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Abstract. For a natural number m, let Sm/F2 be the mth Suzuki curve. We

study the mod 2 Dieudonné module of Sm, which gives the equivalent informa-
tion as the Ekedahl-Oort type or the structure of the 2-torsion group scheme
of its Jacobian. We accomplish this by studying the de Rham cohomology of
Sm. For all m, we determine the structure of the de Rham cohomology as
a 2-modular representation of the mth Suzuki group and the structure of a
submodule of the mod 2 Dieudonné module. For m = 1 and 2, we determine
the complete structure of the mod 2 Dieudonné module.

1. Introduction

The structure of the de Rham cohomology of the Hermitian curves as a repre-
sentation of PGU(3, q) was studied in [3, 4, 12]. The mod p Dieudonné module
and the Ekedahl-Oort type of the Hermitian curves were determined in [22]. In
this paper, we study the analogous structures for the Suzuki curves.

For m ∈ N, let q0 = 2m, and let q = 22m+1. The Suzuki curve Sm is the smooth
projective connected curve over F2 given by the affine equation:

zq + z = yq0(yq + y).

It has genus gm = q0(q − 1).
The number of points of Sm over Fq is #Sm (Fq) = q2 + 1; which is optimal in

that it reaches Serre’s improvement to the Hasse-Weil bound [14, Proposition 2.1].
In fact, Sm is the unique Fq-optimal curve of genus gm [8]. Because of the large
number of rational points relative to their genus, the Suzuki curves provide good
examples of Goppa codes [9],[10], [14].

The automorphism group of Sm is the Suzuki group Sz(q). The order of Sz(q)
is q2(q−1)(q2+1) which is very large compared with gm. In fact, Sm is the Deligne-
Lusztig curve associated with the group Sz(q) = 2B2(q) [13, Proposition 4.3].

The L-polynomial of Sm/Fq is (1 +
√
2qt + qt2)gm and so Sm is supersingular

for each m ∈ N [13, Proposition 4.3]. This implies that the Jacobian Jac(Sm)
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is isogenous over F̄2 to a product of supersingular elliptic curves. In particular,
Jac(Sm) has 2-rank 0; it has no points of order 2 over F2.

The 2-torsion group scheme Jac(Sm)[2] is a BT1-group scheme of rank 22gm .
By [7], the a-number of Jac(Sm)[2] is am = q0(q0 + 1)(2q0 + 1)/6; in particular,
limm→∞am/gm = 1/6. However, the Ekedahl-Oort type of Jac(Sm)[2] is not known.
Understanding the Ekedahl-Oort type is equivalent to understanding the structure
of the de Rham cohomology or the mod 2 reduction of the Dieudonné module as a
module under the actions of the operators Frobenius F and Verschiebung V .

In this paper, we study the de Rham cohomology group H1
dR(Sm) of the Suzuki

curves. The 2-modular representations of the Suzuki group are understood from
[18, 2, 23, 16]. Using results about the cohomology of Deligne-Lusztig varieties
from [17] and [11], we determine the multiplicity of each irreducible 2-modular
representation of Sz(q) in H1

dR(Sm) in Corollary 2.2.
Let Dm denote the mod 2 reduction of the Dieudonné module of (the Jacobian

of) Sm. It is an E-module where E is the non-commutative ring generated over F̄2

by F and V with the relations FV = V F = 0. As explained in Section 3.1, there
is an E-module decomposition Dm = Dm,0 ⊕Dm, 6=0, where the E-submodule Dm,0

is the trivial eigenspace for the action of an automorphism τ of order q − 1.
In Proposition 3.1, we determine the structure of Dm,0 completely by finding

that its Ekedahl-Oort type is [0, 1, 1, 2, 2, . . . , q0 − 1, q0]. This yields the following
corollary.

Corollary 1.1. (Corollary 3.10) If 2m ≡ 2e mod 2e+1+1, then the E-module
E/E(V e+1 + F e+1) occurs as an E-submodule of the mod 2 Dieudonné module Dm

of Sm. In particular,

(1) E/E(V m+1 + Fm+1) occurs as an E-submodule of Dm for all m;
(2) E/E(V + F ) occurs as an E-submodule of Dm if m is even; and
(3) E/E(V 2 + F 2) occurs as an E-submodule of Dm if m ≡ 1 mod 4.

We have less information about Dm, 6=0, the sum of the non-trivial eigenspaces
for τ . In Section 3.3, we explain a connection between the Ekedahl-Oort type and
irreducible subrepresentations ofH1

dR(Sm). This motivates Conjecture 3.2, in which
we conjecture that the E-module E/E(V 2m+1+F 2m+1) occurs with multiplicity 4m

in Dm.
We determine the complete structure of the mod 2 Dieudonné module Dm for

m = 1 and m = 2 in Propositions 3.3-3.4. To do this, we explicitly compute a basis
for H1

dR(Sm) for all m ∈ N in Section 4 and, for m = 1, 2, we compute the actions
of F and V on this basis.

There is a similar result in [5] for the first Ree curve, which is defined over F3,
namely the authors determine its mod 3 Dieudonné module.

Malmskog was partially supported by NSA grant H98230-16-1-0300. Pries was
partially supported by NSF grant DMS-15-02227. We would like to thank Jeff
Achter for helpful comments.

1.1. Notation. We begin by establishing some notation regarding p-torsion
group schemes, mod p Dieudonné modules, and Ekedahl-Oort types, taken directly
from [22, Section 2].

Let k be an algebraically closed field of characteristic p > 0. Suppose A is a
principally polarized abelian variety of dimension g defined over k. Consider the
multiplication-by-p morphism [p] : A→ A which is a finite flat morphism of degree
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p2g. It factors as [p] = V ◦F . Here F : A→ A(p) is the relative Frobenius morphism
coming from the p-power map on the structure sheaf; it is purely inseparable of
degree pg. The Verschiebung morphism V : A(p) → A is the dual of FAdual .

The p-torsion group scheme of A, denoted A[p], is the kernel of [p]. It is
a finite commutative group scheme annihilated by p, again having morphisms F
and V , with Ker(F ) = Im(V ) and Ker(V ) = Im(F ). The principal polarization
of A induces a symmetry on A[p] as defined in [20, 5.1]; when p = 2, there are
complications with the polarization which are resolved in [20, 9.2, 9.5, 12.2].

There are two important invariants of (the p-torsion of) A: the p-rank and
a-number. The p-rank of A is f = dimFp

Hom(µp, A[p]) where µp is the kernel of

Frobenius on Gm. Then pf is the cardinality of A[p](k). The a-number of A is
a = dimk Hom(αp, A[p]) where αp is the kernel of Frobenius on Ga.

One can describe the group scheme A[p] using the mod p Dieudonné module,
i.e., the modulo p reduction of the covariant Dieudonné module, see e.g., [20, 15.3].
More precisely, there is an equivalence of categories between finite commutative
group schemes over k annihilated by p and left E-modules of finite dimension. Here
E = k[F, V ] denotes the non-commutative ring generated by semi-linear operators
F and V with the relations FV = V F = 0 and Fλ = λpF and λV = V λp for all
λ ∈ k. Let E(A1, . . .) denote the left ideal of E generated by A1, . . ..

Furthermore, there is a bijection between isomorphism classes of 2g dimensional
left E-modules and Ekedahl-Oort types. To find the Ekedahl-Oort type, let N be
the mod p Dieudonné module of A[p]. The canonical filtration of N is the smallest
filtration of N stabilized by the action of F−1 and V ; denote it by

0 = N0 ⊂ N1 ⊂ · · ·Nz = N.

The canonical filtration can be extended to a final filtration; the Ekedahl-Oort type
is the tuple [ν1, . . . , νg], where the νi are the dimensions of the images of V on the
subspaces in the final filtration.

For example, let It,1 denote the p-torsion group scheme of rank p2t having
p-rank 0 and a-number 1. Then It,1 has Dieudonné module E/E(F t + V t) and
Ekedahl-Oort type [0, 1, . . . , t− 1] [21, Lemma 3.1].

For a smooth projective curve X, by [19, Section 5], there is an isomorphism
of E-modules between the contravariant mod p Dieudonné module of the p-torsion
group scheme Jac(X)[p] and the de Rham cohomology H1

dR(X).1

In the rest of the paper, p = 2.

2. The de Rham cohomology as a representation for the Suzuki group

In this section, we analyze the de Rham cohomology H1
dR(Sm) of the Suzuki

curve as a 2-modular representation of the Suzuki group.

2.1. Some ordinary representations. Suzuki determined the irreducible
ordinary characters and representations of Sz(q) [24]. Consider the following four
unipotent representations of Sz(q). Let WS denote the Steinberg representation of
dimension q2. Let W0 be the trivial representation of dimension 1. Let W+ and
W− be the two unipotent cuspidal representations of Sz(q), associated to the two
ordinary characters of Sz(q) of degree q0(q − 1) [24]. Then W+ and W− each have
dimension q0(q − 1).

1Differences between the covariant and contravariant theory do not cause a problem in this
paper since all objects we consider are symmetric.
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In [17, Theorem 6.1], Lusztig studied the compactly supported ℓ-adic cohomol-
ogy of the affine Deligne-Lusztig curves. For the Suzuki curves, he proved that the
ordinary representations WS , W+, W−, W0 are the eigenspaces under Frobenius
and that each appears with multiplicity 1.

2.2. Modular representations of the Suzuki group. The absolutely irre-
ducible 2-modular representations of Sz(q) are well-understood [18, 2, 23, 16].

Let q = 22m+1. We recall some results about the 2-modular representations of
the Suzuki group Sz(q) from [18]. Fix a generator ζ of F∗

q . Let θ ∈ Aut(Fq) be

such that θ2(α) = α2 for all α ∈ Fq, i.e., θ is the square root of Frobenius.
The Suzuki group acts on Sm. Let τ ∈ Sz(q) be an element of order q − 1;

without loss of generality, we suppose that τ acts on Sm by

τ : y 7→ ζy, z 7→ ζ2
m+1z.

Then Sz(q) has an irreducible 4-dimensional 2-modular representation V0 in
which τ 7→M , where M ∈ GL4(Fq) is the matrix

M =









ζθ+1 0 0 0
0 ζ 0 0
0 0 ζ−1 0
0 0 0 ζ−(θ+1)









.

For 0 ≤ i ≤ 2m, consider the automorphism αi of Sz(q) induced by the au-

tomorphism x 7→ x2
i

of Fq. Let Vi be the 4-dimensional FqSz(q)-module where
g ∈ Sz(q) acts as gαi on V0.

Let I be a subset of N = Z/(2m+1)Z. Define VI = ⊗j∈IVj , with V∅ being the
trivial module. Then VI is an absolutely irreducible 2-modular representation of
Sz(q). By [18, Lemma 1], if I 6= J then VI and VJ are geometrically non-isomorphic
and {VI | I ⊂ N} is the complete set of simple F2Sz(q)-modules. Note that VI has
dimension 4|I| and that VN is the Steinberg module.

By [23, Theorem, page 1], for I, J ⊂ N , there are no non-trivial extensions of
VI by VJ , namely Ext1

F̄2Sz(q)
(VI , VJ) = 0.

The Frobenius x 7→ x2 on Fq acts on {Vi} taking Vi 7→ Vi+1 mod 2m+1. Note
that ⊕I∈IVI is an F2Sz(q)-module if and only if I is invariant under Frobenius
or, equivalently, if and only if {I | I ∈ I} is invariant under the translation i 7→
i+ 1 mod 2m+ 1.

For i ∈ N , let φi denote the Brauer character associated to the 4-dimensional
module Vi. For I ⊆ N , let φI =

∏

i∈I φi, so φI is the character associated to the
module VI . Then {φI : I ⊆ N} is a complete set of Brauer characters for Sz(q).

By [2, Theorem 3.4], φ2i = 4 + 2φi+m+1 + φi+1. Using this relation, Liu con-
structs a graph with vertex set N and edge set {(i, i + 1), (i, i + 1 +m) : i ∈ N}.
Edges of the form (i, i+1) are called short edges and edges of the form (i, i+1+m)
are called long edges. Two vertices i, j are called adjacent if they are connected
by a long edge, i.e., if i − j ≡ ±m mod 2m+ 1. A set I ′ ⊆ N is called circular if
no vertices of I = N \ I ′ are adjacent. A set I ⊆ S is called good if I ′ = N \ I is
circular.

The decompositions of W+ and W− into irreducible 2-modular representations
are known.

Theorem 2.1. Liu [16, Theorem 3.4] The irreducible 2-modular representation
VI occurs in W± if and only if I is good, i.e., if and only if there do not exist i, j ∈ I
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such that j − i ≡ ±m mod 2m + 1. In this case, the multiplicity of VI in W± is
2m−|I|.

2.3. Modular representation of the de Rham cohomology. The de
Rham cohomology H1

dR(Sm) is an F2[Sz(q)]-module of dimension 2gm = 2q0(q−1).
We consider the decomposition of H1

dR(Sm) into irreducible 2-modular representa-
tions of the Suzuki group Sz(q).

Corollary 2.2. The irreducible 2-modular representation VI occurs in H1
dR(Sm)

if and only if there do not exist i, j ∈ I such that j − i ≡ ±m mod 2m + 1. If VI
occurs in H1

dR(Sm) then its multiplicity is 2m+1−|I|. Thus the 2-modular Sz(q)-
representation of H1

dR(Sm) is:

(2.1) H1
dR(Sm) ≃

⊕

I good

V 2m+1−|I|

I .

Proof. In [11, page 2535], Gross uses [17, Theorem 6.1] to prove that, as a
Sz(q)-representation, the ℓ-adic cohomology of the smooth projective curve Sm is:

H1(Sm,F̄2
, Q̄ℓ) ≃W+ ⊕W−.

By [15, Theorem 2], the characters ofH1(Sm,F̄2
, Q̄ℓ) andH

1
crys(Sm,Frac(W (F̄2))) as

representations of Sz(q) are the same, and thus the representations are isomorphic.
The de Rham cohomology is the reduction modulo 2 of the crystalline cohomology.
Thus the result follows from Theorem 2.1. �

Example 2.3. When m = 1, then H1
dR(Sm) ≃ (V0 ⊕ V1 ⊕ V2)

2 ⊕ V 4
∅ .

Example 2.4. When m = 2, then

H1
dR(Sm) ≃

(

V{0,1} ⊕ V{1,2} ⊕ V{2,3} ⊕ V{3,4} ⊕ V{4,0}
)2⊕(V0⊕V1⊕V2⊕V3⊕V4)4⊕V 8

∅ .

Remark 2.5. For m ≤ 10, we verified Corollary 2.2 using the multiplicity of
the eigenvalues for τ on H1

dR(Sm).

3. The Dieudonné module and de Rham cohomology

In this section, we study the structure of the mod 2 Dieudonné module Dm of
the Suzuki curve Sm or, equivalently, the structure of H1

dR(Sm) as an E-module.

3.1. Results and conjectures. The chosen element τ ∈ Sz(q) of order q− 1
acts on the mod 2 Dieudonné module Dm. Let Dm,0 denote the trivial eigenspace
and Dm, 6=0 denote the direct sum of the non-trivial eigenspaces. Since F and
V commute with τ , they stabilize Dm,0 and Dm, 6=0; thus there is an E-module
decomposition Dm = Dm,0 ⊕Dm, 6=0.

In Section 3.2, we prove the next proposition; it determines the E-module
structure of Dm,0.

Proposition 3.1. Let m ∈ N and let q0 = 2m. The trivial eigenspace Dm,0 of
the mod 2 Dieudonné module of Sm has Ekedahl-Oort type [0, 1, 1, 2, 2, . . . , q0−1, q0];
in particular, it has rank 2q0, 2-rank 0, and a-number 2m−1.

We have less information about the E-module structure of Dm, 6=0. In Sec-
tion 3.3, we explain how the non-trivial representations VI in H1

dR(Sm) lead to
E-submodules DI of the mod 2 Dieudonné module of H1

dR(Sm). We would like to
understand how to determine the E-module structure of DI from the representation
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VI for the subset I ⊂ N = Z/(2m + 1)Z. In Section 3.3, we consider a particular
representation Wm, and make the following conjecture.

Conjecture 3.2. The multiplicity of E/E(F 2m+1 + V 2m+1) in the mod 2
Dieudonné module Dm of Sm is 4m.

We verify Conjecture 3.2 for m = 1 and m = 2 in Propositions 3.3 and 3.4.
In fact, for m = 1 and m = 2, we determine the mod 2 Dieudonné module Dm

completely. To do this, we find a basis for H1
dR(Sm) for all m in Section 4. For

m = 1, we explicitly compute the action of F and V on this basis, proving that:

Proposition 3.3. When m = 1, then the mod 2 Dieudonné module of S1 is

D1 = (E/E(F 3 + V 3))4 ⊕ E/E(F 2 + V 2).

For m = 2, we determine the action of F and V on H1
dR(Sm) using Magma [1].

Consider the E-module E(Z) generated by X1, X2, X3 with the following relations:
V 3X1 − F 3X2 = 0; V 4X2 − F 3X3 = 0; and V 3X3 − F 4X1 = 0. Then E(Z) is
symmetric and has rank 20, p-rank 0, and a-number 3.

Proposition 3.4. When m = 2, then the mod 2 Dieudonné module of S2 is

D2 =
(

E/E(F 5 + V 5)
)16 ⊕ (E(Z))

4 ⊕ (E/E(F 3 + V 3)⊕ E/E(F + V )).

3.2. The trivial eigenspace. The eigenspaceDm,0 is the subspace ofH
1
dR(Sm)

of elements fixed by τ . Since τ acts fixed point freely on the 4-dimensional module
Vi for each i [18, proof of Lemma 3], the generators of H1

dR(Sm) which are fixed
by τ are exactly those in VI for I = ∅. In other words, the representation for Dm,0

consists of the 2m+1 = 2q0 copies of the trivial representation in (2.1).

Proof. (Proof of Proposition 3.1) Let Cm,0 be the quotient curve of Sm by
the subgroup 〈τ〉. Then Cm,0 is a hyperelliptic curve of genus q0 [10, Theorem 6.9].

The de Rham cohomology H1
dR(Cm,0) of Cm,0 is isomorphic as an E-module to

Dm,0. Thus the trivial eigenspace Dm,0 for the mod 2 Dieudonné module of Sm is
isomorphic to the mod 2 Dieudonné module of Cm,0; in particular, it has rank 2q0.

Since Sm has 2-rank 0, so does Cm,0. Thus Cm,0 is a hyperelliptic curve of 2-rank
0. By [6, Corollary 5.3], the Ekedahl-Oort type of Cm,0 is [0, 1, 1, 2, 2, . . . , q0−1, q0];
this implies that the a-number is 2m−1. �

We determine the E-module structure of Dm,0 by applying results from [6,
Section 5].

Proposition 3.5. [6, Proposition 5.8] The mod 2 Dieudonné module Dm,0 is
the E-module generated as a k-vector space by {X1, . . . , Xq0 , Y1, . . . , Yq0} with the
actions of F and V given by:

(1) F (Yj) = 0.

(2) V (Yj) =

{

Y2j if j ≤ q0/2,

0 if j > q0/2.

(3) F (Xi) =

{

Xj/2 if j is even,

Yq0−(j−1)/2 if j is odd.

(4) V (Xj) =

{

0 if j ≤ (q0 − 1)/2,

−Y2q0−2j+1 if j > (q0 − 1)/2.
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We have an explicit description of the generators and relations of Dm,0 as
follows.

Notation 3.6. [6, Notation 5.9] Fix c = q0 ∈ N. Consider the set

I = {j ∈ N | ⌈(c+ 1)/2⌉ ≤ j ≤ c},
which has cardinality ⌊(c + 1)/2⌋. For j ∈ I, let ℓ(j) be the odd part of j and
let e(j) ∈ Z≥0 be such that j = 2e(j)ℓ(j). Let s(j) = c − (ℓ(j) − 1)/2. Then
{s(j) | j ∈ I} = I. Also, let m(j) = 2c − 2j + 1 and let ǫ(j) ∈ Z≥0 be such that
t(j) := 2ǫ(j)m(j) ∈ I. Then {t(j) | j ∈ I} = I. Thus, there is a unique bijection
ι : I → I such that t(ι(j)) = s(j) for each j ∈ I.

Proposition 3.7. [6, Proposition 5.10] The set {Xj | j ∈ I} generates the
mod 2 Dieudonné module Dm,0 as an E-module subject to the following relations,

for j ∈ I: F e(j)+1(Xj) + V ǫ(ι(j))+1(Xι(j)).

Example 3.8. (1) When m = 1 and the Ekedahl-Oort type is [0, 1], then
D1,0 ≃ E/E(F 2 + V 2) (group scheme I2,1).

(2) When m = 2 and the Ekedahl-Oort type is [0, 1, 1, 2], then one checks that
D2,0 ≃ E/E(F + V )⊕ E/E(F 3 + V 3) (group scheme I1,1 ⊕ I3,1).

In the next result, we determine some E-submodules of Dm,0 for general m.

Proposition 3.9. The E-module E/E(V e+1+F e+1) occurs as an E-submodule
of Dm,0 if and only if 2m ≡ 2e mod 2e+1 + 1. In particular:

(1) E/E(V m+1 + Fm+1) occurs for all m;
(2) E/E(V + F ) occurs if and only if m is even; and
(3) E/E(V 2 + F 2) = 0 occurs if and only if m ≡ 1 mod 4.

Proof. Let e ∈ Z≥0. By Proposition 3.7, the relation (V e+1 + F e+1)Xj = 0
is only possible if j = 2eℓ where ℓ is odd. Write s(j) = c − (ℓ − 1)/2. Then
F e+1(Xj) = F (Xℓ) = Ys(j). Now V (Xj) = −Ym(j) where m(j) = 2c − 2j + 1.

Also V e+1(Xj) = 2em(j). Thus we need s(j) = 2em(j). This is equivalent to
2e+1c− (j − 2e) = 22e+1(2c− 2j + 1), which is equivalent to

j =
c2e+1(2e+1 − 1) + 2e(22e+1 − 1)

22e+2 − 1
=
c2e+1 + 2e

2e+1 + 1
.

This value of j is integral if and only if c ≡ 2e mod 2e+1 + 1. Thus, the relation
(V e+1 + F e+1)Xj = 0 occurs if and only if 2m ≡ 2e mod 2e+1 + 1 and also j =
(2e+1q0 + 2e)/(2e+1 + 1). In particular, one checks that:

(1) (V m+1 + Fm+1)X2m = 0;
(2) the relation (V + F )Xj = 0 occurs if and only if m is even and j =

(2 · 2m + 1)/3;
(3) the relation (V 2 + F 2)Xj = 0 occurs if and only if m ≡ 1 mod 4 and

j = (4 · 2m + 2)/5.

�

As a corollary, we determine cases when the E-module E/E(V e+1+F e+1) occurs
in Dm.

Corollary 3.10. If 2m ≡ 2e mod 2e+1+1, then E/E(V e+1+F e+1) occurs as
an E-submodule of the mod 2 Dieudonné module Dm of Sm. In particular,
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(1) E/E(V m+1 + Fm+1) occurs as an E-submodule of Dm for all m;
(2) E/E(V + F ) occurs as an E-submodule of Dm if m is even; and
(3) E/E(V 2 + F 2) occurs as an E-submodule of Dm if m ≡ 1 mod 4.

Proof. By Proposition 3.9, E/E(V e+1 + F e+1) occurs as an E-submodule
of the mod 2 Dieudonné module Dm,0. The result follows since Dm,0 is an E-
submodule of Dm. �

3.3. The nontrivial eigenspaces. Recall that Dm, 6=0 is the direct sum of
the non-trivial eigenspaces for τ . Consider the canonical filtration of Dm, 6=0, which
is the smallest filtration stabilized under the action of F−1 and V ; denote it by

0 = N0 ⊂ N1 ⊂ · · ·Nt = N.

By [20, Chapter 2] (see also [5, Section 2.2]), the blocks Bi = Ni+1/Ni in the
canonical filtration are representations for H1

dR(Sm). On each block Bi, either (i)

V |Bi
= 0 in which case Bi ⊂ Im(F ) and F−1 : B

(p)
i → Bj is an isomorphism to

another block with index j > i; or (ii) V : B
(p)
i → Bj is an isomorphism to another

block with index j < i. This action of V and F−1 yields a permutation π of the
set of blocks Bi. Cycles in the permutation are in bijection with orbits O of the
blocks under the action of V and F−1.

Fix an orbit O of a block Bi under the action of F−1 and V . As in [22,
Section 5.2], this yields a word w in F−1 and V . From this, we produce a symmetric
E-module E(w) whose dimension over k is the length of w. Then E(w) is an isotypic
component ofDm,0. The multiplicity of E(w) inDm, 6=0 is the dimension of the block
Bi in O.

By Corollary 2.2, the representations occurring in H1
dR(Sm) are the representa-

tions inW±, namely the representations VI for I a good subset of N = Z/(2m+1)Z.
We now explain the motivation for Conjecture 3.2. Let Im = {0, . . . ,m − 1}.

The smallest power of F that stabilizes Im is 2m + 1. Consider the 2-modular
representation of Sz(q) given by Wm = ⊕2m

i=0F
i(VIm). For example, when m = 1

then W1 = V0 ⊕ V1 ⊕ V2 and when m = 2 then

W2 = (V0 ⊗ V1)⊕ (V1 ⊗ V2)⊕ (V2 ⊗ V3)⊕ (V3 ⊗ V4)⊕ (V4 ⊗ V0).

By definition, Wm is an F2Sz(q)-module of dimension (2m + 1)4m. By Corol-
lary 2.2, the 2-modular representationWm appears with multiplicity 2 in H1

dR(Sm).
Consider the E-module E/E(F 2m+1 + V 2m+1); it has dimension 2(2m+ 1) over k.

The idea behind Conjecture 3.2 is that the subrepresentation W 2
m of H1

dR(Sm)

should correspond to a submodule of Dm with structure (E/E(F 2m+1+V 2m+1))4
m

.
More precisely, Conjecture 3.2 would follow from the claims that there is a unique
i such that VIm is a subrepresentation of Bi, that Bi is irreducible and thus equal
to VIm , and that the word w on the orbit of Bi is (F

−1)2m+1V 2m+1.

4. An Explicit Basis for the de Rham cohomology

In this section, we compute an explicit basis for H1
dR(Sm) for all m. This

material is needed to determine the mod 2 Dieudonné module of Sm when m = 1
and m = 2 in Propositions 3.3 and 3.4. We determine the action of F and V on
the basis elements explicitly here when m = 1 and using Magma [1] when m = 2.
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4.1. Preliminaries. Consider the affine equation zq+z = yq0(yq+y) for Sm.
Let P∞ be the point at infinity on Sm. Let P(y,z) denote the point (y, z) on Sm.

Define the functions h1, h2 ∈ F2 (Sm) by:

h1 := z2q0 + y2q0+1, h2 := z2q0y + h2q01 .

Lemma 4.1. (1) The function y has divisor

div(y) =
∑

z∈Fq

P(0,z) − qP∞.

(2) The function z has divisor

div(z) =
∑

y∈F
×
q

P(y,0) + (q0 + 1)P(0,0) − (q + q0)P∞.

(3) Let S =
{

(y, z) ∈ F2
q : y2q0+1 = z2q0 , (y, z) 6= (0, 0)

}

. The function h1 has
divisor

div(h1) =
∑

(y,z)∈S

P(y,z) + (2q0 + 1)P(0,0) − (q + 2q0)P∞.

(4) The function h2 has divisor

div(h2) = (q + 2q0 + 1)(P(0,0) − P∞).

Proof. The pole orders of these functions are determined in [14, Proposi-
tion 1.3]. The orders of the zeros can be determined using the equation for the
curve and the definitions of h1 and h2. �

Let Em be the set of (a, b, c, d) ⊂ Z4 satisfying

0 ≤ a, 0 ≤ b ≤ 1, 0 ≤ c ≤ q0 − 1, 0 ≤ d ≤ q0 − 1,
aq + b(q + q0) + c(q + 2q0) + d(q + 2q0 + 1) ≤ 2g − 2.

Lemma 4.2. The following set is a basis of H0(Sm,Ω
1):

Bm :=
{

ga,b,c,d := yazbhc1h
d
2 dy | (a, b, c, d) ∈ Em

}

.

Proof. See [7, Proposition 3.7]. �

A basis for H1(Sm,O) can be built similarly. Define the map

π : Sm → P1
y, (y, z) 7→ y, P∞ 7→ ∞y.

Let 0y be the point on P1
y with y = 0. Then π−1(0y) = {(0, z) : z ∈ Fq} has

cardinality q.

Lemma 4.3. The following set represents a basis of H1(Sm,O):

Am :=

{

fa,b,c,d :=
1

yazbhc1h
d
2

zhq0−1
1 hq0−1

2

y
| (a, b, c, d) ∈ Em

}

.

Proof. Let U∞ = Sm \ π−1(∞y) = Sm \ P∞ and U0 = Sm \ π−1(0y). The
elements of H1(Sm,O) can be represented by classes of functions that are regular
on U∞ ∩ U0, but are not regular on U∞ or regular on U0. In other words, these
functions have a pole at P∞ and at some point in π−1(0y).
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Let f = fa,b,c,d for some (a, b, c, d) ∈ Em. Then f has poles only in
{

P∞, π
−1(0y)

}

by Lemma 4.1. Let Q = (0, α) for some α ∈ F×
q . Then vQ(f) = −(a + 1) ≤ −1.

Also, let t = q + 2q0 + 1, then

vP∞(f) = (a+ 1)(q)− (1− b)(q + q0)− (q0 − 1− c)(q + 2q0)− (q0 − 1− d)t

= aq + b(q + q0) + c(q + 2q0) + d(q + 2q0 + 1) + (2q0 − 2q0q + 1)

≤ 2gm − 2 + (2q0 − 2q0q + 1)

= (2q0q − 2q0 − 2) + (2q0 − 2q0q + 1)

= −1.

So f is regular on U∞∩U0 but not on U∞ or U0. By a calculation similar to [7,
Proposition 3.7], the elements of Am are independent because each element has a
different pole order at P∞. The cardinality of Am is gm = dim(H1(Sm,O)). Thus
A is a basis for H1(Sm,O).

�

4.2. Constructing the de Rham cohomology. Let U be the open cover
of Sm given by U∞ and U0 from the proof of Lemma 4.3. For a sheaf F on Sm, let

C0(U ,F) := {g = (g∞, g0) | gi ∈ Γ(Ui,F)} ,
C1(U ,F) := {φ ∈ Γ(U∞ ∩ U0,F)} .

Define the coboundary operator δ : C0(U ,F) → C1(U ,F) by δg = g∞−g0. The
closed de Rham cocycles are the set

Z1
dR (U) :=

{

(f, g) ∈ C1(U ,O)× C0(U ,Ω1) : df = δg
}

.

The de Rham coboundaries are the set

B1
dR(Sm) :=

{

(δκ, dκ) ∈ Z1
dR (U) : κ ∈ C0(U ,O)

}

,

where dκ = (d(κ0), d(κ∞)). The de Rham cohomology H1
dR(Sm) is

H1
dR(Sm) ∼= H1

dR(Sm)(U) := Z1
dR (U) /B1

dR (U) .

There is an injective homomorphism λ : H0(Sm,Ω
1) → H1

dR(Sm) denoted
informally by g 7→ (0,g), where the second coordinate is a tuple g = (g∞, g0)
defined by gi = g|Ui

. Define another homomorphism γ : H1
dR(Sm) → H1(Sm,O)

with (f,g) 7→ f . These create a short exact sequence

(4.1) 0 −→ H0(Sm,Ω
1)

λ−→ H1
dR(Sm)

γ−→ H1(Sm,O) −→ 0.

Let A be a basis for H1(Sm,O) and B a basis for H0(Sm,Ω
1). A basis for

H1
dR(Sm) is then given by ψ(A) ∪ λ(B), where ψ is defined as follows. Given

f ∈ H1(Sm,O), one can write df = df∞+df0, where dfi ∈ Γ(Ui,Ω
1) for i ∈ {0,∞}.

For convenience, define df = (df∞, df0). Define a section of (4.1) by:

ψ : H1(Sm,O) → H1
dR(Sm), ψ(f) = (f,df) .

The image of ψ is a complement in H1
dR(Sm) to λ(H0(Sm,Ω

1)).
10



4.2.1. The Frobenius and Verschiebung operators. The Frobenius F and Ver-
schiebung V act on H1

dR(Sm) by

F (f,g) := (fp, (0, 0)) and V (f,g) := (0,C (g))

where C is the Cartier operator, which acts componentwise on g. The Cartier
operator is defined by the properties that it annihilates exact differentials, preserves
logarithmic differentials, and is p−1-linear. It follows from the definitions that

ker(F ) = λ(H0(Sm,Ω
1)) = im(V ).

4.3. The case m = 1. When m = 1, then q0 = 2, q = 8, and g = 14. The
Suzuki curve S1 has affine equation

z8 + z = y2(y8 + y).

The set E1 consists of the 14 tuples

E1 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0),
(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (2, 0, 0, 0), (2, 1, 0, 0), (3, 0, 0, 0)}.

By Lemmas 4.2 and 4.3, B1 is a basis for H0(S1,Ω
1) and A1 is a basis for

H1(S1,O). Based on the action of Frobenius and Verschiebung, the following sets
make more convenient bases:

Lemma 4.4. (1) A basis for H1(S1,O) is given by the set

A = {f(0,0,0,0), f(2,0,0,0), f(0,1,0,0) + f(3,0,0,0), f(2,1,0,0) + f(0,0,1,0),

f(0,0,0,1) + f(1,0,1,0), f(1,0,0,0), f(2,1,0,0), f(1,0,0,1), f(0,0,1,1),

f(1,0,1,0), f(3,0,0,0), f(1,1,0,0), f(0,1,1,0), f(0,1,0,1)}.
(2) A basis for H0(S1,Ω

1) is given by the set

B = {g(0,0,0,0), g(2,0,0,0), g(0,1,0,0) + g(3,0,0,0), g(2,1,0,0) + g(0,0,1,0),

g(0,0,0,1) + g(1,0,1,0), g(1,0,0,0), g(2,1,0,0), g(1,0,0,1), g(0,0,1,1), g(1,0,1,0),

g(3,0,0,0), g(1,1,0,0), g(0,1,1,0), g(0,1,0,1)}.
Proof. By Lemma 4.2 (resp. 4.3), these 1-forms (resp. functions) have distinct

pole orders at P∞, are therefore linearly independent, and thus form a basis of
H1(S1,O) (resp. H0(S1,Ω

1)). �

It is now possible to calculate the action of F and V on ψ(A) ∪ λ(B), a basis
for H1

dR(S1).
4.3.1. The action of Frobenius when m = 1. The action of F is summarized in

the right column of Table 2. Note that F (g) = 0 for g ∈ B since ker(F ) = im(V ) ∼=
H0(S1,Ω

1). For the action of F on ψ(f) for f ∈ A, note that F (ψ(f)) = (f2, (0, 0)).
Then

f2 = (f(a,b,c,d))
2 = (y−1−az1−bh1−c

1 h1−d
2 )2

= (y−2)1+a(yh1 + h2)
1−b(z + y3)1−c(h1 + zy2)1−d.

To do these calculations, we simplify f2 and write it as a sum of quotients of
monomials in {y, z, h1, h2}. These monomials can then be classified as belonging to
Γ(U0) or Γ(U∞), or can otherwise be rewritten in terms of the basis for H1(S1,O).
It is then possible to use coboundaries to write (f2, (0, 0)) in terms of the given
basis for H1

dR(S1).
11



Example 4.5. To compute that F (ψ(f(0,1,0,1))) = λ(g(0,0,0,0)), note first that
(

f(0,1,0,1)
)2

= y−2(z + y3) =
z

y2
+ y.

Also,

d

(

z

y2

)

=
1

y2
dz − 2

z

y3
dy = dy and d(y) = dy.

Since y ∈ Γ(U∞,O) and z
y2 ∈ Γ(U0,O), the pair

(

z
y2 , y

)

is in C0(U ,O) and one

sees that ( z
y2 + y, (dy, dy)) is a coboundary. Thus

F
(

ψ
(

f(0,1,0,1)
))

=

(

z

y2
+ y, (0, 0)

)

+

(

z

y2
+ y, (dy, dy)

)

= (0, (dy, dy)) = λ(dy) = (0,g(0,0,0,0)).

Example 4.6. We compute that F
(

ψ(f(0,0,1,1))
)

= ψ
(

f(0,1,0,1)
)

. This is true
because

(

f(0,0,1,1)
)2

= y−2(yh1 + h2) =
h1
y

+
h2
y2
.

Note that h2

y2 ∈ Γ(U0,O), so (h2

y2 , 0) ∈ C0(U ,O), and d
(

h2

y2

)

= z4

y2 dy. So one sees

that
(

h2

y2 , (
z4

y2 dy, 0)
)

is a coboundary. Also, d
(

h1

y

)

= z4

y2 dy. Thus

F
(

ψ
(

f(0,0,1,1)
))

=

(

h1
y

+
h2
y2
, (0, 0)

)

+

(

h2
y2
,

(

z4

y2
dy, 0

))

=

(

h1
y
,

(

z4

y2
dy, 0

))

= ψ
(

f(0,1,0,1)
)

.

4.3.2. The action of Verschiebung when m = 1. The action of V is summarized
in the middle column of Table 2. In [7], the authors calculate the action of the
Cartier operator C (see Table 1). This determines the action of V on λ(g) for
g ∈ B. It also helps determine the action of V on ψ(f) for f ∈ A.

Example 4.7. We compute that V
(

ψ(f(0,1,0,1))
)

= (0,0). Writing

f = f(0,1,0,1) =
h1
y

=
z4

y
+ y4,

then

df =
∂f

∂y
dy +

∂f

∂z
dz =

(

−z
4

y2
+ 4y3

)

dy + 4
z3

y
dz =

z4

y2
dy.

Considering the pole orders of y, z, and dy, define df = df0 ∈ Ω0 and df∞ = 0,

so df = (0, df). Thus C (df) = z2

y C (dy) = 0. Thus C (df) = (0, 0) = 0 and

V (ψ(f(0,1,0,1))) = (0,0).

Example 4.8. We compute that V
(

ψ(f(2,1,0,0))
)

= (0,g(0,1,0,0)). This is be-
cause

f(2,1,0,0) =
h1h2
y3

,

so

df = y−3d(h1h2) + y−4h1h2dy = y−3h1d(h2) + y−3h2d(h1) + y−4h1h2dy.

Then
d(h1) = d(z4 + y5) = y4dy and d(h2) = d(z4y + h41) = z4dy,
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so

df = y−3z4h1dy + yh2dy + y−4h1h2

= y−3h1(h1 + y5)dy + yh2dy + y−4h1h2

=
h21
y3
dy +

h1h2
y4

dy + y2h1dy + yh2dy,

using the fact that z4 = h1 + y5. Considering the orders of the poles, define

df0 =
h2
1

y3 dy +
h1h2

y4 dy ∈ Ω0 and df∞ = y2h1dy + yh2dy ∈ Ω∞. Using Table 1 and

the fact that h21 = z + y3, then

C (df∞) = yC (h1dy) + C (yh2dy)

= y3dy + h21dy = (y3 + z + y3)dy = zdy.

Thus V
(

ψ(f(2,1,0,0))
)

= (0,g(0,1,0,0)).

The actions of F and V are summarized in Table 2.

Table 1. Cartier Operator on H0(S1,Ω
1)

f C (fdy)

1 0
y dy

z yq0/2 dy
h1 yq0 dy

h2
(

(yh1)
q0/2 + h2

)

dy

yz h
q0/2
1 dy

yh1
(

(yh1)
q0/2 + h2

)

dy

zh1 (yh2)
q0/2 dy

zh2 (h1h2)
q0/2 dy

h1h2 (h1 + zyq0) dy

yzh1
(

yq0/2z + (h1h2)
q0/2

)

dy

yzh2

(

zh
q0/2
1 + yq0/2+1h

q0/2
2

)

dy

zh1h2

(

zyq0/2h
q0/2
2 + h

q0/2+1
1

)

dy

yh1h2

(

(yh1)
q0/2z + h

q0/2
2 z

)

dy

yzh1h2

(

yq0/2h2 + zh
q0/2
1 hq022

)

dy

To conclude, we use the tables to give an explicit proof of Proposition 3.3.

Proposition 4.9. When m = 1, then the mod 2 Dieudonné module of S1 is

D1 ≃ E/E(F 2 + V 2)⊕ (E/E(F 3 + V 3))4.

Proof. As an E-module, D1 is isomorphic toH1
dR(S1). From Table 2, H1

dR(S1)
has a summand of rank 4 generated by X1 = ψ(f(1,0,1,0)) with the relation given by

(F 2+V 2)X1 = 0. There are 4 summands of rank 6 generated by X2 = ψ(f(2,1,0,0)),
X3 = ψ(f(2,0,0,0)), X4 = ψ(f(3,0,0,0)), and X5 = ψ(f(0,0,0,0)) with the relations given
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Table 2. Action of Verschiebung and Frobenius on H1
dR(S1)

(f,g) V (f,g) F (f,g)

(0,g(0,0,0,0)) (0,0) (0,0)
(0,g(2,0,0,0)) (0,0) (0,0)
(0,g(0,1,0,0) + g(3,0,0,0)) (0,0) (0,0)
(0,g(2,1,0,0) + g(0,0,1,0)) (0,0) (0,0)
(0,g(0,0,0,1) + g(1,0,1,0)) (0,0) (0,0)
(0,g(1,0,0,0)) (0,g(0,0,0,0)) (0,0)
(0,g(0,0,1,0)) (0,g(2,0,0,0)) (0,0)
(0,g(1,0,0,1)) (0,g(0,1,0,0) + g(3,0,0,0)) (0,0)
(0,g(0,0,1,1)) (0,g(2,1,0,0) + g(0,0,1,0)) (0,0)
(0,g(1,0,1,0)) (0,g(0,0,0,1) + g(1,0,1,0)) (0,0)
(0,g(0,1,0,0)) (0,g(1,0,0,0)) (0,0)
(0,g(1,1,0,0)) (0,g(0,0,1,0)) (0,0)
(0,g(0,1,1,0)) (0,g(1,0,0,1)) (0,0)
(0,g(0,1,0,1)) (0,g(0,0,1,1)) (0,0)

ψ(f(0,1,0,1)) (0,0)
(

0,g(0,0,0,0)

)

ψ(f(0,1,1,0)) (0,0)
(

0,g(2,0,0,0)

)

ψ(f(1,1,0,0)) (0,0)
(

0,g(0,1,0,0) + g(3,0,0,0)

)

ψ(f(0,1,0,0) + f(3,0,0,0)) (0,0)
(

0,g(2,1,0,0) + g(0,0,1,0)

)

ψ(f(0,0,0,1) + f(1,0,1,0)) (0,0)
(

0,g(0,0,0,1) + g(1,0,1,0)

)

ψ(f(0,0,1,1)) (0,0) ψ(f(0,1,0,1))
ψ(f(1,0,0,1)) (0,0) ψ(f(0,1,1,0))
ψ(f(2,1,0,0) + f(0,0,1,0)) (0,0) ψ(f(1,1,0,0))
ψ(f(1,0,0,0)) (0,0) ψ(f(0,1,1,0))
ψ(f(1,0,1,0)) (0,g(1,0,1,0)) ψ(f(0,0,0,1) + f(1,0,1,0))
ψ(f(2,1,0,0)) (0,g(0,1,0,0)) ψ(f(0,0,1,1))
ψ(f(3,0,0,0)) (0,g(1,1,0,0)) ψ(f(1,0,0,1))
ψ(f(2,0,0,0)) (0,g(0,1,1,0)) ψ(f(2,1,0,0) + f(0,0,1,0))
ψ(f(0,0,0,0)) (0,g(0,1,0,1)) ψ(f(1,0,0,0))

by (F 3 +V 3)Xi = 0. This yields the E-module E/E(F 2 +V 2)⊕
(

E/E(F 3 + V 3)
)4
.
�

Note that the trivial eigenspace D1,0 appears as the summand E/(F 2+V 2). It
is spanned by

{ψ(f(1,0,1,0)), ψ(f(0,0,0,1) + f(1,0,1,0)), (0,g(1,0,1,0)), (0,g(0,0,0,1) + g(1,0,1,0))}.
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