The de Rham cohomology of the Suzuki curves

Beth Malmskog, Rachel Pries, and Colin Weir

Abstract

For a natural number m, let $\mathcal{S}_{m} / \mathbb{F}_{2}$ be the m th Suzuki curve. We study the mod 2 Dieudonné module of \mathcal{S}_{m}, which gives the equivalent information as the Ekedahl-Oort type or the structure of the 2-torsion group scheme of its Jacobian. We accomplish this by studying the de Rham cohomology of \mathcal{S}_{m}. For all m, we determine the structure of the de Rham cohomology as a 2-modular representation of the m th Suzuki group and the structure of a submodule of the mod 2 Dieudonné module. For $m=1$ and 2 , we determine the complete structure of the mod 2 Dieudonné module.

1. Introduction

The structure of the de Rham cohomology of the Hermitian curves as a representation of $\operatorname{PGU}(3, q)$ was studied in $[\mathbf{3}, \mathbf{4}, \mathbf{1 2}]$. The mod p Dieudonné module and the Ekedahl-Oort type of the Hermitian curves were determined in [22]. In this paper, we study the analogous structures for the Suzuki curves.

For $m \in \mathbb{N}$, let $q_{0}=2^{m}$, and let $q=2^{2 m+1}$. The Suzuki curve \mathcal{S}_{m} is the smooth projective connected curve over \mathbb{F}_{2} given by the affine equation:

$$
z^{q}+z=y^{q_{0}}\left(y^{q}+y\right) .
$$

It has genus $g_{m}=q_{0}(q-1)$.
The number of points of \mathcal{S}_{m} over \mathbb{F}_{q} is $\# \mathcal{S}_{m}\left(\mathbb{F}_{q}\right)=q^{2}+1$; which is optimal in that it reaches Serre's improvement to the Hasse-Weil bound [14, Proposition 2.1]. In fact, \mathcal{S}_{m} is the unique \mathbb{F}_{q}-optimal curve of genus $g_{m}[8]$. Because of the large number of rational points relative to their genus, the Suzuki curves provide good examples of Goppa codes $[\mathbf{9}],[\mathbf{1 0}],[\mathbf{1 4}]$.

The automorphism group of \mathcal{S}_{m} is the Suzuki group $\mathrm{Sz}(q)$. The order of $\mathrm{Sz}(q)$ is $q^{2}(q-1)\left(q^{2}+1\right)$ which is very large compared with g_{m}. In fact, \mathcal{S}_{m} is the DeligneLusztig curve associated with the group $\mathrm{Sz}(q)={ }^{2} B_{2}(q)$ [13, Proposition 4.3].

The L-polynomial of $\mathcal{S}_{m} / \mathbb{F}_{q}$ is $\left(1+\sqrt{2 q} t+q t^{2}\right)^{g_{m}}$ and so \mathcal{S}_{m} is supersingular for each $m \in \mathbb{N}\left[\mathbf{1 3}\right.$, Proposition 4.3]. This implies that the $\operatorname{Jacobian} \operatorname{Jac}\left(\mathcal{S}_{m}\right)$

[^0]is isogenous over $\overline{\mathbb{F}}_{2}$ to a product of supersingular elliptic curves. In particular, $\operatorname{Jac}\left(\mathcal{S}_{m}\right)$ has 2-rank 0 ; it has no points of order 2 over $\overline{\mathbb{F}}_{2}$.

The 2-torsion group scheme $\operatorname{Jac}\left(\mathcal{S}_{m}\right)[2]$ is a BT_{1}-group scheme of rank $2^{2 g_{m}}$. By [7], the a-number of $\operatorname{Jac}\left(\mathcal{S}_{m}\right)$ [2] is $a_{m}=q_{0}\left(q_{0}+1\right)\left(2 q_{0}+1\right) / 6$; in particular, $\lim _{m \rightarrow \infty} a_{m} / g_{m}=1 / 6$. However, the Ekedahl-Oort type of $\operatorname{Jac}\left(\mathcal{S}_{m}\right)[2]$ is not known. Understanding the Ekedahl-Oort type is equivalent to understanding the structure of the de Rham cohomology or the mod 2 reduction of the Dieudonné module as a module under the actions of the operators Frobenius F and Verschiebung V.

In this paper, we study the de Rham cohomology group $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ of the Suzuki curves. The 2 -modular representations of the Suzuki group are understood from $[\mathbf{1 8}, \mathbf{2}, \mathbf{2 3}, \mathbf{1 6}]$. Using results about the cohomology of Deligne-Lusztig varieties from $[\mathbf{1 7}]$ and $[\mathbf{1 1}]$, we determine the multiplicity of each irreducible 2 -modular representation of $\mathrm{Sz}(q)$ in $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ in Corollary 2.2.

Let D_{m} denote the mod 2 reduction of the Dieudonné module of (the Jacobian of) \mathcal{S}_{m}. It is an \mathbb{E}-module where \mathbb{E} is the non-commutative ring generated over $\overline{\mathbb{F}}_{2}$ by F and V with the relations $F V=V F=0$. As explained in Section 3.1, there is an \mathbb{E}-module decomposition $D_{m}=D_{m, 0} \oplus D_{m, \neq 0}$, where the \mathbb{E}-submodule $D_{m, 0}$ is the trivial eigenspace for the action of an automorphism τ of order $q-1$.

In Proposition 3.1, we determine the structure of $D_{m, 0}$ completely by finding that its Ekedahl-Oort type is $\left[0,1,1,2,2, \ldots, q_{0}-1, q_{0}\right]$. This yields the following corollary.

Corollary 1.1. (Corollary 3.10) If $2^{m} \equiv 2^{e} \bmod 2^{e+1}+1$, then the \mathbb{E}-module $\mathbb{E} / \mathbb{E}\left(V^{e+1}+F^{e+1}\right)$ occurs as an \mathbb{E}-submodule of the mod 2 Dieudonné module D_{m} of \mathcal{S}_{m}. In particular,
(1) $\mathbb{E} / \mathbb{E}\left(V^{m+1}+F^{m+1}\right)$ occurs as an \mathbb{E}-submodule of D_{m} for all m;
(2) $\mathbb{E} / \mathbb{E}(V+F)$ occurs as an \mathbb{E}-submodule of D_{m} if m is even; and
(3) $\mathbb{E} / \mathbb{E}\left(V^{2}+F^{2}\right)$ occurs as an \mathbb{E}-submodule of D_{m} if $m \equiv 1 \bmod 4$.

We have less information about $D_{m, \neq 0}$, the sum of the non-trivial eigenspaces for τ. In Section 3.3, we explain a connection between the Ekedahl-Oort type and irreducible subrepresentations of $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$. This motivates Conjecture 3.2, in which we conjecture that the \mathbb{E}-module $\mathbb{E} / \mathbb{E}\left(V^{2 m+1}+F^{2 m+1}\right)$ occurs with multiplicity 4^{m} in D_{m}.

We determine the complete structure of the mod 2 Dieudonné module D_{m} for $m=1$ and $m=2$ in Propositions 3.3-3.4. To do this, we explicitly compute a basis for $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ for all $m \in \mathbb{N}$ in Section 4 and, for $m=1,2$, we compute the actions of F and V on this basis.

There is a similar result in [5] for the first Ree curve, which is defined over \mathbb{F}_{3}, namely the authors determine its mod 3 Dieudonné module.

Malmskog was partially supported by NSA grant H98230-16-1-0300. Pries was partially supported by NSF grant DMS-15-02227. We would like to thank Jeff Achter for helpful comments.
1.1. Notation. We begin by establishing some notation regarding p-torsion group schemes, mod p Dieudonné modules, and Ekedahl-Oort types, taken directly from [22, Section 2].

Let k be an algebraically closed field of characteristic $p>0$. Suppose A is a principally polarized abelian variety of dimension g defined over k. Consider the multiplication-by- p morphism $[p]: A \rightarrow A$ which is a finite flat morphism of degree
$p^{2 g}$. It factors as $[p]=V \circ F$. Here $F: A \rightarrow A^{(p)}$ is the relative Frobenius morphism coming from the p-power map on the structure sheaf; it is purely inseparable of degree p^{g}. The Verschiebung morphism $V: A^{(p)} \rightarrow A$ is the dual of $F_{A^{\text {dual }} .}$.

The p-torsion group scheme of A, denoted $A[p]$, is the kernel of $[p]$. It is a finite commutative group scheme annihilated by p, again having morphisms F and V, with $\operatorname{Ker}(F)=\operatorname{Im}(V)$ and $\operatorname{Ker}(V)=\operatorname{Im}(F)$. The principal polarization of A induces a symmetry on $A[p]$ as defined in $[\mathbf{2 0}, 5.1]$; when $p=2$, there are complications with the polarization which are resolved in $[\mathbf{2 0}, 9.2,9.5,12.2]$.

There are two important invariants of (the p-torsion of) A : the p-rank and a-number. The p-rank of A is $f=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Hom}\left(\mu_{p}, A[p]\right)$ where μ_{p} is the kernel of Frobenius on \mathbb{G}_{m}. Then p^{f} is the cardinality of $A[p](k)$. The a-number of A is $a=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, A[p]\right)$ where α_{p} is the kernel of Frobenius on \mathbb{G}_{a}.

One can describe the group scheme $A[p]$ using the mod p Dieudonné module, i.e., the modulo p reduction of the covariant Dieudonné module, see e.g., $[\mathbf{2 0}, 15.3]$. More precisely, there is an equivalence of categories between finite commutative group schemes over k annihilated by p and left \mathbb{E}-modules of finite dimension. Here $\mathbb{E}=k[F, V]$ denotes the non-commutative ring generated by semi-linear operators F and V with the relations $F V=V F=0$ and $F \lambda=\lambda^{p} F$ and $\lambda V=V \lambda^{p}$ for all $\lambda \in k$. Let $\mathbb{E}\left(A_{1}, \ldots\right)$ denote the left ideal of \mathbb{E} generated by A_{1}, \ldots.

Furthermore, there is a bijection between isomorphism classes of $2 g$ dimensional left \mathbb{E}-modules and Ekedahl-Oort types. To find the Ekedahl-Oort type, let N be the $\bmod p$ Dieudonné module of $A[p]$. The canonical filtration of N is the smallest filtration of N stabilized by the action of F^{-1} and V; denote it by

$$
0=N_{0} \subset N_{1} \subset \cdots N_{z}=N
$$

The canonical filtration can be extended to a final filtration; the Ekedahl-Oort type is the tuple $\left[\nu_{1}, \ldots, \nu_{g}\right.$], where the ν_{i} are the dimensions of the images of V on the subspaces in the final filtration.

For example, let $I_{t, 1}$ denote the p-torsion group scheme of rank $p^{2 t}$ having p-rank 0 and a-number 1. Then $I_{t, 1}$ has Dieudonné module $\mathbb{E} / \mathbb{E}\left(F^{t}+V^{t}\right)$ and Ekedahl-Oort type $[0,1, \ldots, t-1]$ [21, Lemma 3.1].

For a smooth projective curve X, by $[\mathbf{1 9}$, Section 5], there is an isomorphism of \mathbb{E}-modules between the contravariant mod p Dieudonné module of the p-torsion group scheme $\operatorname{Jac}(X)[p]$ and the de Rham cohomology $H_{\mathrm{dR}}^{1}(X) .{ }^{1}$

In the rest of the paper, $p=2$.

2. The de Rham cohomology as a representation for the Suzuki group

In this section, we analyze the de Rham cohomology $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ of the Suzuki curve as a 2 -modular representation of the Suzuki group.
2.1. Some ordinary representations. Suzuki determined the irreducible ordinary characters and representations of $\mathrm{Sz}(q)[\mathbf{2 4}]$. Consider the following four unipotent representations of $\mathrm{Sz}(q)$. Let W_{S} denote the Steinberg representation of dimension q^{2}. Let W_{0} be the trivial representation of dimension 1 . Let W_{+}and W_{-}be the two unipotent cuspidal representations of $\mathrm{Sz}(q)$, associated to the two ordinary characters of $\mathrm{Sz}(q)$ of degree $q_{0}(q-1)$ [24]. Then W_{+}and W_{-}each have dimension $q_{0}(q-1)$.

[^1]In [17, Theorem 6.1], Lusztig studied the compactly supported ℓ-adic cohomology of the affine Deligne-Lusztig curves. For the Suzuki curves, he proved that the ordinary representations $W_{S}, W_{+}, W_{-}, W_{0}$ are the eigenspaces under Frobenius and that each appears with multiplicity 1.
2.2. Modular representations of the Suzuki group. The absolutely irreducible 2-modular representations of $\mathrm{Sz}(q)$ are well-understood $[\mathbf{1 8}, \mathbf{2}, \mathbf{2 3}, \mathbf{1 6}]$.

Let $q=2^{2 m+1}$. We recall some results about the 2 -modular representations of the Suzuki group $\operatorname{Sz}(q)$ from $[\mathbf{1 8}]$. Fix a generator ζ of \mathbb{F}_{q}^{*}. Let $\theta \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ be such that $\theta^{2}(\alpha)=\alpha^{2}$ for all $\alpha \in \mathbb{F}_{q}$, i.e., θ is the square root of Frobenius.

The Suzuki group acts on \mathcal{S}_{m}. Let $\tau \in \operatorname{Sz}(q)$ be an element of order $q-1$; without loss of generality, we suppose that τ acts on \mathcal{S}_{m} by

$$
\tau: y \mapsto \zeta y, z \mapsto \zeta^{2^{m}+1} z
$$

Then $\mathrm{Sz}(q)$ has an irreducible 4-dimensional 2-modular representation V_{0} in which $\tau \mapsto M$, where $M \in \mathrm{GL}_{4}\left(\mathbb{F}_{q}\right)$ is the matrix

$$
M=\left(\begin{array}{cccc}
\zeta^{\theta+1} & 0 & 0 & 0 \\
0 & \zeta & 0 & 0 \\
0 & 0 & \zeta^{-1} & 0 \\
0 & 0 & 0 & \zeta^{-(\theta+1)}
\end{array}\right)
$$

For $0 \leq i \leq 2 m$, consider the automorphism α_{i} of $\mathrm{Sz}(q)$ induced by the automorphism $x \mapsto x^{2^{i}}$ of \mathbb{F}_{q}. Let V_{i} be the 4-dimensional $\mathbb{F}_{q} \mathrm{Sz}(q)$-module where $g \in \operatorname{Sz}(q)$ acts as $g^{\alpha_{i}}$ on V_{0}.

Let I be a subset of $N=\mathbb{Z} /(2 m+1) \mathbb{Z}$. Define $V_{I}=\otimes_{j \in I} V_{j}$, with V_{\emptyset} being the trivial module. Then V_{I} is an absolutely irreducible 2-modular representation of $\mathrm{Sz}(q)$. By $\left[\mathbf{1 8}\right.$, Lemma 1], if $I \neq J$ then V_{I} and V_{J} are geometrically non-isomorphic and $\left\{V_{I} \mid I \subset N\right\}$ is the complete set of simple $\overline{\mathbb{F}}_{2} \mathrm{Sz}(q)$-modules. Note that V_{I} has dimension $4^{|I|}$ and that V_{N} is the Steinberg module.

By [23, Theorem, page 1], for $I, J \subset N$, there are no non-trivial extensions of V_{I} by V_{J}, namely $\operatorname{Ext}_{{\underset{\mathbb{F}}{2}}^{1} \mathrm{Sz}(q)}\left(V_{I}, V_{J}\right)=0$.

The Frobenius $x \mapsto x^{2}$ on \mathbb{F}_{q} acts on $\left\{V_{i}\right\}$ taking $V_{i} \mapsto V_{i+1 \bmod 2 m+1}$. Note that $\oplus_{I \in \mathcal{I}} V_{I}$ is an $\mathbb{F}_{2} \mathrm{Sz}(q)$-module if and only if \mathcal{I} is invariant under Frobenius or, equivalently, if and only if $\{I \mid I \in \mathcal{I}\}$ is invariant under the translation $i \mapsto$ $i+1 \bmod 2 m+1$.

For $i \in N$, let ϕ_{i} denote the Brauer character associated to the 4-dimensional module V_{i}. For $I \subseteq N$, let $\phi_{I}=\prod_{i \in I} \phi_{i}$, so ϕ_{I} is the character associated to the module V_{I}. Then $\left\{\phi_{I}: I \subseteq N\right\}$ is a complete set of Brauer characters for $\mathrm{Sz}(q)$.

By [2, Theorem 3.4], $\phi_{i}^{2}=4+2 \phi_{i+m+1}+\phi_{i+1}$. Using this relation, Liu constructs a graph with vertex set N and edge set $\{(i, i+1),(i, i+1+m): i \in N\}$. Edges of the form $(i, i+1)$ are called short edges and edges of the form $(i, i+1+m)$ are called long edges. Two vertices i, j are called adjacent if they are connected by a long edge, i.e., if $i-j \equiv \pm m \bmod 2 m+1$. A set $I^{\prime} \subseteq N$ is called circular if no vertices of $I=N \backslash I^{\prime}$ are adjacent. A set $I \subseteq S$ is called good if $I^{\prime}=N \backslash I$ is circular.

The decompositions of W_{+}and W_{-}into irreducible 2-modular representations are known.

Theorem 2.1. Liu [16, Theorem 3.4] The irreducible 2-modular representation V_{I} occurs in $W_{ \pm}$if and only if I is good, i.e., if and only if there do not exist $i, j \in I$
such that $j-i \equiv \pm m \bmod 2 m+1$. In this case, the multiplicity of V_{I} in $W_{ \pm}$is $2^{m-|I|}$.
2.3. Modular representation of the de Rham cohomology. The de Rham cohomology $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ is an $\mathbb{F}_{2}[\mathrm{Sz}(q)]$-module of dimension $2 g_{m}=2 q_{0}(q-1)$. We consider the decomposition of $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ into irreducible 2-modular representations of the Suzuki group $\mathrm{Sz}(q)$.

Corollary 2.2. The irreducible 2 -modular representation V_{I} occurs in $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ if and only if there do not exist $i, j \in I$ such that $j-i \equiv \pm m \bmod 2 m+1$. If V_{I} occurs in $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ then its multiplicity is $2^{m+1-|I|}$. Thus the 2 -modular $\mathrm{Sz}(q)-$ representation of $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ is:

$$
\begin{equation*}
H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right) \simeq \bigoplus_{I \text { good }} V_{I}^{2^{m+1-|I|}} \tag{2.1}
\end{equation*}
$$

Proof. In [11, page 2535], Gross uses [17, Theorem 6.1] to prove that, as a $\mathrm{Sz}(q)$-representation, the ℓ-adic cohomology of the smooth projective curve \mathcal{S}_{m} is:

$$
H^{1}\left(\mathcal{S}_{m, \overline{\mathbb{F}}_{2}}, \overline{\mathbb{Q}}_{\ell}\right) \simeq W_{+} \oplus W_{-} .
$$

By $\left[\mathbf{1 5}\right.$, Theorem 2], the characters of $H^{1}\left(\mathcal{S}_{m, \overline{\mathbb{F}}_{2}}, \overline{\mathbb{Q}}_{\ell}\right)$ and $H_{\text {crys }}^{1}\left(\mathcal{S}_{m}, \operatorname{Frac}\left(W\left(\overline{\mathbb{F}}_{2}\right)\right)\right)$ as representations of $\mathrm{Sz}(q)$ are the same, and thus the representations are isomorphic. The de Rham cohomology is the reduction modulo 2 of the crystalline cohomology. Thus the result follows from Theorem 2.1.

Example 2.3. When $m=1$, then $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right) \simeq\left(V_{0} \oplus V_{1} \oplus V_{2}\right)^{2} \oplus V_{\emptyset}^{4}$.
Example 2.4. When $m=2$, then
$H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right) \simeq\left(V_{\{0,1\}} \oplus V_{\{1,2\}} \oplus V_{\{2,3\}} \oplus V_{\{3,4\}} \oplus V_{\{4,0\}}\right)^{2} \oplus\left(V_{0} \oplus V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{4}\right)^{4} \oplus V_{\emptyset}^{8}$.
REmark 2.5. For $m \leq 10$, we verified Corollary 2.2 using the multiplicity of the eigenvalues for τ on $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$.

3. The Dieudonné module and de Rham cohomology

In this section, we study the structure of the $\bmod 2$ Dieudonné module D_{m} of the Suzuki curve \mathcal{S}_{m} or, equivalently, the structure of $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ as an \mathbb{E}-module.
3.1. Results and conjectures. The chosen element $\tau \in \mathrm{Sz}(q)$ of order $q-1$ acts on the mod 2 Dieudonné module D_{m}. Let $D_{m, 0}$ denote the trivial eigenspace and $D_{m, \neq 0}$ denote the direct sum of the non-trivial eigenspaces. Since F and V commute with τ, they stabilize $D_{m, 0}$ and $D_{m, \neq 0}$; thus there is an \mathbb{E}-module decomposition $D_{m}=D_{m, 0} \oplus D_{m, \neq 0}$.

In Section 3.2, we prove the next proposition; it determines the \mathbb{E}-module structure of $D_{m, 0}$.

Proposition 3.1. Let $m \in \mathbb{N}$ and let $q_{0}=2^{m}$. The trivial eigenspace $D_{m, 0}$ of the mod 2 Dieudonné module of \mathcal{S}_{m} has Ekedahl-Oort type $\left[0,1,1,2,2, \ldots, q_{0}-1, q_{0}\right]$; in particular, it has rank $2 q_{0}, 2$-rank 0 , and a-number 2^{m-1}.

We have less information about the \mathbb{E}-module structure of $D_{m, \neq 0}$. In Section 3.3, we explain how the non-trivial representations V_{I} in $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ lead to E-submodules D_{I} of the mod 2 Dieudonné module of $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$. We would like to understand how to determine the \mathbb{E}-module structure of D_{I} from the representation
V_{I} for the subset $I \subset N=\mathbb{Z} /(2 m+1) \mathbb{Z}$. In Section 3.3, we consider a particular representation W_{m}, and make the following conjecture.

COnjecture 3.2. The multiplicity of $\mathbb{E} / \mathbb{E}\left(F^{2 m+1}+V^{2 m+1}\right)$ in the mod 2 Dieudonné module D_{m} of \mathcal{S}_{m} is 4^{m}.

We verify Conjecture 3.2 for $m=1$ and $m=2$ in Propositions 3.3 and 3.4. In fact, for $m=1$ and $m=2$, we determine the mod 2 Dieudonné module D_{m} completely. To do this, we find a basis for $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ for all m in Section 4. For $m=1$, we explicitly compute the action of F and V on this basis, proving that:

Proposition 3.3. When $m=1$, then the mod 2 Dieudonné module of \mathcal{S}_{1} is

$$
D_{1}=\left(\mathbb{E} / \mathbb{E}\left(F^{3}+V^{3}\right)\right)^{4} \oplus \mathbb{E} / \mathbb{E}\left(F^{2}+V^{2}\right)
$$

For $m=2$, we determine the action of F and V on $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ using Magma [1]. Consider the \mathbb{E}-module $\mathbb{E}(Z)$ generated by X_{1}, X_{2}, X_{3} with the following relations: $V^{3} X_{1}-F^{3} X_{2}=0 ; V^{4} X_{2}-F^{3} X_{3}=0$; and $V^{3} X_{3}-F^{4} X_{1}=0$. Then $\mathbb{E}(Z)$ is symmetric and has rank 20, p-rank 0 , and a-number 3 .

Proposition 3.4. When $m=2$, then the mod 2 Dieudonné module of \mathcal{S}_{2} is

$$
D_{2}=\left(\mathbb{E} / \mathbb{E}\left(F^{5}+V^{5}\right)\right)^{16} \oplus(\mathbb{E}(Z))^{4} \oplus\left(\mathbb{E} / \mathbb{E}\left(F^{3}+V^{3}\right) \oplus \mathbb{E} / \mathbb{E}(F+V)\right)
$$

3.2. The trivial eigenspace. The eigenspace $D_{m, 0}$ is the subspace of $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ of elements fixed by τ. Since τ acts fixed point freely on the 4 -dimensional module V_{i} for each $i\left[\mathbf{1 8}\right.$, proof of Lemma 3], the generators of $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ which are fixed by τ are exactly those in V_{I} for $I=\emptyset$. In other words, the representation for $D_{m, 0}$ consists of the $2^{m+1}=2 q_{0}$ copies of the trivial representation in (2.1).

Proof. (Proof of Proposition 3.1) Let $\mathcal{C}_{m, 0}$ be the quotient curve of \mathcal{S}_{m} by the subgroup $\langle\tau\rangle$. Then $\mathcal{C}_{m, 0}$ is a hyperelliptic curve of genus q_{0} [$\mathbf{1 0}$, Theorem 6.9].

The de Rham cohomology $H_{\mathrm{dR}}^{1}\left(\mathcal{C}_{m, 0}\right)$ of $\mathcal{C}_{m, 0}$ is isomorphic as an \mathbb{E}-module to $D_{m, 0}$. Thus the trivial eigenspace $D_{m, 0}$ for the $\bmod 2$ Dieudonné module of \mathcal{S}_{m} is isomorphic to the mod 2 Dieudonné module of $C_{m, 0}$; in particular, it has rank $2 q_{0}$.

Since \mathcal{S}_{m} has 2-rank 0 , so does $\mathcal{C}_{m, 0}$. Thus $C_{m, 0}$ is a hyperelliptic curve of 2-rank 0 . By [6, Corollary 5.3], the Ekedahl-Oort type of $C_{m, 0}$ is $\left[0,1,1,2,2, \ldots, q_{0}-1, q_{0}\right]$; this implies that the a-number is 2^{m-1}.

We determine the \mathbb{E}-module structure of $D_{m, 0}$ by applying results from $[\mathbf{6}$, Section 5].

Proposition 3.5. [6, Proposition 5.8] The mod 2 Dieudonné module $D_{m, 0}$ is the \mathbb{E}-module generated as a k-vector space by $\left\{X_{1}, \ldots, X_{q_{0}}, Y_{1}, \ldots, Y_{q_{0}}\right\}$ with the actions of F and V given by:
(1) $F\left(Y_{j}\right)=0$.
(2) $V\left(Y_{j}\right)= \begin{cases}Y_{2 j} & \text { if } j \leq q_{0} / 2, \\ 0 & \text { if } j>q_{0} / 2 .\end{cases}$
(3) $F\left(X_{i}\right)= \begin{cases}X_{j / 2} & \text { if } j \text { is even, } \\ Y_{q_{0}-(j-1) / 2} & \text { if } j \text { is odd } .\end{cases}$
(4) $V\left(X_{j}\right)= \begin{cases}0 & \text { if } j \leq\left(q_{0}-1\right) / 2, \\ -Y_{2 q_{0}-2 j+1} & \text { if } j>\left(q_{0}-1\right) / 2 .\end{cases}$

We have an explicit description of the generators and relations of $D_{m, 0}$ as follows.

Notation 3.6. [6, Notation 5.9] Fix $c=q_{0} \in \mathbb{N}$. Consider the set

$$
I=\{j \in \mathbb{N} \mid\lceil(c+1) / 2\rceil \leq j \leq c\}
$$

which has cardinality $\lfloor(c+1) / 2\rfloor$. For $j \in I$, let $\ell(j)$ be the odd part of j and let $e(j) \in \mathbb{Z} \geq 0$ be such that $j=2^{e(j)} \ell(j)$. Let $s(j)=c-(\ell(j)-1) / 2$. Then $\{s(j) \mid j \in I\}=I$. Also, let $m(j)=2 c-2 j+1$ and let $\epsilon(j) \in \mathbb{Z}^{\geq 0}$ be such that $t(j):=2^{\epsilon(j)} m(j) \in I$. Then $\{t(j) \mid j \in I\}=I$. Thus, there is a unique bijection $\iota: I \rightarrow I$ such that $t(\iota(j))=s(j)$ for each $j \in I$.

Proposition 3.7. [6, Proposition 5.10] The set $\left\{X_{j} \mid j \in I\right\}$ generates the mod 2 Dieudonné module $D_{m, 0}$ as an \mathbb{E}-module subject to the following relations, for $j \in I: F^{e(j)+1}\left(X_{j}\right)+V^{\epsilon(\iota(j))+1}\left(X_{\iota(j)}\right)$.

Example 3.8. (1) When $m=1$ and the Ekedahl-Oort type is $[0,1]$, then $D_{1,0} \simeq \mathbb{E} / \mathbb{E}\left(F^{2}+V^{2}\right)\left(\right.$ group scheme $\left.I_{2,1}\right)$.
(2) When $m=2$ and the Ekedahl-Oort type is $[0,1,1,2]$, then one checks that $D_{2,0} \simeq \mathbb{E} / \mathbb{E}(F+V) \oplus \mathbb{E} / \mathbb{E}\left(F^{3}+V^{3}\right)$ (group scheme $\left.I_{1,1} \oplus I_{3,1}\right)$.
In the next result, we determine some \mathbb{E}-submodules of $D_{m, 0}$ for general m.
Proposition 3.9. The \mathbb{E}-module $\mathbb{E} / \mathbb{E}\left(V^{e+1}+F^{e+1}\right)$ occurs as an \mathbb{E}-submodule of $D_{m, 0}$ if and only if $2^{m} \equiv 2^{e} \bmod 2^{e+1}+1$. In particular:
(1) $\mathbb{E} / \mathbb{E}\left(V^{m+1}+F^{m+1}\right)$ occurs for all m;
(2) $\mathbb{E} / \mathbb{E}(V+F)$ occurs if and only if m is even; and
(3) $\mathbb{E} / \mathbb{E}\left(V^{2}+F^{2}\right)=0$ occurs if and only if $m \equiv 1 \bmod 4$.

Proof. Let $e \in \mathbb{Z}^{\geq 0}$. By Proposition 3.7, the relation $\left(V^{e+1}+F^{e+1}\right) X_{j}=0$ is only possible if $j=2^{e} \ell$ where ℓ is odd. Write $s(j)=c-(\ell-1) / 2$. Then $F^{e+1}\left(X_{j}\right)=F\left(X_{\ell}\right)=Y_{s(j)}$. Now $V\left(X_{j}\right)=-Y_{m(j)}$ where $m(j)=2 c-2 j+1$. Also $V^{e+1}\left(X_{j}\right)=2^{e} m(j)$. Thus we need $s(j)=2^{e} m(j)$. This is equivalent to $2^{e+1} c-\left(j-2^{e}\right)=2^{2 e+1}(2 c-2 j+1)$, which is equivalent to

$$
j=\frac{c 2^{e+1}\left(2^{e+1}-1\right)+2^{e}\left(2^{2 e+1}-1\right)}{2^{2 e+2}-1}=\frac{c 2^{e+1}+2^{e}}{2^{e+1}+1}
$$

This value of j is integral if and only if $c \equiv 2^{e} \bmod 2^{e+1}+1$. Thus, the relation $\left(V^{e+1}+F^{e+1}\right) X_{j}=0$ occurs if and only if $2^{m} \equiv 2^{e} \bmod 2^{e+1}+1$ and also $j=$ $\left(2^{e+1} q_{0}+2^{e}\right) /\left(2^{e+1}+1\right)$. In particular, one checks that:
(1) $\left(V^{m+1}+F^{m+1}\right) X_{2^{m}}=0$;
(2) the relation $(V+F) X_{j}=0$ occurs if and only if m is even and $j=$ $\left(2 \cdot 2^{m}+1\right) / 3$
(3) the relation $\left(V^{2}+F^{2}\right) X_{j}=0$ occurs if and only if $m \equiv 1 \bmod 4$ and $j=\left(4 \cdot 2^{m}+2\right) / 5$.

As a corollary, we determine cases when the \mathbb{E}-module $\mathbb{E} / \mathbb{E}\left(V^{e+1}+F^{e+1}\right)$ occurs in D_{m}.

Corollary 3.10. If $2^{m} \equiv 2^{e} \bmod 2^{e+1}+1$, then $\mathbb{E} / \mathbb{E}\left(V^{e+1}+F^{e+1}\right)$ occurs as an \mathbb{E}-submodule of the mod 2 Dieudonné module D_{m} of \mathcal{S}_{m}. In particular,
(1) $\mathbb{E} / \mathbb{E}\left(V^{m+1}+F^{m+1}\right)$ occurs as an \mathbb{E}-submodule of D_{m} for all m;
(2) $\mathbb{E} / \mathbb{E}(V+F)$ occurs as an \mathbb{E}-submodule of D_{m} if m is even; and
(3) $\mathbb{E} / \mathbb{E}\left(V^{2}+F^{2}\right)$ occurs as an \mathbb{E}-submodule of D_{m} if $m \equiv 1 \bmod 4$.

Proof. By Proposition $3.9, \mathbb{E} / \mathbb{E}\left(V^{e+1}+F^{e+1}\right)$ occurs as an \mathbb{E}-submodule of the mod 2 Dieudonné module $D_{m, 0}$. The result follows since $D_{m, 0}$ is an \mathbb{E} submodule of D_{m}.
3.3. The nontrivial eigenspaces. Recall that $D_{m, \neq 0}$ is the direct sum of the non-trivial eigenspaces for τ. Consider the canonical filtration of $D_{m, \neq 0}$, which is the smallest filtration stabilized under the action of F^{-1} and V; denote it by

$$
0=N_{0} \subset N_{1} \subset \cdots N_{t}=N
$$

By [20, Chapter 2] (see also [5, Section 2.2]), the blocks $B_{i}=N_{i+1} / N_{i}$ in the canonical filtration are representations for $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$. On each block B_{i}, either (i) $\left.V\right|_{B_{i}}=0$ in which case $B_{i} \subset \operatorname{Im}(F)$ and $F^{-1}: B_{i}^{(p)} \rightarrow B_{j}$ is an isomorphism to another block with index $j>i$; or (ii) $V: B_{i}^{(p)} \rightarrow B_{j}$ is an isomorphism to another block with index $j<i$. This action of V and F^{-1} yields a permutation π of the set of blocks B_{i}. Cycles in the permutation are in bijection with orbits \mathcal{O} of the blocks under the action of V and F^{-1}.

Fix an orbit \mathcal{O} of a block B_{i} under the action of F^{-1} and V. As in $[\mathbf{2 2}$, Section 5.2], this yields a word w in F^{-1} and V. From this, we produce a symmetric \mathbb{E}-module $\mathbb{E}(w)$ whose dimension over k is the length of w. Then $\mathbb{E}(w)$ is an isotypic component of $D_{m, 0}$. The multiplicity of $\mathbb{E}(w)$ in $D_{m, \neq 0}$ is the dimension of the block B_{i} in \mathcal{O}.

By Corollary 2.2, the representations occurring in $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ are the representations in $W_{ \pm}$, namely the representations V_{I} for I a good subset of $N=\mathbb{Z} /(2 m+1) \mathbb{Z}$.

We now explain the motivation for Conjecture 3.2. Let $I_{m}=\{0, \ldots, m-1\}$. The smallest power of F that stabilizes I_{m} is $2 m+1$. Consider the 2 -modular representation of $\mathrm{Sz}(\mathrm{q})$ given by $W_{m}=\oplus_{i=0}^{2 m} F^{i}\left(V_{I_{m}}\right)$. For example, when $m=1$ then $W_{1}=V_{0} \oplus V_{1} \oplus V_{2}$ and when $m=2$ then

$$
W_{2}=\left(V_{0} \otimes V_{1}\right) \oplus\left(V_{1} \otimes V_{2}\right) \oplus\left(V_{2} \otimes V_{3}\right) \oplus\left(V_{3} \otimes V_{4}\right) \oplus\left(V_{4} \otimes V_{0}\right)
$$

By definition, W_{m} is an $\mathbb{F}_{2} \mathrm{Sz}(q)$-module of dimension $(2 m+1) 4^{m}$. By Corollary 2.2 , the 2 -modular representation W_{m} appears with multiplicity 2 in $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$. Consider the \mathbb{E}-module $\mathbb{E} / \mathbb{E}\left(F^{2 m+1}+V^{2 m+1}\right)$; it has dimension $2(2 m+1)$ over k.

The idea behind Conjecture 3.2 is that the subrepresentation W_{m}^{2} of $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ should correspond to a submodule of D_{m} with structure $\left(\mathbb{E} / \mathbb{E}\left(F^{2 m+1}+V^{2 m+1}\right)\right)^{4^{m}}$. More precisely, Conjecture 3.2 would follow from the claims that there is a unique i such that $V_{I_{m}}$ is a subrepresentation of B_{i}, that B_{i} is irreducible and thus equal to $V_{I_{m}}$, and that the word w on the orbit of B_{i} is $\left(F^{-1}\right)^{2 m+1} V^{2 m+1}$.

4. An Explicit Basis for the de Rham cohomology

In this section, we compute an explicit basis for $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ for all m. This material is needed to determine the mod 2 Dieudonné module of \mathcal{S}_{m} when $m=1$ and $m=2$ in Propositions 3.3 and 3.4. We determine the action of F and V on the basis elements explicitly here when $m=1$ and using Magma [1] when $m=2$.
4.1. Preliminaries. Consider the affine equation $z^{q}+z=y^{q_{0}}\left(y^{q}+y\right)$ for \mathcal{S}_{m}. Let P_{∞} be the point at infinity on \mathcal{S}_{m}. Let $P_{(y, z)}$ denote the point (y, z) on \mathcal{S}_{m}. Define the functions $h_{1}, h_{2} \in \mathbb{F}_{2}\left(\mathcal{S}_{m}\right)$ by:

$$
h_{1}:=z^{2 q_{0}}+y^{2 q_{0}+1}, h_{2}:=z^{2 q_{0}} y+h_{1}^{2 q_{0}} .
$$

Lemma 4.1. (1) The function y has divisor

$$
\operatorname{div}(y)=\sum_{z \in \mathbb{F}_{q}} P_{(0, z)}-q P_{\infty}
$$

(2) The function z has divisor

$$
\operatorname{div}(z)=\sum_{y \in \mathbb{F}_{q}^{\times}} P_{(y, 0)}+\left(q_{0}+1\right) P_{(0,0)}-\left(q+q_{0}\right) P_{\infty}
$$

(3) Let $S=\left\{(y, z) \in \mathbb{F}_{q}^{2}: y^{2 q_{0}+1}=z^{2 q_{0}},(y, z) \neq(0,0)\right\}$. The function h_{1} has divisor

$$
\operatorname{div}\left(h_{1}\right)=\sum_{(y, z) \in S} P_{(y, z)}+\left(2 q_{0}+1\right) P_{(0,0)}-\left(q+2 q_{0}\right) P_{\infty}
$$

(4) The function h_{2} has divisor

$$
\operatorname{div}\left(h_{2}\right)=\left(q+2 q_{0}+1\right)\left(P_{(0,0)}-P_{\infty}\right)
$$

Proof. The pole orders of these functions are determined in $[\mathbf{1 4}$, Proposition 1.3]. The orders of the zeros can be determined using the equation for the curve and the definitions of h_{1} and h_{2}.

Let \mathcal{E}_{m} be the set of $(a, b, c, d) \subset \mathbb{Z}^{4}$ satisfying

$$
\begin{gathered}
0 \leq a, \quad 0 \leq b \leq 1, \quad 0 \leq c \leq q_{0}-1, \quad 0 \leq d \leq q_{0}-1 \\
a q+b\left(q+q_{0}\right)+c\left(q+2 q_{0}\right)+d\left(q+2 q_{0}+1\right) \leq 2 g-2
\end{gathered}
$$

Lemma 4.2. The following set is a basis of $H^{0}\left(\mathcal{S}_{m}, \Omega^{1}\right)$:

$$
\mathcal{B}_{m}:=\left\{g_{a, b, c, d}:=y^{a} z^{b} h_{1}^{c} h_{2}^{d} d y \mid(a, b, c, d) \in \mathcal{E}_{m}\right\}
$$

Proof. See [7, Proposition 3.7].
A basis for $H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right)$ can be built similarly. Define the map

$$
\pi: \mathcal{S}_{m} \rightarrow \mathbb{P}_{y}^{1}, \quad(y, z) \mapsto y, \quad P_{\infty} \mapsto \infty_{y}
$$

Let 0_{y} be the point on \mathbb{P}_{y}^{1} with $y=0$. Then $\pi^{-1}\left(0_{y}\right)=\left\{(0, z): z \in \mathbb{F}_{q}\right\}$ has cardinality q.

Lemma 4.3. The following set represents a basis of $H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right)$:

$$
\mathcal{A}_{m}:=\left\{f_{a, b, c, d}: \left.=\frac{1}{y^{a} z^{b} h_{1}^{c} h_{2}^{d}} \frac{z h_{1}^{q_{0}-1} h_{2}^{q_{0}-1}}{y} \right\rvert\,(a, b, c, d) \in \mathcal{E}_{m}\right\}
$$

Proof. Let $U_{\infty}=\mathcal{S}_{m} \backslash \pi^{-1}\left(\infty_{y}\right)=\mathcal{S}_{m} \backslash P_{\infty}$ and $U_{0}=\mathcal{S}_{m} \backslash \pi^{-1}\left(0_{y}\right)$. The elements of $H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right)$ can be represented by classes of functions that are regular on $U_{\infty} \cap U_{0}$, but are not regular on U_{∞} or regular on U_{0}. In other words, these functions have a pole at P_{∞} and at some point in $\pi^{-1}\left(0_{y}\right)$.

Let $f=f_{a, b, c, d}$ for some $(a, b, c, d) \in \mathcal{E}_{m}$. Then f has poles only in $\left\{P_{\infty}, \pi^{-1}\left(0_{y}\right)\right\}$ by Lemma 4.1. Let $Q=(0, \alpha)$ for some $\alpha \in \mathbb{F}_{q}^{\times}$. Then $v_{Q}(f)=-(a+1) \leq-1$. Also, let $t=q+2 q_{0}+1$, then

$$
\begin{aligned}
v_{P_{\infty}}(f) & =(a+1)(q)-(1-b)\left(q+q_{0}\right)-\left(q_{0}-1-c\right)\left(q+2 q_{0}\right)-\left(q_{0}-1-d\right) t \\
& =a q+b\left(q+q_{0}\right)+c\left(q+2 q_{0}\right)+d\left(q+2 q_{0}+1\right)+\left(2 q_{0}-2 q_{0} q+1\right) \\
& \leq 2 g_{m}-2+\left(2 q_{0}-2 q_{0} q+1\right) \\
& =\left(2 q_{0} q-2 q_{0}-2\right)+\left(2 q_{0}-2 q_{0} q+1\right) \\
& =-1
\end{aligned}
$$

So f is regular on $U_{\infty} \cap U_{0}$ but not on U_{∞} or U_{0}. By a calculation similar to [$\mathbf{7}$, Proposition 3.7], the elements of \mathcal{A}_{m} are independent because each element has a different pole order at P_{∞}. The cardinality of \mathcal{A}_{m} is $g_{m}=\operatorname{dim}\left(H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right)\right)$. Thus \mathcal{A} is a basis for $H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right)$.
4.2. Constructing the de Rham cohomology. Let \mathcal{U} be the open cover of \mathcal{S}_{m} given by U_{∞} and U_{0} from the proof of Lemma 4.3. For a sheaf \mathcal{F} on \mathcal{S}_{m}, let

$$
\begin{aligned}
C^{0}(\mathcal{U}, \mathcal{F}) & :=\left\{g=\left(g_{\infty}, g_{0}\right) \mid g_{i} \in \Gamma\left(U_{i}, \mathcal{F}\right)\right\} \\
C^{1}(\mathcal{U}, \mathcal{F}) & :=\left\{\phi \in \Gamma\left(U_{\infty} \cap U_{0}, \mathcal{F}\right)\right\}
\end{aligned}
$$

Define the coboundary operator $\delta: \mathcal{C}^{0}(\mathcal{U}, \mathcal{F}) \rightarrow \mathcal{C}^{1}(\mathcal{U}, \mathcal{F})$ by $\delta g=g_{\infty}-g_{0}$. The closed de Rham cocycles are the set

$$
Z_{\mathrm{dR}}^{1}(\mathcal{U}):=\left\{(f, g) \in \mathcal{C}^{1}(\mathcal{U}, \mathcal{O}) \times \mathcal{C}^{0}\left(\mathcal{U}, \Omega^{1}\right): d f=\delta g\right\} .
$$

The de Rham coboundaries are the set

$$
B_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right):=\left\{(\delta \kappa, d \kappa) \in Z_{\mathrm{dR}}^{1}(\mathcal{U}): \kappa \in \mathcal{C}^{0}(\mathcal{U}, \mathcal{O})\right\}
$$

where $d \kappa=\left(d\left(\kappa_{0}\right), d\left(\kappa_{\infty}\right)\right)$. The de Rham cohomology $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ is

$$
H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right) \cong H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)(\mathcal{U}):=Z_{\mathrm{dR}}^{1}(\mathcal{U}) / B_{\mathrm{dR}}^{1}(\mathcal{U})
$$

There is an injective homomorphism $\lambda: H^{0}\left(\mathcal{S}_{m}, \Omega^{1}\right) \rightarrow H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ denoted informally by $g \mapsto(0, \mathbf{g})$, where the second coordinate is a tuple $\mathbf{g}=\left(g_{\infty}, g_{0}\right)$ defined by $g_{i}=\left.g\right|_{U_{i}}$. Define another homomorphism $\gamma: H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right) \rightarrow H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right)$ with $(f, \mathbf{g}) \mapsto f$. These create a short exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{0}\left(\mathcal{S}_{m}, \Omega^{1}\right) \xrightarrow{\lambda} H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right) \xrightarrow{\gamma} H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right) \longrightarrow 0 \tag{4.1}
\end{equation*}
$$

Let A be a basis for $H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right)$ and B a basis for $H^{0}\left(\mathcal{S}_{m}, \Omega^{1}\right)$. A basis for $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ is then given by $\psi(A) \cup \lambda(B)$, where ψ is defined as follows. Given $f \in H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right)$, one can write $d f=d f_{\infty}+d f_{0}$, where $d f_{i} \in \Gamma\left(U_{i}, \Omega^{1}\right)$ for $i \in\{0, \infty\}$. For convenience, define $\mathbf{d} \mathbf{f}=\left(d f_{\infty}, d f_{0}\right)$. Define a section of (4.1) by:

$$
\psi: H^{1}\left(\mathcal{S}_{m}, \mathcal{O}\right) \rightarrow H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right), \psi(f)=(f, \mathbf{d f})
$$

The image of ψ is a complement in $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ to $\lambda\left(H^{0}\left(\mathcal{S}_{m}, \Omega^{1}\right)\right)$.
4.2.1. The Frobenius and Verschiebung operators. The Frobenius F and Verschiebung V act on $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{m}\right)$ by

$$
F(f, \mathbf{g}):=\left(f^{p},(0,0)\right) \text { and } V(f, \mathbf{g}):=(0, \mathscr{C}(\mathbf{g}))
$$

where \mathscr{C} is the Cartier operator, which acts componentwise on \mathbf{g}. The Cartier operator is defined by the properties that it annihilates exact differentials, preserves logarithmic differentials, and is p^{-1}-linear. It follows from the definitions that

$$
\operatorname{ker}(F)=\lambda\left(H^{0}\left(\mathcal{S}_{m}, \Omega^{1}\right)\right)=\operatorname{im}(V)
$$

4.3. The case $m=1$. When $m=1$, then $q_{0}=2, q=8$, and $g=14$. The Suzuki curve \mathcal{S}_{1} has affine equation

$$
z^{8}+z=y^{2}\left(y^{8}+y\right)
$$

The set \mathcal{E}_{1} consists of the 14 tuples
$\mathcal{E}_{1}=\{(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0)$, $(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,1,0,0),(2,0,0,0),(2,1,0,0),(3,0,0,0)\}$.
By Lemmas 4.2 and 4.3, \mathcal{B}_{1} is a basis for $H^{0}\left(\mathcal{S}_{1}, \Omega^{1}\right)$ and \mathcal{A}_{1} is a basis for $H^{1}\left(\mathcal{S}_{1}, \mathcal{O}\right)$. Based on the action of Frobenius and Verschiebung, the following sets make more convenient bases:

Lemma 4.4. (1) A basis for $H^{1}\left(\mathcal{S}_{1}, \mathcal{O}\right)$ is given by the set

$$
\begin{aligned}
A= & \left\{f_{(0,0,0,0)}, f_{(2,0,0,0)}, f_{(0,1,0,0)}+f_{(3,0,0,0)}, f_{(2,1,0,0)}+f_{(0,0,1,0)},\right. \\
& f_{(0,0,0,1)}+f_{(1,0,1,0)}, f_{(1,0,0,0)}, f_{(2,1,0,0)}, f_{(1,0,0,1)}, f_{(0,0,1,1)}, \\
& \left.f_{(1,0,1,0)}, f_{(3,0,0,0)}, f_{(1,1,0,0)}, f_{(0,1,1,0)}, f_{(0,1,0,1)}\right\}
\end{aligned}
$$

(2) A basis for $H^{0}\left(\mathcal{S}_{1}, \Omega^{1}\right)$ is given by the set

$$
\begin{aligned}
B= & \left\{g_{(0,0,0,0)}, g_{(2,0,0,0)}, g_{(0,1,0,0)}+g_{(3,0,0,0)}, g_{(2,1,0,0)}+g_{(0,0,1,0)},\right. \\
& g_{(0,0,0,1)}+g_{(1,0,1,0)}, g_{(1,0,0,0)}, g_{(2,1,0,0)}, g_{(1,0,0,1)}, g_{(0,0,1,1)}, g_{(1,0,1,0)}, \\
& \left.g_{(3,0,0,0)}, g_{(1,1,0,0)}, g_{(0,1,1,0)}, g_{(0,1,0,1)}\right\}
\end{aligned}
$$

Proof. By Lemma 4.2 (resp. 4.3), these 1-forms (resp. functions) have distinct pole orders at P_{∞}, are therefore linearly independent, and thus form a basis of $H^{1}\left(\mathcal{S}_{1}, \mathcal{O}\right)\left(\right.$ resp. $H^{0}\left(\mathcal{S}_{1}, \Omega^{1}\right)$).

It is now possible to calculate the action of F and V on $\psi(A) \cup \lambda(B)$, a basis for $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{1}\right)$.
4.3.1. The action of Frobenius when $m=1$. The action of F is summarized in the right column of Table 2. Note that $F(g)=0$ for $g \in B$ since $\operatorname{ker}(F)=\operatorname{im}(V) \cong$ $H^{0}\left(\mathcal{S}_{1}, \Omega^{1}\right)$. For the action of F on $\psi(f)$ for $f \in A$, note that $F(\psi(f))=\left(f^{2},(0,0)\right)$. Then

$$
\begin{aligned}
f^{2}=\left(f_{(a, b, c, d)}\right)^{2} & =\left(y^{-1-a} z^{1-b} h_{1}^{1-c} h_{2}^{1-d}\right)^{2} \\
& =\left(y^{-2}\right)^{1+a}\left(y h_{1}+h_{2}\right)^{1-b}\left(z+y^{3}\right)^{1-c}\left(h_{1}+z y^{2}\right)^{1-d}
\end{aligned}
$$

To do these calculations, we simplify f^{2} and write it as a sum of quotients of monomials in $\left\{y, z, h_{1}, h_{2}\right\}$. These monomials can then be classified as belonging to $\Gamma\left(U_{0}\right)$ or $\Gamma\left(U_{\infty}\right)$, or can otherwise be rewritten in terms of the basis for $H^{1}\left(\mathcal{S}_{1}, \mathcal{O}\right)$. It is then possible to use coboundaries to write $\left(f^{2},(0,0)\right)$ in terms of the given basis for $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{1}\right)$.

Example 4.5. To compute that $F\left(\psi\left(f_{(0,1,0,1)}\right)\right)=\lambda\left(g_{(0,0,0,0)}\right)$, note first that

$$
\left(f_{(0,1,0,1)}\right)^{2}=y^{-2}\left(z+y^{3}\right)=\frac{z}{y^{2}}+y
$$

Also,

$$
d\left(\frac{z}{y^{2}}\right)=\frac{1}{y^{2}} d z-2 \frac{z}{y^{3}} d y=d y \text { and } d(y)=d y
$$

Since $y \in \Gamma\left(U_{\infty}, \mathcal{O}\right)$ and $\frac{z}{y^{2}} \in \Gamma\left(U_{0}, \mathcal{O}\right)$, the pair $\left(\frac{z}{y^{2}}, y\right)$ is in $C^{0}(\mathcal{U}, \mathcal{O})$ and one sees that $\left(\frac{z}{y^{2}}+y,(d y, d y)\right)$ is a coboundary. Thus

$$
\begin{aligned}
F\left(\psi\left(f_{(0,1,0,1)}\right)\right) & =\left(\frac{z}{y^{2}}+y,(0,0)\right)+\left(\frac{z}{y^{2}}+y,(d y, d y)\right) \\
& =(0,(d y, d y))=\lambda(d y)=\left(0, \mathbf{g}_{(\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0})}\right)
\end{aligned}
$$

Example 4.6. We compute that $F\left(\psi\left(f_{(0,0,1,1)}\right)\right)=\psi\left(f_{(0,1,0,1)}\right)$. This is true because

$$
\left(f_{(0,0,1,1)}\right)^{2}=y^{-2}\left(y h_{1}+h_{2}\right)=\frac{h_{1}}{y}+\frac{h_{2}}{y^{2}} .
$$

Note that $\frac{h_{2}}{y^{2}} \in \Gamma\left(U_{0}, \mathcal{O}\right)$, so $\left(\frac{h_{2}}{y^{2}}, 0\right) \in C^{0}(\mathcal{U}, \mathcal{O})$, and $d\left(\frac{h_{2}}{y^{2}}\right)=\frac{z^{4}}{y^{2}} d y$. So one sees that $\left(\frac{h_{2}}{y^{2}},\left(\frac{z^{4}}{y^{2}} d y, 0\right)\right)$ is a coboundary. Also, $d\left(\frac{h_{1}}{y}\right)=\frac{z^{4}}{y^{2}} d y$. Thus

$$
\begin{aligned}
F\left(\psi\left(f_{(0,0,1,1)}\right)\right) & =\left(\frac{h_{1}}{y}+\frac{h_{2}}{y^{2}},(0,0)\right)+\left(\frac{h_{2}}{y^{2}},\left(\frac{z^{4}}{y^{2}} d y, 0\right)\right) \\
& =\left(\frac{h_{1}}{y},\left(\frac{z^{4}}{y^{2}} d y, 0\right)\right)=\psi\left(f_{(0,1,0,1)}\right)
\end{aligned}
$$

4.3.2. The action of Verschiebung when $m=1$. The action of V is summarized in the middle column of Table 2. In [7], the authors calculate the action of the Cartier operator \mathscr{C} (see Table 1). This determines the action of V on $\lambda(g)$ for $g \in B$. It also helps determine the action of V on $\psi(f)$ for $f \in A$.

Example 4.7. We compute that $V\left(\psi\left(f_{(0,1,0,1)}\right)\right)=(0, \mathbf{0})$. Writing

$$
f=f_{(0,1,0,1)}=\frac{h_{1}}{y}=\frac{z^{4}}{y}+y^{4}
$$

then

$$
d f=\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z=\left(-\frac{z^{4}}{y^{2}}+4 y^{3}\right) d y+4 \frac{z^{3}}{y} d z=\frac{z^{4}}{y^{2}} d y
$$

Considering the pole orders of y, z, and $d y$, define $d f=d f_{0} \in \Omega_{0}$ and $d f_{\infty}=0$, so $\mathbf{d f}=(0, d f)$. Thus $\mathscr{C}(d f)=\frac{z^{2}}{y} \mathscr{C}(d y)=0$. Thus $\mathscr{C}(\mathbf{d f})=(0,0)=\mathbf{0}$ and $V\left(\psi\left(f_{(0,1,0,1)}\right)\right)=(0, \mathbf{0})$.

Example 4.8. We compute that $V\left(\psi\left(f_{(2,1,0,0)}\right)\right)=\left(0, \mathbf{g}_{(0,1,0,0)}\right)$. This is because

$$
f_{(2,1,0,0)}=\frac{h_{1} h_{2}}{y^{3}}
$$

so

$$
d f=y^{-3} d\left(h_{1} h_{2}\right)+y^{-4} h_{1} h_{2} d y=y^{-3} h_{1} d\left(h_{2}\right)+y^{-3} h_{2} d\left(h_{1}\right)+y^{-4} h_{1} h_{2} d y
$$

Then

$$
d\left(h_{1}\right)=d\left(z^{4}+y^{5}\right)=y^{4} d y \text { and } d\left(h_{2}\right)=d\left(z^{4} y+h_{1}^{4}\right)=z^{4} d y
$$

$$
\begin{aligned}
d f & =y^{-3} z^{4} h_{1} d y+y h_{2} d y+y^{-4} h_{1} h_{2} \\
& =y^{-3} h_{1}\left(h_{1}+y^{5}\right) d y+y h_{2} d y+y^{-4} h_{1} h_{2} \\
& =\frac{h_{1}^{2}}{y^{3}} d y+\frac{h_{1} h_{2}}{y^{4}} d y+y^{2} h_{1} d y+y h_{2} d y,
\end{aligned}
$$

using the fact that $z^{4}=h_{1}+y^{5}$. Considering the orders of the poles, define $d f_{0}=\frac{h_{1}^{2}}{y^{3}} d y+\frac{h_{1} h_{2}}{y^{4}} d y \in \Omega_{0}$ and $d f_{\infty}=y^{2} h_{1} d y+y h_{2} d y \in \Omega_{\infty}$. Using Table 1 and the fact that $h_{1}^{2}=z+y^{3}$, then

$$
\begin{aligned}
\mathscr{C}\left(d f_{\infty}\right) & =y \mathscr{C}\left(h_{1} d y\right)+\mathscr{C}\left(y h_{2} d y\right) \\
& =y^{3} d y+h_{1}^{2} d y=\left(y^{3}+z+y^{3}\right) d y=z d y
\end{aligned}
$$

Thus $V\left(\psi\left(f_{(2,1,0,0)}\right)\right)=\left(0, \mathbf{g}_{(0,1,0,0)}\right)$.
The actions of F and V are summarized in Table 2.
Table 1. Cartier Operator on $H^{0}\left(\mathcal{S}_{1}, \Omega^{1}\right)$

f	$\mathscr{C}(f d y)$
1	0
y	$d y$
z	$y^{q_{0} / 2} d y$
h_{1}	$y^{q_{0}} d y$
h_{2}	$\left(\left(y h_{1}\right)^{q_{0} / 2}+h_{2}\right) d y$
$y z$	$h_{1}^{q_{1} / 2} d y$
$y h_{1}$	$\left(\left(y h_{1}\right)^{q_{0} / 2}+h_{2}\right) d y$
$z h_{1}$	$\left(y h_{2}\right)^{q_{0} / 2} d y$
$z h_{2}$	$\left(h_{1} h_{2}\right)^{q_{0} / 2} d y$
$h_{1} h_{2}$	$\left(h_{1}+z y^{q_{0}}\right) d y$
$y z h_{1}$	$\left(y^{q_{0} / 2} z+\left(h_{1} h_{2}\right)^{q_{0} / 2}\right) d y$
$y z h_{2}$	$\left(z h_{1}^{q_{0} / 2}+y^{q_{0} / 2+1} h_{2}^{q_{0} / 2}\right) d y$
$z h_{1} h_{2}$	$\left(z y^{q_{0} / 2} h_{2}^{q_{0} / 2}+h_{1}^{q_{0} / 2+1}\right) d y$
$y h_{1} h_{2}$	$\left(\left(y h_{1}\right)^{q_{0} / 2} z+h_{2}^{q_{0} / 2} z\right) d y$
$y z h_{1} h_{2}$	$\left(y^{q_{0} / 2} h_{2}+z h_{1}^{q_{0} / 2} h_{2}^{q_{0} 2}\right) d y$

To conclude, we use the tables to give an explicit proof of Proposition 3.3.
Proposition 4.9. When $m=1$, then the mod 2 Dieudonné module of \mathcal{S}_{1} is

$$
D_{1} \simeq \mathbb{E} / \mathbb{E}\left(F^{2}+V^{2}\right) \oplus\left(\mathbb{E} / \mathbb{E}\left(F^{3}+V^{3}\right)\right)^{4}
$$

Proof. As an \mathbb{E}-module, D_{1} is isomorphic to $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{1}\right)$. From Table 2, $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{1}\right)$ has a summand of rank 4 generated by $X_{1}=\psi\left(f_{(1,0,1,0)}\right)$ with the relation given by $\left(F^{2}+V^{2}\right) X_{1}=0$. There are 4 summands of rank 6 generated by $X_{2}=\psi\left(f_{(2,1,0,0)}\right)$, $X_{3}=\psi\left(f_{(2,0,0,0)}\right), X_{4}=\psi\left(f_{(3,0,0,0)}\right)$, and $X_{5}=\psi\left(f_{(0,0,0,0)}\right)$ with the relations given

Table 2. Action of Verschiebung and Frobenius on $H_{\mathrm{dR}}^{1}\left(\mathcal{S}_{1}\right)$

(f, \mathbf{g})	$V(f, \mathbf{g})$	$F(f, \mathbf{g})$
$\left(0, \mathbf{g}_{(0,0,0,0)}\right)$	$(0, \mathbf{0})$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(2,0,0,0)}\right)$	$(0, \mathbf{0})$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(0,1,0,0)}+\mathbf{g}_{(3,0,0,0)}\right)$	$(0, \mathbf{0})$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(2,1,0,0)}+\mathbf{g}_{(0,0,1,0)}\right)$	$(0, \mathbf{0})$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(0,0,0,1)}+\mathbf{g}_{(1,0,1,0)}\right)$	$(0, \mathbf{0})$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(1,0,0,0)}\right)$	$\left(0, \mathbf{g}_{(0,0,0,0)}\right)$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(0,0,1,0)}\right)$	$\left(0, \mathbf{g}_{(2,0,0,0)}\right)$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(1,0,0,1)}\right)$	$\left(0, \mathbf{g}_{(0,1,0,0)}+\mathbf{g}_{(3,0,0,0)}\right)$	$(0, \mathbf{0})$
$\left(0 \mathbf{g}_{(0,0,1,1)}\right)$	$\left(0, \mathbf{g}_{(2,1,0,0)}+\mathbf{g}_{(0,0,1,0)}\right)$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(1,0,1,0)}\right)$	$\left(0, \mathbf{g}_{(0,0,0,1)}+\mathbf{g}_{(1,0,1,0)}\right)$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(0,1,0,0)}\right)$	$\left(0, \mathbf{g}_{(1,0,0,0)}\right)$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(1,1,0,0)}\right)$	$\left(0, \mathbf{g}_{(0,0,1,0)}\right)$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(0,1,1,0)}\right)$	$\left(0, \mathbf{g}_{(1,0,0,1)}\right)$	$(0, \mathbf{0})$
$\left(0, \mathbf{g}_{(0,1,0,1)}\right)$	$\left(0, \mathbf{g}_{(0,0,1,1)}\right)$	$(0, \mathbf{0})$
$\psi\left(f_{(0,1,0,1)}\right)$	$(0, \mathbf{0})$	$\left(0, \mathbf{g}_{(0,0,0,0)}\right)$
$\psi\left(f_{(0,1,1,0)}\right)$	$(0, \mathbf{0})$	$\left(0, \mathbf{g}_{(2,0,0,0)}\right)$
$\psi\left(f_{(1,1,0,0)}\right)$	$(0, \mathbf{0})$	$\left(0, \mathbf{g}_{(0,1,0,0)}+\mathbf{g}_{(3,0,0,0)}\right)$
$\psi\left(f_{(0,1,0,0)}+f_{(3,0,0,0)}\right)$	$(0, \mathbf{0})$	$\left(0, \mathbf{g}_{(2,1,0,0)}+\mathbf{g}_{(0,0,1,0)}\right)$
$\psi\left(f_{(0,0,0,1)}+f_{(1,0,1,0)}\right)$	$(0, \mathbf{0})$	$\left(0, \mathbf{g}_{(0,0,0,1)}+\mathbf{g}_{(1,0,1,0)}\right)$
$\psi\left(f_{(0,0,1,1)}\right)$	$(0, \mathbf{0})$	$\psi\left(f_{(0,1,0,1)}\right)$
$\psi\left(f_{(1,0,0,1)}\right)$	$(0, \mathbf{0})$	$\psi\left(f_{(0,1,1,0)}\right)$
$\psi\left(f_{(2,1,0,0)}+f_{(0,0,1,0)}\right)$	$(0, \mathbf{0})$	$\psi\left(f_{(1,1,0,0)}\right)$
$\psi\left(f_{(1,0,0,0)}\right)$	$(0, \mathbf{0})$	$\psi\left(f_{(0,1,1,0)}\right)$
$\psi\left(f_{(1,0,1,0)}\right)$	$\left(0, \mathbf{g}_{(1,0,1,0)}\right)$	$\psi\left(f_{(0,0,0,1)}+f_{(1,0,1,0)}\right)$
$\psi\left(f_{(2,1,0,0)}\right)$	$\left(0, \mathbf{g}_{(0,1,0,0)}\right)$	$\psi\left(f_{(0,0,1,1)}\right)$
$\psi\left(f_{(3,0,0,0)}\right)$	$\left(0, \mathbf{g}_{(1,1,0,0)}\right)$	$\psi\left(f_{(1,0,0,1)}\right)$
$\psi\left(f_{(2,0,0,0)}\right)$	$\left(0 \mathbf{g}_{(0,1,1,0)}\right)$	$\psi\left(f_{(2,1,0,0)}+f_{(0,0,1,0)}\right)$
$\psi\left(f_{(0,0,0,0)}\right)$	$\left(0, \mathbf{g}_{(0,1,0,1)}\right)$	$\psi\left(f_{(1,0,0,0)}\right)$

by $\left(F^{3}+V^{3}\right) X_{i}=0$. This yields the \mathbb{E}-module $\mathbb{E} / \mathbb{E}\left(F^{2}+V^{2}\right) \oplus\left(\mathbb{E} / \mathbb{E}\left(F^{3}+V^{3}\right)\right)^{4}$.

Note that the trivial eigenspace $D_{1,0}$ appears as the summand $\mathbb{E} /\left(F^{2}+V^{2}\right)$. It is spanned by

$$
\left\{\psi\left(f_{(1,0,1,0)}\right), \psi\left(f_{(0,0,0,1)}+f_{(1,0,1,0)}\right),\left(0, \mathbf{g}_{(1,0,1,0)}\right),\left(0, \mathbf{g}_{(0,0,0,1)}+\mathbf{g}_{(1,0,1,0)}\right)\right\}
$$

References

1. Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265, Computational algebra and number theory (London, 1993). MR MR1484478
2. Leonard Chastkofsky and Walter Feit, On the projective characters in characteristic 2 of the groups $\operatorname{Suz}\left(2^{m}\right)$ and $\mathrm{Sp}_{4}\left(2^{n}\right)$, Inst. Hautes Études Sci. Publ. Math. 51 (1980), no. 1, 9-35.
3. Neil Dummigan, The determinants of certain Mordell-Weil lattices, Amer. J. Math. 117 (1995), no. 6, 1409-1429. MR 1363073 (97a:11083)
4. \qquad , Complete p-descent for Jacobians of Hermitian curves, Compositio Math. 119 (1999), no. 2, 111-132. MR 1723124 (2001e:11066)
5. Iwan Duursma and Dane Skabelund, The de Rham cohomology of the Ree curve, preprint.
6. Arsen Elkin and Rachel Pries, Ekedahl-Oort strata of hyperelliptic curves in characteristic 2, Algebra Number Theory 7 (2013), no. 3, 507-532. MR 3095219
7. Holley Friedlander, Derek Garton, Beth Malmskog, Rachel Pries, and Colin Weir, The anumbers of Jacobians of Suzuki curves, Proc. Amer. Math. Soc. 141 (2013), no. 9, 3019-3028. MR 3068955
8. Rainer Fuhrmann and Fernando Torres, On Weierstrass points and optimal curves, Rend. Circ. Mat. Palermo (2) Suppl. (1998), no. 51, 25-46. MR 1631013 (99e:11081)
9. Massimo Giulietti and Gábor Korchmáros, On automorphism groups of certain Goppa codes, Des. Codes Cryptogr. 47 (2008), no. 1-3, 177-190. MR 2375466 (2009d:94156)
10. Massimo Giulietti, Gábor Korchmáros, and Fernando Torres, Quotient curves of the Suzuki curve, Acta Arith. 122 (2006), no. 3, 245-274. MR 2239917 (2007g:11069)
11. Benedict H. Gross, Rigid local systems on \mathbb{G}_{m} with finite monodromy, Adv. Math. 224 (2010), no. 6, 2531-2543. MR 2652215
12. Burkhard Haastert and Jens Carsten Jantzen, Filtrations of the discrete series of $\mathrm{SL}_{2}(q)$ via crystalline cohomology, J. Algebra 132 (1990), no. 1, 77-103. MR 1060833 (91d:20043)
13. Johan P. Hansen, Deligne-Lusztig varieties and group codes, Coding theory and algebraic geometry (Luminy, 1991), Lecture Notes in Math., vol. 1518, Springer, Berlin, 1992, pp. 6381. MR 1186416 (94e:94024)
14. Johan P. Hansen and Henning Stichtenoth, Group codes on certain algebraic curves with many rational points, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 1, 67-77. MR 1325513 (96e:94023)
15. Nicholas M. Katz and William Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73-77. MR 0332791
16. Li-Qian Liu, The decomposition numbers of $\operatorname{Suz}(q)$, J. Algebra 172 (1995), no. 1, 1-31. MR 1320616
17. G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101-159. MR 0453885
18. R. P. Martineau, On 2-modular representations of the Suzuki groups, Amer. J. Math. 94 (1972), 55-72. MR 0360777
19. Tadao Oda, The first de Rham cohomology group and Dieudonné modules, Annales Scientifiques de l'École Normale Supérieure 2 (1969), no. 1, 63-135 (eng).
20. F. Oort, A stratification of a moduli space of abelian varieties, Moduli of abelian varieties (Texel Island, 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 345-416. MR 2002b:14055
21. Rachel Pries, A short guide to p-torsion of abelian varieties in characteristic p, Computational arithmetic geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, math.NT/0609658, pp. 121-129. MR MR2459994 (2009m:11085)
22. Rachel Pries and Colin Weir, The Ekedahl-Oort type of Jacobians of Hermitian curves, Asian J. Math. 19 (2015), no. 5, 845-869. MR 3431681
23. Peter Sin, Extensions of simple modules for $\operatorname{Sp}_{4}\left(2^{n}\right)$ and $\operatorname{Suz}\left(2^{m}\right)$, Bull. London Math. Soc. 24 (1992), no. 2, 159-164. MR 1148676 (93b:20025)
24. Michio Suzuki, A new type of simple groups of finite order, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 868-870. MR 0120283

Beth Malmskog, Department of Mathematics and Computer Science, Colorado College, Colorado Springs, CO 80903, USA

E-mail address: beth.malmskog@gmail.com
Rachel Pries, Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA

E-mail address: pries@math.colostate.edu
Colin Weir, The Tutte Institute for Mathematics and Computing, Ottawa, Ontario, Canada

E-mail address: colinoftheweirs@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary: 11G10, 11G20, 14F40, 14H40, 20C20. Secondary: 14L15, 20C33.

 Key words and phrases. Suzuki curve, Suzuki group, Ekedahl-Oort type, de Rham cohomology, Dieudonné module, modular representation.

[^1]: ${ }^{1}$ Differences between the covariant and contravariant theory do not cause a problem in this paper since all objects we consider are symmetric.

