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Abstract

This article deals with the problem of classi�cation when some of the covariates may have

missing or unobservable parts. Here, it is allowed for both the training sample as well as the new

unclassi�ed observation to have missing parts in the covariates. In fact, it is shown in Remark

3 that in classi�cation the reconstruction/imputation of the missing part of a new unclassi�ed

observation (which is to be classi�ed) can be counter-productive in terms of the error rates.

Furthermore, unlike many of the results in the literature, where covariate fragments are usually

assumed to be missing completely at random, we do not impose any such assumptions here.

Given the observed parts of the covariates, we construct a kernel-type classi�er which is quite

straightforward to implement in practice. The proposed classi�er is constructed based on d-

dim covariate vectors that are obtained from the original covariates (by moving from the space

L2 to `2), where d (<1) itself is a parameter that has to be estimated. To estimate various

parameters, we employ an easy-to-implement data-splitting approach.

Keywords: Classi�cation, kernel, incomplete covariates, asymptotics.

1 Introduction

The problem of statistical classi�cation and pattern recognition based on covariate functions has

received considerable attention in recent years; this is particularly true when the data are fully

observable. In a standard two-group classi�cation problem, this amounts to considering the ran-

dom pair (�; Y ), where the covariate curve � can take values in some metric space, (M; d), and

Y 2 f0; 1g, called the class membership or class variable, has to be predicted based on �. Here,

one would like to �nd a classi�er (a function) g :M! f0; 1g for which the misclassi�cation error,

L(g) := Pfg(�) 6= Y g, is as small as possible. The optimal classi�er, i.e., the classi�er with the

lowest misclassi�cation error, is given by gB(�) = 1 if PfY = 1j� = �g > 1=2, and gB(�) = 0

otherwise; see, for example, C�erou and Guyader [7], Abraham et al. [1], as well as the monograph

by Devroye, et al. ([16]; Ch. 2). Although we have presented our setup for the popular binary case

where Y 2 f0; 1g, our results in this paper can be generalized in a straightforward manner to the

multi-group classi�cation problem where Y 2 f1; 2; : : : ; Cg; for some positive integer C � 2.
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In practice the optimal classi�er gB is virtually always unknown and one only has access to a set of

n independent and identically distributed (iid) data values Dn = f(�1; Y1); : : : ; (�n; Yn)g from the

underlying distribution of (�; Y ). The task is then to use the data Dn to construct a classi�cation

rule gn that can predict the class membership, Y , of a new curve � with low error rates. A variety

of techniques have been proposed for the classi�cation of functional data in the literature. One may

divide these techniques into roughly two types: (a) those approaches that use the whole covariate

curve � to predict Y and (b) those that use the �ltered curves to carry out classi�cation; here, a

�ltered curve is a representation of a curve in the form of a vector. Relevant results corresponding

to the approach used under (a) include the nonparametric functional approach of Ferraty and Vieu

[18], the nearest neighbor method used by C�erou and Guyader [7], the kernel classi�er of Abra-

ham et al. [1], the depth-based classi�er of L�opez-Pintado and Romo [27], the robust functional

classi�cation of Cuevas et al. [9], the wavelet approach of Chang et al. [8], the robust functional

classi�cation of Alonso et al. [2], and the work of Meister [28] on the optimality properties of

kernel regression and classi�cation with functional covariates taking values in a general complete

separable metric space.

On the other hand, relevant work under (b) includes the discrimination method of Hall et al. [23],

the functional classi�cation method of Biau et al. [4], the results of Leng and M�uller [26] on the

classi�cation of gene expression data as well as that of Song et al. [35], the wavelet approach of

Berlinet, et al. [3], the componentwise classi�cation approach of Delaigle, et al. [14], the classi�ca-

tion method in Delaigle and Hall [13], the depth-depth plot approach of Mosler and Mozharovskyi

[32], the functional classi�cation method of Dai and M�uller [10], and the regularized linear classi�ers

of Kraus and Stefanucci [25]. Some other relevant results (but in the context of functional regres-

sion) include the work of Cai and Hall [6] on prediction in functional linear regression, the results

of Hall and Horowitz [22] on the estimation of a slope function in functional linear regression, and

those of Yao and M�uller [36] on functional quadratic regression.

In this paper we employ methods that primarily fall under (b) above. More speci�cally, assuming

that the functional covariates take values in a separable Hilbert space (and using the fact that such

spaces are isomorphic to the space `2), the functional covariates will be replaced by d-dim vectors

where d � d(n) is to be determined by the data; here, d(n)!1, as n!1. For the missing data

framework, we follow the general setup proposed by Bugni [5]; this is described in Sections 2. In

this paper, it is allowed for the covariate curves to have missing fragments in the training sample

and in the new unclassi�ed observation. This is quite di�erent from most results in the literature

where missing covariates only appear in the training sample. In fact, as argued in Remark 3, a

rather peculiar consequence of this di�erence is that while the imputation of the missing fragments
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of a covariate curve �i in the data, based on Yi and the observed part of �i, can be helpful in

classi�cation, the imputation of the missing part of a new unclassi�ed observation can actually be

counter-productive in terms of the error rates. Furthermore, unlike most results in the literature,

where covariate fragments are usually tacitly assumed to be missing completely at random, here

we do not impose any such assumptions. In section 3 we propose a kernel classi�er, under multiple

missing patterns, and study its asymptotic properties; our main results are summarized in Theorem

2. Some numerical examples are also given; these appear in Section 4. All proofs are deferred to

Section 5.

2 Covariates with missing parts and the setup

In standard classi�cation with functional covariates, one typically assumes that each covariate func-

tion �(t) is a smooth curve on some compact domain I � R. Furthermore, the great majority of

existing results assume that �(t) and �i(t), i = 1; : : : ; n, do not have any missing or unobservable

fragments over the domain I. Here we allow � to be possibly missing (unobservable) on some

subset(s) of its domain, i.e., the situation where one may only be able to observe certain parts of

the full curve �. More speci�cally, let (
;A;P) be the underlying probability space and let M be

the space of square-integrable functions L2(I), where I is an interval on the real line. Therefore,

� is a random function on (
;A;P) with values (i.e., with sample paths) in L2(I). But, instead of

observing the full curve � : 
! L2(I), one might only be able to observe certain segments of the

curve denoted by �js, i.e., the restriction of the curve �(t) to t 2 s � I.

The problem of functional classi�cation with possibly incomplete covariates has received some at-

tention in the literature in recent years. These include the work of Delaigle and Hall [12] who

consider a quadratic discriminant classi�er for censored functional data based on the observed frag-

ments of covariates with overlapping domains that are not too short. Zhou et al. [37] propose

a wrapping function to predict/estimate the residual life distribution based on partially observed

signal data. Kraus [24] proposes methods to estimate parameters and to carry out principal com-

ponent analysis. Delaigle and Hall [11] proposed a method based on Markov chains to reconstruct

the missing parts of the curve, which are used in linear prediction for functional data. Gromenko

et al. [19] consider the problem of functional regression with incomplete curves. Mojirsheibani

and Shaw [29] studied the problem of classi�cation with incomplete covariate curves taking values

in L1([a; b]) (instead of L2([a; b])), whereas Kraus and Stefanucci [25] consider regularized linear

classi�ers. Most of the above results assume that the covariates are missing completely at random.

In this paper we do not impose such assumptions. Furthermore, unlike the above papers where

missing covariates typically appear in the data but not in the new unclassi�ed observation, here

the missing values can appear anywhere. Our remarks below (as well as Remark 3) make this
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distinction very clear.

Unfortunately, the problem of classi�cation can be substantially di�erent and more complicated

when incomplete covariates can also appear in the new unclassi�ed observation. To appreciate

this, one can consider the simple case based on the Euclidean covariate vector X = (Z;V) 2 Rd+p,

d; p � 1, where V 2 R
p may be missing but not Z. Let Y 2 f0; 1g be the class variable to

be predicted, and de�ne the Bernoulli random variable �=0 if V is missing (and �=1 otherwise).

Then, as shown by Mojirsheibani and Montazeri [31], and further studied by Mojirsheibani [30], and

Demirdjian and Mojirsheibani [15], the theoretically optimal classi�er in this case can be expressed

as (see, for example, Mojirsheibani ([30], eq. (12)):

Assign a new observation to class 1 if �
E(�Y jX)

E(�jX)
+ (1� �)

E[(1� �)Y jZ]
E[(1� �)jZ] >

1

2
;

(otherwise, assign it to class 0), with the convention 0=0=0. This classi�er is very di�erent from

the usual optimal classi�er that assigns a new observation to class 1 if E[Y jX] > 1
2 . Furthermore,

it turns out that any attempt to reconstruct the missing part of a new unclassi�ed observation can

be counter-productive in the sense that it can increase the theoretical misclassi�cation error; see

Remark 3 for more on this.

To set up our framework for possible missing patterns in the curve �, we follow Bugni [5]. In Bugni's

[5] setup, it is assumed that for a �ne enough partition of I into J < 1 subintervals I1; : : : ; IJ ,
each sample function of � is either completely observed or completely unobserved within each of

these J subintervals. Some examples of such functional variables can be found in [5]. In the rest

of this paper we assume that there are M < 2J possible missing patterns in the data where M is

usually much smaller than 2J . Therefore, under the k-th pattern, one observes the fragment �jsk ,
k = 1; : : : ;M . Next, let � be the f1; : : : ;Mg-valued random variable de�ned as

� = k if pattern k (i.e., the fragment �jsk) is observed; k = 1; : : : ;M:

In passing, we brie
y recall that since � 2 L2(I), i.e., a separable Hilbert space, it can be

expressed by the expansion �(t) =
P1

j=1Xj j(t), where f 1;  2; :::g is a complete orthonor-

mal basis for L2(I) and Xj = h�;  ji :=
R
I �(t) j(t)dt. Here the in�nite sum converges in

L2. Similarly, given the data (�i; Yi); i = 1; :::; n, we can write �i(t) =
P1

j=1Xij j(t), with

Xij =
R
I �i(t) j(t)dt. Since any in�nite-dimensional separable Hilbert space is isomorphic to the

space `2 =
�
x = (x1; x2; : : : )

��P1
i=1 jxij2 <1	, the scores Xij ; j � 1, are used as surrogates for the

datum �i in the literature in the sense that knowing Xi := (Xi1; Xi2; : : : ) is the same as knowing

�i; see, for example, Hall et al [23] or Biau et al [4]. Of course, in most practical situations, one

usually observes discretized versions of the curves (and not the true curves themselves). In such
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cases, all integrals may be approximated as weighted averages over the grid of points at which the

curves are observed. In fact, this is the approach we have adopted in our numerical studies of

Section 4.

To simplify our presentation, we �rst look at the hypothetical (oversimpli�ed) case where there is

only one missing pattern. More speci�cally, write I = [a; b] = [a; c] [ (c; b], for some a < c < b,

where �(t) may be missing on (c; b] only. Therefore, we have the expansions

�(t) =
1X
j=1

h�;  ji[a;b]  j(t) =
1X
j=1

�Z c

a
�(t) j(t)dt+

Z b

c
�(t) j(t)dt

�
 j(t)

=
1X
j=1

� h�;  ji[a;c] + h�;  ji[c;b] � j(t):
Now the surrogate vector of score functions can be written as

X = (X1; X2; : : : ) :=
�h�;  1i[a; b] ; h�;  2i[a; b] ; : : :

�
=

�h�;  1i[a; c] ; h�;  2i[a; c] ; : : :
�
+
�h�;  1i[c; b] ; h�;  2i[c; b] ; : : :

�
=: (Z1; Z2; : : : ) + (V1; V2; : : : )

=: Z+V;

where V may be missing, but not Z. Here, we note that if V is not missing then X (= Z +V)

is fully observable, otherwise our classi�cation has to be carried out be based on Z only. For the

more general setting with M missing patterns, if we let X
(k)
j = h�;  jisk , then, with s1 := I, we

have the M vectors of scores

X(k) = (X
(k)
1 ; X

(k)
2 ; : : : ) =

�h�;  1isk ; h�;  2isk ; : : : : : :
�
; k = 1; : : : ;M: (1)

Clearly, when � = k, we only observe X(k) in which case a classi�er is any function of the form

gk : `2 ! f0; 1g: Hence, any classi�er can be written in the general form

�(X(�)) :=
MX
k=1

If� = kg � gk(X(k)); where X(�) :=
PM

k=1X
(k)If� = kg. (2)

Suppose that gk is the theoretically optimal classi�er for the kth pattern, i.e., gk(X
(k)) = 1 if

E[Y jX(k)] > 1
2 , (and gk(X

(k))=0, otherwise). Then, with this choice of gk, one may be inclined to

consider �(X(�)) in (2) to be the optimal classi�er for the current setup with incomplete covariates;

however, this turns out to be incorrect, in general. As for the optimal classi�er, let

�k(X
(k)) = E

h
(2Y � 1)If� = kg ��X(k)

i
; k = 1; : : : ;M; (3)
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and de�ne the following classi�er

�B(X(�)) =
MX
k=1

If� = kg � If�k(Xk) > 0g: (4)

This amounts to choosing gk in (2) to be gk(X
(k)) = If�k(Xk) > 0g. Then, part (i) of the following

result shows that the classi�er in (4) is optimal.

Theorem 1 Let �B be the classi�er given in (4).

(i) The classi�er �B has the lowest misclassi�cation error, i.e., for any other classi�er �, one has

Pf�(X(�)) 6= Y g � Pf�B(X(�)) 6= Y g � 0.

(ii) Let � be any classi�er of the form �(X(�)) =
PM

k=1 If� = kg � If'k(X(k)) > 0g for arbitrary

functions 'k : `2 ! [�1; 1]; k = 1; : : : ;M: Then, with �k(X
(k)) is as in (3), one has

P
�
�(X(�)) 6= Y

	� P��B(X(�)) 6= Y
	 �PM

k=1 E

����k(X(k))� 'k(X
(k))
���.

The proof of this theorem is given at the end of Section 5.

In passing, we note that part (ii) of Theorem 1 provides a useful tool to bound the di�erence

between the misclassi�cation error of �B(X(�)) and that of any other classi�er �(X(�)) in terms of

the di�erence between �k(X
(k)) that appears in (3) and the function 'k(X

(k)). Here, one can think

of 'k(X
(k)) as an approximation to the unknown function �k(X

(k)) = E
�
(2Y � 1)If� = kg ��X(k)

�
.

3 The proposed classi�er

Here we begin by considering �nite-dimensional versions (with increasing dimensions) of the clas-

si�er �B de�ned in (4), where X(k) (2 `2) will be replaced by the d-dimensional vector X(d;k) =

(X
(k)
1 ; : : : ; X

(k)
d ) =

�h�;  1isk ; : : : ; h�;  disk
�
, k = 1; : : : ;M . A data-driven choice of the parameter

d is discussed later in this section. We �rst start by de�ning the function �d;k : Rd ! [�1; 1]
according to

�d;k(X
(d;k)) := E

h
(2Y � 1)If� = kg ��X(d;k)

i
= E

h
(2Y � 1)If� = kg ��X(k)

1 ; : : : ; X
(k)
d

i
; (5)

k = 1; : : : ;M . Now, consider the following version of the classi�er in (4)

�B;d(X(d;�)) =
MX
k=1

If� = kg � I
n
�d;k(X

(d;k)) > 0
o
: (6)

Here, X(d;�) =
PM

k=1X
(d;k) � If� = kg. The fact that all distributions are unknown implies that

the classi�er in (6) is not available in practice and has to be constructed based on the available
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data. Here we propose a kernel-type methodology. To construct our classi�er, we also employ the

following data-splitting approach which is in the spirit of the method proposed by Biau et al [4]

to deal with functional nearest neighbor classi�cation (without any missing data). Let X(�) be as

in (2) and start by randomly splitting the data Dn = f(X(�1)
1 ; Y1; �1); : : : ; (X

(�n)
n ; Yn; �n)g into a

training sample Dm of size m and a testing sequence D` of size ` = n�m. Here, m and ` typically

depend on n (they grow with n). Next, for each �xed integer d � 1, put

b�m;d; hk(X
(d;k)) =

X
i: (X(�i);Yi;�i)2Dm

(2Yi � 1)If�i = kg � Kk

 
X(d;k) �X

(d;k)
i

hk

!
; (7)

where Kk : R
d ! R+ is the kernel used with the smoothing parameter hk, and de�ne the following

sample-based counterpart of (6), which is based on Dm only,

�dm(X
(d;�)) =

MX
k=1

If� = kgI
nb�m;d;hk(X

(d;k)) > 0
o
; (8)

where d and hk, k = 1; : : : ;M are the free parameters to be estimated. Here, X(d;k) and X
(d;k)
i

represent the �rst d components of X(k) and X
(k)
i , respectively. Let H � Hn be a grid of positive

values from which h1; : : : hM are to be selected, and de�ne bd and bhk to be the empirically chosen

values of d and hk, k = 1; : : : ;M that minimize the empirical error committed by the classi�er (8)

on the testing sequence D`, i.e.,

(bd;bh1; : : : ;bhM ) = argmin
1�d�dn; hk2Hn; k=1;:::;M

`�1
X

i: (X(�i);Yi;�i)2D`

I
�

i(m; d; h1; : : : ; hM )

	
; (9)

where the set 
i is given by


i(m; d; h1; : : : ; hM ) =

(
MX
k=1

If�i = kg � I
nb�m;d;hk(X

(d;k)
i ) > 0

o
6= Yi

)
; (10)

and where dn in (9) diverges with n, but not too rapidly; see Remark 1. In passing we also note

that in our estimation steps above, no part of the data is discarded. Our �nal classi�er is the

plug-in version of (8) given by

b�n(X(bd;�)) :=
MX
k=1

If� = kgI
nb�

n;bd;bhk
(X(bd;k)) > 0

o
; (11)

where the subscript n used in the de�nition of b�n in (11) indicates that it is constructed based

on the entire data of size n. How good is the classi�er b�n in (11)? The next theorem shows that

under rather standard assumptions, b�n is strongly optimal. To state this formally, we �rst state

the following assumption on the kernels used in (7).
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Assumption (K).

The kernel Kk used in (7) is regular: A nonnegative kernel K is said to be regular if there are

positive constants b > 0 and r > 0 for which K(x) � bIfx 2 S0;rg and
R
supy2x+S0;r K(y)dx <1;

where S0;r is the ball of radius r centered at the origin. (For more on regular kernels see, for

example, Gy�or� et al [20].)

Theorem 2 [The Main Result.] Suppose that Assumption (K) holds. Also assume that, as n!1,

we have ` � `(n) ! 1, m � m(n) ! 1, `�1 log jHnj ! 0, and `�1 log dn ! 0, where jHnj is the

cardinality of the set Hn. Suppose that for each k = 1; : : : ;M , there is an hk � hk(n) 2 Hn such

that max1�k�M hk ! 0 and min1�k�M mhdnk ! 1, as n ! 1. Then the classi�er b�n in (11) is

asymptotically strongly optimal, i.e.,

P

nb�n(X(bd;�)) 6= Y
��Dn

o
�!a.s.

P

n
�B(X(�)) 6= Y

o
;

as n!1, where �B is the theoretically optimal classi�er appearing in Theorem 1.

Remark 1 [Magnitude of the smoothing parameters.] The conditions imposed on hk � hk(n) and

dn in the statement of Theorem 2 are satis�ed if dn does not grow too rapidly and, additionally,

hk converges to zero slowly, as n ! 1. In fact, if we take dn = (log nc0)1�
 for any c0 > 0 and

any 0 < 
 < 1, and if, for example, hk = (log nck)�1 for any ck > 0, then it is straightforward to

see that mhdnk ! 1; as n ! 1. Intuitively, the slow rate of convergence (logarithmic) of hk to

zero is not necessarily unrealistic here and, in a sense, can be tied to the increasing dimension dn.

In fact, in what Ferraty and Vieu ([17], p. 211) refer to as the curse of in�nite dimensionality,

the authors argue that in the problem of kernel regression estimation for the general regression

function E[Y jX = x] with a functional covariate X, the smoothing parameter h � h(n) can be of

order (log n)u for some u < 0.

Remark 2 [Number of missing patterns in practice.] As explained in Section 2, our framework for

missing patterns is the same as Bugni's [5], where it is assumed that for a �ne enough partition of

the domain of � into J <1 subintervals, each � is either fully observed or completely unobserved

within each subinterval. This framework has also been used by Kraus ([24], p. 781) to estimate

various parameters for functional data. In practice, unless n is quite large, it is tacitly assumed that

the actual number of missing patterns, M , is much smaller than the 2J possible missing patterns;

this would ensure that there will be enough data to estimate various parameters. Therefore, the

main focus of this article (and many other papers on missing covariates) is to deal with those

missing patterns that give rise to most of the missing values in the data. Such di�culties and

hurdles are not con�ned to functional covariates and can also plague the problem of classi�cation

for the simpler case of X 2 Rd, where there could be as high as 2d � 1 possible missing patterns.
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See, for example, Mojirsheibani and Montazeri [31]. It should also be mentioned that, unlike the

results of Delaigle and Hall [12] and Kraus [24], we do not require any moment assumptions in this

paper.

Remark 3 [Drawbacks of imputing/reconstructing missing parts of the covariate of an unclassi�ed

observation in classi�cation.] One particular feature of this paper is that it also allows for missing

covariates to appear in the new unclassi�ed observation (and not just the training sample). In its

simplest form, if V is missing from the covariate vector X = (Z;V), then it may be suggested

that one should �rst approximate/reconstruct the missing V by some V� and then apply the

theoretically optimal classi�er to X� = (Z;V�) for predicting the class variable Y 2 f0; 1g. As

in the previous sections, the covariate X = (Z;V) could be either functional or Euclidean. Here,

V�, which is typically a function of X (or a function of X and the data Dn), is called the imputed

value of V. Unfortunately, in classi�cation, imputation does not work well for new unclassi�ed

observations and may, in fact, be counter-productive. To appreciate this, consider the popular

method of regression imputation, where the missing V will be replaced by the estimates of E(VjZ).
To simplify our example, we further assume that the regression function r(z) := E(VjZ = z) is

completely known (thus there is no need to estimate it). Therefore, replacing the missing V with

its imputed value V� := r(Z), the optimal classi�er is

gB(X
�) =

�
1 if PfY = 1jZ ;V�g > 1

2
0 otherwise,

where X� = (Z;V�) = (Z; r(Z)): (12)

It turns out that gB, given by (12), is not even as good as the classi�er that ignores V completely

and classi�es Y based on Z alone. More speci�cally, if we let ~gB be the optimal classi�er based on

Z only, i.e.,

~gB(Z) =

�
1 if PfY = 1jZg > 1

2
0 otherwise.

then (by Theorem 3.3 of Devroye et al. [16]) one �nds Pf~gB(Z) 6= Y g � PfgB(X�) 6= Y g: That
is, the theoretically optimal classi�er gB in (12), which uses both Z and V� = r(Z) to predict Y ,

can actually perform worse than the classi�er ~gB that ignores V (and uses Z only). In fact, this

conclusion holds true for any V� which is a function of Z (and not just the regression imputation

V� = E(VjX)). Of course, if missing values appear in the data, then proper regression imputation

is available since for each data point (Xi; Yi), where part of Xi may be missing, the variable Yi is

always available. Clearly imputation can be bene�cial in such cases.

Remark 4 [The number of parameters.] The proposed classi�er in (11) involves the estimation

of M + 1 parameters: d; h1; : : : ; hM. Here, it is assumed that M is not too large compared to the

sample size n. When n is small or M is large, one can simply consider one common bandwidth h,
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and it is not hard to see that the conclusion of Theorem 2 continues to hold. Of course, in �nite

samples, the resulting classi�er can have slightly higher error rates when a common bandwidth h

is used. On the other hand, when n is very much larger than M , one has the luxury of considering

d1; : : : ; dM instead of a common d. Once again, as in Theorem 2, one can show that the resulting

classi�er is strongly consistent. From an applied point of view, and as in many results in statistics,

the question of how large is large (in terms of n) could be di�cult to quantify and can vary from one

situation to another. Our limited experience shows that the gain from the inclusion of additional

parameters may not be worth the extra computational burden needed to estimate all parameters.

4 Numerical examples

4.1 Simulated Data

Here, we provide some numerical examples to assess the performance of the methods proposed in

the previous section. In this analysis, we develop classi�ers to predict the unknown class Y = 0 or

Y = 1 of a functional covariate �(t), taking values in L2([0; 1]), that may have missing fragments.

Adopting the missing pattern setup of Section 2, without loss of generality let s1 := I = [0; 1].

Also, let s2 = [0; 0:3] [ [0:5; 1] � I, s3 = [0; 0:1] [ [0:2; 0:45] [ [0:6; 0:85] [ [0:9; 1] � I, s4 =

[0:25; 0:5] [ [0:65; 1] � I, and s5 = [0; 0:2] [ [0:3; 0:55] [ [0:75; 0:9] � I. We consider two cases of

missing patterns: M = 3 and M = 5. In the case of M = 3, the patterns used are s1, s2, and s3.

Next, samples of functional observations
�
�
(�i)
i ; Yi; �i

�
; i = 1; : : : ; n, are generated based on rules

which are similar to the approach of Rachdi and Vieu [33] as follows:

�i(t) = (t� 0:5)2�i + �i; i = 1; 2; : : : ; n

where t 2 s = s1; s2; s3; s4, or s5 depending on whether �i = 1; 2; 3; 4 or 5. Since in practice

one typically observes discretized versions of the curves (instead of the curves themselves), all

covariates were generated in a dicretized form based on a grid of 500 equispaced values of t in

[0; 1]. Regarding the independent random variables �i and �i, if Yi = 1 then �i
iid� N(5; 22) and

�i
iid� N(1; 0:52), otherwise if Yi = 0 then �i

iid� Unif (0; 5) and �i
iid� Unif (0; 1). The class probabilities

are taken to be P (Y = 1) = 0:5 = P (Y = 0). With respect to the missing probability mechanism,

we consider the popular logistic-type model

Ps
�
� = 1

��Y = y;� = �
	
= �(s; y; �)=[1 + �(s; y; �)]; (13)

where �(s; y; �) = exp
n
a(1�y)+b

Z
s
�(u) du+c

Z
[0;1]ns

u��(u) du
o
; (14)

and the set s can be selected to be any one of the patterns sk, k = 2; : : : ;M , with probability

1=(M � 1). The coe�cients a; b; and c in the above expression can be adjusted to control the

10



missing data rate. They can also be adjusted to control the level of dependency of the miss-

ing probability in (13) on Y and on the observed and unobserved segments of the curve. As for

the choice of the basis functions, we used the Fourier basis
�
 1(t) = 1;  2k(t) =

p
2 cos(�kt);

 2k+1(t) =
p
2 sin(2�kt); k � 1

	
which forms a complete orthonormal basis for L2([0; 1]); see, for

example, Zygmund [38] or Sansone [34]. Figure 1 shows a few realizations of the simulated curves

�jsk .

Figure 1: A sample of simulated curves with their projected vectors for a few values of d. Here, 30% of the
data contain some unobserved fragments
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Next, we constructed the proposed classi�er b�n, given by (11), based on two di�erent sample sizes,

n = 100 and 200, as well as several choices for the constants a; b; and c for each of the missing

patterns. The parameters hk and d were selected from a grid of equally spaced values of h in [0; 1]

and 1 � d � dn, based on the procedure in (8) and (9), with Gaussian kernels, and with a random

split of the data into Dm and D` of sizes m = 0:65n and ` = n�m. Here, we took dn � 2:5 ln(n);

see Remark 1 for details and the justi�cation for the choice of dn. This process was repeated for

20 such random sample splits and the values of hk and d that minimized the average error were

selected; these are denoted by bhk and bd which appear in (9). In addition to the proposed classi�erb�n, we also constructed the classi�er based on the complete case analysis, which will be denoted

by b�CC , (this classi�er uses the complete cases only), as well as the classi�er corresponding to

the case with no missing data (i.e., when all covariates are fully observable), to be denoted bye�n, which was proposed by Biau et al. [4]. Furthermore, in our analysis here, we have considered

di�erent missingness mechanisms such as the \Not Missing At Random" (NMAR), the \Missing At

Random" (MAR), and the \Missing Completely At Random" (MCAR) scenarios. These classi�ers

are then used to classifying 1000 additional observations from the same underlying distribution of

the data. The entire above process was repeated a total of 100 times and the average misclassi�-

cation errors (over 100 Monte Carlo runs) were computed. Our �ndings are summarized in Table

1 and Table 2 with the percentage of missing data of 30% and 80% accordingly. The constants

a; b; c (of equation (14)) corresponding to pattern s2 are reported in columns a2; b2; c2 of the tables,

those corresponding to s3 are reported in columns a3; b3; c3, and so on. A total of 50 cases can

be identi�ed corresponding to our classi�ers at di�erent settings (di�erent sample sizes, di�erent

missing rates, di�erent values of a; b; c, etc.); these cases are labeled as C1, C2, C3, : : : , C50 in the

two tables. The numbers appearing in parentheses in the two tables are the standard errors of the

reported misclassi�cation errors. Figure 2 provides boxplots of the error rates of various classi�ers.

As shown in Table 1, Table 2 and Figure 2, for both sample sizes, the classi�er b�n outperformsb�CC regardless of the missingness mechanism or the number of missing patterns involved. This is

particularly true when the percentage of missing data is at 80%.

In passing, we note that the proposed classi�er b�n can also perform better than e�n whenever the

dependence of the missing probability mechanism on class Y (as de�ned via (13)) dominates its

dependence on the observed and/or unobserved segments of the curves (i.e., the constant a is orders

of magnitude larger than b and c in (14)). Since the missing probability mechanism is essentially

the conditional law of �, in such cases the correlation between Y and � can be higher than that

between Y and the missing covariate. As a result, one can expect better performance compared to

the case of fully observed covariates. In other words, in such cases, the random variable � which is

always observable can sometimes work better at predicting Y than the missing part of the covariate

12



curve. See, for example, the cases C7, C8, C22, C23 in Table 1 and the cases C31, C32, C43, C44

in Table 2.

Figure 2: Boxplots of the error rates of all classi�ers (C1, C2, : : : ; C50) that appear in Table 1 and Table 2
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4.2 Application: Share Price Increase Data

In this section, we use a real data to illustrate the proposed classi�er b�n in (11). A company's

stock price re
ects investor perception of its ability to earn and grow its pro�ts in the future.

Many studies suggests that near future events can be predicted using historical stock prices (Fama

[39], Khan et. al. [40] and Bonde and Khaled [41]). Here, we study the dataset comprising

of daily prices of 965 companies listed on the NASDAQ 100 companies, which is available from

http://www.timeseriesclassification.com/dataset.php. The aim is to predict whether the

share price of a company will rise signi�cantly after quarterly announcement of the Earning Per

Share based on its 60-day price movement before the reporting date. Here, each observation was

a series of 60-day percentage changes of the close price from the day before. The class variable yi

was coded as 0 = price did not increase by more than 5 percent after the company report released

and 1 = price increased by more than 5 percent after the company report released.

Since our main goal is to compare the performance of our proposed classi�er to the ones based on

the full data and the complete case, we extracted fragments from the full curves to form 3 missing

patterns �i = 1; 2; 3 where s1 := I = [1; 60]; s2 = [16; 60] � I, and s3 = [31; 60] � I. For each

observation, the set s can be selected to be any one of the patterns s1; s2 or s3 with probabilities

ai; bi; ci respectively. We considered the MCAR scenario where ai = bi = ci = 1=3; 8i = 1; : : : ; 965

and the NMAR scenario where bi = If8 6 jjXijj 6 14g=3, ci = If(Yi = 0 & jjXijj < 8) or (Yi = 1

& jjXijj > 18)g=1:5, and ai = 1 � bi � ci, i = 1; : : : ; 965 (here, jjXijj is the norm of the original

60-day percentage change vector of the ith observation).

We compared the performance of our proposed classi�er, b�n, with that of the classi�ers based on

the full data, e�n, and the complete case analysis, b�CC . To do this, the sample of n = 965 companies

was split into a training sequence and a testing sequence of ratio 70:30. The smoothing parameters

hk and d were selected using the same data splitting approach described in Section 3. Table 3

provides the average error rates of each classi�er committed on the testing sequence over 100 such

sample splits with standard errors given in parenthesis as well as a visual display of classi�er per-

formance. In this example, we see that the proposed classi�er consistently performs well compared

to the classi�er based on full data regardless of the missing mechanism and the missing percent-

age. This phenomenon has been explained in the example in Section 4.1. In the MCAR case with

66.67% of the observations being fragemented curves, a complete case classi�er eliminates much of

the available information and performs poorly compared to the classi�er based on the �ltered curves.
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Figure 3: A sample of curves �i showing percentage changes in share price measured over 60 days. Various
colors were used to plot the curves according to their missing pattern. The corresponding d-dimensional
vector of the projected curves, d = 1; : : : ; 8, were also displayed.
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(a) (b)

Figure 4: Distributions and proportion of class membership for each missing pattern created in the data.
(a) MCAR (b) NMAR

Missing

Mecha-

nism

% Miss-

ing

Data

e�n b�n b�CC

MCAR 66.67% 0.3054

(0.0139)

0.3152

(0.0161)

0.4385

(0.0189)

NMAR 27.77% 0.3018

(0.0149)

0.3657

(0.0186)

Table 3: Error rates for b�n (the classi�er based on �ltered curves), e�n (the classi�er based on full

data) and b�CC (the complete case analysis).
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5 Proofs

In order to prove Theorem 2, we �rst state a number of lemmas. In what follows, we use the

following notation:

Rm(d; h1; : : : ; hM ) = P

n
�dm(X

(d;�)) 6= Y
��Dm

o
(15)bRm;`(d; h1; : : : ; hM ) = `�1

X
i: (X(�i);Yi;�i)2D`

I
�

i(m; d; h1; : : : ; hM )

	
; (16)

where �dm(X
(d;�)) and 
i(m; d; h1; : : : ; hM ) are as in (8) and (10), respectively.

Lemma 1 Let bRm;` and Rm be as in (16) and (15). If `�1 log jHnj ! 0 and `�1 log dn ! 0, where

jHnj is the cardinality of the set Hn, then, as n!1,

sup
1�d�dn ; h1;:::;hM2Hn

��� bRm;`(d; h1; : : : ; hM )�Rm(d; h1; : : : ; hM )
��� �!a.s. 0 :

PROOF OF LEMMA 1

First observe that for any given constant � > 0,

P

(
sup

1�d�dn ; h1;:::;hM2Hn

��� bRm;`(d; h1; : : : ; hM )�Rm(d; h1; : : : ; hM )
��� > �

)
�

X
1�d�dn

X
h1;:::;hM2Hn

P

n��� bRm;`(d; h1; : : : ; hM )�Rm(d; h1; : : : ; hM )
��� > �

o
� dnjHnjM sup

1�d�dn

sup
h1;:::;hM2Hn

E

�
P

���� bRm;`(d; h1; : : : ; hM )�Rm(d; h1; : : : ; hM )
��� > �

����Dm

��
where jHnj is the cardinality of the set Hn. But, with 
i(m; d; h1; : : : ; hM ) as in (10),

P

n��� bRm;`(d; h1; : : : ; hM )�Rm(d; h1; : : : ; hM )
��� > �

���Dm

o
= P

(����`�1 X
i: (X(�i);Yi;�i)2D`

I
�

i(m; d; h1; : : : ; hM )

	� P�
1(m; d; h1; : : : ; hM )
	���� > �

�����Dm

)

� 2 e�2`�
2
; (by Hoe�ding's inequality),

which does not depend on Dm or any of the parameters d; h1; : : : ; hM . Therefore

P

(
sup

1�d�dn ; h1;:::;hM2Hn

��� bRm;`(d; h1; : : : ; hM )�Rm(d; h1; : : : ; hM )
��� > �

)
� 2 dnjHnjMe�2`�2 :

Furthermore, the conditions of Lemma 1 imply that
P1

n=1 dnjHnjMe�`�2=2 < 1. The result now

follows from an application of the Borel-Cantelli lemma.

2

19



Lemma 2 Let b�n(X(bd;�)) be the classi�er in (11). Also, let bRm;` and Rm be as in (16) and (15).

Then

P

nb�n(X(bd;�)) 6= Y
���Dn

o
� inf

1�d�dn ; h1;:::;hM2Hn

Rm(d; h1; : : : ; hM )

� 2 sup
1�d�dn ; h1;:::;hM2Hn

��� bRm;`(d; h1; : : : ; hM )�Rm(d; h1; : : : ; hM )
��� :

PROOF of LEMMA 2

The proof of this lemma, which is similar to that of Lemma 8.2 of Devroye et al [16], is straight-

forward and will not be given here. 2

Lemma 3 Let �B;d(X(d;�)) be the classi�er de�ned via (6) and (5). Let d � 1 be any �xed in-

teger and consider any classi�er of the form �d(X(d;�)) :=
PM

k=1 If� = kg � gd;k(X(d;k)), where

gd;k(X
(d;k)) = IfGd;k(X

(d;k)) > 0g for some function Gd;k : R
d ! [�1; 1], and X(d;k) represents the

�rst d components of X(k) in (1). Then

P

n
�d(X(d;�)) 6= Y

o
� P

n
�B;d(X(d;�)) 6= Y

o
�

MX
k=1

E

����d;k(X(d;k))�Gd;k(X
(d;k))

��� ;
where �d;k(X

(d;k)) is as in (5).

PROOF OF LEMMA 3

It is not di�cult to show that

P

n
�d(X(d;�)) 6= Y

o
� P

n
�B;d(X(d;�)) 6= Y

o
�

MX
k=1

E

�
I
n
gd;k(X

(d;k)) 6= I
n
�d;k(X

(d;k)) > 0
oo

�
����d;k(X(d;k))

���� :
Now, observe that on the set

�
gd;k(X

(d;k)) 6= I
�
�d;k(X

(d;k)) > 0
		

, one has

E

�
I
n
gd;k(X

(d;k)) 6= I
n
�d;k(X

(d;k)) > 0
oo

�
����d;k(X(d;k))

���� � E

����d;k(X(d;k))�Gd;k(X
(d;k))

���;
which completes the proof of the lemma.

2

The following result is an immediate corollary to Lemma 3.

Corollary 1 Let �B;d(X(d;�)) be the classi�er de�ned via (6) and (5). Also, for k = 1; : : : ;M , let

Gm;d;k(X
(d;k)) be any sample-based version of the function Gd;k(X

(d;�)) that appears in Lemma 3,

based on the training sample Dm, and consider the classi�er

e�m(X(d;�)) =
MX
k=1

If� = kg � gm;d;k(X
(d;k));
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where gm;d;k(X
(d;k)) = I

�
Gm;d;k(X

(d;k)) > 0
	
. Then

P

ne�m(X(d;�)) 6= Y
���Dm

o
� P

n
�B;d(X(d;�)) 6= Y

o
�

MX
k=1

E

�����d;k(X(d;k))�Gm;d;k(X
(d;k))

�������Dm

�
:

PROOF of COROLLARY 1

The proof of Corollary 1 is the same as that of Lemma 3 and is obtained by conditioning on the

training data Dm.

2

The next lemma is a well-known result on the performance of the L1-norm of kernel regression

estimators.

Lemma 4 [Gy�or� et al ([20], Lemma 23.9).]

Let (U;V) 2 [�B;B] � Rd, where B < 1, and let �(v) = E[U jV = v] be the regression function.

Let Dn = f(U1;V1); : : : ; (Un;Vn)g be the data (iid), where (Ui;Vi)
iid
= (U;V), and de�ne b�n(v) =Pn

i=1 UiK((v � Vi)=hn)
� fnE [K(v �V)=hn)]g ; where K : Rd ! R+ is regular. If hn ! 0 and

nhdn !1, as n!1, then for any distribution of (U;V), any � > 0, and n large enough,

P

n
E

h��b�n(V)� �(V)
�� ���Dn

i
> �
o
� e�n�

2=(8B�)2 ;

where � � �(K) is a positive constant depending on the kernel K only.

PROOF OF THEOREM 2

Let �B;d(X(d;�)) and �B(X(�)) be as in (6) and (4), respectively, and observe that, in view of part

(ii) of Theorem 1, one has

Pf�B;d(X(d;�)) 6= Y g � Pf�B(X(�)) 6= Y g

�
MX
k=1

E

����Eh(2Y � 1)If� = kg
���X(k)

i
� E

h
(2Y � 1)If� = kg

���X(d;k)
i����; (17)

which follows upon taking the function 'k(X
(k)) that appears in part (ii) of Theorem 1 to be the

same as the right side of (5) (in which case the classi�er �(X(�)) of Theorem 1(ii) will coincide

with the classi�er �B;d(X(d;�)) in (6)). Here, as before, X(k) = (X
(k)
1 ; X

(k)
2 ; : : : ) and X(d;k) =

(X
(k)
1 ; : : : ; X

(k)
d ). Let S

(k)
d = E

�
(2Y � 1)If� = kg��X(d;k)

�
and S

(k)
1 = E

�
(2Y � 1)If� = kg��X(k)

�
,

and observe that for any k = 1; : : : ;M , and any integers d1 < d2, one has

E

h
S
(k)
d2

���X(k)
1 ; : : : ; X

(k)
d1

i
a.s.
= S

(k)
d1
:
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Furthermore, supd�1
��S(k)

d

�� � 1, and therefore fS(k)
d ; d = 1; 2; : : : g is a martingale with respect

to the increasing sequence of �-�elds, �(X
(k)
1 ; : : : ; X

(k)
d ). Invoking the martingale convergence

theorem (see, for example, Sec. 1.3 of Hall and Heyde [21]), and arguing as in Biau et al. [4], we

�nd S
(k)
d !a:s: S

(k)
1 , as d ! 1. This fact together with the bound in (17) and an application of

the dominated convergence theorem yield Pf�B;d(X(d;�)) 6= Y g�Pf�B(X(�)) 6= Y g ! 0, as d!1.

Consequently, for every � > 0, and n su�ciently large, there is a d� 2 [1; dn] such that

Pf�B;d(X(d;�)) 6= Y g � Pf�B(X(�)) 6= Y g � � for all d � d�

(recall dn ! 1 as n ! 1). Therefore, for any ehk � ehk(n) 2 Hn, k = 1; : : : ; n, satisfying the

conditions of Theorem 2, any � > 0, and n large enough, one has

P

nb�n(X(bd;�)) 6= Y
���Dn

o
� P

n
�B(X(�)) 6= Y

o
= P

nb�n(X(bd;�)) 6= Y
��Dn

o
� inf

1�d�dn ; h1;:::;hM2Hn

Rm(d; h1; : : : ; hM )

+ inf
1�d�dn ; h1;:::;hM2Hn

�
Rm(d; h1; : : : ; hM )� Pf�B;d(X(d;�)) 6= Y g

+ Pf�B;d(X(d;�)) 6= Y g
�
� P

n
�B(X(�)) 6= Y

o
� P

nb�n(X(bd;�)) 6= Y
��Dn

o
� inf

1�d�dn ; h1;:::;hM2Hn

Rm(d; h1; : : : ; hM )

+ Rm(d�;eh1; : : : ;ehM )� Pf�B;d�(X(d�;�)) 6= Y g
+ � (18)

Now, in view of lemmas 1 and 2, as n!1, we have

P

nb�n(X(bd;�)) 6= Y
��Dn

o
� inf

1�d�dn ; h1;:::;hM2Hn

Rm(d; h1; : : : ; hM ) �!a.s. 0: (19)

Next, de�ne e�m;d;hk(x) =
b�m;d;hk(x)

m � E
h
Kk

�
x�X(d;k)

hk

�i ;
where b�m;d;hk(x) is as in (7), and observe that the classi�er �dm in (8) can alternatively be written

as �dm(X
(d;�)) =

PM
k=1 If� = kgI�e�m;d;hk(X

(d;k)) > 0
	
. Therefore, by Corollary 1,

Rm(d�;eh1; : : : ;ehM )� Pf�B;d�(X(d�;�)) 6= Y g �
MX
i=1

E

�����d�;k(X(d�;k))� e�
m;d�;ehk

(X(d�;k))
�������Dm

�
�!a.s. 0; as n!1; (20)

(by Lemma 4 and the Borel-Cantelli lemma),

where �d�;k is as in (5) with d replaced by d�. Therefore, in view of (18), (19), and (20), for any

� > 0,

lim
n!1

h
P

nb�n(X(bd;�)) 6= Y
���Dn

o
� P

n
�B(X(�)) 6= Y

oi
� � ;
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almost surely. This completes the proof of Theorem 2.

2

Appendix.

Proof of Theorem 1

Part (i).

The proof is similar to that of Mojirsheibani and Montazeri ([31], Theorem 3) and goes as follows.

LetX(k) be as in (1), k = 1; : : : ;M , and de�ne the functions rk(x; y) := P
�
� = k

��X(k) = x; Y = y
	
;

y = 0; 1; and �k(x) := P
�
Y = 1

��X(k) = x
	
= E

�
Y
��X(k) = x

�
; and observe that the function �k

in (3) can be written as

�k(X
(k)) = E

n
E

h
(2Y � 1)If� = kg

���X(k); Y
i ���X(k)

o
;

= E

h
(2Y � 1)Pf� = k

��X(k); Y g
���X(k)

i
= E

h
(2Y � 1)

�
Y � rk(X(k); 1) + (1� Y )rk(X

(k); 0)
� ���X(k)

i
= E

h
Y � rk(X(k); 1) + (Y � 1) � rk(X(k); 0)

���X(k)
i
; (because Y 2=Y )

= �k(X
(k))rk(X

(k); 1) +
�
�k(X

(k))� 1
�
rk(X

(k); 0): (21)

Therefore, the classi�er �B in (4) can be written as

�B(X(�)) =
MX
k=1

If� = kg � I
n
�k(X

(k))rk(X
(k); 1) +

�
�k(X

(k))� 1
�
rk(X

(k); 0) > 0
o
;

and this can be used to write

P

n
�B(X(�)) = Y

o
= P

n
�B(X(d;�)) = 1; Y = 1

o
+ P

n
�B(X(�)) = 0; Y = 0

o
=

MX
k=1

P

n
Y = 1; � = k;

�
�k(X

(k)) > 0
�o

+
MX
k=1

P

n
Y = 0; � = k;

�
�k(X

(k)) � 0
�o

:=
MX
k=1

�k1 +
MX
k=1

�k0 ; (say):

But

�k1 = E

h
IfY = 1g � I

n
�k(X

(k)) > 0
o
� P
n
� = k

��X(k); Y
oi

= E

h
I
n
�k(X

(k)) > 0
o
� rk(X(k); 1) � E�IfY = 1g��X(k)

�i
23



= E

h
I
n
�k(X

(k)) > 0
o
� rk(X(k); 1) � �k(X(k))

i
:

Furthermore, similar arguments yield �k0 = E
�
I
�
�k(X

(k)) � 0
	 �rk(X(k); 0) ��1��k(X(k))

��
: Thus,

we have

Pf�B(X(�)) = Y g =
MX
k=1

 
E

h
I
n
�k(X

(k)) > 0
o
� rk(X(k); 1) � �k(X(k))

i
+ E

h
I
n
�k(X

(k)) � 0
o
� rk(X(k); 0) �

�
1� �k(X

(k))
�i!

:

Also, for any other classi�er �(X(�)) given by (2), it is not di�cult to see that

Pf�(X(�)) = Y g =
MX
k=1

 
E

h
I
n
gk(X

(k)) = 1
o
� rk(X(k); 1) � �k(X(k))

i
+ E

h
I
n
gk(X

(k)) = 0
o
� rk(X(k); 0) �

�
1� �k(X

(k))
�i!

:

Therefore,

Pf�B(X(�)) 6= Y g � Pf�(X(�)) 6= Y g

=
MX
k=1

E

h�
I
n
�k(X

(k)) > 0
o
� I

n
gk(X

(k)) = 1
o�

� rk(X(k); 1) � �k(X(k))
i

+
MX
k=1

E

h�
I
n
�k(X

(k)) � 0
o
� I

n
gk(X

(k)) = 0
o�

� rk(X(k); 0) � �1� �k(X
(k))
�i

=
MX
k=1

E

"
I

�
gk(X

(k)) 6= I
n
�k(X

(k)) > 0
o�

(22)

�
����rk(X(k); 1) � �k(X(k))� rk(X

(k); 0) � �1� �k(X
(k))
�����
#

� 0;

where (22) follows from the de�nitions of �B and � in conjunction with the expression in (21). This

completes the proof of Part (i).

Part (ii).

First observe that the expression in (22) of the proof of Part (i) shows that, in view of (21), one

has

P

n
�(X(�)) 6= Y

o
� P

n
�B(X(�)) 6= Y

o
�

MX
k=1

E

�
I

�
I
n
'k(X

(k)) > 0
o
6= I

n
�k(X

(k)) > 0
o�

�
����k(X(k))

���� :
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Given the fact that 'k(X
(d;k)) 2 [�1; 1], (see the statement of Part (ii) of Theorem 1), it is

straightforward to see that on the set
n
I
�
'k(X

(k)) > 0
	 6= I

�
�k(X

(k)) > 0
	o

, one has

E

�
I

�
I
n
'k(X

(k)) > 0
o
6= I

n
�k(X

(k)) > 0
o�

�
����k(X(k))

���� � E

����k(X(k))� 'k(X
(k))
���;

which completes the proof of Part (ii).
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