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Abstract

A nonparametric approach is proposed to combine several individual classifiers in
order to construct an asymptotically more accurate classification rule in the sense that
its misclassification error rate is, asymptotically, at least as low as that of the best
individual classifier. The proposed method uses a nearest neighbor type approach to
estimate the conditional expectation of the class associated with a new observation
(conditional on the vector of individual predictions). Both mechanics and the theoreti-
cal validity of the proposed approach are discussed. As an interesting byproduct of our
results, it is shown that the proposed method can also be applied to any single classifier
in which case the resulting new classifier will be at least as good as the original one.
Several numerical examples, involving both real and simulated data, are also given.
These numerical studies further confirm the superiority of the proposed classifier.
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1 Introduction

Consider the following standard two-group classification problem. Let (x,Y) be a random
pair, where x takes values in a metric space (F,p) and Y € {0,1}, called the class label,
must be predicted based on x. Here, F is not necessarily confined to R?. In classification
one wants to find a classifier, g : F — {0, 1}, whose misclassification error, P{g(x) # Y}, is
as small as possible. The classifier with the lowest misclassification error, called the Bayes
classifier, is given by gs(x) = 1 if P{Y = 1|x = x} > 1/2, and gs(x) = 0 otherwise; see, for
example, Cérou and Guyader [9], Abraham et al. [1], and Devroye, et al. [12]. Although
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our setup is expressed for the popular two-class problem, all the results in this paper can be

extended in a straightforward manner to the multi-class classification problem; see Remark 2.

Of course, in practice the distribution of (x,Y") is virtually always unknown and, typically,
one only has access to a training sample of n independent and identically distributed (iid)
observations T, = {(x;,Y1),--,(X,,, Yn)} from the distribution of (x,Y). Much of the
theory of classification deals with the construction of sample-based classification rules g,
based on T, whose error rates are somehow as small as possible. Of course, the choice of g,
is at the practitioner’s discretion and there may be several different options; therefore, let
Gnis---»gns be J > 1 different classification rules for predicting Y. Here, g, may be a lin-
car classifier, g, o a kernel classifier, while g, 3 may be Breiman’s [8] random forest classifier,
etc. The aim is then to combine these individual classifiers in such a way that the resulting

classifier is in some sense at least as good as the best individual classifier.

There is a vast literature on combined or ensemble methods and there are many different
approaches available; this is particularly true for the important problems of classification
and regression function estimation. One may divide the existing methods into roughly two
types: (a) those approaches that involve a large number of similar or homogeneous base
models. Relevant examples here include Breiman’s [7, 8] random forest, Lin and Jeon [17],
Biau et al. [3], and Rahman et al. [19]. (b) Those approaches that combine a number of
models or estimators that are constructed based on different theories or estimation meth-
ods. Results under (b) include Fischer and Mougeot [13], Biau et al. [4], Cholaquidis et
al. [10], Balakrishnan and Mojirsheibani [2], Mojirsheibani [18], and LeBlanc and Tibshi-
rani [16]. The methods employed in the cited papers under (b) are mainly nonlinear in
nature, which is also the framework of the current paper. There is also a large body of lit-
erature on linear and convex aggregation methods; in fact, Chapter 3 of the monograph by

Giraud [14] presents a detailed account of such methods along with many relevant references.

In passing, we also note that there are other taxonomies for characterizing combined classi-



fiers. In fact, as explained in Rokach [20, 21], combined classification methods can be put
into two main categories: weighting methods and non-weighing or meta-learning. Popular
weighting methods include the majority voting employed by Breiman [7, 8] in the context
of tree classification, and by Xu et al. [24] for the problem of handwriting recognition.
Weighted-averaging of estimated class conditional probabilities that are produced by each
classifier, has also been studied by several researchers; results along these lines include the
work of Xu et al. [24], Breiman [6], and LeBlanc and Tibshirani [16]. There are also other
weighting methods that can be found in Rokach [20, 21]. Meta-learning methods typically
work by using the predicted values of the individual classifiers on the data. Relevant results
along these lines include the stacked generaliztion of Wolpert [23], Breiman’s [6] stacked
method, and the nonlinear methods of Mojirsheibani [18], Balakrishnan and Mojirsheibani
[2], Biau et al. [4], and Cholaquidis et al. [10]. For more on meta-learning methods, one

may refer to Rokach [20].

In the next section, we consider the problem of combining several individual classifiers in such
a way that the resulting ensemble is, asymptotically, at least as good as the best individual
one. The paper is organized as follows. Section 2 presents the main results, where both the
mechanics and the theoretical validity of the proposed approach are discussed. Numerical
studies involving both simulated as well as real data are carried out in section 3; these studies
further confirm the good finite-sample performance of the proposed approach. All proofs are

deferred to section 4.

2 Main results

In order to motivate our proposed method, consider the following hypothetical oversimplified
setup. Let g1,---, g, be J classifiers for predicting Y based on x (no data yet). Here, each
g; is a map of the form g; : F — {0,1}. Define the combined classifier G* : {0,1}/ — {0, 1},



for predicting the same Y, by

1 AfE[(2Y = 1)]ai(x), -+ 9,(x)] > 0

G*(gl(X)J 7gJ(X)) =
(0 otherwise.

(1)

Then we have the following elementary result

Proposition 1 The combined classifier G* in (1) is optimal, i.e.,

P{G*(!h(x), o 0.(x) # Y} = inf P{G(gl(x),--- ,9:(x)) # Y}-

G: {0,137 —{0,1}

We also observe that in view of Proposition 1, and without further ado, one has

P{G"(91(x)s--+ 0:(X)) #Y} < min P{g;(x) # Y} (2)
in other words, G* is at least as good as the best classifier among ¢1,...,¢g,. When J = 1,

we may simply write g instead of ¢g; in which case (2) reduces to

P{G*(9(x) #Y} < P{g(x) # Y},

where the equality holds when g is the Bayes classifier, i.e., g(x) = 1 if E[(2Y — 1)|x] > 0,
otherwise g(x) = 0.

Next, suppose that we have J individual classifiers, g, 1,...,Gn,, constructed based on the
data T,, for predicting Y. As explained in the introduction, these could be J very different
classifiers; for example, g, 1 may be a linear classifier, g, » a kernel classifier, g, 3 may be a
random forest classifier or the support vector machine, etc. Then (1) in conjunction with

Proposition 1 suggests considering a combined classifier, G, of the following form

1A E[2Y = D)]Gai(x), 2 Gns(x)] >0

G:L (./g\n,l (X)J e 7/g\n,J(X)) = R (3)
(0 otherwise.

Although (3) is not available in practice, the following counterpart of Proposition 1 shows
that (3) is in fact theoretically optimal in the important sense that its overall error rate is

the smallest:



Proposition 2 Let G be the combined classifier in (3). Then

P{G; (G100 Gu000) 2V} = i P{G (G (0, s (0) £V

G: {0,137 ={0,1}

and in particular P{G%(Gn1(X): . G0y (X)) # Y} < minicjcy P{Gn;(x) #Y}.

Obviously, the theoretically optimal classifier G} is not useful in practice because the con-
ditional expectation on the right hand side of (3) is virtually always unknown. Therefore,
in what follows, the aim is to construct estimates of (3) whose error rates can be arbitrarily
close to that of G, as the sample size n grows larger and larger. In what follows, we propose
a rather simple-to-implement nearest neighbor (NN) type method that works as follows.
Randomly split the data T,, into a training sample T,, of size m and a testing sequence T,
of size { = n — m, where T,, UT, = T, and T,, N T, = 0. Let g1, - ,Gms be the J
individual classifiers constructed based on T,, only, and consider the k-NN type combined
classifier G, 1, 1 < k < £, given by
Lot 32 vmer, (2Yi = 1) - Tk, x, x;) > 0

Gn,k (gm,l(X)7 T J/g\mJ(X)) - . (4)
0 otherwise,

where

Im(k’ X XZ) = H{(ﬁm,l(xi), e ,EmJ(xi)) is among the k nearest neighbors of (ﬁm,l(x), o ,E]\m,J(x))}; (5)

here, the distance between two J-dimensional vectors in {0, 1} is measured with respect to
the Hamming distance, i.e., the number of discrepancies between the corresponding compo-
nents of the two vectors. In the case of ties, the nearest neighbor to be selected is determined
by random chance; thus, for example, if (g 1(X;),** , Gm,s(X;)) is the third nearest neigh-
bor of (Gm1(X), "+ ,Gm,s(x)) for i = 2,7, and 10, then we randomly choose one of these
three candidates (and its corresponding Y;) to be used as the third nearest neighbor of
(Gm1(X), - ,9m.s(x)). Then, the proposed combined classifier, denoted by G, 7, 1s given
by (4) with k replaced by k that minimizes the re-substitution error, i.e.,

A 1
kE=argming >, Irg o e dmt) £%) o

1<k<¥ .
=v= i (x;,Y:) €Dy



To study the asymptotic optimality of G, we first state two assumptions. Define the

quantity

SneX) = D Y G s 00)) = (31000 s (20) 9

10 x; €T,
and consider the following assumptions:

Assumption A.
The quantity Sy, (x) diverges with n: Sy, ¢(x) — 00, in probability, as n (and thus ¢) — co.

Assumption B.
For the classifier G}, in (3), one has P{G} (Gn1(X), -+ Gns (X)) # Y} = ¢, for some constant

c in [0, 1], as n — o0.

Assumption A above is not unrealistic at all; to appreciate this, observe that conditional
on T,, and X, the quantity S,,,(x) merely represents the total number of “successes” in ¢
independent Bernoulli trials, which is, intuitively, expected to diverge as ¢ — oco. In fact,
alternative versions of this assumption have already been used in the literature (e.g., Devroye
et al. [12]; p. 94)). Since (f]\ml(x), “e ,@W(X)) € {0,1}/, Assumption B deals with the
probability of error of a classifier on hypercubes, which is usually well-behaved (Devroye et
al. (1996; Ch. 27)). Of course, this could be violated if one or more of the individual
classifiers are intentionally constructed to behave poorly. The following result summarizes
the asymptotic optimality of the proposed combined classifier Gn,E-

Theorem 1 Let Gn,E be the nearest neighbor combined classifier defined in (4), where % is
the minimizer of the empirical error in (6). If Assumptions A and B hold then

PLG, (i (0. By (00) £V} = int  PLG@a(), i) £V} 0,

G:{0,1}7 —{0,1}

as n — oo. In particular, G 3 is asymptotically at least as good as the best individual
classifier, i.e.,

limsup max |P{G,z(Gm100): - Gms(0) # Y} —B{Gnsx)) #V}| < 0.

n—oo 1<5<J

where Gy ; is the j-th individual classifier constructed based on the full data T,,.



Remark 1 Let G, and S,,4(x) be as in (4) and (7), respectively. Now, if we choose k
to be equal to Sy, ¢(x) in Gk, provided that S, .(x) > 0, then our proposed combined
classifier reduces to that of Balakrishnan and Mojirsheibani [2]. To appreciate this, observe
that in this case (4) becomes

Gn,sm,g(x) (/g\m,l (X)7 T, gm,J(X))

_ 1 if ]I{Sm,l(X)>0} . Zi:(xi,Yi)ETl (2Y; - 1) 'Im (Sm,Z(X)7 X Xi) >0
0 otherwise,

(where Z,,, (Sm.e(X). X, X;) is as in (5) with k replaced by Spe(x))

_ { Lif Iis, ,0>0) Zi:(xi,Yi)e'JI‘z@Y; - 1) .H{(Em,l(xi)w-- G ()= Gmr (0), -+ @m,J(X))} >(%)

0 otherwise,

where we have used the fact that, in view of the definition of S, ¢(x),

]I{Sm,z(x)>0} X ]I{@m,l(xi), -, Gm,s(X;)) is among the S, ¢(X) nearest neighbors of (gm,1(x), - ,§m,‘](x))}

is equal to 1 if and only if ]I{(gm,l(Xi)v"' G () = Gt OO+ T

00) )= 1. It is straightforward

to see that (8) is equivalent to

N [—

(9)

o s 0>01 :
1 lf Sm,l(x) Zi:(Xth)eTl 1/; ) ]I{(/g\m,l(xz')v"' a/g\m,J(Xi)) = (@m,1(X)7"' a/g\m,J(X))} >
0 otherwise,

which is the combined classifier of Balakrishnan and Mojirsheibani 2], where, by convention,
0/0 := 0. The classifier in (9) is essentially a weighted average of all Y; € T,, where the

weights are indicator functions ]I{(‘/g\m,l(xz')v"' s ) =@ (0 Gy 00) L each of which will

be 1 if and only if g, j(x;) = Gm,;(x) for all j € {1,2,..., J}. Unfortunately, from a practical
point of view, if there are a few weak/poor classifiers among G, 1, ..., gm.s, then one could
end up with g, ;(X;) # 9m.,;(x) for a large number of x;’s in T, and this can hold true even
when x; and x belong to the same class. This means that many of the weights (i.e., the
indicator functions) in (9) will be zero, which in turn reduces the predictive performance
of (9). Our proposed method in this paper circumvents this vulnerability of the combined
classifier of Balakrishnan and Mojirsheibani [2] in (9) by allowing a few weak classifiers to
“misbehave” or be incorrect in their predictions. Thus, unlike (9), the new classifier Gn@ is
not seriously affected by the impact of a few poor classifiers.

Remark 2 The results of this section can be extended to the M-group (M > 2) classification
problem in a straightforward manner. More specifically, let (x,Y") be a random pair where
X is as before, but Y € {1,..., M}. A classifier of the form ¢*(x) := argmax, ., P{Y =

k|x = x} is optimal in the sense that P{g*(x) # Y} = ming.r_q.. ay P{g(x) # Y}; see,



for example, Devroye and Gyorfi [11], ch. 10. In this case, with Z,,(k, x, x;) as in (5), we
have the following counterpart of (4):

Gn,k (/g\m,l (X)7 R /g\m,J (X)) = argmax § ]I{Yl:j} : Im(k7 X Xz)
1<j<M .
== (g, Yi)€ET,

and the proposed combined classifier is given by G, ¢, where % is as in (6). Tt can be shown
that, under assumption A and the version of B corresponding to the M-group problem, the
conclusion of Theorem 1 continues to hold in the general M-group problem in the sense that

P{Gn@(?fm,l(X): 5 Gma (X)) # Y}

_ inf P{GAH 7...,’\71 Y}—>O, N .
G:{l,.-.,Ml}r‘l’—>{1,...,M} (g ’1(X) g 7J(X)) 7 as n 00

Remark 3 In the case where J = 1, Theorem 1 essentially implies that, given any initial
classifier g, the error of the new classifier G, 7 defined via (4) and (6) can always be asymp-
totically less than or equal to that of g,,. To the best of our knowledge, this is a new result
in the literature.

Remark 4 Since, for each &k = 1, ..., ¢, the nearest neighbor type combined classifier GG, in
(4) is constructed based on one sample split, its performance can be affected by the particular
split used. Thus, unless n is very large, a “bad” split can in practice result in a poor choice of
k in (6) which will lead to a poor corresponding classifier G +. This practical issue suggests
using several random splits and taking their average. More i)recisely, with N sample splits,
each split will produce an estimate k; of k, where b = 1,..., N, and the corresponding
predicted class Y (corresponding to x) is given by ¥, = G, 3, (G (X)s*++ + Gmu(x))- Since

each Y} is either 0 or 1, the overall predicted value of Y is taken to be 1 if N ! Z,])v:l Y, > 1/2,
and 0 otherwise. As for the choice of IV, our experience shows that one can expect good
results with /N as small as 15 or 20.

3 Numerical examples

In what follows, we study the prediction of the class variable, Y (= 0 or 1, corresponding to
the random covariate x, using the ensemble methods proposed in this paper. The numerical

performance of the proposed method will be assessed using both simulated and real data.

Example A (Simulated data).

In this example we consider the prediction of ¥ = 0 or 1, based on x € R, where P{Y =

8



1} = P{Y = 0} = 0.5. Here, we have taken x ~ Njo(0, 8%) whenever ¥ =1 (i.e., class
1), where ¥ = (0y;);j=1.. 10, With ;; = 27779l On the other hand, if ¥ = 0 then x has a
10-dim standard Cauchy distribution with independent components, i.e., the components of
x are iid random variables with the pdf f(z) = (7(1 + 2?))7!, —oo < < co. As for the
choice of the individual classifiers, we have considered the following six classifiers: a 1-Nearest
Neighbor (1-NN) classifier, (ii) a 7-NN classifier, (iii) the Support Vector Machine (SVM) of
Boser et al. [5], (iv) Breiman’s [8] Random Forest, (v) a Gaussian kernel classifier with a
bandwidth of n7%2, and (vi) the Linear Discriminant Analysis (LDA). Next we considered
three different combined classifiers: The proposed combined classifier Gn,E defined in (4),
where % is the minimizer of the empirical error in (6), the combined classifier of Balakrishnan
and Mojirsheibani [2] given in (9), and the majority-vote classifier. To trace the performance
of various methods, several sample sizes were used: n = 50,100, 200,...,800,900, with
5 observations from each population. As for the sample splits, we took m = 0.65n and
¢ = n—m, but any other fraction in the 0.55 to 0.85 range seems to work just as well. Next,
for each sample size, we constructed the six individual classifiers based on T,,, which were
then used to construct the above combined classifiers based on T,. For each value of n, a
total of 25 sample splits were used; this is in view of Remark 4. To assess the performance
of various classifiers, we also generated 1000 additional observations, with 500 from each of
the two populations; these were used as test samples for each classifier. Finally, the whole
process above was repeated a total of 300 times, yielding 300 estimates of the misclassification
errors of each classifiers discussed above. The average errors (over 300 Monte Carlo runs)

are summarized in Table 1 along with their standard errors in parentheses.

As Table 1 shows, the SVM and random forest classifiers perform very well for smaller
sample sizes, but as n reaches 100, the proposed combined classifier Gn,% (as well as B-M)
start performing better than all other classifiers. The boldface values represent the smallest
error rates for each n. We also note that as n gets larger and larger, most classifiers start
performing better and better (except for the LDA which is a wrong classifier in the presence

of Cauchy populations); however, the proposed combined classifier is consistently superior



Table 1: Misclassification errors of the three combined classifiers and the six individual classifiers for

the simulated data of Example A. Here G| ; is the proposed classifier, B-M is the combined classifier of

Balakrishnan and Mojirsheibani [2], and Vote is the combined classifier based on majority voting. The
boldfaced values represent the lowest errors for each n.

n | G,z BM Vote | SVM Forest 1NN 7-NN Kernel LDA

50 | 3342 3404 3732 | .3020 3180 .3616 .4698 .3339 .4804
(.0029) (.0023) (.0015) | (.0016) (.0018) (.0015) (.0013) (.0014) (.0013)
100 | .2802 2828 .3366 | .2847 .2875 3329 .4374 .3126 .4906
(.0017) (.0015)(.0016) | (.0010) (.0017) (.0016) (.0017) (.0013) (.0012)
200 | .1709 1821 2646 | .2506 2181 .2696 .3341 .2635 .4849
(.0014) (.0013)(.0010) | (.0009) (.0011) (.0011) (.0011) (.0010) (.0013)
300 || .1491 .1623 .2463 | .2428 .2078 .2534 2897 .2510 .4873
(.0013) (.0011)(.0010) | (.0009) (.0011) (.0009) (.0012) (.0009) (.0013)
100 || .1452 1514 2248 || 2385 .1900 2399 2570 2387 .4843
(.0010) (.0009) (.0013) | (.0008) (.0009) (.0009) (.0011) (.0009) (.0015)
500 | .1394 1405 2105 | .2262 1739 .2275 .2354 .2265 .4945
(.0009) (.0008) (.0009) | (.0012) (.0011) (.0010) (.0010) (.0010) (.0013)
600 || .1360 .1360 2001 | .2212 .1676 .2221 2195 .2213 .4845
(.0008) (.0007) (.0009) | (.0007) (.0008) (.0007) (.0010) (.0007) (.0014)
700 | .1310 .1343 1961 | .2199 .1656 .2230 .2007 .2221 .4891
(.0010) (.0008) (.0007) | (.0010) (.0009) (.0009) (.0009) (.0009) (.0012)
800 || .1249 1278 1861 || .2119 .I583 .2137 .2066 .2133 .4851
(.0008) (.0007) (.0009) || (.0008) (.0008) (.0009) (.0009) (.0009) (.0013)
900 || .1190 .1243 .1856 | .2076 .1505 2122 .1969 .2118 .4920
(.0009) (.0008) (.0006) | (.0010) (.0010) (.0008) (.0008) (.0008) (.0013)

to all the other ones. Furthermore, in some cases this superiority is quite notable; see, for
example, the row corresponding to n=300, where the error of G 7 is only 0.1491 as compared
to the best individual classifier, the random forest, with an error of 0.2078. Such rather large

discrepancies can also be noticed for many other values of n in Table 1.

Another feature of the proposed classifier @nE is that, unlike linear combined classifiers, it
can even be used to improve the predictive performance of any single classifier (although
the improvement may be quite incremental in some cases). To appreciate this, observe that
according to Theorem 1, the proposed combined classifier énE can asymptotically outperform
each constituent classifier g, 1, ..., gy,s, where J > 1. Now, taking J=1, this theorem states
that, given a single classifier g,, the proposed approach can produce an improved version of

n. To put this to the test, we applied énE to some of the six classifiers in Table 1; in fact,

10



we applied it to each of the two classifiers that have already performed quite well and are
difficult to outperform, i.e., the SVM and random forest classifiers. The results appear in

Table 2.

Table 2 shows that as n increases, the proposed classifier can still improve upon the per-
formance of each of these two classifiers, individually, despite the fact that both SVM and
random forest are well known to be superb classifiers. It is true that the improvement
is rather minimal, but the main message here is that én@ is more than just a combined

classifier, it can also improve the predictive power of a single classifier.

Table 2: Effects of applying the combined classifier énﬁ to J=1 classifier only. Here SVM and Forest
represent the classifiers obtained by applying @n 7 to SVM and random forest, respectively. For each n, the

boldfaced values represent the smaller of the two error rates when comparing SVM and SVM in columns 3
and 4, and when comparing random forest and Forest in columns 4 and 5.

——

n H SVM SVM H Forest  Forest

50 | 0.3020 0.3076 || 0.3180 0.3103
(.0016) (.0017) | (.0018) (.0024)
100 | 0.2847 0.2871 | 0.2875 0.2844
(.0010) (.0011) || (.0017) (.0016)
200 | 0.2506 0.2411 | 0.2181 0.2032
(.0009) (.0008) | (.0011) (.0013)
300 || 0.2428 0.2380 | 0.2078 0.1993
(.0009) (.0009) | (.0011) (.0008)
100 || 0.2385 0.2302 | 0.1909 0.1815
(.0009)  (.0007) | (.0009) (.0009)
500 | 0.2262 0.2265 | 0.1739 0.1732
(.0012) (.0010) | (.0011) (.0010)
600 || 0.2212 0.2207 | 0.1676 0.1768
(.0007)  (.0008) | (.0008) (.0008)
700 | 0.2199 0.2188 | 0.1656 0.1643
(.0010)  (.0008) | (.0009) (.0009)
800 || 0.2119 0.2031 | 0.1583 0.1492
(.0008)  (.0007) | (.0008) (.0008)
900 || 0.2076 0.2070 | 0.1505 0.1480
(.0010)  (.0007) | (.0010) (.0009)

Example B (Wisconsin Breast Cancer Data).

11



This real data set has 683 fully observed instances, 444 of which have been labeled benign,
which is class 1, and the rest are malignant, i.e., class 0. There are also 9 numerical covariates
associated with each instance. A full description of this data set is available from the UCI Ma-
chine Learning Repository of data sets: https://archive.ics.uci.edu/ml/datasets.php.
Also, see Wolberg and Mangasarian (1990).

To carry out the analysis, 500 of the 683 instances were randomly selected to be used as the
training data, whereas the remaining 183 were set aside as the test sequence to be used to
estimate the error rates of different classifiers. To study the performance of various classifiers
as a function of the sample size n, we considered 5 different sample sizes n = 100, ...,500
(since n can only go up to 500 here) and, for each value of n, six individual classifiers were
constructed which were then used to construct the proposed combined classifier. Here, as in
Example A, the sample splits were taken to be m = 0.65n and £ = n — m. Finally, the error
rates of all classifiers were estimated using the test sequence of 183 instances that were set
aside. This whole process was repeated 100 times. Table 3 reports the average error rates of
various classifiers over 100 runs; the standard errors appear in parentheses. The boldfaced
values represent the smallest error rates for each n. The combined classifier B-M of Table
1 is not included here for the simple reason that it is always inferior to énE As Table 3
shows, the proposed combined classifier can outperform the individual classifiers. This can
be noticed by comparing the error of the best individual classifier (the random forest in this

case) with that of éng that appears in the first column.

Example C (German Credit Data).

Here we consider a real data set consisting of 1000 individuals, 700 of whom have been
labeled as having “good credit”, i.e., class 1, whereas the remaining 300 have “bad credit”,
which is class 0. There are 24 numerical covariates associated with each person. A full
description of this data set is available from the UCI repository of machine learning data

sets at https://archive.ics.uci.edu/ml/index.php.

To carry out the analysis, first we randomly selected, and set aside, 300 of the 1000 obser-

12



Table 3: Misclassification errors of various classifiers for the Wisconsin Breast Cancer data of Example
B. Here G ; is our proposed classifier and Vote is the combined classifier based on majority voting. The

boldfaced values represent the lowest errors for each n.

n | G,z Vote | SVM Forest 1-NN 15NN Kernel LDA

100 | .0362 0387 | .0541 0387 .0460 .0449 .0459 .0453
(.0013) (.0012) || (.0017) (.0014) (.0016) (.0012) (.0016) (.0016)
200 || .0312 0347 || .0511 .0337 .0427 .0384 .0422 .0392
(.0012) (.0013) | (.0018) (.0014) (.0015) (.0014) (.0016) (.0013)
300 || .0279 .0304 || .0439 .0303 .0396 .0346 .0391 .0375
(.0011) (.0011) || (.0015) (.0012) (.0012) (.00012) (.0011) (.0012)
100 | .0277 0316 | .0445 02908 0408 .0338 .0409 .0385
(.0010) (.0012) || (.0015) (.0010) (.0014) (.0012) (.0013) (.0012)
500 || .0272 0327 || .0422 .0295 .0416 .0336 .0416 .0395
(.0010) (.0011) || (.0014) (.0010) (.0012) (.0012) (.0012) (.0012)

vations to be used as the test sequence to estimate the error rates of various classifiers. As
for the training sample size, seven values were considered: n = 100,200, ...,700, (since n
cannot go beyond 700=1000—300). This grid of values of n allows us to somewhat monitor
the performance of different classifiers as n increases. Then, given a sample of size n, each of
the six individual classifiers of Example B were constructed and used to construct the pro-
posed combined classifiers. Here, once again, the sample splits were taken to be m = 0.65n
and £ = n — m. Finally, the error rates of various classifiers were estimated using the test
sample of 300 observations. The entire process above was repeated 100 times and the aver-
age misclassification errors were calculated. The results are summarized in Table 4. As
this table shows, the combined classifier @ng has the ability to perform well and, in fact,
slightly outperform the best individual classifier (which is random forest) as the sample size

increases to about 600.

4 Proofs

PROOF OF THEOREM 1

Let G} and G, be as in (3) and (4), respectively. Similarly, let G}, be as in (3), but with
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Table 4: Misclassification errors of different classifiers for the German Credit data of Example C. Here G
is our proposed classifier and Vote is the combined classifier based on majority voting. The boldfaced values

represent the lowest errors for each n.

n | G,z Vote | SVM Forest 1-NN 15NN Kernel LDA
T00 | 2014 3012 | 3053 .2755 3746 3061 3718 .3150
(.0028) (.0024) || (.0022) (.0024) (.0032) (.0023) (.0032) (.0033)
200 || 2691 2922 | 2975 .2613 .3500 .3030 3572 2074
(.0026) (.0026) || (.0022) (.0023) (.0025) (.0023) (.0025) (.0030)
300 | 2608 2838 || 2954 .2523 3534 2984 3521 2803
(.0024) (.0022) || (.0024) (.0020) (.0026) (.00023) (.0027) (.0022)
100 | 2472 2794 || 2909 .2458 3494 2973 3467 2860
(.0024) (.0029) || (.0023) (.0027) (.0027) (.0024) (.0026) (.0023)
500 | 2438 2738 | 2886 .2414 3417 2955 3399 2775
(.0021) (.0024) || (.0024) (.0021) (.0023) (.0023) (.0024) (.0022)
600 [ .2398 2749 || 2914 2411 3424 2094 3395 2774
(.0023) (.0022) || (.0023) (.0022) (.0023) (.0021) (.0024) (.0024)
700 || .2372 2756 | 2869 2376 3407 2990 .3385 .2800
(.0021) (.0022) || (.0026) (.0021) (.0023) (.0022) (.0022) (.0024)

n replaced with m everywhere in (3). Also, let G, 7 be the combined classifier given by (4)

and (6), and define the quantities

L(G)
L(G,)

P{G: (3100, 5us(20) Y}
P{G7 (s 00+ s () 7V}

% (Xi%:)e N Gk G s x0) 7}
P{ Gt (@a(30), - s (30) # V[T |
P{G, 5 (Gni (). - Tms (X)) # V'
P{Gn,z(Am,l(x), (X)) Tn},

(10)
(11)

where £ is as in (6) and 1 < k < £. Therefore, in view of Proposition 2, and the notation in

(10) and (14), one must show L(G, z) — L

LG, ;) - L(G) = E[L(an\'rn)— min (G, | T, ]

1<k<t

[E mln L( nk‘T
1<k<

L(G;)| + (L)

14

(G:) — 0, as n — oo. Now, start by writing

- L(G,)]



ZZZ}%nJ,%‘]%nQ +_}%n3- (16)

Then, fix T, and define the classes of sets .o, 1 = {An11,-.., An1e} and A, 0 = {A,01,-- -,

Anoe} where, for 1 <k < ¢,

Angge = { G0+ G (), With X € F | G @it (00, Gns () = 1} x {0}
gt = { G 00+ Gins (00) With X € F | G Gt (0 1T () = 0} x {1

Furthermore, for 1 < k </, let

A(-14- )

W= P00 Gns (0. Y) € Aups | T, 0=0.1
X(Anp) = 1 > T b=0,1,

e { @ ) G (x2). Vi) € Ao}
LAXG, Y ¢

and observe that

LG,

Tn) - glkméL ”k‘T

= L(G,3|T) = LG, 3) + Lo(G, ;) — min L(Gyp|Ts)

1<k<t

< T —
< 2523§‘L¢@?mk) L(Gr|Tn)

< 2 max
<22

< dsup [2(B) —A<B|Tm>\

Be#
(where 4 is the collection of the Borel sets of R7*!)

(Anpr) — MAnp,

n)

<4 Y [Rliz) - Mz T (17)
ze{0,1}7+1
where, for z € R’ we have A\,({z}) = ¢ DY Gy et { (s G s i)~} and

A{2}HTw) = P{(Gn1(X): - Gms(x),Y) =2 |Tn}. Therefore, in view of (17), for every

€ > 0, one has

]P’{L(GWE‘T,Z) — min L(Gny|T,) > 6}

1<k<t

< PS> [z - AT > e

2€{0,1}/+1

15



< Y E[F{{zh) - A(@}Tn)| > 27| T}

z€{0,1}7+1

< 9/t [2 e*”ﬂ . with € = 270749, (18)

where (18) follows from an application of Hoeffding’s (1963) inequality in view of the fact
that, conditional on T,,, the term X[({Z}) is the average of ¢ independent indicator functions,

L s ) ims i) =3} corresponding to the ¢ pairs (x;,Y;) € Ty. Now, (18) together
with the Borel-Cantelli lemma yields L(GnyﬂTn) — ming<<g L(Gnvk‘Tn) —as 0, a8 1 — 00.

Thus, by Lebesgue’s dominated convergence theorem,

Ry i=E[L(G,5

T,) — min L(Gn,k‘Tn)} — 0, asn — oo.
1<k<t

To deal with the term R, 5 in (16), start by defining the quantity

va(X) = Smelx) L (19)

m,l(x) :0}7
where Sy, ¢(x) is as in (7). Here, we note that v, (x) takes values in {1,...,¢}. Also put

R D ixier, Yi H{ (G2 ) s (%)) = (G100 .7 (20) }

and observe that upon replacing k by v,(x) in (4), we can write

Gn,un(x) (/g\m,l (X)7 T /g\m,J(X))

_ 1 if ﬁ Zi:(xi,Yi)eT[ (2}/1 - 1) ' Im (Vn(X)7 X Xz) >0

0 otherwise,

(where the term Z,, (vn(X), X, X;) is defined via (5))

—_

e 18, 1 (0>0)
lf #?X) Zii(xi,Yi)ETZ (QY; - 1) : Im (Sml(X)? X Xz)
= Its,, .1 00=0}
+ [TXO Zi:(xi,Yi)ET[@Y; = 1) Zn(lx, x:) > 0 (21)
0 otherwise,

(where (21) follows from the definition of v, (x) in (19))

o s 0500 -
lf Sm,l(X) ZZ(XZ’Y;)ETZ (2}/Z 1) ]I{(‘/g\”m,l(Xi)f" 5.’9\m,J(Xi)) = (/g\m,l(x)f" a.’q\m,J(X))}

—_

- + (27{ — 1) ]I{Sm,e(x)=0} >0 (22)

0 otherwise,
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) 1 P00 Iis, 050 + Yo Iis, 00y > 1/2 (23)

0 otherwise,

where ﬁm7[(X) is as in (20) and Y, = ¢! > ivier, Yi- Here, (22) follows from (21) because

of the following simple facts:

(i) For each x; € Ty, the product of the two indicator functions, ]I{Sm,l(x)>0} and

H{(%(xi), cGm, (X)) is among the Sy, ¢(x) neighbors of (Gim,1(X), -+ »Gm,s (X)) }7
(where the latter indicator function is just the term Z,, (Sp.e(X), X, X;) in (21)), will be equal

to 1 if and only if]I{( =1.

Gt (Xa)s 5 Gm . (X)) = @m0+ 5 Gm.s (X)) }
(ii) For each x; € Ty, the term Z,,(¢, x, x;) in (21), which is just the indicator function
]I{(ﬁm,l(xi), “+,Gm,s{x;)) is among the £ nearest neighbors of (Gm,1(X), " sTm,s (X)) }7

is always equal to 1; this is because here the number of nearest neighbors, ¢, is the same as

the entire sample size, ¢, (the size of T,).

To complete the proof, we also need the following lemma which puts bounds on the term
R, 5 in (16) based on the expected value of the expression that appears on the right side of
(23). More specifically,

Lemma 1 Let R, be as in (16) and put Y, = (7! Zi%em Y;. Then
0 < R,p < 2K ﬁm,Z(X) s, 00500 + Yo Is, 0001 — Pm(X)],

where Pm(X) =P {Y - 1‘ L/q\mJ(X)a U 7/g\m,J(X)}‘

Now, to show R, 2 — 0, let P,,(x) be as in Lemma 1 and observe that by Lemma 1 and the

fact that 0 <Y, < 1, one has

Rn? S 2K

)

Prnt(X)  Lsn, 00y — Pm(X)‘ + 2E(H{Sm,z(x):0}>

IN

2 \/E [E (‘ﬁm,e(x) s i )>0} — Pm(X)r‘ Tos X, {Xi}i € Tz)] (24)
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+ 2P {Sns(x) =0}.

However, conditional on T,,, X, and {x;}: € T,, the random variable S, ¢(x) - ﬁm,Z(X)7
which is equal to the numerator of the right side of (20), has the binomial distribution
Bin(Spne(x), Pm(x)) whenever S, ,(x) > 0. Therefore, the expression under the square-

root sign in (24) can be bounded as follows

S 2
E [E (‘Pm,e(x) s, (0500 — Pm(x)‘ "er, x. {x:}: € m)}

[

]E ‘

~ 2
Sme(X) - Pre(X) - Lsppo>0y

< E
Sm,l(X)

=

Pr(x)

X Iis,, 1(20>0}

Tm; X {Xz}l € Tg) + ]I{Sm,l(X)O}]

2

Bin (Sm,e(x), 7Dm(x))
Sme(X)

=K — Pulx)

*Irs, om0} | Tms X0 AX}i € Tf) + H{sm,z(m:o}]

Po(x) (1 = P (X))

=k Sme(X) x ]I{Sm,l(x)>0}

+ P {Sm.(x) = 0},

where the last line follows from the usual binomia variance formula. This last expression, in

conjunction with (24), and the fact that P, (x) (1 — Pm(x)) < 1/4 immediately yields

Rny < 2\/IE [(43,”,3(;())‘1 H{Sm,é(xw}} +P{Snilx) =0} + 2P{Sns(x) =0}. (25)

But, upon replacing {S,.¢(x) > 0} by {1 < Spe(x) < k}U{Sns(x) > k}, for any arbitrary
integer k£ > 1, one finds E[m ]I{Sm,l’(x)>0}i| < P{1 < Ss(x) <k} + k' holds for all
k > 1. Therefore, by first choosing k large enough and then applying Assumption A, the
bound in (25) can be made as small as desired. The proof of Theorem 1 now follows since,

in view of Assumption B, we have R, 5 — 0, as n (and thus m) — oo, where R, 3 is as in

(16). This completes the proof of Theorem 1.

PROOF OF LEMMA 1
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Let L(Gy,) be as defined in (11). Also, let Gy, ., (x) be as given by the right side of (23)
and put L(G, v, (x)|Tn) = P{Gn,v.(x (gml(x) © Omy(x)) # Y |Tn}. Now, observe that
E [mini<g<¢ L(Gni|Tn)] < E [L(Gn,v,ix)|Tn)] = L(Gn,v,(x))> which yields

Rz < L(Gnu,) — L(G). (26)

Tn>

Furthermore, R, > > 0 which follows from the fact that

E[mmL G |Ty ] = E

1<k<t

L ( argmin L(Gmk\Tn)

Gn,k E{Gn,ly-“:Gn,l}

= L ( argmin L(Gn,k’Tn)>

Gn,kE{Gn,l ;-~~;Gn,€}

> L(Gy),
where the last line follows from Proposition 2 with n replaced by m. Next, observe that
Ruz < LGuun) ~ LG, (by (26)
= P{G;(?]\m,l(X): ;jq\m,J( ) Y} ]P){Gnun (gm 1(X) : 7jq\m,J(X)) = Y}

= E(I —1I
Z < { I:G:n (Zi\m,l (X)7 7§m,J(X)):k] n [Y:k}} { [Gn,un (x) (?J\m,l(X)a"' 7§m,J(X)):k] N [Y:k]} >

k=0,1

fd Z E |:]E <]1{th (Z]\m,l(x)f" 7‘/g\maJ(X)):k} . ]I{Y:kj}

k=0,1

_1 Mry—gr| G
{Gn,un(x)(./g\m,l(x)a"'7§m,J(X)):k} {Y_k} g 71(X)7 ’

R AR AR, B |
10 x; €T,

= E|(I —1I
0,1 |:< {G:n (gﬂl,l(x)v"' 7§m,J(X)):k} {Gn,un(x) (ﬁm,l(X):'“ 7§nz,J(X))k}>

k=0,
X E(H{Y:k}‘ /g\m,l(X)7 e /g\m,J(X)):|

(because Y is independent of G 1(X;),  Ims (X)), Yis @ Xxi€Te)

i (COXPRP SR R
_E[(H{G:n(am,mx),m,ym,J<x))1}_H{Gn,yn<x)(§m1 G (X 1})( (X)ﬂ
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(where, as in Lemma 1, P (x) = P{Y = 1| Gm1(X), G (x) }-)

B E{(H{G:n(am,l(x»--,am,1<x))=1}_H{Gn,m(x)(%l( X): .1 (X 1}> ( )_1)}

_ 21@{]1 }-‘Pm(x)—o.f)”

{G:n (./q\m,l(X)a"' a@\m,J(X)) # Gn,l/n(x) (Zim,l (X):"' 7§m,J(X))

<

E| Pine(x) - ]I{Sm,z(x)>0} +Y- H{Sm,z(X)ZO} = Pu(x)),

where the last line follows from the definition of Gy, (x) (?m&(X); e ,Z}\m’J(X)) in the far
right side of (23), the definition of G}, (Gm1(X), " ,9ms(x)), and the fact that the in-
eauality [P(x) = 0.5 < |Pe(x)  Its, om0y + Ve s, -0} — Pnlx)] holds on the set
{Gor @30+ G () # Gt (!Jml(X) ()}

PROOF OF PROPOSITION 1

The proof Proposition 1 is similar to (and, in fact, much simpler than) that of Proposition

2, and will not be given.

PROOF OF PROPOSITION 2

The proof of this Proposition is similar to (and easier than) the proof of Lemma 1 and
goes as follows. Let G : {0,1}7 — {0,1} be any combined classifier with error L(G) =
P{G(Gn1(X), " »Gns(x)) # Y }. Then, with G} as in (3), one has

L(G) = L(Gy)

= P{Gi () 00(0) =V} = P{G(Gur (), Fus () =V}

-2 E[E@{e (31100 Gs00) 4} i}

k=0,1

o ]I{G _— k} {Y k} Gn1(X), - 7§n7J(X)>:|
- EKH{G;(% nsb0)=1} T Gt @n,.;(x))l}) (2P0 - 1)}
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N 2E ]I{G(g",l(x)a"';yn,J(X))#G;L(lg\,,hl(x)’...,"g‘n‘J(X))} X ‘PTL(X) - 05‘:|

>0,  where P(x) = P{Y =1|Gu1(x), - Gus(x) }-
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