—cikine®) + 16n exp(—cznh?)
+ 8nexp(—csk?nhle?),

where ky = 1/(2L)?~1 and the constants cy,co, and c3 are as in Theorem 1. Therefore, in

wiew of the Borel-Cantelli lemma,
/|T7Ln(x) —m(x)Pu(dx) —%% 0 whenever (nhl) tlogn — 0.

If Y is a continuous random variable then we use (7) for the term 7(Uj, Y;) in the definition
of the estimator m,(x) in (9). In this case the conclusion of Theorem 1 continues to hold
with d replaced by d+ 1 and different constants ¢y, ¢z, and ¢z provided that conditions (A3),
(A4), and (Ab) are slightly revised as follows:

(A3') The kernel % in (7) is a probability density function satisfying [ |w;|H(w)dw < oo,

j=1,---,d+1,and ||H]||s < co. Furthermore, h, — 0 and nh@*!' — oo, as n — oco.

(A4') The random vector Z' = (U’ Y) has a compactly supported probability density
function, f(z), which is bounded away from zero on its support. Furthermore, f and its first

order partial derivatives are uniformly bounded on the support of f.

(A5') The partial derivatives ;2 (z), j = 1,---,(d + 1), exist and are bounded on the
J

compact support of f, uniformly in z.



Remark 2 When U is high-dimensional, one has to find ways to counter the curse of di-
menstonality from which a kernel estimator can suffer in the sense of having slower rates of
convergence. Here, PCA appears to be a popular dimension reduction technique for classifi-

cation with high-dimensional covariates.

2.3.2 The least-squares estimator of the selection probability =(-,-)

Our second approach to estimate the selection probability 7(U,Y) := P{§ = 1|U,Y} =
E(8]U,Y) uses the least-squares method. More specifically, suppose that the function 7
belongs to a given known class & of functions of the form 7 : R? x R — [fin, 1], where

Tmin = infy, 7(w,y), as before. Then the least-squares estimator of 7 is given by
1 n
TLs = argmin — 0, —m(U,;,Y;))", 10
i = g 336, 7(U5, 1) (10
with the corresponding least-squares based estimator of m(x) given by
5;Y;
2 e mstory L X € An(x)}
Z? 1W[{X €A, (X)}

In order to study the performance of m;s(x) in (11), we need the following standard no-

(11)

myps(x) =

tation and terminology from the empirical process theory (see, for example, Pollard (1984,
p. 25), or Gyorfi, et al (2002, p. 135)). For fix points (uy,41), -, (U, yn) in R? x R, let
M (e, Z, (u;,y;)7,) be the e-covering number of the class & with respect to the empirical
Ly norm on the points (u1,41),- -+, (Wn, Y ), 1.€., N7 (6, 2, (u;, yj)}?:l) is the cardinality of
the smallest subclass of functions {7?1, sy REX R = [, 1]} with the property that
for every m € & and every ¢ > 0, one has minlngN%Z?ﬂ |7 (uj,y,) — m(uj,y,)| < e

Then, with this notation, we have the following result on the performance of i,

Theorem 2 Let in,s be as in (11). Suppose that conditions (A1) and (A2) hold and Y is
bounded. Then, for every e > 0, there is an ng > 0 such that for all n > ny,

P [ 1o = mio) ) >

< 6exp(—Cine’) + 16E [N (are, 2, (U;, Y;)0_, )| exp(—Cgne?)
+16E [N (az €, 2, (U;, Y;)1 )] exp(—Crne’)

where ay, as, C1,Cq, and C7 are positive constants not depending on n or €.
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Remark 3 Theorem 2 can be used to establish the strong consistency of m.s: Let C, =
min (ale, a262). If n tlog (E [ 1 (C’E, 2, (U, Yj)?zl)}) — 0, for all e > 0, then the bound
in Theorem 2 together with the Borel-Cantelli lemma yield the almost-sure convergence result
[ 1Ms(x) — m(x)|p(dx) —%5 0. In fact, as in Remark 1, it is straightforward to see that
the above results can be readily extended to general L, norms [ |,s(x) —m(x)[Pu(dx) of the

estimator in (11) for all 1 < p < occ.

3 Applications to problems in pattern recognition and

classification

In this section we consider an application of the results developed in the previous section to
the problem of pattern recognition and statistical classification. More specifically, let (X, Y")
be an R®* x {1,..., M}-valued random pair. The problem of statistical classification involves
the prediction of the class variable, Y, based on the covariate vector X. In practice, one
wants to find a classifier, i.e., a function of the form ¥ : R® — {1,..., M}, for which the
probability of misclassification, L(¥) := P{W¥(X) # Y}, is as small as possible. To present
the optimal classifier, let Py(x) := P{Y = k | X = x} be the class conditional probability
corresponding to class k € {1,2,...,M}. The classifier with the lowest misclassification
probability is given by the function Wp(x) which assigns x to class £ € {1,2,..., M} if
maxi<;<y P;(x) = Pi(x). More specifically, ¥ (x) satisfies Py, x)(x) = max; P;(x); see, for
example, Devroye and Gyorfi (1985, p. 253). The theoretically best classifier ¥p is almost
always unknown because it depends on the underlying distribution of (X,Y") which is un-

known and, therefore, one has to use the data to construct a classifier.

Given a random sample D,, = {(Xl, Y1), .., (X, Yn)}, one tries to construct a sample based
classifier ¥, in such a way that its misclasfication error, L,(¥,) = P{U,(X) #Y | D, }, is
in some sense as small as possible. Let L(¥p) = P{¥5(X) # Y }. The classifier ¥,, is said
to be strongly consistent if L, (¥,,) =25 L(¥p). If the convergence holds in probability, ¥,
is said to be weakly consistent. We also note that, by the dominated convergence theorem,
if P{U,(X) # Y|D,} —*% L(¥p) then P{¥,(X) # Y} — L(¥p). To estimate the
Bayes classifier ¥ g, we consider a plug-in estimator that works by replacing each conditional
probability Py (x) := P{Y =k | X = x} by an estimator (function of the data) Py ,(x). The



resulting classifier, ¥,,, is defined by

P\I/n(X),n(X) = 121;2(\/[ Pk,n(X)7 (12)

ie., W,(x) assigns x to class k € {1,2,..., M} if maxi<j<p Pipn(x) = Ppp(x). To study
the performance of ¥, (x) defined via (12), we first state the following standard result (see,
for example, Devroye and Gyorfi, (1985, p. 254)): 0 < L, (¥,) — L(¥g) < 3V [|Pi(x) —
P, ,(x)|pu(dx). Therefore, the plug-in estimator of Up is strongly consistent whenever [ |P;(x)—
P, ., (x)|pu(dx) =5 0, for each i = 1,..., M. Here, P, ,(x) is just an estimator of the regres-
sion function P;(x) = E[I{Y =i} | X = x|, except that in our case there are missing covari-
ates in X. More specifically, let X' = (U’, V'), where U € R? is always observable, but V €
R? may be missing. We can represent the data by D, = {(Uy, V1,Y1,61), ..., (Un, Vo, Yo, 60) },

where 0; = 0 if V; is missing, and 6; = 1 otherwise. Therefore, based on our earlier results,

we can use the following histogram estimator of Py(x),k=1,..., M,
n 0;-I{Y; =k}
~ i1 WI {X; € A, (x)}
Ponlx) = i 7 (13)
"o —L ___{X, €A,
Z]:l ;T\(U], }/]) { J S (X)}

where one can take 7 to be either the kernel-type estimator in (8), or, if it is known that
m € & (where & is a known class), then one may use the least-square estimator given by

(10). Now, in view of (12), we propose the classifier ¥, which is defined via

~

P\T/n(x),n(x) = 1gllca§>]{\/[ Pk,n(x)7 (14)

ie., (I\fn(x) assigns x to class k € {1,2,..., M} if max;<i<m ]3m(x) = ﬁkn(x) As for the
asymptotic performance of this classifier, we have the following strong consistency results.

The first result corresponds to the case where 7 is estimated by the kernel estimator in (8).

Theorem 3 Let U, be the histogram classifier defined via (14) in conjunction with (13)
and (8). If (nh®)"tlogn — 0, as n — oo, then under conditions (A1)-(A5) one has
Lo (T,) —5 L(Up), where Ly(V,) = P{¥,(X) # Y|D,}.

If the selection 7 is estimated by the least-squares estimator (10), we have the following

corresponding strong consistency result.
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Theorem 4 Let U, be the histogram classifier defined via (14) in conjunction with (13) and
(10). If Ve > 0, n~tlog (E [ 1 (c, Z,(U;, Y]);T:l)}) — 0, as n — oo, then under conditions
(A1) and (A2) one has L,(V,) —%5 L(Ug), where L,(¥,) = P{¥,(X) # Y|D,}.

In passing we note that regarding the optimal bandwidths for Theorem 3, it is well-understood
that for kernel-based classifiers the optimal bandwidth that minimizes quantities such as
the MISE or ISE is not necessarily optimal in classification (in the sense of minimizing
the misclassification error); see Devroye et al. (1996; Sec.25.9). In fact, an interesting
counter-example is given in Theorem 25.9 of the cited monograph, where it is shown that
the optimal bandwidth based on the MISE yields a rather poor misclassification error. As
argued in Chapter 25 of the cited monograph, the optimal bandwidth h,,, is the one that
minimizes the error Ln(\ffn), which is unfortunately always unknown, as is the overall error,
E[L,(0,)]; see Devroye et al. (1996; Sec. 25.1). Additionally, Hall and Kang (2005) noted
that for kernel-based classification with univariate distributions and just two classes, the op-
timal bandwidth can be different for each class and its asymptotic magnitude can vary from
terms of order O(n~'/%) to O(n~'/?) depending on the conditions imposed on the relationship
between higher order derivatives of the marginal densities. Furthermore, their results show
that in general there are no closed form expression for any one of the bandwidths. These
difficulties are further compounded by the fact that finding a data-dependent bandwidth
iLom which is in some sense close to h,,, does not necessarily imply the closeness of the corre-
sponding misclassification errors. Since, in classification, consistency is often the minimum
requirement for any classifier, ﬁopt must be chosen in such a way that the resulting classifier
will be consistent (either weakly or strongly); see Devroye et al. (1996; p.424). To that
end, a number of methods have been proposed in the literature for finding data-dependent

bandwidths that yield the minimum requirements; see Devroye et al. (1996; Ch. 25).

4 Numerical results

Here, we carry out some numerical studies in order to assess the performance of the following
estimators in both classification and regression setups: (i) the estimator m,(x) defined via
(9), (ii) the estimator ms(x) defined by (11), and (iii) the complete case estimator m,,(x)
in (4) that discards all of the incomplete covariates. Our examples show that the proposed

estimators can perform well in the sense of having lower error rates.
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Example (A) [Simulated data.]
In what follows, we consider three different models to generate our data from. These are of

the form
Y =mp(X)+e¢, k=1,2,3, where e ~ N(0,0.5), and € is independent of X.

Here X = (X, X3)' in Model (I) and X = (X, X, X35, Xy4)' for Models (II) and (III), where

mi(X) = X, Xy + X2 Model (1)
me(X) = —sin(2X)) + X7 + X3 — exp(—X,) Model (1I)
sin(27 X3)

2 — sin(27X3)

+ 3sin® (27 Xy) + 4 cos® (27 Xy).

m3(X) = X+ (22X, —1)*+ + sin(27Xy) + 2 cos(2m X y) Model (I1I1)

In all the above models, X has a multivariate normal distribution with mean zero and a
covariance matrix whose (ij)-th component is equal to 2-1=il i 5 > 1. Next a sample of
sizes n=150 was drawn from each of these models. In passing we also note that models 2
and 3 are similar to those of Meier et al. (2009), where as Model (I) is essentially a toy
example. As for the missing covariates, in Model (I) the variable X5 is allowed to be missing

at random according to the logistic selection probability
7T(X1, Y) = P{(S = 1’X1, Y} = exp(ao -+ Clle —+ G,QY)/[l -+ exp(ao + Clle -+ CZQY)],

with (ag, a1, as) = (1,0.2,—0.5). However, in models IT and III, both X3 and X, are allowed

to be missing at random according to the logistic selection probability
(X1, X0, Y) = exp(bg + b1 X1 + b Xo + b3Y) /[1 + exp(by + b1 X1 + b2 X5 + b3Y)],

where (bg, by, be, b3) is equal to (0.1,—-0.2,1,0.2) in Model (II) and it is (0.8,0.2,0.2, —0.1) in
Model (IIT). Our choice of the numerical values of the coefficients (ag, a1, as) and (bg, by, ba, b3)
yield 50% missing data (approximately) for each case. Next, the cross-validation approach of
Racine and Li (2004), which is available from the ‘R’ package “np” (see Racine and Hayfield
2008), was employed to compute the kernel estimator of the selection probabilities in (7).
Similarly, to find the least squares estimators of the parameters of the logistic selection
probabilities, we employed the nonlinear least squares package in ‘R’ called “nls2”. To
construct the histogram regression estimators ., (x), ms(x), and m,(x), the leave-one-out

cross-validation was used to select the cube length, b, (see (2)), from the equally-spaced grid
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{0.05,0.10,...,0.95,1.00} that minimized the empirical mean-squared error. Our initial pilot
study shows that increasing the upper limit of the grid from 1.00 to values as large as 2 or
even 3 does not change the results. Finally, the empirical L, errors (p = 1, 2) were computed
for each method. The entire numerical work above was repeated 300 times, each time using
a sample of size n=150. Rows 1, 2, and 3 of Table 1 summarize the average empirical L,
errors (p = 1,2), over 300 runs, along with their standard errors (in parentheses) for the case

of logistic missingness mechanism.
Table 1 goes here.

Rows 1, 2, and 3 of Table 1 show that the estimators m,(x) and m.s(x) both have the
ability to outperform the estimator m,(x) which uses the complete cases only. Additionally,
a comparison of rows 2 and 3 shows that m,5(x) that uses the least-squares estimator of
the selection probabilities has lower error rates than m,(x) which uses kernel regression to
estimate the selection probabilities. This is to be expected because we are assuming that

we know the exact functional form of the underlying selection probability (which is logistic
here).

In addition to the logistic selection probabilities discussed above, we have also considered
some highly nonlinear trigonometric functions. More specifically, in Model (I), once again we
allowed X5 to be missing at random. However, instead of logistic, we consider the nonlinear

selection probability
m(X,Y) = P{§ = 1|X},Y} = | cos(exp(0.6Y) — 0.1sin(—2X,Y + Y?))|.

Similarly, in models (II) and (III), once again X5 and X, may be missing at random; the
MAR selection probability is taken to be

77'()(17)(27 Y) = P{(S = ]_|4X7174X727 Y} =0.8 | COS(Xl + X2 -Y - 2S1H(X1X2Y))|

These selection probabilities yield approximately 50% missing data in each of the 3 models.
The corresponding results based on 300 Monte Carlo runs appear in rows 4, 5, and 6 of
Table 1. These rows show that the estimator m,,(x) continues to have lower error rates
than the complete case estimator m,,(x). However, the estimator m,s(x) fails to outperform
my,(x) because of the obvious fact that the selection probabilities are no longer logistic (they

are trigonometric) and thus m.s(x) is not even consistent. The reason for including this

13



comparison here is that, in practice, many practitioners tend to assume the popular logistic
selection probability when, in fact, it does not hold. Rows numbered 7, 8, and 9 in Table
1 correspond to the case where the covariates are missing completely at random (MCAR)
with

7(x,y) =P{0=1X=x,Y =y} =P{0 =1} =05

for all three models. As rows 7, 8, and 9 show, although m,(x) can typically perform
better than im;s(x), none of the estimators is uniformly better than the other ones. This is
not surprising because, under the MCAR assumption, even the estimator m,(x) is strongly

convergent.

Example (B) [Real dataset: Pima Indian Diabetes and classification.]

This data set involves 768 patients, 268 of whom have “tested positively for diabetes”, which
are labeled as being in class 1, and the remaining 500 patients are in class 0. There are also
eight numeric-valued covariates measured on each patient. A full description of this data set
can be found at the University of California Irvine, repository of machine learning databases.
A close examination of this data set shows that many of the variables are reported to be
zero, some of which may be viewed as missing. Here, we focus on one dominant missing
pattern where the variables Triceps skin fold thickness and 2-Hour serum insulin are, jointly,
reported to be zero for 227 patients. Here, we consider the classification of a patients diabetes
status, i.e., class 0 or class 1, based on the available covariates. The proposed classifier used
is of the form W, (x), defined via (14) and (13), where the estimated selection probability
7(-,-) in (13) can be either (8) or (10). More specifically, depending of whether (8) or (10)
is used to estimate 7(-,-), the proposed histogram classifier will be denoted by \/I}n(x) and
U, 4(x), respectively. The complete case classifier will be denoted by W, (x). To estimate the
misclassification error of various classifiers, two different procedures are employed: (i) the
resubstitution method, also called the apparent error rate, i.e., the approach based on the
error committed on the data itself, and (ii) the leave-one-out cross-validation method. The

results are summarized in Table 2.
Table 2 goes here.
Table 2 shows that the resubstitution-based estimates of the error rates are slightly lower

than those based on cross-validation. This is not surprising since the resubstitution estimates

14



tend to be optimistically biased (they uses the same data set that was employed to construct

the classifiers).
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5 Proofs

To prove our results, we first state a number of lemmas.

Lemma 1 [Pollard (1984).] Let Z,,...,Z, be iid R%-valued random vectors. Let F be a
class of measurable functions g : R4 — [0, B], B < co. Then, for any n > 1 and any € > 0,

P < sup

feFr

For more on Lemma 1 and its proof one may refer, for example, to Pollard (1984, p. 25) or
Gyorfi et al. (2002, p. 136).

n

3" () - Elf(2)

> e} < 8E [Ny (¢/8, F, (Z;)_,)] ene/288)

Lemma 2 Let P, = { A1, Apo, ...} be a cubic partition of R%. Let (X1,Y1),...,(X,,Yy) be
n iid R? x [—L, L]-valued random vectors where 0 < L < co. Let m(x) = E(Y|X = x) be
the regression function and put
2= VX € An(x)}
(A (%)) ’
where A, (x) denotes the unique cell of the partition that contains the point x, and where
(A, (x)) = P{X € A,(x)}. Then, under conditions (A1) and (A2), for every e > 0, there
15 a ng > 0 such that for all n > ny

my, (x) (15)

P {/ Im(x) — m} (x)| p(dx) > e} < exp(—ne®/(32L7)).
The proof of this lemma can be found, for example, in Gyérfi et al. (2002, p. 463).

Lemma 3 Let the iid random pairs (U}, Y;), 7 =1,...,n and the kernel K (with the smooth-
ing parameter hy) be as in (8). Define S(U;,Y;) = f(U;)P{Y = Y;|Y;}n(U;,Y;) and

-~

S(U;,Y;) == (n—1)""h,¢ > ke Ol {Ye = YK (U — U;y) /hy). Then, under the condi-

. a.s.
tions of Theorem 1, |S(U;,Y;) — E[S(U;,Y;)|U,;,Y;]| < Ch,, where the constant C > 0

does not depend on n.

The proof of Lemma 3 is similar to that of Mojirsheibani (2012, Lemma 3) and will not be

given here.
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Lemma 4 Let m, be as in (5) and suppose that conditions (A1) and (A2) hold. If Y is
bounded then, for every e > 0, there is an ng > 0 such that for all n > ny,

P [ 1m0 - moluti) > e}

where Ty, and Ma,, are as in (6) and [ is the probability measure of X.

IN

< dexp(—ne*n2;, /512107,

PROOF OF LEMMA 4
Let ™y, and My, be as in (6). Also, let L < oo be the upper bound on |Y'| and observe that

Man(X)

) = 0] = [Tt Oy 30) - 0(00) - T2 () - )
L LX) = 1] + [iaa(X) — BY|X)|

a0 (G )| et = ()

where we have used the fact that ‘%‘ <a8- [, Therefore,

[ 1t = mlutin) < et — £ (s x =0 [t
+ L/ ‘mm(x) 5 (mf, 73 ‘x - x> ‘ 1(dx)

= Il,n + ]ILn (16)

To deal with the term I ,,, first define

ZHCEDY %f 1%, € 4,(x)} /np(Ay(x))

and note that

o [ 00 5,00 () + [ g0~ B (=g 5 =) [ulax). (17

But by Lemma 2, for every € > 0, and n large enough,

P g0 = B (=2 % = x )| jldx) > b < exp(—n(emm)?/51212). (18)
{/‘ <W(U,Y) 4

As for the term [ |[mgp(x) — m3, (x)| p(dx) in (17), first note that
|72 (%) = m3 , (%)

17

P{Llma(X) =1 > S} + P {[ma(X) - BX)| > 5



X MW, A X €A} Y i (X € Aux))
L {X € 4,(x)) nu(An<x>>
d; 1 1
: L; (UM)”X R Sy s SR nu(An<x>>‘
L Z?:l I{X; € An(x)}
S| () (19)

But the term 7

1 [{Xj € An(x)}/nM(A
m (x) given by (15) corresponding to the situation where Y;’s and Y are all equal to 1 (with

»(x)) that appears in (19) is just a special case of

probability one). Therefore, once again by Lemma 2, for every € > 0 (and n large enough),

— m

P { / g (x)

i) > 5} < P{
< exp

Now this last bound together with (18) imply that

Next, to deal with t

and observe that

I, <L / 7210(%)

P{lLi, >¢/2} <2exp (-

he term II, ,, in (16), define

(0] () + L [

L Yo H{Xj € Au(x)}
- G| >
(—n(ewmin)2/521L2) )

(€T min)* /512L%) . (20)

—F = T{X; € Au(x)} np(A

)
U,

Now, by Lemma 2, for every € > 0, and n large enough,

P {L/ ‘m’{,n(x)

To deal with the term L [ | ,(x) — m],(x

§
(U,Y)

e (o)

,T

n(x))

m,(x) — E (W'X - x) ‘ u(dx). (21)

p(dx) > i} < exp(—n(emmin)?/512L%) . (22)

)| 1(dx) in (21), first note that

L [ (%) = m7 (%)
| e K € A} S sy T € Al >}‘
2 =1 I{X € An(x)} nu(An(x))
5; ] |
< L;—(UJ,Y])[{X € An(x)} S X € An(x)} B nM(An(X))‘
L > H{X; € An(x)}
Toin | (A, (%))

18

R

}



Thus, by Lemma 2, one has (for n large enough)

PLL [ a0 - mi i) >

r S X, € 4,0} :
= {wmm / Ay | Z}
< exp (—n(emmin)?/512L7) . (23)

Therefore, in view of (22) and (23), one finds P {Il, ,, > €/2} < 2exp (—n(emmin)?/(512L%)) .
This fact together with (20) yields

P{/W@&%ﬂﬂ@@@@>“}

which completes the proof of Lemma 4.

A

€ €
P{tin> 5+ P{la > 5
17>2 + 17>2

< 4dexp (—n(eﬂmin)2/512[f2) ’

PROOF OF THEOREM 1

Consider the case where 7(Uj;,Y;) is taken to be the estimator in (8). Let

o D (e ) S il (X € )
T X € Aux)} T S TX € A
Then m,(x) in (9) can be written as M, (x) = Zf:gig Furthermoe, it is straightforward to

see that
) )] = (22 B ) < 1) 4 (1) - m(x)
< Llimia(x) = Pﬂmm() E(Y[X = x)|
< L (%) — T (3)] s (3) — Ty (%) + L [710(30) — 1]
+‘m2n(x) E(Y|X =x)|
= A+ Aalx) + Ag(x) + As(x) (24)

where 7 ,(x) and 7,4, (x) are as in (6). But by Lemma 4, one finds

P{/AxﬂMd }+P{/A4 }<4mp( n(€Mmin)?/2048L%) .
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To deal with the term As(x) in (24), first observe that
n d; n d;
Y smay X € An(x)} X ey Yl AKX € An(x)}
2 1{X; € An(x)} 2 1{X; € An(x)}

St (st — o) 9 1% € Au()

AQ (X) =

< n
B Zj:l I{X; € Ap(x)}
- =1 (%(Ui,yj) - W(Ui,yj)> 0; ;1 {X; € An(x)}

i X € A, (x)}
2 =1 (%(Ui,yj) - W(U;Yj)) 6, Y;1{X; € An(X)}‘

np( Ay (x))
2 (%(Ui,yj) - ﬂ(Ui,yj)) 0; ;1 {X; € Ap(x)}
np(An(x))
= Ihn(x) + 1L, (x). (25)

However, we can write

i 1 1
Z <7T\(U Y) o 7T(U Y)) 6J}/JI{XJ S An(x)}

j=1 32 =7 32 =7

IQ,n (X) =

1 1
: (z;;f{xj € 4,0} nu(An<x>>)

St 1 | S X e A} | X X € A,)
T s w(U YY) w(Ug Y] X X € Au(x)} ni(An(x))
= I3,(x).
Furthermore, the term II,,,(x) in (25) satisfies
L& 1 1 I{X; € A,(x)}
I, ,(x) < — — — X J =153 ,(x).
) 0 2 0, AU ) )

=1
Hence, for every € > (0 we have:

P{/AQ(X)M(dX) > i} < P{/Igm(x),u(dx) > g} +P{/u3,n(x)u(dx) > }

= 14,71 + ]I4,n . <26>

oo m
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To deal with the term I, in (26), we start by writing

I4n S P {

I /1_2;11{XjeAn<x>}
(U,.Y,)  7(0,.7) (A, (x))

N [Fw, v > ] }+P{O U < W;ﬁn]}

pi(dx) > S_L]

Jj=1 j=1
2 anl I{Xj € An(x)} € - ~ T
< P 1— =4 — P LY min
= :[5777, + ]I5,n . (27)

But by Lemma 2, and for n large enough,

As for the term .5, in (27), let f be the density of U and put R(U,,Y;) = f(U;)P{Y =

[IRY
Y;[Y;}b Also take R(U;,Y;) = Lk S0 H{Vi = YiIK(Z5-2). Furthermore, let
§(Uj, Y;) and S(U;,Y;) be as in Lemma 3, and observe that,

21 1{X; € An(x)}
np(An (%))

€M min

_ min { _ 2 2
1 p(dx) > 16 } < exp(—n(€mmin)~/8192L7)

7(U;,Y5) = (U, ¥5)| =

Jr =7

~S(U;,Y)/R(U.Y)) (4 S(U;.Y)) - S(U,.Y))
| Ry (RO RO S g
R(U;,Y;) — R(U,,Y)) S(U,,Y;) — S(U,, Y;)
=T RO R(T, 7)) (28)

We also note that R(U;,Y;) > mingey P{Y = y} fmin, where fui, = infy f(u) > 0 by
condition (A6). Now, put p := min,ey P{Y =y} and observe that

P{rU,Y) <5} < P{R(U,Y) - (U, 1) > Tt

VRE 9

< P {‘§(Uj,yg-) ~S(U,LY)| > Z%fmm}
P { ‘ﬁ(Uj, Y;) - R(U,,Y;)| > Z%fmm}
= :[67j7n + ]I6,j,n . (29)
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But for n large enough, Lemma 3 implies that

Iﬁ,j,n < {‘ J7 J [S(Uﬁy) Jo J”‘"‘E[ J> J ‘Uw ]] _S(UWYJ)‘ pﬂmmfmm}
< p{J50. - 50,1310, > )

sl e

2779 ]’J

k=1,#j

fmln

where

70 35) = i ot = b (22 ) - (s = v (245 ) o, )]

However, conditional on (Uj,Y)), the terms 7,(U;,Y;), k = 1,---,n, k # j, are indepen-

I
o

pﬂ-mln

fmlIl

dent, zero mean random variables, bounded by —h7?¢||K||s and h;?||K||s. Also, we note
that Var(7;(U;,Y;)|[U;,Y;) = B(TA(U;,Y;)|U;,Y)) < [IK]loo |[f]]achy®. Therefore if we let
Dy = pTmin fmin/8 then by Bernestein’s inequality,

{ S TU,Y, UM}S%XP{ —(n—1)hLD? } (50)

k=1,#j 2{|Klloc | flloo + D1

which implies that

)| > Dy

(31)

(0 — hD3
o S 205 {2 Ko 11711+ Dl}
Since ﬁ(Uj, Y;) and R(Uj, Y;) are just the special cases of S(U U,,Y;) and S(U;,Y;) in Lemma
3 with 6 = 1, one finds that for n large enough,
—(n— 1)hiD?

Base <200 st T - .
Now, let Dy = D?/[2||K||o || f||so + D1] and observe that in view of (19) and (21) I, <
> i1 + Mo jp) < 4n exp{—Dqnhl}. Therefore, the term I, in (26) can be bounded

according to

L, <L, + X, < exp{—n(eTmn)’/8192L%} + dnexp {—Dynhl} . (33)

As for the term I, in (26), it can be written as

) LY 1 1 I{X; e An)} v €
L, = P{n Jz: (UJ)Y}) m(U;,Y;) / p1(An(x)) i) = 8}
1 1

7(U;,Y))  w(U;Y))

> €
8 ’
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where we have used the fact that [ %u(dx) %2 1 (see for example, Gyorfi et al.
(2002, p. 462)). Consequently,

~| "

1< 1 7(U;,Y;) € - i
< P{|I=S = 23> & {AU,Y>mm}
: { 0 27U, Y) | (U, 1)) ‘ 8L] MO FU =75
+P{U {#7(U;, 1)) < ”m}}
j=1
= 2 € u - T min
< S r{ S Ruy —ru 2 e e (R < T
j=1 min j=1
— I?,n+]I7,n~ (34)
Since I, = 15, one has W7, < 4nexp{—Dynhl}. To handle the term I;,, we note that
since
R R(U,,Y;) — R(U,;, V)| |S(U,,Y;) — 85U, Y;)
UY) — (U, V)| < g X i X i ¥ RS
|7T( ’ ]) ﬂ—( 70 ])|— R(U],Y]) R(UJ,Y]) )
one finds
~ Thin€ a P fmin Tin €
P |7T(Uj7Yj)—7T(Uj7Yj)|>16—L < P ‘S(Uj,Yj)—S(Uj,Yj) > T39L
= pfminﬂ—Q‘ €
P ‘ U. V) — R(U.. Y, £ min M min®
+ {R( 7 .7) R( 7 ]) > 32_[/ }
=Igjn + Mg jn (35)

Now Lemma 3 and the arguments that lead to (30) yield

o -1 th2 2

2{|Kllo0 [ lloc + Dse
where D3 = pfminm2;,/(32L). Since |7(U;,Y;) — 7(U;,Y;

RS/ ;,Y;)] < 2, one only needs to con-
sider the case where € < 32L/m2, in the probability statement on the far left side of (35).

Therefore, for n large enough, one has

L. <9 —(n — 1)hiD3é?
n < 2ex
PA2TK e 11 f1loe + (D332L/72,,)

min

One can also show that for n larger enough,

_ -1 thQ 2
]I8,j,n S 2exp{ (n ) n 36 )}

2|Klloo [|f oo + (Ds32L /7

min
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Therefore, I7, < Z?Zl(]:g’j’n + Ig;,) < 4nexp{—nDdle’}, where we can take Dy =
D2/12|IK]|so [|flloo + (D332L/72,,)]. Putting all of the above together, one has

P a0 > < Ta + T < (T +10) + (G + T,
< exp{—nDye’} + 8nexp{—nDyhl} + 4nexp{—nDh%e?}, (36)

where Dy = 72,,/(8192L?), and D, and D, are as stated before. Similarly, for n large
enough, we find

p { / Ay () pldx) >

Therefore,

P [ o) = () () > e

< P{/Al(X)u(dX) > i} +P{/A2(X)“(dx) g i}
+P{/A3(x)u(d><) > i} +P{/A4(X)M(dx) > i}

< dexp{—Cine’} + 2exp{—Dyne’} + 16n exp{—Dynh?} + 8nexp{—Dynh’e*}
< 6 exp{—min(Cy, Dy)ne’} + 16n exp{—Dynhl} 4 8n exp{—Dnh%e*},

} < exp{—nDye®} + 8nexp{—nDyh?} + 4n exp{—nDsh%e*} .

N

where C} = 72, /(2048 L?). This completes the proof of Theorem 1.

PROOF OF THEOREM 2

Define . N
i (x0) = Y i1 w1 € An(x)}
> 1{X; € Au(x)}
and

n ;Y
Yjm msory 1XG € An(x)}
Y X € An(x)}
Then, as in the proof of Theorem 1, we can write

Mo (x) =

s (x) = m(x)[ < L (x) = 0 (x)] + L [0 (%) = 1
+ M2 (%) = o, (X)| + [0 (x) = E(V[X = x)|
= A5(X) + Ag(X) + A7(X) + Ag(X)
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where T ,(x) and s, (x) are as in (6). Now by Lemma 4, we have

P {/Aﬁ(x)u(d } + P {/Ag } < 4exp(—n(emmin)’/2048L%) .
Next, we note that
e = | Bt (X € 460} T il (X, € Aux)
A Y TH{Xj € An(x)} Y TH{Xj € 4u(x)}

n 6;Y; #rs(U;,Y5)
S sty [ 1] 11X € A, (%)}

S T{X; € Au(x)}
Zﬁi _ 5;Y; |:%LS(U]'7YJ) _ 1] ]{Xj c An(X)}

IN

=1 7s(Uy,Y;) | 7(Uj,Y5)
np(An(x))
n 9;Y; Trs(Uj,Yj
21 Fa(0,,77) [ w0 1} I{X; € Au(x)}
(A (x))
= Igyn(X) + ]Ig’n(X) . (37)
Since H?ﬁs 5, Y;)/m(U;,Y;) 1‘/7@8 U,,Y;) < 2/7Tmin, one finds that
2L -Z?:1 I{X; € Au(x)} 5 T{X; € Au(x)}
Ig,n(X) S n -
Tmin | D51 1{X; € An(x)} np(An(x))
[ "I{X,; € A, (x
L[ ST e ]| )
Tmin nu(An(x))

Furthermore, with Iy, (x) and Iy, (x) as in (37), one has

P{/A7(X)u(dX) S i} < P{/Igm(x),u(dx) > g} +P{/]Ig,n(X)M(dx) > é}

= Loy + gy, - (39)

Now, by (38) and Lemma 2, for every ¢ > 0 and n larger enough,

> T T{X € An(x)
Lo < {ﬂ'mm/‘ nu(An(x))

p(dx) > %} < exp(—n(emmn)?/(8192L2)) .
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To deal with the term I, in (39), first observe that,

7. (U, Y, 1, <4 ()}
w(U,.7)) ‘1‘/ ) M)

/Hg’”(x)ﬂ(dx) - %Zﬁs([}j Yj)

n

as. L 1 %LS(UWY})_l‘
N3 ms(Uj, Y5) (U;,Y5)
L <.
< D [Rs(U;Y) = m(U,Y))]
min ;1

I{X;eAn(x)

o) bi(dx) ®2 1. Therefore,

where, once again, we have used the fact that [

n

L ~ €
]Ilov" < P{nﬂ.Q Z‘WLS(UJJY}) (UJJY3)|>g}

min j=1

n

B {EZ‘WLS i Y;) — (U, Y5)| = (‘%LS(UbYl) —7(U, 1) ‘D")

2.
B (‘%LS(UDK) - W(Ul,}/l” ‘ID)”) > 7T-Inlne}

8L
1
< P« sup |—
rep | T

~ 7Tr2nin6
PP {E (17.x(U1, ) - w(Uy, )| [B,) > T }

7 (U;,Y;) = 7(Uy,Y3)| —

7

_E (‘w’(Ul,Yl) — (UL YY)

) > 71—1211in6
16L

= Iy + 1.

Consequently, by Lemma 1, one finds

2 €
< min - 2
I, <8E [ 1 (—128L P, (U;, V)i )] exp(—Cgne”) ,

where Cg = 73,;,/(2'9L?). To deal with the term Iy ,, put S,(7) = n~' 37 (7(U;,Y;) —

R
d;)%, and note that by the Cauchy-Schwarz inequality

o~ 7T;4Ili11€2
]Illm, S P {E |:‘7TLS(U17 1/1) - W(Ula 1/1) 2 ’n:| > 256L2} (40)
o~ ;41111162
= P {E [|7TLS(U1>Y1) — 0 2 Dn] —FE ’7T(U1,Y1) 51’ > 256L2}
, , 2| gl €
< P 2:’1611; Sp(m)—FE ‘77 (U, Y1) = 61| | > 2;&22 (41)
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Here, (41) follows because

E [[#s(U1, Y1) = 01 D] = B |=(U1, Yi) — 6,

= B |[7us(Uy, Y1) - 8,

2 ID)n] —inf E|7(ULY) — 6
ne®
= sup { B [[7o(UL, ) = 61"

]D)n]
T'eP

— S (Fus) + Su(Frs) — Su() + Su() — E |7 (UL, Y1) — 6 }

W(7) = B 7' (U, Y7) — &

< 2 sup
' eP

bl

where we have used the fact that S, (T.s) — Sn(7') < 0 by the definition of 7, s. Therefore,
by Lemma 1,
2

7€
L, <8F [Nl < min

1096 P, (UJ,Y]) )] exp(—Cqne?), (42)

where C; = 78, /(2%5[*). Hence, one has

P {/Aﬂx)u(dx) > i} < Lion + 1o,
< exp(—Csne®) + Iy, + 1y,
2
< exp(—Csne?) + 8E [Nl (—;T;gi, 2, (U, Y))5 )] exp(—Cgne?)

4 2

€
E min
8 [N ! (4096L

Z,(U;, Y])?:l>} exp(—Cqne?)

where C5 = 72, /(212L?), Cs = 7k, /(29L?), and C; = 78, /(2*°L*). Furthermore, using

arguments similar to those in the derivation of (37) - (42), one can show that

P{/A5(x)u(dx)>i} < exp(—Csneé?) + 8E [N1<12§E 2, (U, ;) >}exp(—06n62)

€ T min o 4
s, 2. (U ) )| expl-Cone

w5 i
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Therefore,
P [ st = bl ) > e}

<l [ asoouta) > o p{ [ ot > )
+P{/A7(X)M(dx) > i} +P{/A8(X)“(dx) g i}

2 .
< dexp(—Cine?) + 2exp(—Csne?) + 16E [/\/1 (iggz, Z,(U;, YJ)?ﬂ)] exp(—Cgne?)

2,4

€ Tmin n
TR Yj)jzlﬂ exp(~Crne’),

+ 16E {/\/1 (

where Cy = 72, /(2" L?), and Cs, Cs, and C; are as above.

PROOF OF THEOREM 3

Standard arguments (such as those in the proof of Theorem 1 of Devroye and Gyorfi (1985,
p. 254)) can be used to show that for every € > 0,

PLLL(E,) - L(¥p) > ¢} < P{f [ 170 = Prafo9 (e >a}

ip {/ |P(x) — Py (x) | uldx) > %} :

Now, the conditions of the theorem together with the Borel-Cantelli lemma yield the strong

IN

~

consistency L, (¥,) =35 L(Ug).
O

PROOF OF THEOREM 4

The proof is similar to that for Theorem 3.
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Table 1: Empirical errors of histogram regression estimators under various missing probability
mechanism: The results in rows 1, 2, and 3 correspond to logistic selection probabilities, those in
rows 4, 5, and 6 correspond to trigonometric selection probabilities, and those in rows 7, 8, and 9
correspond to MCAR selection probabilities.

Empirical L, errors Empirical Lo errors
Estimator] Model (I) Model (II) Model (III) \ Model (I)  Model (II) Model (IIT)
1| my,(x) 0.465 0.387 1.082 0.352 0.300 1.932
(0.0063) (0.0098) (0.0219) (0.0073) (0.0120) (0.0493)
2| mpy(x) 0.450 0.375 1.076 0.343 0.286 1.900
(0.0071) (0.0111) (0.0244) (0.0092) (0.0129) (0.0594)
3| Mmus(x) 0.384 0.274 0.978 0.295 0.221 1.793
(0.0086) (0.0119) (0.0260) (0.0128) (0.0166) (0.0685)
4\ my,(x) 0.536 0.341 1.083 0.456 0.270 1.916
(0.0078) (0.0101) (0.0203) (0.0086) (0.0142) (0.0529)
5 My (x) 0.457 0.275 1.003 0.353 0.261 1.822
(0.0093) (0.0102) (0.0226) (0.0183) (0.0146) (0.0638)
6| Mmys(x) 0.552 0.374 1.113 0.467 0.290 1.968
(0.0079) (0.0097) (0.0200) (0.0097) (0.0135) (0.0504)
7| mp(x) 0.491 0.347 1.098 0.381 0.297 2.098
(0.0072) (0.0105) (0.0211) (0.0082) (0.0121) (0.0531)
8| Mmp(x) 0.484 0.325 1.133 0.381 0.291 2.100
(0.0079) (0.0112) (0.0217) (0.0098) (0.0127) (0.0704)
9 Mmus(x) 0.493 0.339 1.137 0.396 0.293 2.105
(0.0071) (0.0098) (0.0199) (0.0084) (0.0123) (0.0532)
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Table 2: Misclassification errors of various classifiers based on both resubstitution and leave-one-
out cross-validation methods.

Method Uo(x)  Uplx)  Upg(x)

Resubstitution 0.231 0.198 0.192
Cross-validation | 0.245 0.207 0.198
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