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Abstract

This article deals with the problem of classification when some of the covariates may have
missing or unobservable parts. Here, it is allowed for both the training sample as well as the new
unclassified observation to have missing parts in the covariates. In fact, it is shown in Remark
3 that in classification the reconstruction/imputation of the missing part of a new unclassified
observation (which is to be classified) can be counter-productive in terms of the error rates.
Furthermore, unlike many of the results in the literature, where covariate fragments are usually
assumed to be missing completely at random, we do not impose any such assumptions here.
Given the observed parts of the covariates, we construct a kernel-type classifier which is quite
straightforward to implement in practice. The proposed classifier is constructed based on d-
dim covariate vectors that are obtained from the original covariates (by moving from the space
L? to (3), where d (< 00) itself is a parameter that has to be estimated. To estimate various

parameters, we employ an easy-to-implement data-splitting approach.
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1 Introduction

The problem of statistical classification and pattern recognition based on covariate functions has
received considerable attention in recent years; this is particularly true when the data are fully
observable. In a standard two-group classification problem, this amounts to considering the ran-
dom pair (x,Y), where the covariate curve x can take values in some metric space, (M,d), and
Y € {0, 1}, called the class membership or class variable, has to be predicted based on x. Here,
one would like to find a classifier (a function) g : M — {0, 1} for which the misclassification error,
L(g) := P{g(x) # Y}, is as small as possible. The optimal classifier, i.e., the classifier with the
lowest misclassification error, is given by gg(x) = 1 if P{Y = 1|x = x} > 1/2, and gg(x) = 0
otherwise; see, for example, Cérou and Guyader [7], Abraham et al. [1], as well as the monograph
by Devroye, et al. ([16]; Ch. 2). Although we have presented our setup for the popular binary case
where Y € {0,1}, our results in this paper can be generalized in a straightforward manner to the

multi-group classification problem where Y € {1,2,...,C}, for some positive integer C' > 2.
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In practice the optimal classifier gg is virtually always unknown and one only has access to a set of
n independent and identically distributed (iid) data values D, = {(x1,Y1),.--, (X, Yn)} from the
underlying distribution of (x,Y). The task is then to use the data D,, to construct a classification
rule g, that can predict the class membership, Y, of a new curve x with low error rates. A variety
of techniques have been proposed for the classification of functional data in the literature. One may
divide these techniques into roughly two types: (a) those approaches that use the whole covariate
curve x to predict Y and (b) those that use the filtered curves to carry out classification; here, a
filtered curve is a representation of a curve in the form of a vector. Relevant results corresponding
to the approach used under (a) include the nonparametric functional approach of Ferraty and Vieu
[18], the nearest neighbor method used by Cérou and Guyader [7], the kernel classifier of Abra-
ham et al. [1], the depth-based classifier of Lépez-Pintado and Romo [27], the robust functional
classification of Cuevas et al. [9], the wavelet approach of Chang et al. [8], the robust functional
classification of Alonso et al. [2], and the work of Meister [28] on the optimality properties of
kernel regression and classification with functional covariates taking values in a general complete

separable metric space.

On the other hand, relevant work under (b) includes the discrimination method of Hall et al. [23],
the functional classification method of Biau et al. [4], the results of Leng and Miller [26] on the
classification of gene expression data as well as that of Song et al. [35], the wavelet approach of
Berlinet, et al. [3], the componentwise classification approach of Delaigle, et al. [14], the classifica-
tion method in Delaigle and Hall [13], the depth-depth plot approach of Mosler and Mozharovskyi
[32], the functional classification method of Dai and Miiller [10], and the regularized linear classifiers
of Kraus and Stefanucci [25]. Some other relevant results (but in the context of functional regres-
sion) include the work of Cai and Hall [6] on prediction in functional linear regression, the results
of Hall and Horowitz [22] on the estimation of a slope function in functional linear regression, and

those of Yao and Miller [36] on functional quadratic regression.

In this paper we employ methods that primarily fall under (b) above. More specifically, assuming
that the functional covariates take values in a separable Hilbert space (and using the fact that such
spaces are isomorphic to the space £3), the functional covariates will be replaced by d-dim vectors
where d = d(n) is to be determined by the data; here, d(n) — oo, as n — oo. For the missing data
framework, we follow the general setup proposed by Bugni [5]; this is described in Sections 2. In
this paper, it is allowed for the covariate curves to have missing fragments in the training sample
and in the new unclassified observation. This is quite different from most results in the literature
where missing covariates only appear in the training sample. In fact, as argued in Remark 3, a

rather peculiar consequence of this difference is that while the imputation of the missing fragments



of a covariate curve x; in the data, based on Y; and the observed part of x;, can be helpful in
classification, the imputation of the missing part of a new unclassified observation can actually be
counter-productive in terms of the error rates. Furthermore, unlike most results in the literature,
where covariate fragments are usually tacitly assumed to be missing completely at random, here
we do not impose any such assumptions. In section 3 we propose a kernel classifier, under multiple
missing patterns, and study its asymptotic properties; our main results are summarized in Theorem
2. Some numerical examples are also given; these appear in Section 4. All proofs are deferred to

Section 5.

2 Covariates with missing parts and the setup

In standard classification with functional covariates, one typically assumes that each covariate func-
tion x(¢) is a smooth curve on some compact domain Z C R. Furthermore, the great majority of
existing results assume that x(¢) and x,(¢), i = 1,...,n, do not have any missing or unobservable
fragments over the domain Z. Here we allow x to be possibly missing (unobservable) on some
subset(s) of its domain, i.e., the situation where one may only be able to observe certain parts of
the full curve x. More specifically, let (€, .4, P) be the underlying probability space and let M be
the space of square-integrable functions L?(Z), where 7 is an interval on the real line. Therefore,
X is a random function on (£2, A, P) with values (i.e., with sample paths) in L?(Z). But, instead of
observing the full curve x : @ — L?(Z), one might only be able to observe certain segments of the

curve denoted by x|s, i.e., the restriction of the curve x(¢) to ¢t € s C Z.

The problem of functional classification with possibly incomplete covariates has received some at-
tention in the literature in recent years. These include the work of Delaigle and Hall [12] who
consider a quadratic discriminant classifier for censored functional data based on the observed frag-
ments of covariates with overlapping domains that are not too short. Zhou et al. [37] propose
a wrapping function to predict/estimate the residual life distribution based on partially observed
signal data. Kraus [24] proposes methods to estimate parameters and to carry out principal com-
ponent analysis. Delaigle and Hall [11] proposed a method based on Markov chains to reconstruct
the missing parts of the curve, which are used in linear prediction for functional data. Gromenko
et al. [19] consider the problem of functional regression with incomplete curves. Mojirsheibani
and Shaw [29] studied the problem of classification with incomplete covariate curves taking values
in L'([a,b]) (instead of L?([a,b])), whereas Kraus and Stefanucci [25] consider regularized linear
classifiers. Most of the above results assume that the covariates are missing completely at random.
In this paper we do not impose such assumptions. Furthermore, unlike the above papers where
missing covariates typically appear in the data but not in the new unclassified observation, here

the missing values can appear anywhere. Our remarks below (as well as Remark 3) make this



distinction very clear.

Unfortunately, the problem of classification can be substantially different and more complicated
when incomplete covariates can also appear in the new unclassified observation. To appreciate
this, one can consider the simple case based on the Euclidean covariate vector X = (Z, V) € R4*?,
d,p > 1, where V € RP may be missing but not Z. Let Y € {0,1} be the class variable to
be predicted, and define the Bernoulli random variable =0 if V is missing (and 0= 1 otherwise).
Then, as shown by Mojirsheibani and Montazeri [31], and further studied by Mojirsheibani [30], and
Demirdjian and Mojirsheibani [15], the theoretically optimal classifier in this case can be expressed

as (see, for example, Mojirsheibani ([30], eq. (12)):

. . , E(§Y|X) E[1-6Y|Z] _ 1
A 1 — T~ Y T — N7 9
ssign a new observation to class if 0 E(3]X) + ( 5) E[(1 - 6)|Z] > 9

(otherwise, assign it to class 0), with the convention 0/0=0. This classifier is very different from
the usual optimal classifier that assigns a new observation to class 1 if E[Y|X] > % Furthermore,
it turns out that any attempt to reconstruct the missing part of a new unclassified observation can
be counter-productive in the sense that it can increase the theoretical misclassification error; see

Remark 3 for more on this.

To set up our framework for possible missing patterns in the curve x, we follow Bugni [5]. In Bugni’s
[5] setup, it is assumed that for a fine enough partition of Z into J < oo subintervals 7, ...,Z;,
each sample function of :x is either completely observed or completely unobserved within each of
these J subintervals. Some examples of such functional variables can be found in [5]. In the rest
of this paper we assume that there are M < 2/ possible missing patterns in the data where M is
usually much smaller than 27. Therefore, under the k-th pattern, one observes the fragment X s s
k=1,...,M. Next, let § be the {1,..., M}-valued random variable defined as

d =k if pattern k (i.e., the fragment x|s,) is observed, k=1,..., M.

In passing, we briefly recall that since x € L?(Z), i.e., a separable Hilbert space, it can be
expressed by the expansion x(t) = Z‘;‘;l Xj1p(t), where {11,19,...} is a complete orthonor-
mal basis for L*(Z) and X; = (x.¢;) = [;x(t)¥;(t)dt. Here the infinite sum converges in
L?. Similarly, given the data (x;,Y;), i = 1,...,n, we can write x;(t) = 25.0:1 Xi544(t), with
Xij = 7 xi(t);(t)dt. Since any infinite-dimensional separable Hilbert space is isomorphic to the
space o = {x = (21,29, .. )‘ Y2 |mil? < 0o}, the scores X;j, j > 1, are used as surrogates for the
datum x, in the literature in the sense that knowing X; := (X1, Xjo,...) is the same as knowing
X;; see, for example, Hall et al [23] or Biau et al [4]. Of course, in most practical situations, one

usually observes discretized versions of the curves (and not the true curves themselves). In such



cases, all integrals may be approximated as weighted averages over the grid of points at which the
curves are observed. In fact, this is the approach we have adopted in our numerical studies of

Section 4.

To simplify our presentation, we first look at the hypothetical (oversimplified) case where there is
only one missing pattern. More specifically, write Z = [a,b] = [a,c] U (¢, b], for some a < ¢ < b,
where x(t) may be missing on (c, b] only. Therefore, we have the expansions

o0

c b
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Now the surrogate vector of score functions can be written as

X = (X1, Xo,...) = (06Y e (X6¥2)wes---)
= (<Xa1/’1>[a,c] X2 0,65 - - ) + ((X’dJl)[C,b] X Y2) 1645 - - )
= (Z1,Z2,...)+ (V1,Va,...)
= Z+YV,

where V may be missing, but not Z. Here, we note that if V is not missing then X (= Z + V)
is fully observable, otherwise our classification has to be carried out be based on Z only. For the
more general setting with M missing patterns, if we let Xj(-k) = (X, ¥j)s,, then, with s; := 7, we

have the M vectors of scores

X(k) = (Xl(k)aXék)a) = (<X7¢1>Sk’<X7¢2>5k7 """ )7 k‘Zl,,M (1)
Clearly, when § = k, we only observe X(*) in which case a classifier is any function of the form
gk : L2 — {0,1}. Hence, any classifier can be written in the general form

M
T(XD):=3"1{6 =k} - gp(XP),  where X =31 X®1{5=k}. (2)
k=1

Suppose that g is the theoretically optimal classifier for the k™ pattern, ie., gp(X®*) = 1 if

E[y|X®] > 3,

consider I'(X(9) in (2) to be the optimal classifier for the current setup with incomplete covariates;

(and g;,(X*))=0, otherwise). Then, with this choice of g;, one may be inclined to

however, this turns out to be incorrect, in general. As for the optimal classifier, let

de(X®) = E [(2Y —1)I{5 = k}| X(k)] Ck=1,..., M, (3)



and define the following classifier

M
DX @) = 3" 1{6 = k) - I{g(XF) > 0}, (4)
k=1

This amounts to choosing g in (2) to be g (X*)) = I{¢y(X*) > 0}. Then, part (i) of the following

result shows that the classifier in (4) is optimal.

Theorem 1 Let I'? be the classifier given in (4).

(i) The classifier I'? has the lowest misclassification error, i.e., for any other classifier I', one has
P{D(X®) £ Y} - PP (XO) £} > 0.

(ii) Let T be any classifier of the form T'(X(®) = Z,ivil I{6 = k} - I{op(X®)) > 0} for arbitrary
functions gy : bo — [=1,1], k=1,..., M. Then, with ¢p(X*)) is as in (3), one has

P{T(X®) # Y} = P{T2(X®) £V} < T E|gr(XH) - 5 (XB)|.
The proof of this theorem is given at the end of Section 5.

In passing, we note that part (ii) of Theorem 1 provides a useful tool to bound the difference
between the misclassification error of I'®(X (%)) and that of any other classifier T'(X () in terms of
the difference between ¢, (X*)) that appears in (3) and the function ¢ (X®*)). Here, one can think
of ¢, (X)) as an approximation to the unknown function ¢y (X*)) = E [(2Y — 1)I{6 = k} ‘ X(k)].

3 The proposed classifier

Here we begin by considering finite-dimensional versions (with increasing dimensions) of the clas-
sifier I'® defined in (4), where X(*) (€ ¢5) will be replaced by the d-dimensional vector X(%F) =
(X%k), .. .,X((ik)) = ((x,z/)l)sk, e (X,¢d>sk), k=1,...,M. A data-driven choice of the parameter
d is discussed later in this section. We first start by defining the function ¢4 : R4 — [—1,1]

according to

bap(X@) .= E [(2Y —1)I{5 = k}| X(d’k)} - [(2Y — {5 =k} x® ., Xfl’“)] . (5)

k=1,...,M. Now, consider the following version of the classifier in (4)
M
FB,d(X(d,d)) - ZI{(; =k} 1 {qu’k(x(d,k)) > 0} . (6)
k=1

Here, X (4:9) = Zé\il X(@k) . 1{§ = k}. The fact that all distributions are unknown implies that

the classifier in (6) is not available in practice and has to be constructed based on the available



data. Here we propose a kernel-type methodology. To construct our classifier, we also employ the
following data-splitting approach which is in the spirit of the method proposed by Biau et al [4]
to deal with functional nearest neighbor classification (without any missing data). Let X(9) be as
in (2) and start by randomly splitting the data D,, = (Xgal),Yl,él), e (ng”), Y,,0,)} into a
training sample D, of size m and a testing sequence Dy of size £ = n — m. Here, m and £ typically
depend on n (they grow with n). Next, for each fixed integer d > 1, put

2 (dk) _ x(dsk)
By, (X)) = > (2Y; — V)I{6; = k} - K (sz> ’

hy
i (X©4),Y;,6;)€Dm

(7)

where K, : R — R, is the kernel used with the smoothing parameter hy, and define the following

sample-based counterpart of (6), which is based on D, only,

M
4 (X@0) = S {5 =k} {am,d,hk(x(d”“) > 0} , 8)
k=1

where d and hy, k = 1,..., M are the free parameters to be estimated. Here, X(4¥) and ng’k)
represent the first d components of X*) and XZ(-k), respectively. Let H = H, be a grid of positive
values from which hq,...hys are to be selected, and define d and /ﬁk to be the empirically chosen
values of d and hg, k = 1,..., M that minimize the empirical error committed by the classifier (8)

on the testing sequence Dy, i.e.,

(d,hy,...,hy) = argmin s § : H{Q(m,d,hy,....har)}, (9)
lgdgdnathHnakzlaaM . .
i (X% ¥;,6;) €D,

where the set ); is given by

M
Qi(m,d,hy,... hyy) = {ZI{@- =k} L Gap (X)) > 0} 2 Y} : (10)
k=1

and where d,, in (9) diverges with n, but not too rapidly; see Remark 1. In passing we also note
that in our estimation steps above, no part of the data is discarded. Our final classifier is the
plug-in version of (8) given by

M

WX = 3" 1o =k} {§, 27, (X)) > 0}, (11)

k=1

=

where the subscript n used in the definition of L, in (11) indicates that it is constructed based
on the entire data of size n. How good is the classifier T, in (11)7? The next theorem shows that
under rather standard assumptions, fn is strongly optimal. To state this formally, we first state

the following assumption on the kernels used in (7).



Assumption (K).

The kernel Ky used in (7) is regular: A nonnegative kernel K is said to be regular if there are
positive constants b > 0 and r > 0 for which K(x) > bI{x € Sy} and fsupyEXJrSO’T K(y)dx < oo,
where Sp, is the ball of radius r centered at the origin. (For more on regular kernels see, for

example, Gyorfi et al [20].)

Theorem 2 [The Main Result.] Suppose that Assumption (K) holds. Also assume that, asn — oo,
we have £ = £(n) — 0o, m = m(n) — oo, £~ 1log|H,| — 0, and £~ logd, — 0, where |H,| is the
cardinality of the set Hy,. Suppose that for each k = 1,..., M, there is an hx = hi(n) € Hy, such
that maxi<p<pr hy — 0 and minj<p<pr mhi” — 00, as n — co. Then the classifier fn in (11) is

asymptotically strongly optimal, i.e.,
P {fn(X((T,(S)) £Y ‘ ]Dn} _as. p {FB(X((S)) £ Y} ,
as n — oo, where I'? is the theoretically optimal classifier appearing in Theorem 1.

Remark 1 [Magnitude of the smoothing parameters.] The conditions imposed on hy = hg(n) and
dp in the statement of Theorem 2 are satisfied if d,, does not grow too rapidly and, additionally,
hy, converges to zero slowly, as n — oco. In fact, if we take d,, = (logn®)!~7 for any ¢y > 0 and
any 0 < v < 1, and if, for example, hy = (logn)~! for any ¢, > 0, then it is straightforward to
see that mhg" — 00, as n — oco. Intuitively, the slow rate of convergence (logarithmic) of hy to
zero is not necessarily unrealistic here and, in a sense, can be tied to the increasing dimension d,.
In fact, in what Ferraty and Vieu ([17], p. 211) refer to as the curse of infinite dimensionality,
the authors argue that in the problem of kernel regression estimation for the general regression
function E[Y|X = x| with a functional covariate X, the smoothing parameter h = h(n) can be of

order (logn)* for some u < 0.

Remark 2 [Number of missing patterns in practice.] As explained in Section 2, our framework for
missing patterns is the same as Bugni’s [5], where it is assumed that for a fine enough partition of
the domain of x into J < oo subintervals, each x is either fully observed or completely unobserved
within each subinterval. This framework has also been used by Kraus ([24], p. 781) to estimate
various parameters for functional data. In practice, unless n is quite large, it is tacitly assumed that
the actual number of missing patterns, M, is much smaller than the 27 possible missing patterns;
this would ensure that there will be enough data to estimate various parameters. Therefore, the
main focus of this article (and many other papers on missing covariates) is to deal with those
missing patterns that give rise to most of the missing values in the data. Such difficulties and
hurdles are not confined to functional covariates and can also plague the problem of classification

for the simpler case of X € R?, where there could be as high as 2¢ — 1 possible missing patterns.



See, for example, Mojirsheibani and Montazeri [31]. It should also be mentioned that, unlike the

results of Delaigle and Hall [12] and Kraus [24], we do not require any moment assumptions in this

paper.

Remark 3 [Drawbacks of imputing/reconstructing missing parts of the covariate of an unclassified
observation in classification.] One particular feature of this paper is that it also allows for missing
covariates to appear in the new unclassified observation (and not just the training sample). In its
simplest form, if V is missing from the covariate vector X = (Z, V), then it may be suggested
that one should first approximate/reconstruct the missing V by some V* and then apply the
theoretically optimal classifier to X* = (Z,V*) for predicting the class variable Y € {0,1}. As
in the previous sections, the covariate X = (Z,V) could be either functional or Euclidean. Here,
V*, which is typically a function of X (or a function of X and the data D,,), is called the imputed
value of V. Unfortunately, in classification, imputation does not work well for new unclassified
observations and may, in fact, be counter-productive. To appreciate this, consider the popular
method of regression imputation, where the missing V will be replaced by the estimates of E(V|Z).
To simplify our example, we further assume that the regression function r(z) := E(VI|Z = z) is
completely known (thus there is no need to estimate it). Therefore, replacing the missing V with

its imputed value V* := r(Z), the optimal classifier is

75(X") :{ Lo PY = 112,V >3 where X = (Z,V") = (Z.r(Z)).  (12)

otherwise,

It turns out that gg, given by (12), is not even as good as the classifier that ignores V completely
and classifies Y based on Z alone. More specifically, if we let gg be the optimal classifier based on

Z only, i.e.,

w2 ={§ S 7
then (by Theorem 3.3 of Devroye et al. [16]) one finds P{gs(Z) # Y} < P{gs(X*) # Y}. That
is, the theoretically optimal classifier gg in (12), which uses both Z and V* = r(Z) to predict Y,
can actually perform worse than the classifier gs that ignores V (and uses Z only). In fact, this
conclusion holds true for any V* which is a function of Z (and not just the regression imputation
V* = E(V]|X)). Of course, if missing values appear in the data, then proper regression imputation
is available since for each data point (X;,Y;), where part of X; may be missing, the variable Y; is

always available. Clearly imputation can be beneficial in such cases.

Remark 4 [The number of parameters.] The proposed classifier in (11) involves the estimation
of M + 1 parameters: d, hy,...,hy. Here, it is assumed that M is not too large compared to the

sample size n. When n is small or M is large, one can simply consider one common bandwidth h,



and it is not hard to see that the conclusion of Theorem 2 continues to hold. Of course, in finite
samples, the resulting classifier can have slightly higher error rates when a common bandwidth h
is used. On the other hand, when n is very much larger than M, one has the luxury of considering
di,...,dy instead of a common d. Once again, as in Theorem 2, one can show that the resulting
classifier is strongly consistent. From an applied point of view, and as in many results in statistics,
the question of how large is large (in terms of n) could be difficult to quantify and can vary from one
situation to another. Our limited experience shows that the gain from the inclusion of additional

parameters may not be worth the extra computational burden needed to estimate all parameters.

4 Numerical examples

4.1 Simulated Data

Here, we provide some numerical examples to assess the performance of the methods proposed in
the previous section. In this analysis, we develop classifiers to predict the unknown class Y = 0 or
Y =1 of a functional covariate x(t), taking values in L?([0,1]), that may have missing fragments.
Adopting the missing pattern setup of Section 2, without loss of generality let s; := Z = [0, 1].
Also, let sy = [0,0.3] U [0.5,1] C Z, s3 = [0,0.1] U [0.2,0.45] U [0.6,0.85] U [0.9,1] C Z, s4 =
[0.25,0.5] U [0.65,1] C Z, and s5 = [0,0.2] U [0.3,0.55] U [0.75,0.9] C Z. We consider two cases of
missing patterns: M = 3 and M = 5. In the case of M = 3, the patterns used are sy, s9, and s3.
(6:)

Next, samples of functional observations (xl- , Y, 51‘), 1 =1,...,n, are generated based on rules

which are similar to the approach of Rachdi and Vieu [33] as follows:

where t € s = sy, S0, 83,54, or S5 depending on whether §; = 1,2,3,4 or 5. Since in practice
one typically observes discretized versions of the curves (instead of the curves themselves), all
covariates were generated in a dicretized form based on a grid of 500 equispaced values of ¢ in
[0,1]. Regarding the independent random variables &; and (;, if ¥; = 1 then ¢ ~ N(5,22) and
i = N(1,0.52), otherwise if ¥; = 0 then & ~ Unif (0,5) and ¢; ~ Unif (0,1). The class probabilities
are taken to be P(Y = 1) = 0.5 = P(Y = 0). With respect to the missing probability mechanism,

we consider the popular logistic-type model

Ps{ézl‘YZ?%X:X} :)‘(Say7X)/[1+>‘(say7X)]7 (13)
where A(s,y,x) = exp {a(l—y)—i—b/x(u) du—i—c/[0 " u-x(u) du}, (14)

and the set s can be selected to be any one of the patterns si, £ = 2,..., M, with probability

1/(M — 1). The coefficients a,b, and ¢ in the above expression can be adjusted to control the

10



missing data rate. They can also be adjusted to control the level of dependency of the miss-
ing probability in (13) on Y and on the observed and unobserved segments of the curve. As for
the choice of the basis functions, we used the Fourier basis {11(t) = 1, ¢ox(t) = V2cos(mkt),
Yort1(t) = V2sin(2mkt), k > 1} which forms a complete orthonormal basis for L?([0, 1]); see, for

example, Zygmund [38] or Sansone [34]. Figure 1 shows a few realizations of the simulated curves

X|5k‘

Original Curves in Class Y=0 Original Curves in Class Y=1

\\N

W7

t t
Projected Curves in Class Y=0 Projected Curves in Class Y=1

2.0
2.0

1.5
1.5

1.0
1.0

0.0
0.0

0.5
|

0.5
|

Dimension d Dimension d

Missing Pattern types

— Full Curve 8=1

—— Missing Pattern §=2

—— Missing Pattern 6=3
Missing Pattern =4
Missing Pattern 6=5

Figure 1: A sample of simulated curves with their projected vectors for a few values of d. Here, 30% of the
data contain some unobserved fragments
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Next, we constructed the proposed classifier fn, given by (11), based on two different sample sizes,
n = 100 and 200, as well as several choices for the constants a, b, and ¢ for each of the missing
patterns. The parameters hy and d were selected from a grid of equally spaced values of A in [0, 1]
and 1 < d < dy,, based on the procedure in (8) and (9), with Gaussian kernels, and with a random
split of the data into D, and Dy of sizes m = 0.65n and £ = n — m. Here, we took d, ~ 2.51n(n);
see Remark 1 for details and the justification for the choice of d,,. This process was repeated for
20 such random sample splits and the values of hy and d that minimized the average error were
selected; these are denoted by /f;k and d which appear in (9). In addition to the proposed classifier
fn, we also constructed the classifier based on the complete case analysis, which will be denoted
by fcc, (this classifier uses the complete cases only), as well as the classifier corresponding to
the case with no missing data (i.e., when all covariates are fully observable), to be denoted by
fn, which was proposed by Biau et al. [4]. Furthermore, in our analysis here, we have considered
different missingness mechanisms such as the “Not Missing At Random” (NMAR), the “Missing At
Random” (MAR), and the “Missing Completely At Random” (MCAR) scenarios. These classifiers
are then used to classifying 1000 additional observations from the same underlying distribution of
the data. The entire above process was repeated a total of 100 times and the average misclassifi-
cation errors (over 100 Monte Carlo runs) were computed. Our findings are summarized in Table
1 and Table 2 with the percentage of missing data of 30% and 80% accordingly. The constants
a,b, ¢ (of equation (14)) corresponding to pattern sg are reported in columns ag, bg, co of the tables,
those corresponding to ss are reported in columns ag, b3, c3, and so on. A total of 50 cases can
be identified corresponding to our classifiers at different settings (different sample sizes, different
missing rates, different values of a, b, ¢, etc.); these cases are labeled as C1, C2, C3, ..., C50 in the
two tables. The numbers appearing in parentheses in the two tables are the standard errors of the
reported misclassification errors. Figure 2 provides boxplots of the error rates of various classifiers.
As shown in Table 1, Table 2 and Figure 2, for both sample sizes, the classifier f’n outperforms
fcc regardless of the missingness mechanism or the number of missing patterns involved. This is

particularly true when the percentage of missing data is at 80%.

In passing, we note that the proposed classifier fn can also perform better than fn whenever the
dependence of the missing probability mechanism on class Y (as defined via (13)) dominates its
dependence on the observed and/or unobserved segments of the curves (i.e., the constant a is orders
of magnitude larger than b and ¢ in (14)). Since the missing probability mechanism is essentially
the conditional law of d, in such cases the correlation between Y and § can be higher than that
between Y and the missing covariate. As a result, one can expect better performance compared to
the case of fully observed covariates. In other words, in such cases, the random variable § which is

always observable can sometimes work better at predicting Y than the missing part of the covariate

12



curve. See, for example, the cases C7, C8, C22, C23 in Table 1 and the cases C31, C32, C43, C44
in Table 2.
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Figure 2: Boxplots of the error rates of all classifiers (C1, C2, ..., C50) that appear in Table 1 and Table 2
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4.2 Application: Share Price Increase Data

In this section, we use a real data to illustrate the proposed classifier fn in (11). A company’s
stock price reflects investor perception of its ability to earn and grow its profits in the future.
Many studies suggests that near future events can be predicted using historical stock prices (Fama
[39], Khan et. al. [40] and Bonde and Khaled [41]). Here, we study the dataset comprising
of daily prices of 965 companies listed on the NASDAQ 100 companies, which is available from
http://www.timeseriesclassification.com/dataset.php. The aim is to predict whether the
share price of a company will rise significantly after quarterly announcement of the Earning Per
Share based on its 60-day price movement before the reporting date. Here, each observation was
a series of 60-day percentage changes of the close price from the day before. The class variable y;
was coded as 0 = price did not increase by more than 5 percent after the company report released

and 1 = price increased by more than 5 percent after the company report released.

Since our main goal is to compare the performance of our proposed classifier to the ones based on
the full data and the complete case, we extracted fragments from the full curves to form 3 missing
patterns §; = 1,2,3 where s; := Z = [1,60],s2 = [16,60] C Z, and s3 = [31,60] C Z. For each
observation, the set s can be selected to be any one of the patterns si, so or s3 with probabilities
a;, bi, ¢; respectively. We considered the MCAR scenario where a; = b; = ¢; = 1/3,Vi =1,...,965
and the NMAR scenario where b; = I{8 < ||X;|| < 14}/3, ¢; = I{(Y;i =0 & ||X4|]| < 8) or (V; =1
& [|X;|| > 18)}/1.5, and a; = 1 —b; — ¢;, i = 1,...,965 (here, ||X;|| is the norm of the original

60-day percentage change vector of the i'” observation).

We compared the performance of our proposed classifier, /F\n, with that of the classifiers based on
the full data, fn, and the complete case analysis, foo. To do this, the sample of n = 965 companies
was split into a training sequence and a testing sequence of ratio 70:30. The smoothing parameters
hi and d were selected using the same data splitting approach described in Section 3. Table 3
provides the average error rates of each classifier committed on the testing sequence over 100 such
sample splits with standard errors given in parenthesis as well as a visual display of classifier per-
formance. In this example, we see that the proposed classifier consistently performs well compared
to the classifier based on full data regardless of the missing mechanism and the missing percent-
age. This phenomenon has been explained in the example in Section 4.1. In the MCAR case with
66.67% of the observations being fragemented curves, a complete case classifier eliminates much of

the available information and performs poorly compared to the classifier based on the filtered curves.
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Figure 3: A sample of curves x; showing percentage changes in share price measured over 60 days. Various
colors were used to plot the curves according to their missing pattern. The corresponding d-dimensional
vector of the projected curves, d =1,...,8, were also displayed.
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Class Distribution by Missing Pattern in MCAR case
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Class Distribution by Missing Pattern in NMAR case
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Figure 4: Distributions and proportion of class membership for each missing pattern created in the data.
(a) MCAR (b) NMAR

Missing | % Miss- fn fn fgc
Mecha- | ing
nism Data
MCAR 66.67% 0.3054 0.3152 | 0.4385
(0.0139) | (0.0161) (0.0189)
NMAR 27.77% 0.3018 | 0.3657
(0.0149) (0.0186)

Error Rates on Share Price Increase data
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Table 3: Error rates for I', (the classifier based on filtered curves), I';, (the classifier based on full

data) and Teo (the complete case analysis).

18



5 Proofs

In order to prove Theorem 2, we first state a number of lemmas. In what follows, we use the

following notation:
Ron(d, by, o) = P{TE(X) £ YD, } (15)

Runa(dyhiy... hyy) = €7 > H{Q(m, d, ha,. .. har) }, (16)
A (X(éi),Yi,(si)EDg

where T'¢ (X(%9) and Q;(m,d, hy,...,hy) are as in (8) and (10), respectively.

Lemma 1 Let 7/€m74 and Ry, be as in (16) and (15). If £~ log |Hnp| — 0 and £~ logd, — 0, where
|Hy| is the cardinality of the set Hy, then, as n — oo,

sup ﬁm7g(d,h1,...,hM)—Rm(d,hl,---,hM) — @5 0.
1<d<dy ,h1,....hpr €EHn

PROOF OF LEMMA 1

First observe that for any given constant g > 0,

IP{ sup ‘ﬁm,z(d,hh---,hﬂ/[)—Rm(d,hl,---ahM)‘>ﬁ}
1<d<dn , h1eshar €Hn

< Y Y P{|[Rueld b ha) =Rl by han)| > B

1<d<dn hi,....has€Hn

Ao Ho[M sup  sup IE[P{‘ﬁmvg(d,hl,...,hM)—Rm(d,hl,...,hM)‘>6‘Dm}]
1<d<dyp hi1,.shas €Hn

IN

where |Hy,| is the cardinality of the set H,. But, with Q;(m,d, hi,...,has) as in (10),

1@{‘ e hl,...,hM)—Rm(d,hl,...,hM)‘ >ﬂ‘Dm}

- { H{Q(m,d, h1,....ha)} —P{Ql(m,d,hl,...,hM)}‘ > f Dm}
(X ) ,Y;,6:) €Dy,
< 278 2, (by Hoeffding’s inequality),
which does not depend on D,, or any of the parameters d, hy, ..., hys. Therefore
P{ sup ﬁmg(d,hl,...,hM)—Rm(d,hl,...,hM)‘ >5} < 2dp[Hy|Me 27,
1<d<dp , h1,eshar €Hon

Furthermore, the conditions of Lemma 1 imply that Y% | dy,|H,|Y e~t*/2 < 00, The result now

follows from an application of the Borel-Cantelli lemma.
O
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Lemma 2 Let fn(X(‘Z‘s)) be the classifier in (11). Also, let ﬁm,é and Ry, be as in (16) and (15).
Then

P {fn(x@ﬂ) £y

D } _ inf dhi.....h
" 1<d<dn , Brposing €Hn Ron(d; b, - hw)

< 2 sup ‘ﬁm,g(d,hl,...,hM)—Rm(d,hl,...,hM) .

1<d<dp , h1,.shs €Hn

PROOF of LEMMA 2
The proof of this lemma, which is similar to that of Lemma 8.2 of Devroye et al [16], is straight-

forward and will not be given here. O

Lemma 3 Let I'®%(X(%9)) be the classifier defined via (6) and (5). Let d > 1 be any fived in-
teger and consider any classifier of the form TH(X(@9) .= Zé\il I{0 = k} - gap(X@R)), where
gd’k(X(dvk)) = I{Gdyk(X(d’k)) > 0} for some function Gqy, : RY — [—~1,1], and X(4k) represents the
first d components of X¥) in (1). Then

M
P{rdx@) £y} -p{redx@d) 2y} < ; E‘¢d7k(X(dvk)) — G (X))

where ¢q (X)) is as in (5).

PROOF OF LEMMA 3
It is not difficult to show that

P{rdx@) £y} - p{redx@) 2 v}
M
< ZE(I{gd,k(X“”“)) # 1{$ar(X*9) > 0} | x \gbd,k(X(d”“’)D -
k=1
Now, observe that on the set {gq (X @*) £ I {$q(X(4*)) > 0} }, one has

bl

E(I{gd,k(x@’“))#I{m(X(d”“))>0}}><\qbd,k(X(d”f))D < E|¢ar(X0) = Gap(X@H)

which completes the proof of the lemma.

The following result is an immediate corollary to Lemma 3.

Corollary 1 Let T24(X(%9) be the classifier defined via (6) and (5). Also, for k=1,..., M, let
Gm,d,k(X(d’k)) be any sample-based version of the function Gd,k(X(d"s)) that appears in Lemma 3,

based on the training sample D,,, and consider the classifier

M
Lo (X)) = 3" 1{6 = k} - g ap(XF),
k=1
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where gy, gx(XGF) =T {Gm7d7k(X(d7k)) >0}. Then

P {fm(xm,a)) # Y‘Dm} —P {FB,d(X(d,é)) # Y} < %E “%k(x(d’k)) = G (X)) ‘ ‘Dm] '
k=1

PROOF of COROLLARY 1
The proof of Corollary 1 is the same as that of Lemma 3 and is obtained by conditioning on the
training data Dy,.

O

The next lemma is a well-known result on the performance of the L'-norm of kernel regression

estimators.

Lemma 4 [Gyorfi et al ([20], Lemma 23.9).]

Let (U, V) € [-B, B] x R¢, where B < oo, and let ¢(v) = E[U|V = v] be the regression function.
Let Dy, = {(U1, V1),...,(Un, Vp)} be the data (iid), where (U;, V;) id (U, V), and define g/b\n(v) =
S UK((v = Vi) /hy) [ {nE[K(v = V)/hy)]}, where K : RY — Ry is regular. If h, — 0 and

nhg — 00, as n — 0o, then for any distribution of (U, V), any € > 0, and n large enough,
P{E [@”(V) - ¢(V)\ ‘Dn} > e} < e e’/ (8Bp)

where p = p(K) is a positive constant depending on the kernel K only.

PROOF OF THEOREM 2
Let T%4(X(40)) and T®(X()) be as in (6) and (4), respectively, and observe that, in view of part

(ii) of Theorem 1, one has
P{T>4(X(40) # v} — P{T*(XY) # Y}
M
< ZE‘E[@Y 1)I{5 = k}‘X(’“)] - ]E[(2Y _1)I{5 = k}‘X(‘““)} ‘ (17)
k=1

which follows upon taking the function ¢, (X)) that appears in part (i) of Theorem 1 to be the
same as the right side of (5) (in which case the classifier I'(X(?) of Theorem 1(ii) will coincide
with the classifier I'®%(X(%9)) in (6)). Here, as before, X*) = (X%k),Xék), ...) and X(&k) —
(x®, L x W) Let S8 = E[(2y — DI{s = K}|X@P] and S%) = E[(2Y — 1)I{5 = k}|X®)],

and observe that for any kK = 1,..., M, and any integers d; < dz, one has

E [S((lf)

k k a.s. k
XM xP] e s,
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Furthermore, supys; ‘Sc(lk)‘ < 1, and therefore {Sc(lk),d = 1,2,...} is a martingale with respect
to the increasing sequence of o-fields, o(ka), e ,Xc(lk)). Invoking the martingale convergence
theorem (see, for example, Sec. 1.3 of Hall and Heyde [21]), and arguing as in Biau et al. [4], we
find Sflk) — a5 Sé.’f), as d — oo. This fact together with the bound in (17) and an application of
the dominated convergence theorem yield P{I'"™%(X (%)) £y} —P{T®(X(®)) £V} — 0, as d — oc.

Consequently, for every € > 0, and n sufficiently large, there is a d¢ € [1, d,] such that
P{TB4(X)) 2y} —P{T®(XD) £Y} < e forall d> d,
(recall d, — oo as n — o0). Therefore, for any he = ﬁk(n) € Hp, kK = 1,...,n, satisfying the
conditions of Theorem 2, any € > 0, and n large enough, one has
p {fn(x@f”) LY ‘ ID)n} _p {FB(X<5>) ” Y}

= P{T.(X) 2V | Dy} Ron(d, 1, ., hag)

— inf
1<d<dpn ,h1,..;hpr EHn

inf m(dy b, hag) — PATPAX @0y 2y
1<d<dn , hrroshar €M {R (d,h,... ko) —P{I™%( ) £Y)

+ P{rPe(X () o Y}} — P {FB(X(5)) ” Y}

P{f X (@9) YD}— inf dhy.... . h
n( ) #Y Dy L<d<d P s €M Rm(d ;... har)

+ Rm(dEaﬁla e ’%M) - IP{FB’dG (X(dﬂé)) 7é Y}
+ € (18)

IN

Now, in view of lemmas 1 and 2, as n — oo, we have
P {0, (x®) £ v |D, }

Next, define

- inf Ron(dy by, ... hg) —35 0. (19)
1<d<dp , k1, shar €Hn

am,d,hk (x)
B [t (=R

where ng,d,hk (x) is as in (7), and observe that the classifier T'¢, in (8) can alternatively be written
as T4 (X(49)) = 2/[:1 I{o = k}]{$m7d7hk(X(d’k)) > 0}. Therefore, by Corollary 1,

am,d,hk, (x) =

M
Ron(de by hor) = P{TP(XED) 27y < SR Umk(X(dﬁf’“)) = G, (X)) ‘Dm]
i=1
—&50, asn — oo, (20)
(by Lemma 4 and the Borel-Cantelli lemma),

where ¢q_j is as in (5) with d replaced by d.. Therefore, in view of (18), (19), and (20), for any
e >0,

lim. [P{fn(x@f”) ” Y‘Dn} —P{FB(X(5)) ” YH < e,
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almost surely. This completes the proof of Theorem 2.

Appendix.

Proof of Theorem 1

Part (3i).

The proof is similar to that of Mojirsheibani and Montazeri ([31], Theorem 3) and goes as follows.
Let X(®) beasin (1), k =1,.. Manddeﬁnethefunctlonsr( X, Y :P{ézk‘X =x,Y =y},
y=0,1, and m(x) =P{Y =1 ‘X =x} =E] Y‘X = x|, and observe that the function ¢

in (3) can be written as

H(X®) = B{E|@v-1) 1{5_1;:}‘)( HX(“},
- E[2Y—1P{5—k\x Y}‘X ]
- E[zY—l (Y rk(X(k),l)—i—(l—Y)rk(X(k),0)> ‘XU“)}
- JE[Y (X (Y—l)-rk(X(k),O)‘X(k)] , (because Y2=Y)
= m(X®)r (X >+(nk(x<’“>>—1)m<x<k>,o>. (21)

Therefore, the classifier I'® in (4) can be written as

M
= > 1o =k} I {mX ) (X0, 1) 4+ (e (XP) = 1) (XD, 0) > 0}
k=1

and this can be used to write

zfp{yz kB, [or(X®) > 0]} + Z]P’{ = 0,0 =k, [p(X®) < 0] }
= % k1+§7ﬁc0, (say).

=1

But

T = E[I{Y —1}-1 {gbk(X(k)) > 0} -1@{5 - k\x(k),y}]
= E[1{gx®) > 0} -n(X, 1) - E[1{y = 1}|x]]
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= E[1{on(X®) > 0} (X0, 1) - 7 (XD)].

Furthermore, similar arguments yield mxo = E[T {gbk(X(k)) <0} (X5, 0)- (1 —nk(X(k)))]. Thus,

we have

PO"(XD) =Y} = f( [7{#(X®) > 0} - r (X8, 1) - 1y (XB)]

k=1
+E[1{g(x") <0} -7 (X<’“>,0>-(1—nk(x<’“>>)]>-

Also, for any other classifier I'(X(?)) given by (2), it is not difficult to see that

P (X i( [7{ 96X ) = 1} (X0, 1) - (X))

Therefore,
P{I*(X®) # Y} - PT(X?) # Y}
=2 E (1 {ex®) > 0} = 1 {gn(x®) = 1} ) - rp(X, 1) -y (X))

=1

+ f@[( H{e(x®) <0} = 1{gn(x®) =0} ) -ri(X0),0) - (1 = mi(XM))

]\;:1
-YE I{ 9) # 1{ (X )>0}} (22)
k=1
x g (X®) 1) g (XB)) — 1 (XB), 0) - (1 — e (XB))) u
>0

jil bl

where (22) follows from the definitions of I'® and T in conjunction with the expression in (21). This

completes the proof of Part (i).

Part (ii).
First observe that the expression in (22) of the proof of Part (i) shows that, in view of (21), one
has

P{F(X());«AY} IP’{ B(X )#Y}

M
< Y E I{ or(X }#I{¢k(x<k>)>0}}x\qsk(X(’“)D-

k=1
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Given the fact that ¢,(X(®¥) € [=1,1], (see the statement of Part (ii) of Theorem 1), it is
straightforward to see that on the set {I {cpk(X(k)) >0} #1T {gbk(X(k)) >0} }, one has

E(I{I{sok(X““))>0}¢I{¢k(x<’“>>>0}}><\m(X““))D < E[p(X®) - or(x®)|.

which completes the proof of Part (ii).
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