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Abstract

A nonparametric approach is proposed to combine several individual classi�ers in

order to construct an asymptotically more accurate classi�cation rule in the sense that

its misclassi�cation error rate is, asymptotically, at least as low as that of the best

individual classi�er. The proposed method uses a nearest neighbor type approach to

estimate the conditional expectation of the class associated with a new observation

(conditional on the vector of individual predictions). Both mechanics and the theoreti-

cal validity of the proposed approach are discussed. As an interesting byproduct of our

results, it is shown that the proposed method can also be applied to any single classi�er

in which case the resulting new classi�er will be at least as good as the original one.

Several numerical examples, involving both real and simulated data, are also given.

These numerical studies further con�rm the superiority of the proposed classi�er.

Keywords: Nonparametric, asymptotics, classi�cation.

1 Introduction

Consider the following standard two-group classi�cation problem. Let (�; Y ) be a random

pair, where � takes values in a metric space (F ; �) and Y 2 f0; 1g, called the class label,

must be predicted based on �. Here, F is not necessarily con�ned to Rd. In classi�cation

one wants to �nd a classi�er, g : F ! f0; 1g, whose misclassi�cation error, Pfg(�) 6= Y g, is

as small as possible. The classi�er with the lowest misclassi�cation error, called the Bayes

classi�er, is given by gB(�) = 1 if PfY = 1j� = �g > 1=2, and gB(�) = 0 otherwise; see, for

example, C�erou and Guyader [9], Abraham et al. [1], and Devroye, et al. [12]. Although
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our setup is expressed for the popular two-class problem, all the results in this paper can be

extended in a straightforward manner to the multi-class classi�cation problem; see Remark 2.

Of course, in practice the distribution of (�; Y ) is virtually always unknown and, typically,

one only has access to a training sample of n independent and identically distributed (iid)

observations Tn = f(�1; Y1); : : : ; (�n; Yn)g from the distribution of (�; Y ). Much of the

theory of classi�cation deals with the construction of sample-based classi�cation rules bgn
based on Tn whose error rates are somehow as small as possible. Of course, the choice of bgn
is at the practitioner's discretion and there may be several di�erent options; therefore, letbgn;1; : : : ; bgn;J be J � 1 di�erent classi�cation rules for predicting Y . Here, bgn;1 may be a lin-

ear classi�er, bgn;2 a kernel classi�er, while bgn;3 may be Breiman's [8] random forest classi�er,

etc. The aim is then to combine these individual classi�ers in such a way that the resulting

classi�er is in some sense at least as good as the best individual classi�er.

There is a vast literature on combined or ensemble methods and there are many di�erent

approaches available; this is particularly true for the important problems of classi�cation

and regression function estimation. One may divide the existing methods into roughly two

types: (a) those approaches that involve a large number of similar or homogeneous base

models. Relevant examples here include Breiman's [7, 8] random forest, Lin and Jeon [17],

Biau et al. [3], and Rahman et al. [19]. (b) Those approaches that combine a number of

models or estimators that are constructed based on di�erent theories or estimation meth-

ods. Results under (b) include Fischer and Mougeot [13], Biau et al. [4], Cholaquidis et

al. [10], Balakrishnan and Mojirsheibani [2], Mojirsheibani [18], and LeBlanc and Tibshi-

rani [16]. The methods employed in the cited papers under (b) are mainly nonlinear in

nature, which is also the framework of the current paper. There is also a large body of lit-

erature on linear and convex aggregation methods; in fact, Chapter 3 of the monograph by

Giraud [14] presents a detailed account of such methods along with many relevant references.

In passing, we also note that there are other taxonomies for characterizing combined classi-
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�ers. In fact, as explained in Rokach [20, 21], combined classi�cation methods can be put

into two main categories: weighting methods and non-weighing or meta-learning. Popular

weighting methods include the majority voting employed by Breiman [7, 8] in the context

of tree classi�cation, and by Xu et al. [24] for the problem of handwriting recognition.

Weighted-averaging of estimated class conditional probabilities that are produced by each

classi�er, has also been studied by several researchers; results along these lines include the

work of Xu et al. [24], Breiman [6], and LeBlanc and Tibshirani [16]. There are also other

weighting methods that can be found in Rokach [20, 21]. Meta-learning methods typically

work by using the predicted values of the individual classi�ers on the data. Relevant results

along these lines include the stacked generaliztion of Wolpert [23], Breiman's [6] stacked

method, and the nonlinear methods of Mojirsheibani [18], Balakrishnan and Mojirsheibani

[2], Biau et al. [4], and Cholaquidis et al. [10]. For more on meta-learning methods, one

may refer to Rokach [20].

In the next section, we consider the problem of combining several individual classi�ers in such

a way that the resulting ensemble is, asymptotically, at least as good as the best individual

one. The paper is organized as follows. Section 2 presents the main results, where both the

mechanics and the theoretical validity of the proposed approach are discussed. Numerical

studies involving both simulated as well as real data are carried out in section 3; these studies

further con�rm the good �nite-sample performance of the proposed approach. All proofs are

deferred to section 4.

2 Main results

In order to motivate our proposed method, consider the following hypothetical oversimpli�ed

setup. Let g1; � � � ; gJ be J classi�ers for predicting Y based on � (no data yet). Here, each

gj is a map of the form gj : F ! f0; 1g. De�ne the combined classi�er G� : f0; 1gJ ! f0; 1g,
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for predicting the same Y , by

G�
�
g1(�); � � � ; gJ(�)

�
=

8<: 1 if E
�
(2Y � 1)

��g1(�); � � � ; gJ(�)� > 0

0 otherwise.
(1)

Then we have the following elementary result

Proposition 1 The combined classi�er G� in (1) is optimal, i.e.,

P

n
G�
�
g1(�); � � � ; gJ(�)

�
6= Y

o
= inf

G: f0;1gJ!f0;1g
P

n
G
�
g1(�); � � � ; gJ(�)

�
6= Y

o
:

We also observe that in view of Proposition 1, and without further ado, one has

P
�
G�
�
g1(�); � � � ; gJ(X)

�
6= Y

	
� min

1�j�J
P
�
gj(�) 6= Y

	
; (2)

in other words, G� is at least as good as the best classi�er among g1; : : : ; gJ . When J = 1,

we may simply write g instead of g1 in which case (2) reduces to

PfG�(g(�)) 6= Y g � Pfg(�) 6= Y g ;

where the equality holds when g is the Bayes classi�er, i.e., g(�) = 1 if E[(2Y � 1)j�] > 0,

otherwise g(�) = 0.

Next, suppose that we have J individual classi�ers, bgn;1; : : : ; bgn;J , constructed based on the

data Tn for predicting Y . As explained in the introduction, these could be J very di�erent

classi�ers; for example, bgn;1 may be a linear classi�er, bgn;2 a kernel classi�er, bgn;3 may be a

random forest classi�er or the support vector machine, etc. Then (1) in conjunction with

Proposition 1 suggests considering a combined classi�er, G�
n, of the following form

G�
n

�bgn;1(�); � � � ; bgn;J(�)� =
8<: 1 if E

�
(2Y � 1)

��bgn;1(�); � � � ; bgn;J(�)� > 0

0 otherwise.
(3)

Although (3) is not available in practice, the following counterpart of Proposition 1 shows

that (3) is in fact theoretically optimal in the important sense that its overall error rate is

the smallest:
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Proposition 2 Let G�
n be the combined classi�er in (3). Then

P

n
G�
n

�bgn;1(�); � � � ; bgn;J(�)� 6= Y
o

= inf
G: f0;1gJ!f0;1g

P

n
G
�bgn;1(�); � � � ; bgn;J(�)� 6= Y

o
;

and in particular P
�
G�
n

�bgn;1(�); � � � ; bgn;J(�)� 6= Y
	
� min1�j�J P

�bgn;j(�) 6= Y
	
.

Obviously, the theoretically optimal classi�er G�
n is not useful in practice because the con-

ditional expectation on the right hand side of (3) is virtually always unknown. Therefore,

in what follows, the aim is to construct estimates of (3) whose error rates can be arbitrarily

close to that of G�
n, as the sample size n grows larger and larger. In what follows, we propose

a rather simple-to-implement nearest neighbor (NN) type method that works as follows.

Randomly split the data Tn into a training sample Tm of size m and a testing sequence T`

of size ` = n � m, where Tm [ T` = Tn and Tm \ T` = ;. Let bgm;1; � � � ; bgm;J be the J

individual classi�ers constructed based on Tm only, and consider the k-NN type combined

classi�er Gn;k, 1 � k � `, given by

Gn;k

�bgm;1(�); � � � ; bgm;J(�)
�
=

8<: 1 if
P

i: (�i;Yi)2T`
(2Yi � 1) � Im(k;�;�i) > 0

0 otherwise,
(4)

where

Im(k;�;�i) = If
�bgm;1(�i); � � � ; bgm;J (�i)

�
is among the k nearest neighbors of

�bgm;1(�); � � � ; bgm;J (�)
�
g; (5)

here, the distance between two J-dimensional vectors in f0; 1gJ is measured with respect to

the Hamming distance, i.e., the number of discrepancies between the corresponding compo-

nents of the two vectors. In the case of ties, the nearest neighbor to be selected is determined

by random chance; thus, for example, if (bgm;1(�i); � � � ; bgm;J(�i)) is the third nearest neigh-

bor of (bgm;1(�); � � � ; bgm;J(�)) for i = 2; 7; and 10, then we randomly choose one of these

three candidates (and its corresponding Yi) to be used as the third nearest neighbor of

(bgm;1(�); � � � ; bgm;J(�)). Then, the proposed combined classi�er, denoted by G
n;bk , is given

by (4) with k replaced by bk that minimizes the re-substitution error, i.e.,

bk = argmin
1�k�`

1

`

X
i: (�i;Yi)2D`

I�
Gn;k

�
bgm;1(�i);��� ;bgm;J (�i)

�
6=Yi

	 (6)
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To study the asymptotic optimality of G
n;bk we �rst state two assumptions. De�ne the

quantity

Sm;`(�) =
X

i: �i2T`

I��bgm;1(�i);��� ;bgm;J (�i)
�
=
�
bgm;1(�);��� ;bgm;J (�)

�	; (7)

and consider the following assumptions:

Assumption A.

The quantity Sm;`(�) diverges with n: Sm;`(�)!1, in probability, as n (and thus `)!1.

Assumption B.

For the classi�er G�
n in (3), one has P

�
G�
n

�bgn;1(�); � � � ; bgn;J(�)� 6= Y
	
! c, for some constant

c in [0; 1], as n!1.

Assumption A above is not unrealistic at all; to appreciate this, observe that conditional

on Tm and �, the quantity Sm;`(�) merely represents the total number of \successes" in `

independent Bernoulli trials, which is, intuitively, expected to diverge as ` ! 1. In fact,

alternative versions of this assumption have already been used in the literature (e.g., Devroye

et al. [12]; p. 94)). Since
�bgn;1(�); � � � ; bgn;J(�)� 2 f0; 1gJ , Assumption B deals with the

probability of error of a classi�er on hypercubes, which is usually well-behaved (Devroye et

al. (1996; Ch. 27)). Of course, this could be violated if one or more of the individual

classi�ers are intentionally constructed to behave poorly. The following result summarizes

the asymptotic optimality of the proposed combined classi�er G
n;bk.

Theorem 1 Let G
n;bk be the nearest neighbor combined classi�er de�ned in (4), where bk is

the minimizer of the empirical error in (6). If Assumptions A and B hold then

P

n
G
n;bk
�bgm;1(�); � � � ; bgm;J(�)

�
6= Y

o
� inf

G:f0;1gJ!f0;1g
P

n
G
�bgn;1(�); � � � ; bgn;J(�)� 6= Y

o
�! 0;

as n ! 1. In particular, G
n;bk is asymptotically at least as good as the best individual

classi�er, i.e.,

lim sup
n!1

max
1�j�J

h
P

n
G
n;bk
�bgm;1(�); � � � ; bgm;J(�)

�
6= Y

o
� P

nbgn;j(�)� 6= Y
oi

� 0 ;

where bgn;j is the j-th individual classi�er constructed based on the full data Tn.
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Remark 1 Let Gn;k and Sm;`(�) be as in (4) and (7), respectively. Now, if we choose k
to be equal to Sm;`(�) in Gn;k, provided that Sm;`(�) > 0, then our proposed combined
classi�er reduces to that of Balakrishnan and Mojirsheibani [2]. To appreciate this, observe
that in this case (4) becomes

Gn; Sm;`(�)

�bgm;1(�); � � � ; bgm;J(�)
�

=

�
1 if IfSm;`(�)>0g �

P
i: (�i;Yi)2T`

(2Yi � 1) � Im
�
Sm;`(�);�;�i

�
> 0

0 otherwise,�
where Im

�
Sm;`(�);�;�i

�
is as in (5) with k replaced by Sm;`(�)

�
=

(
1 if IfSm;`(�)>0g

P
i: (�i;Yi)2T`

(2Yi � 1) � I��bgm;1(�i); � � � ; bgm;J (�i)
�
=
�bgm;1(�); � � � ; bgm;J (�)

�	 > 0

0 otherwise,
(8)

where we have used the fact that, in view of the de�nition of Sm;`(�),

IfSm;`(�)>0g � If
�bgm;1(�i); � � � ; bgm;J (�i)

�
is among the Sm;`(�) nearest neighbors of

�bgm;1(�); � � � ; bgm;J (�)
�
g

is equal to 1 if and only if If
�bgm;1(�i); � � � ; bgm;J (�i)

�
=

�bgm;1(�); � � � ; bgm;J (�)
�
g=1. It is straightforward

to see that (8) is equivalent to(
1 if

IfSm;`(�)>0g

Sm;`(�)

hP
i: (�i;Yi)2T`

Yi � If
�bgm;1(�i); � � � ; bgm;J (�i)

�
=
�bgm;1(�); � � � ; bgm;J (�)

�
g

i
> 1

2

0 otherwise,
(9)

which is the combined classi�er of Balakrishnan and Mojirsheibani [2], where, by convention,
0=0 := 0. The classi�er in (9) is essentially a weighted average of all Yi 2 T`, where the
weights are indicator functions If

�bgm;1(�i); � � � ; bgm;J (�i)
�
=
�bgm;1(�); � � � ; bgm;J (�)

�
g, each of which will

be 1 if and only if bgm;j(�i) = bgm;j(�) for all j 2 f1; 2; : : : ; Jg. Unfortunately, from a practical
point of view, if there are a few weak/poor classi�ers among bgm;1; : : : ; bgm;J , then one could
end up with bgm;j(�i) 6= bgm;j(�) for a large number of �i's in T` and this can hold true even
when �i and � belong to the same class. This means that many of the weights (i.e., the
indicator functions) in (9) will be zero, which in turn reduces the predictive performance
of (9). Our proposed method in this paper circumvents this vulnerability of the combined
classi�er of Balakrishnan and Mojirsheibani [2] in (9) by allowing a few weak classi�ers to
\misbehave" or be incorrect in their predictions. Thus, unlike (9), the new classi�er G

n;bk is
not seriously a�ected by the impact of a few poor classi�ers.

Remark 2 The results of this section can be extended to theM -group (M � 2) classi�cation
problem in a straightforward manner. More speci�cally, let (�; Y ) be a random pair where
� is as before, but Y 2 f1; : : : ;Mg. A classi�er of the form g�(�) := argmax1�k�M PfY =
kj� = �g is optimal in the sense that Pfg�(�) 6= Y g = ming:F!f1;:::;Mg Pfg(�) 6= Y g; see,
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for example, Devroye and Gy�or� [11], ch. 10. In this case, with Im(k;�;�i) as in (5), we
have the following counterpart of (4):

Gn;k

�bgm;1(�); � � � ; bgm;J(�)
�

= argmax
1�j�M

X
i: (�i;Yi)2T`

IfYi= jg � Im(k;�;�i)

and the proposed combined classi�er is given by G
n;bk, where bk is as in (6). It can be shown

that, under assumption A and the version of B corresponding to the M -group problem, the
conclusion of Theorem 1 continues to hold in the general M -group problem in the sense that

P

n
G
n;bk
�bgm;1(�); � � � ; bgm;J(�)

�
6= Y

o
� inf

G: f1;:::;MgJ!f1;:::;Mg
P

n
G
�bgn;1(�); � � � ; bgn;J(�)� 6= Y

o
�! 0; as n!1.

Remark 3 In the case where J = 1, Theorem 1 essentially implies that, given any initial
classi�er bgn, the error of the new classi�er G

n;bk de�ned via (4) and (6) can always be asymp-
totically less than or equal to that of bgn. To the best of our knowledge, this is a new result
in the literature.

Remark 4 Since, for each k = 1; : : : ; `, the nearest neighbor type combined classi�er Gn;k in
(4) is constructed based on one sample split, its performance can be a�ected by the particular
split used. Thus, unless n is very large, a \bad" split can in practice result in a poor choice ofbk in (6) which will lead to a poor corresponding classi�er G

n;bk. This practical issue suggests
using several random splits and taking their average. More precisely, with N sample splits,
each split will produce an estimate bkb of k, where b = 1; : : : ; N , and the corresponding
predicted class Y (corresponding to �) is given by bYb = G

n;bkb
�bgm;1(�); � � � ; bgm;J(�)

�
. Since

each bYb is either 0 or 1, the overall predicted value of Y is taken to be 1 if N�1
PN

b=1
bYb > 1=2,

and 0 otherwise. As for the choice of N , our experience shows that one can expect good
results with N as small as 15 or 20.

3 Numerical examples

In what follows, we study the prediction of the class variable, Y (= 0 or 1, corresponding to

the random covariate �, using the ensemble methods proposed in this paper. The numerical

performance of the proposed method will be assessed using both simulated and real data.

Example A (Simulated data).

In this example we consider the prediction of Y = 0 or 1, based on � 2 R10, where PfY =
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1g = PfY = 0g = 0:5. Here, we have taken � � N10

�
0 ; 8�

�
whenever Y = 1 (i.e., class

1), where � = (�ij)i;j=1;��� ;10; with �ij = 2�ji�jj. On the other hand, if Y = 0 then � has a

10-dim standard Cauchy distribution with independent components, i.e., the components of

� are iid random variables with the pdf f(x) = (�(1 + x2))�1; �1 < x < 1. As for the

choice of the individual classi�ers, we have considered the following six classi�ers: a 1-Nearest

Neighbor (1-NN) classi�er, (ii) a 7-NN classi�er, (iii) the Support Vector Machine (SVM) of

Boser et al. [5], (iv) Breiman's [8] Random Forest, (v) a Gaussian kernel classi�er with a

bandwidth of n�0:2, and (vi) the Linear Discriminant Analysis (LDA). Next we considered

three di�erent combined classi�ers: The proposed combined classi�er G
n;bk de�ned in (4),

where bk is the minimizer of the empirical error in (6), the combined classi�er of Balakrishnan

and Mojirsheibani [2] given in (9), and the majority-vote classi�er. To trace the performance

of various methods, several sample sizes were used: n = 50; 100; 200; : : : ; 800; 900, with

n
2
observations from each population. As for the sample splits, we took m = 0:65n and

` = n�m, but any other fraction in the 0.55 to 0.85 range seems to work just as well. Next,

for each sample size, we constructed the six individual classi�ers based on Tm, which were

then used to construct the above combined classi�ers based on T`. For each value of n, a

total of 25 sample splits were used; this is in view of Remark 4. To assess the performance

of various classi�ers, we also generated 1000 additional observations, with 500 from each of

the two populations; these were used as test samples for each classi�er. Finally, the whole

process above was repeated a total of 300 times, yielding 300 estimates of the misclassi�cation

errors of each classi�ers discussed above. The average errors (over 300 Monte Carlo runs)

are summarized in Table 1 along with their standard errors in parentheses.

As Table 1 shows, the SVM and random forest classi�ers perform very well for smaller

sample sizes, but as n reaches 100, the proposed combined classi�er G
n;bk (as well as B-M)

start performing better than all other classi�ers. The boldface values represent the smallest

error rates for each n. We also note that as n gets larger and larger, most classi�ers start

performing better and better (except for the LDA which is a wrong classi�er in the presence

of Cauchy populations); however, the proposed combined classi�er is consistently superior
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Table 1: Misclassi�cation errors of the three combined classi�ers and the six individual classi�ers for
the simulated data of Example A. Here bG

n;bk
is the proposed classi�er, B-M is the combined classi�er of

Balakrishnan and Mojirsheibani [2], and Vote is the combined classi�er based on majority voting. The
boldfaced values represent the lowest errors for each n.

n bG
n;bk B-M Vote SVM Forest 1-NN 7-NN Kernel LDA

50 .3342 .3404 .3732 .3020 .3180 .3616 .4698 .3339 .4864
(.0029) (.0023)(.0015) (.0016) (.0018) (.0015) (.0013) (.0014) (.0013)

100 .2802 .2828 .3366 .2847 .2875 .3329 .4374 .3126 .4906
(.0017) (.0015)(.0016) (.0010) (.0017) (.0016) (.0017) (.0013) (.0012)

200 .1709 .1821 .2646 .2506 .2181 .2696 .3341 .2635 .4849
(.0014) (.0013)(.0010) (.0009) (.0011) (.0011) (.0011) (.0010) (.0013)

300 .1491 .1623 .2463 .2428 .2078 .2534 .2897 .2510 .4873
(.0013) (.0011)(.0010) (.0009) (.0011) (.0009) (.0012) (.0009) (.0013)

400 .1452 .1514 .2248 .2385 .1909 .2399 .2570 .2387 .4843
(.0010) (.0009)(.0013) (.0008) (.0009) (.0009) (.0011) (.0009) (.0015)

500 .1394 .1405 .2105 .2262 .1739 .2275 .2354 .2265 .4945
(.0009) (.0008)(.0009) (.0012) (.0011) (.0010) (.0010) (.0010) (.0013)

600 .1360 .1360 .2001 .2212 .1676 .2221 .2195 .2213 .4845
(.0008) (.0007)(.0009) (.0007) (.0008) (.0007) (.0010) (.0007) (.0014)

700 .1310 .1343 .1961 .2199 .1656 .2230 .2097 .2221 .4891
(.0010) (.0008)(.0007) (.0010) (.0009) (.0009) (.0009) (.0009) (.0012)

800 .1249 .1278 .1861 .2119 .1583 .2137 .2066 .2133 .4851
(.0008) (.0007)(.0009) (.0008) (.0008) (.0009) (.0009) (.0009) (.0013)

900 .1190 .1243 .1856 .2076 .1505 .2122 .1969 .2118 .4920
(.0009) (.0008)(.0006) (.0010) (.0010) (.0008) (.0008) (.0008) (.0013)

to all the other ones. Furthermore, in some cases this superiority is quite notable; see, for

example, the row corresponding to n=300, where the error of bG
n;bk is only 0.1491 as compared

to the best individual classi�er, the random forest, with an error of 0.2078. Such rather large

discrepancies can also be noticed for many other values of n in Table 1.

Another feature of the proposed classi�er bG
n;bk is that, unlike linear combined classi�ers, it

can even be used to improve the predictive performance of any single classi�er (although

the improvement may be quite incremental in some cases). To appreciate this, observe that

according to Theorem 1, the proposed combined classi�er bG
n;bk can asymptotically outperform

each constituent classi�er bgn;1; : : : ; bgn;J , where J � 1. Now, taking J=1, this theorem states

that, given a single classi�er bgn, the proposed approach can produce an improved version ofbgn. To put this to the test, we applied bG
n;bk to some of the six classi�ers in Table 1; in fact,
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we applied it to each of the two classi�ers that have already performed quite well and are

di�cult to outperform, i.e., the SVM and random forest classi�ers. The results appear in

Table 2.

Table 2 shows that as n increases, the proposed classi�er can still improve upon the per-

formance of each of these two classi�ers, individually, despite the fact that both SVM and

random forest are well known to be superb classi�ers. It is true that the improvement

is rather minimal, but the main message here is that bG
n;bk is more than just a combined

classi�er, it can also improve the predictive power of a single classi�er.

Table 2: E�ects of applying the combined classi�er bG
n;bk

to J=1 classi�er only. Here [SVM and\Forest

represent the classi�ers obtained by applying bG
n;bk

to SVM and random forest, respectively. For each n, the

boldfaced values represent the smaller of the two error rates when comparing SVM and[SVM in columns 3

and 4, and when comparing random forest and\Forest in columns 4 and 5.

n SVM [SVM Forest \Forest
50 0.3020 0.3076 0.3180 0.3193

(.0016) (.0017) (.0018) (.0024)
100 0.2847 0.2871 0.2875 0.2844

(.0010) (.0011) (.0017) (.0016)
200 0.2506 0.2411 0.2181 0.2032

(.0009) (.0008) (.0011) (.0013)
300 0.2428 0.2380 0.2078 0.1993

(.0009) (.0009) (.0011) (.0008)
400 0.2385 0.2302 0.1909 0.1815

(.0009) (.0007) (.0009) (.0009)
500 0.2262 0.2265 0.1739 0.1732

(.0012) (.0010) (.0011) (.0010)
600 0.2212 0.2207 0.1676 0.1768

(.0007) (.0008) (.0008) (.0008)
700 0.2199 0.2188 0.1656 0.1643

(.0010) (.0008) (.0009) (.0009)
800 0.2119 0.2031 0.1583 0.1492

(.0008) (.0007) (.0008) (.0008)
900 0.2076 0.2070 0.1505 0.1480

(.0010) (.0007) (.0010) (.0009)

Example B (Wisconsin Breast Cancer Data).

11



This real data set has 683 fully observed instances, 444 of which have been labeled benign,

which is class 1, and the rest are malignant, i.e., class 0. There are also 9 numerical covariates

associated with each instance. A full description of this data set is available from the UCI Ma-

chine Learning Repository of data sets: https://archive.ics.uci.edu/ml/datasets.php.

Also, see Wolberg and Mangasarian (1990).

To carry out the analysis, 500 of the 683 instances were randomly selected to be used as the

training data, whereas the remaining 183 were set aside as the test sequence to be used to

estimate the error rates of di�erent classi�ers. To study the performance of various classi�ers

as a function of the sample size n, we considered 5 di�erent sample sizes n = 100; : : : ; 500

(since n can only go up to 500 here) and, for each value of n, six individual classi�ers were

constructed which were then used to construct the proposed combined classi�er. Here, as in

Example A, the sample splits were taken to be m = 0:65n and ` = n�m. Finally, the error

rates of all classi�ers were estimated using the test sequence of 183 instances that were set

aside. This whole process was repeated 100 times. Table 3 reports the average error rates of

various classi�ers over 100 runs; the standard errors appear in parentheses. The boldfaced

values represent the smallest error rates for each n. The combined classi�er B-M of Table

1 is not included here for the simple reason that it is always inferior to bG
n;bk. As Table 3

shows, the proposed combined classi�er can outperform the individual classi�ers. This can

be noticed by comparing the error of the best individual classi�er (the random forest in this

case) with that of bG
n;bk that appears in the �rst column.

Example C (German Credit Data).

Here we consider a real data set consisting of 1000 individuals, 700 of whom have been

labeled as having \good credit", i.e., class 1, whereas the remaining 300 have \bad credit",

which is class 0. There are 24 numerical covariates associated with each person. A full

description of this data set is available from the UCI repository of machine learning data

sets at https://archive.ics.uci.edu/ml/index.php.

To carry out the analysis, �rst we randomly selected, and set aside, 300 of the 1000 obser-

12



Table 3: Misclassi�cation errors of various classi�ers for the Wisconsin Breast Cancer data of Example

B. Here bG
n;bk

is our proposed classi�er and Vote is the combined classi�er based on majority voting. The

boldfaced values represent the lowest errors for each n.

n bG
n;bk Vote SVM Forest 1-NN 15-NN Kernel LDA

100 .0362 .0387 .0541 .0387 .0469 .0449 .0459 .0453
(.0013) (.0012) (.0017) (.0014) (.0016) (.0012) (.0016) (.0016)

200 .0312 .0347 .0511 .0337 .0427 .0384 .0422 .0392
(.0012) (.0013) (.0018) (.0014) (.0015) (.0014) (.0016) (.0013)

300 .0279 .0304 .0439 .0303 .0396 .0346 .0391 .0375
(.0011) (.0011) (.0015) (.0012) (.0012) (.00012) (.0011) (.0012)

400 .0277 .0316 .0445 .0298 .0408 .0338 .0409 .0385
(.0010) (.0012) (.0015) (.0010) (.0014) (.0012) (.0013) (.0012)

500 .0272 .0327 .0422 .0295 .0416 .0336 .0416 .0395
(.0010) (.0011) (.0014) (.0010) (.0012) (.0012) (.0012) (.0012)

vations to be used as the test sequence to estimate the error rates of various classi�ers. As

for the training sample size, seven values were considered: n = 100; 200; : : : ; 700, (since n

cannot go beyond 700=1000�300). This grid of values of n allows us to somewhat monitor

the performance of di�erent classi�ers as n increases. Then, given a sample of size n, each of

the six individual classi�ers of Example B were constructed and used to construct the pro-

posed combined classi�ers. Here, once again, the sample splits were taken to be m = 0:65n

and ` = n �m. Finally, the error rates of various classi�ers were estimated using the test

sample of 300 observations. The entire process above was repeated 100 times and the aver-

age misclassi�cation errors were calculated. The results are summarized in Table 4. As

this table shows, the combined classi�er bG
n;bk has the ability to perform well and, in fact,

slightly outperform the best individual classi�er (which is random forest) as the sample size

increases to about 600.

4 Proofs

PROOF OF THEOREM 1

Let G�
n and Gn;k be as in (3) and (4), respectively. Similarly, let G�

m be as in (3), but with

13



Table 4: Misclassi�cation errors of di�erent classi�ers for the German Credit data of Example C. Here bG
n;bk

is our proposed classi�er and Vote is the combined classi�er based on majority voting. The boldfaced values
represent the lowest errors for each n.

n bG
n;bk Vote SVM Forest 1-NN 15-NN Kernel LDA

100 .2914 .3012 .3053 .2755 .3746 .3061 .3718 .3150
(.0028) (.0024) (.0022) (.0024) (.0032) (.0023) (.0032) (.0033)

200 .2691 .2922 .2975 .2613 .3590 .3030 .3572 .2974
(.0026) (.0026) (.0022) (.0023) (.0025) (.0023) (.0025) (.0030)

300 .2608 .2838 .2954 .2523 .3534 .2984 .3521 .2893
(.0024) (.0022) (.0024) (.0020) (.0026) (.00023) (.0027) (.0022)

400 .2472 .2794 .2909 .2458 .3494 .2973 .3467 .2860
(.0024) (.0029) (.0023) (.0027) (.0027) (.0024) (.0026) (.0023)

500 .2438 .2738 .2886 .2414 .3417 .2955 .3399 .2775
(.0021) (.0024) (.0024) (.0021) (.0023) (.0023) (.0024) (.0022)

600 .2398 .2749 .2914 .2411 .3424 .2994 .3395 .2774
(.0023) (.0022) (.0023) (.0022) (.0023) (.0021) (.0024) (.0024)

700 .2372 .2756 .2869 .2376 .3407 .2990 .3385 .2800
(.0021) (.0022) (.0026) (.0021) (.0023) (.0022) (.0022) (.0024)

n replaced with m everywhere in (3). Also, let G
n;bk be the combined classi�er given by (4)

and (6), and de�ne the quantities

L(G�
n) = P

n
G�
n

�bgn;1(�); � � � ; bgn;J(�)� 6= Y
o

(10)

L(G�
m) = P

n
G�
m

�bgm;1(�); � � � ; bgm;J(�)
�
6= Y

o
(11)

bL`(Gn;k) =
1

`

X
i: (�i;Yi)2T`

I�
Gn;k

�
bgm;1(�i);��� ;bgm;J (�i)

�
6=Yi

	 (12)

L(Gn;k

��Tn) = P

n
Gn;k

�bgm;1(�); � � � ; bgm;J(�)
�
6= Y

���Tno (13)

L(G
n;bk) = P

n
G
n;bk
�bgm;1(�); � � � ; bgm;J(�)

�
6= Y

o
(14)

L(G
n;bk
��Tn) = P

n
G
n;bk
�bgm;1(�); � � � ; bgm;J(�)

�
6= Y

���Tno; (15)

where bk is as in (6) and 1 � k � `. Therefore, in view of Proposition 2, and the notation in

(10) and (14), one must show L(G
n;bk)� L(G�

n)! 0, as n!1. Now, start by writing

L(G
n;bk)� L(G�

n) = E

h
L(G

n;bk
��Tn)� min

1�k�`
L(Gn;k

��Tn)i
+
h
E min

1�k�`
L(Gn;k

��Tn)� L(G�
m)
i
+
�
L(G�

n)� L(G�
m)
�
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:= Rn;1 +Rn;2 +Rn;3: (16)

Then, �x Tn and de�ne the classes of sets An;1 = fAn;1;1; : : : ; An;1;`g and An;0 = fAn;0;1; : : : ;

An;0;`g where, for 1 � k � `,

An;1;k =
n�bgm;1(�); � � � ; bgm;J(�)

�
;with � 2 F

���Gn;k

�bgm;1(�); � � � ; bgm;J(�)
�
= 1
o
� f0g

An;0;k =
n�bgm;1(�); � � � ; bgm;J(�)

�
;with � 2 F

���Gn;k

�bgm;1(�); � � � ; bgm;J(�)
�
= 0
o
� f1g

Furthermore, for 1 � k � `, let

�(An;b;kjTn) = P

n�bgm;1(�); � � � ; bgm;J(�); Y
�
2 An;b;k

���Tno ; b = 0; 1b�`(An;b;k) = `�1
X

i: (�i;Yi)2T`

I�
(bgm;1(�i);��� ;bgm;J (�i); Yi)2An;b;k

	; b = 0; 1;

and observe that

L(G
n;bk
��Tn)� min

1�k�`
L(Gn;k

��Tn)
= L(G

n;bk
��Tn)� bL`(Gn;bk) + bL`(Gn;bk)� min

1�k�`
L(Gn;k

��Tn)
� 2 max

1�k�`

���bL`(Gn;k)� L(Gn;k

��Tn)���
� 2

X
b=0;1

max
1�k�`

���b�`(An;b;k)� �(An;b;kjTn)
���

� 4 sup
B2B

���b�`(B)� �(BjTm)
���

(where B is the collection of the Borel sets of RJ+1)

� 4
X

z2f0;1gJ+1

���b�`(fzg)� �(fzgjTm)
��� ; (17)

where, for z 2 RJ+1, we have b�`(fzg) = `�1
P

i: (�i;Yi)2T`
I�
(bgm;1(�i);��� ;bgm;J (�i); Yi)= z

	 and

�(fzgjTm) = P
��bgm;1(�); � � � ; bgm;J(�); Y

�
= z

��Tm	. Therefore, in view of (17), for every

� > 0, one has

P

n
L(G

n;bk
��Tn)� min

1�k�`
L(Gn;k

��Tn) > �
o

� P

8<: X
z2f0;1gJ+1

���b�`(fzg)� �(fzgjTm)
��� > �=4

9=;
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�
X

z2f0;1gJ+1

E

h
P

n���b�`(fzg)� �(fzgjTm)
��� > 2�(J+3) �

���Tmoi
� 2J+1

h
2 e�C `�2

i
; with C = 2�(2J+5); (18)

where (18) follows from an application of Hoe�ding's (1963) inequality in view of the fact

that, conditional on Tm, the term b�`(fzg) is the average of ` independent indicator functions,
I�
(bgm;1(�i);��� ;bgm;J (�i);Yi)= z

	, corresponding to the ` pairs (�i; Yi) 2 T`. Now, (18) together

with the Borel-Cantelli lemma yields L(G
n;bk
��Tn)�min1�k�` L(Gn;k

��Tn)!a:s: 0, as n!1.

Thus, by Lebesgue's dominated convergence theorem,

Rn;1 := E
h
L(G

n;bk
��Tn)� min

1�k�`
L(Gn;k

��Tn)i! 0; as n!1:

To deal with the term Rn;2 in (16), start by de�ning the quantity

�n(�) = Sm;`(�) + ` � I�
Sm;`(�)= 0

	; (19)

where Sm;`(�) is as in (7). Here, we note that �n(�) takes values in f1; : : : ; `g. Also put

bPm;`(�) =

P
i:�i2T`

Yi I��bgm;1(�i);��� ;bgm;J (�i)
�
=
�
bgm;1(�);��� ;bgm;J (�)

�	
Sm;`(�)

(20)

and observe that upon replacing k by �n(�) in (4), we can write

Gn; �n(�)

�bgm;1(�); � � � ; bgm;J(�)
�

=

8<: 1 if 1
�n(�)

P
i: (�i;Yi)2T`

(2Yi � 1) � Im
�
�n(�);�;�i

�
> 0

0 otherwise,

(where the term Im
�
�n(�);�;�i

�
is de�ned via (5))

=

8>>><>>>:
1 if

IfSm;`(�)>0g

Sm;`(�)

P
i: (�i;Yi)2T`

(2Yi � 1) � Im
�
Sm;`(�);�;�i

�
+

IfSm;`(�)=0g

`

P
i: (�i;Yi)2T`

(2Yi � 1) � Im(`;�;�i) > 0

0 otherwise,

(21)

(where (21) follows from the de�nition of �n(�) in (19))

=

8>>><>>>:
1 if

IfSm;`(�)>0g

Sm;`(�)

P
i: (�i;Yi)2T`

(2Yi � 1) I��bgm;1(�i); � � � ; bgm;J (�i)
�
=

�bgm;1(�); � � � ; bgm;J (�)
�	

+ (2Y ` � 1) IfSm;`(�)=0g > 0

0 otherwise,

(22)
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=

8<: 1 if bPm;`(�) � IfSm;`(�)>0g + Y ` � IfSm;`(�)=0g > 1=2

0 otherwise,
(23)

where bPm;`(�) is as in (20) and Y ` = `�1
P

i:Yi2T`
Yi. Here, (22) follows from (21) because

of the following simple facts:

(i) For each �i 2 T`, the product of the two indicator functions, IfSm;`(�)>0g and

If
�bgm;1(�i); � � � ; bgm;J (�i)

�
is among the Sm;`(�) neighbors of

�bgm;1(�); � � � ; bgm;J (�)
�
g,

(where the latter indicator function is just the term Im
�
Sm;`(�);�;�i

�
in (21)), will be equal

to 1 if and only if If
�bgm;1(�i); � � � ; bgm;J (�i)

�
=

�bgm;1(�); � � � ; bgm;J (�)
�
g = 1.

(ii) For each �i 2 T`, the term Im(`;�;�i) in (21), which is just the indicator function

If
�bgm;1(�i); � � � ; bgm;J (�i)

�
is among the ` nearest neighbors of

�bgm;1(�); � � � ; bgm;J (�)
�
g,

is always equal to 1; this is because here the number of nearest neighbors, `, is the same as

the entire sample size, `, (the size of T`).

To complete the proof, we also need the following lemma which puts bounds on the term

Rn;2 in (16) based on the expected value of the expression that appears on the right side of

(23). More speci�cally,

Lemma 1 Let Rn;2 be as in (16) and put Y ` = `�1
P

i:Yi2T`
Yi . Then

0 � Rn;2 � 2E

���� bPm;`(�) � IfSm;`(�)>0g + Y ` � IfSm;`(�)=0g � Pm(�)

����;
where Pm(�) = P

�
Y = 1

�� bgm;1(�); � � � ; bgm;J(�)
	
.

Now, to show Rn;2 ! 0, let Pm(�) be as in Lemma 1 and observe that by Lemma 1 and the

fact that 0 � Y ` � 1, one has

Rn;2 � 2E

���� bPm;`(�) � IfSm;`(�)>0g � Pm(�)

����+ 2E
�
IfSm;`(�)=0g

�
� 2

s
E

�
E

���� bPm;`(�) � IfSm;`(�)>0g � Pm(�)
���2����Tm; �; f�igi 2 T`

��
(24)
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+ 2P fSm;`(�) = 0g :

However, conditional on Tm, �, and f�igi 2T`, the random variable Sm;`(�) � bPm;`(�),

which is equal to the numerator of the right side of (20), has the binomial distribution

Bin
�
Sm;`(�) ; Pm(�)

�
whenever Sm;`(�) > 0. Therefore, the expression under the square-

root sign in (24) can be bounded as follows

E

�
E

���� bPm;`(�) � IfSm;`(�)>0g � Pm(�)
���2����Tm; �; f�igi 2 T`

��
� E

"
E

 �����Sm;`(�) � bPm;`(�) � IfSm;`(�)>0g

Sm;`(�)
� Pm(�)

�����
2

� IfSm;`(�)>0g

�����Tm; �; f�igi 2 T`

!
+ IfSm;`(�)=0g

#

= E

"
E

0@�����Bin
�
Sm;`(�); Pm(�)

�
Sm;`(�)

� Pm(�)

�����
2

� IfSm;`(�)>0g

�����Tm; �; f�igi 2 T`

!
+ IfSm;`(�)=0g

#

= E

"
Pm(�)

�
1� Pm(�)

�
Sm;`(�)

� IfSm;`(�)>0g

#
+ P fSm;`(�) = 0g ;

where the last line follows from the usual binomia variance formula. This last expression, in

conjunction with (24), and the fact that Pm(�)
�
1� Pm(�)

�
� 1=4 immediately yields

Rn;2 � 2

r
E

h�
4Sm;`(�)

��1
IfSm;`(�)>0g

i
+ P fSm;`(�) = 0g + 2P fSm;`(�) = 0g : (25)

But, upon replacing fSm;`(�) > 0g by f1 � Sm;`(�) � kg[fSm;`(�) > kg, for any arbitrary

integer k � 1, one �nds E
�

1
Sm;`(�)

IfSm;`(�)>0g

�
� Pf1 � Sm;`(�) � kg + k�1 holds for all

k � 1. Therefore, by �rst choosing k large enough and then applying Assumption A, the

bound in (25) can be made as small as desired. The proof of Theorem 1 now follows since,

in view of Assumption B, we have Rn;3 ! 0, as n (and thus m) ! 1, where Rn;3 is as in

(16). This completes the proof of Theorem 1.

2

PROOF OF LEMMA 1

18



Let L(G�
m) be as de�ned in (11). Also, let Gn; �n(�) be as given by the right side of (23)

and put L(Gn; �n(�)

��Tn) = P�Gn; �n(�)

�bgm;1(�); � � � ; bgm;J(�)
�
6= Y

��Tn	. Now, observe that

E
�
min1�k�` L(Gn;k

��Tn)� � E �L(Gn; �n(�)

��Tn)� = L(Gn; �n(�)), which yields

Rn;2 � L(Gn; �n(�))� L(G�
m): (26)

Furthermore, Rn;2 � 0 which follows from the fact that

E

�
min
1�k�`

L(Gn;k

��Tn)� = E

"
L

 
argmin

Gn;k2fGn;1;:::;Gn;`g

L
�
Gn;kjTn

�����Tn
!#

= L

 
argmin

Gn;k2fGn;1;:::;Gn;`g

L
�
Gn;kjTn

�!
� L(G�

m);

where the last line follows from Proposition 2 with n replaced by m. Next, observe that

Rn;2 � L(Gn; �n(�))� L(G�
m) ; (by (26))

= P
�
G�
m

�bgm;1(�); � � � ; bgm;J(�)
�
= Y

	
� P

�
Gn;�n(�)

�bgm;1(�); � � � ; bgm;J(�)
�
= Y

	
=

X
k=0;1

E

�
I�
[G�

m(bgm;1(�);��� ;bgm;J (�))=k]\ [Y=k]
	 � I�

[Gn;�n(�)(bgm;1(�);��� ;bgm;J (�))=k]\ [Y=k]
	�

=
X
k=0;1

E

�
E

�
I�

G�
m(bgm;1(�);��� ;bgm;J (�))=k

	 � IfY=kg

� I�
Gn;�n(�)(bgm;1(�);��� ;bgm;J (�))=k

	 � IfY=kg

���� bgm;1(�); � � � ;

bgm;J(�);
�bgm;1(�i); � � � ; bgm;J(�i); Yi

�
i: �i2T`

��
=

X
k=0;1

E

��
I�

G�
m(bgm;1(�);��� ;bgm;J (�))=k

	 � I�
Gn;�n(�)(bgm;1(�);��� ;bgm;J (�))=k

	�
� E

�
IfY=kg

��� bgm;1(�); � � � bgm;J(�)
��

(because Y is independent of bgm;1(�i); � � � ; bgm;J(�i); Yi ; i : �i2T`)

= E

��
I�

G�
m(bgm;1(�);��� ;bgm;J (�))=1

	 � I�
Gn;�n(�)(bgm;1(�);��� ;bgm;J (�))=1

	� � Pm(�)

�
�E

��
I�

G�
m(bgm;1(�);��� ;bgm;J (�))=1

	 � I�
Gn;�n(�)(bgm;1(�);��� ;bgm;J (�))=1

	� � �1� Pm(�)
��
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(where, as in Lemma 1, Pm(�) = P
�
Y = 1

�� bgm;1(�); � � � bgm;J(�)
	
.)

= E

��
I�

G�
m(bgm;1(�);��� ;bgm;J (�))=1

	 � I�
Gn;�n(�)(bgm;1(�);��� ;bgm;J (�))=1

	� � �2Pm(�)� 1
��

= 2E

�
I�

G�
m(bgm;1(�);��� ;bgm;J (�)) 6=Gn;�n(�)(bgm;1(�);��� ;bgm;J (�))

	 � ���Pm(�)� 0:5
��� �

� 2E

���� bPm;`(�) � IfSm;`(�)>0g + Y ` � IfSm;`(�)=0g � Pm(�)

����;
where the last line follows from the de�nition of Gn;�n(�)

�bgm;1(�); � � � ; bgm;J(�)
�
in the far

right side of (23), the de�nition of G�
m

�bgm;1(�); � � � ; bgm;J(�)
�
, and the fact that the in-

equality
��Pm(�)� 0:5

�� � ��� bPm;`(�) � IfSm;`(�)>0g + Y ` IfSm;`(�)=0g � Pm(�)
��� holds on the setn

G�
m

�bgm;1(�); � � � ; bgm;J(�)
�
6= Gn;�n(�)

�bgm;1(�); � � � ; bgm;J(�)
�o
:

2

PROOF OF PROPOSITION 1

The proof Proposition 1 is similar to (and, in fact, much simpler than) that of Proposition

2, and will not be given.

2

PROOF OF PROPOSITION 2

The proof of this Proposition is similar to (and easier than) the proof of Lemma 1 and

goes as follows. Let G : f0; 1gJ ! f0; 1g be any combined classi�er with error L(G) =

P
�
G
�bgn;1(�); � � � ; bgn;J(�)� 6= Y

	
. Then, with G�

n as in (3), one has

L(G)� L(G�
n)

= P
n
G�
n

�bgn;1(�); � � � ; bgn;J(�)� = Y
o
� P

n
G
�bgn;1(�); � � � ; bgn;J(�)� = Y

o
=
X
k=0;1

E

�
E

�
I�

G�
n(bgn;1(�);��� ;bgn;J (�))=k

	 � I�
Y=k
	

� I�
G(bgn;1(�);��� ;bgn;J (�))=k

	 � I�
Y=k
	���� bgn;1(�); � � � ; bgn;J(�)��

= E

��
I�

G�
n(bgn;1(�);��� ;bgn;J (�))=1

	 � I�
G(bgn;1(�);��� ;bgn;J (�))=1

	� � �2Pn(�)� 1
��
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= 2E

�
I�

G(bgn;1(�);��� ;bgn;J (�)) 6=G�
n(bgn;1(�);��� ;bgn;J (�))

	 � ���Pn(�)� 0:5
��� �

� 0 ; where Pn(�) = P
�
Y = 1

�� bgn;1(�); � � � bgn;J(�)	.
2
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