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ONE SENTENCE SUMMARY 

Cryo-EM structure and kinetics of an evolved CRISPR-Cas9 DNA base editor explain rapid 

Cas9-dependent DNA deamination. 

 

ABSTRACT 

CRISPR-Cas-guided base editors convert A•T to G•C, or C•G to T•A, in cellular DNA for 

precision genome editing. To understand the molecular basis for DNA adenosine deamination 

by adenine base editors (ABEs), we determined a 3.2 Å resolution cryo-EM structure of ABE8e 

in a substrate-bound state in which the deaminase domain engages DNA exposed within the 

CRISPR-Cas9 R-loop complex. Kinetic and structural data suggest that ABE8e catalyzes DNA 

deamination up to ~1,100-fold faster than earlier ABEs due to mutations that stabilize DNA 

substrates in a constrained tRNA-like conformation. Furthermore, ABE8e’s accelerated DNA 

deamination suggests a previously unobserved transient DNA melting that may occur during 

double-stranded DNA surveillance by CRISPR-Cas9. These results explain ABE8e-mediated base 

editing outcomes and inform the future design of base editors. 
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MAIN TEXT 

The site-specific conversion of A•T to G•C base pairs and C•G to T•A base pairs in 

genomic DNA could correct ~60% of all known pathogenic single nucleotide polymorphisms 

(SNPs) in humans (1). Such conversions can be achieved with CRISPR-Cas9 base editors: 

RNA-guided Cas proteins fused to a ssDNA deaminase (2, 3). A•T-to-G•C  transitions in DNA 

require the deamination of adenosine to inosine, which is recognized by cellular machinery as 

guanosine (Fig. 1A-B). With no enzyme capable of deaminating adenine in DNA, E. coli tRNA 

adenosine deaminase (TadA) was fused to Cas9 and evolved  into ABE7.10, which catalyzes 

the targeted deamination of deoxyadenosine (3–5). ABE7.10 encodes two copies of TadA, an N-

terminal wild type (WT) TadA linked to an evolved TadA (TadA-7.10), which is C-terminally linked 

to a “nickase” (cuts one strand of the dsDNA) version of S. pyogenes Cas9 (nSpCas9) (Fig. 1C). 

ABE7.10 has since been widely applied as a tool to deaminate genomic DNA in many cell types 

and organisms  (6–12). The ABE7.10 variant was found to catalyze off-target RNA editing in 

cells, an activity that was reduced by mutations to the TadA-7.10 domain (13) or by removing 

the N-terminal WT TadA domain generating a truncated version miniABEmax (Fig. 1C) (14). 

ABE7.10 was further evolved to generate ABE8e which encodes a single TadA domain (TadA-

8e) broadly compatible with eight tested Cas effectors (Fig. 1C) (15). In vitro, ABE8e 

deaminates DNA at a rate 590- and 1,170-fold higher than ABE7.10 and miniABEmax, 

respectively (15) (Fig. 1D; fig. S1). ABE7.10 and ABE8e contain 14 and 22 substitutions, 

respectively, within their evolved TadA domains relative to WT TadA (3, 15) (fig. S2A). How 

these mutations enabled evolved TadA to catalyze deamination of DNA and the molecular basis 

for the different catalytic rates of ABE7.10 and ABE8e remain unknown. 
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To advance our understanding of DNA substrate recognition during SpCas9-guided and 

TadA-catalyzed DNA adenosine deamination, we used single-particle cryo-electron microscopy 

(cryo-EM) to determine the structure of a DNA-bound ABE8e complex. The ABE8e complex 

was trapped in a catalytic conformation using a DNA non-target strand (NTS) containing a 

transition state analog for adenosine deamination reactions, 8-azanebularine (Fig. 1E) (16). At 

an overall resolution of 3.2 Å, we resolved the ABE8e9 complex containing Cas9-bound to a 

single-guide RNA (sgRNA) hybridized to a 20-nucleotide DNA target-strand (TS) within a 

double-stranded DNA (dsDNA) substrate (Fig. 1F, fig. S3, fig. S4, Table S1). This structure 

provides the most complete molecular model for a Cas9 R-loop complex, showing Cas9 

engaged with the GG dinucleotide protospacer-adjacent motif (PAM) while both PAM-distal and 

PAM-proximal DNA duplexes are arranged on either side of the complex. The PAM-distal 

duplex is positioned against SpCas9-Y1016 while the sgRNA-TS heteroduplex is arranged 

against SpCas9-Y1013, generating a non-coaxially stacked duplex junction separated by 

SpCas9 (fig. S5, fig. S6A). The ABE8e construct encodes a single TadA-8e domain (Fig. 1A). 

Cryo-EM density supported unambiguous modelling of a TadA-8e domain secondary structure 

engaged with the 5′ end of the NTS emerging from SpCas9 (Fig. 1F, fig. S6B). We observed 

poorly resolved density below the aforementioned TadA-8e domain containing secondary 

structural features consistent with a second copy of TadA-8e (Fig. 1F, fig. S6B). Further 

analysis revealed that the second TadA-8e domain was contributed in trans from another 

ABE8e molecule (fig. S7A); which is unsurprising given that the dimerization interface was 

unchanged between TadA-WT and TadA-8e (fig. S2). While the linker region was unresolved, 

measured distances between Cas9 and each TadA-8e domain suggest that the cis-TadA-8e 

domain is engaged with the NTS (Fig. 1F, Supplementary Text 1).  

https://paperpile.com/c/j7QG9m/PtcTk
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The cryo-EM structure of the ABE8e complex revealed that the TadA-8e domain 

engages with the exposed single-stranded region of the PAM distal NTS (Fig. 2A). Consistent 

with this, in vitro DNA adenosine deamination assays demonstrated that the ABE8e complex 

rapidly deaminates adenines present in accessible trans-ssDNA but not trans-dsDNA (Fig. 2B). 

Examining the TadA-8e dimer contacts revealed that one TadA-8e domain contacts the NTS but 

has no interface with SpCas9 (fig. S8A). In contrast, the second TadA-8e domain does not 

contact the NTS but forms a non-specific interface with the SpCas9 RuvC domain (fig. S8B). 

These observations suggested that the presentation of single-stranded NTS by SpCas9 drives 

accelerated TadA-8e-catalyzed cis-DNA deamination. To explore this idea, we compared the 

kinetics of adenosine deamination by TadA-8e of a guide-complementary dsDNA (NTS 

presented as cis-ssDNA) and trans-ssDNA (Fig. 2C and fig. S1E,F S9A). The rate of cis-

ssDNA deamination was ~3.7 fold faster relative to trans-ssDNA deamination, confirming that 

the presentation of the NTS by SpCas9 accelerates the kinetics of TadA-8e. Given that ABE8e 

was shown to edit more positions within an R-loop than previous iterations of ABEs (15), we 

hypothesized that the TadA-8e domain of ABE8e is a multiple-turnover enzyme. To test this, we 

carried out in vitro DNA deamination assays under multiple-turnover conditions (Fig. 2D and 

fig. S9B). The extracted turnover number for ssDNA in trans was 4.5 ± 0.1 in contrast to 0.97 ± 

0.03 for cis-ssDNA. While the observed single-turnover deamination kinetics on cis-DNA reflect 

the single-turnover kinetics of SpCas9 forming an R-loop (17),  the rapid multiple turnover 

kinetics are consistent with the higher processivity of ABE8e observed in cells relative to 

previous ABEs (15). 

The rapid multiple-turnover trans-ssDNA deamination kinetics of ABE8e suggested that 

any adenosine in ssDNA, including those transiently exposed to solvent  by Cas9, might be 

deaminated by TadA-8e. To explore this idea, we compared the  in vitro editing characteristics 

https://paperpile.com/c/j7QG9m/rPGp
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of ABE7.10, miniABEmax, and ABE8e using dsDNA where the NTS contained multiple 

adenines (Fig. 2E). While ABE7.10 and miniABEmax predominantly deaminated a single PAM-

distal adenine, ABE8e deaminated multiple adenines, including those present within double-

stranded regions in the R-loop (Fig. 2E, fig. S10A, B). Moreover, adenines were deaminated 

sequentially from the 3′ end of the NTS (Fig. 2E, fig. S10A, B), reminiscent of the biased 3′ to 5′ 

diffusion of SpCas9 during search of a PAM along dsDNA (18). Thus, we hypothesized that the 

directional DNA adenosine deamination might be related to the SpCas9 RNP target search 

mechanism. 

Binding to an sgRNA remodels SpCas9 to allow target interrogation through a biased 

directional search along dsDNA (Fig. 3A) (17, 18). Stable interaction with a PAM initiates 

probing for complementarity and stable R-loop formation on matched substrates to activate 

Cas9 for DNA cleavage (Fig. 3B) (17, 19). With this model in mind, we tested whether 

directional adenosine deamination by ABE8e might be related to the Cas9 target search 

mechanism. Deamination assays were conducted using either radio-labeled ssDNA or dsDNA 

substrates and ABE8e in three different states: apo-ABE8e, ABE8e complexed with a targeting 

sgRNA, and ABE8e complexed with a non-targeting sgRNA (Fig. 3C). Apo-ABE8e was able to 

deaminate only ssDNA, while ABE8e RNP was able to modify adenines in ssDNA and dsDNA, 

in contrast with the absence of trans-dsDNA editing by ABE8e engaged in an R-loop complex 

(Fig. 2B). Moreover, the dsDNA deamination is sgRNA sequence independent as a non-

targeting ABE8e RNP also deaminates dsDNA adenines (Fig. 2B) suggesting that stable R-loop 

formation is not required. To test whether Cas9’s interaction with the PAM affects the observed 

dsDNA editing by ABE8e, we performed in vitro DNA deamination assay with radiolabeled 

dsDNA devoid of consensus PAMs (Fig. 3D). To our surprise, ABE8e RNPs containing both the 

targeting and non-targeting sgRNA deaminated adenine in dsDNA lacking PAMs in the NTS 

https://paperpile.com/c/j7QG9m/to6EA
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(Fig. 3A). We speculate that during PAM search SpCas9 could transiently melt DNA providing a 

ssDNA substrate for rapid deamination by the highly active TadA-8e domain. We note that 

under conditions tested in mammalian cells, ABE8e activity remains strongly guide RNA-

dependent with no detectable deamination of adenines flanking target protospacers (15), 

potentially due to differences in protein or DNA concentration or accessibility between in vitro 

and cellular conditions (Supplementary Text 2). Future biophysical and single-cell whole 

genome sequencing studies are necessary to explore the proposed mechanism and identify 

potential unanticipated ABE8e activity. 

Examining the overall topology of the TadA-8e homodimer relative to WT TadA-8e 

revealed a striking difference in the conformation of the C-terminal α-helix, α5 (Fig. 4A, fig. 

S2B). The α5-helix of TadA-8e undergoes a sharp 180° turn at P152 (Fig. 4A), a mutation 

introduced early during ABE evolution in addition to five other substitutions along the α5-helix of 

TadA-7.10 (fig. S2). To investigate the importance of the P152 substitution and the cumulative 

changes within the α5-helix of TadA-8e, we purified the single P152R variant and a stacked 

variant REIK (P152R, V155E, F156I, N157K), both of which dispalyed significantly reduced 

rates of cis-DNA deamination relative to wild-type (Fig. 4B, fig. S11). These structural and 

biochemical observations demonstrate that cumulative substitutions within the α5-helix likely 

enable effective access to the NTS presented by SpCas9 within an R-loop.  

Directed evolution of TadA-7.10 yielded the TadA-8e enzyme capable of rapid 

adenosine deamination in ssDNA. The ABE8e structure shows 8-azanebularine (8Az) buried 

deep within the active-site pocket of TadA-8e where it is oriented by the zinc containing active 

site, consistent with previous reports for E. coli TadA and ADAR2 (20, 21) (Fig. 4C). The 

nucleotides flanking the editing site, C(25) and C(27), are splayed against TadA-8e generating a 

sharp U-turn geometry in the NTS, a conformation not unlike that observed in the native tRNA 

https://paperpile.com/c/j7QG9m/rPGp
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anticodon (Fig. 4C). Throughout ABE8 evolution two residues were particularly conserved, 

R111 and Y149, both of which are oriented at the entrance to the active-site cleft and near the 

distorted NTS backbone flanking the editing site (Fig. 4C).  To explore the role of R111 and 

Y149 in TadA-8e catalyzed DNA deamination, we reverted these positions back to ABE7.10 

(R111T, Y149F). Under single-turnover conditions, we observed that Y149F had a 7-fold 

decrease in the apparent rate of cis-DNA deamination while the rate of the R111T mutant 

resembled that of ABE7.10 (Fig. 4B, fig. S11). Collectively, our structural and biochemical data 

support a role for R111 and Y149 in ssDNA substrate capture through stabilization of the U-turn 

conformation and induced fit into the deaminase active center. 

WT TadA catalyzes site-specific deamination of tRNA by recognizing both the tRNA 

structure and anticodon YAC motif (Fig. 4C) (20, 21). A pair of substitutions introduced into 

ABE7.10 and preserved in ABE8e, A106V and L84F, provide steric bulk within the E. coli tRNA 

U(33) binding pocket (Fig. 4D). Coupled with the loss of the α5-helix that inserts into the tRNA 

major-groove (20), the steric clash at E. coli tRNA U(33) could prevent tRNA deamination by 

ABE8e. Consistent with this structural observation, the kinetics of in vitro hairpin RNA (hpRNA) 

adenosine deamination revealed that miniABEmax (TadA-7.10) had a dramatically reduced rate 

of hpRNA deamination relative to ABE0 (WT TadA - WT TadA) and ABE7.10 (WT TadA - TadA-

7.10) (Fig. 4E and fig. S12A,D). The kinetics of single-stranded RNA (ssRNA) deamination 

demonstrated that ABE7.10 and miniABEmax are as slow and inefficient as WT TadA (Fig. 4F 

and fig. S12A, E), consistent with data showing that miniABEmax has significantly reduced 

RNA off-target editing in cells (14). In contrast, the additional eight substitutions in ABE8e 

(relative to miniABEmax) do not affect hpRNA editing but induce a two-fold faster ssRNA 

deamination rate (Fig. 4E, F and fig. S12D, E). These data suggest that the active site of TadA-

https://paperpile.com/c/j7QG9m/d3COq+EYbVd
https://paperpile.com/c/j7QG9m/d3COq+EYbVd
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8e has evolved to capture single-stranded nucleic acids of any sequence and to exclude more 

rigid tRNA substrates.  

Our results demonstrate how the laboratory-evolved base editor ABE8e achieves rapid 

deamination on DNA. Due to substitutions near the active center, TadA-8e effectively remodels 

and induces fit of structurally flexible ssDNA into a narrow substrate binding pocket. The 

structure of ABE8e also demonstrated that the TadA-8e domain (and likely that of Tad-7.10) 

does not specifically interact with SpCas9, suggesting that the broader Cas-effector 

compatibility of TadA-8e stems from the rapid deamination kinetics. Furthermore, ABE8e’s 

accelerated DNA deamination suggested  a previously unobserved transient melting of DNA that 

may occur during dsDNA surveillance by SpCas9. Our data suggest that site-specific base editors 

are possible through constraining the deaminase domain within the Cas9 R-loop structure to 

enable transmission of Cas9 conformational changes upon interaction with on-target DNA. 

FIGURES 



Lapinaite & Knott et al., 2020       MAIN TEXT 

10 

 

Fig. 1. Cryo-EM structure of ABE8e in a substrate-bound state.  

A) Schematic representation of RNA guided DNA adenosine deamination. B) Mechanism of E. 

coli TadA catalysed tRNA adenosine deamination. C) Domain architecture of four generations of 

ABEs encoding SpCas9 N-terminally linked to either wild-type (WT) TadA, evolved TadA7.10 

(TadA*, yellow) or evolved TadA8e (TadA*, red). D) Single-turnover kinetics of targeting ABE 

RNPs measured using dsDNA containing a single adenine. The fraction of deaminated dsDNA 

is shown plotted as a function of time and fitted to a single phase exponential equation. The 

extracted apparent deamination rates of ABE7.10 (black), miniABEmax (orange) and ABE8e 

(red) are 0.0010 ± 3x10-4 min-1, 0.0005 ± 1x10-4 min-1, and 0.585 ± 0.034 min-1, respectively. 

Data are represented as the mean ± SD from three independent experiments. The deamination 

data of ABE8e and ABE7.10 are reproduced and were originally published in ref. 15.  E) 

Mechanism of inhibition of adenosine deamination  by 8-azanebularine that mimics adenosine 
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deamination reaction intermediate. F) 3.2 Å resolution cryo-EM structure of the SpCas9-ABE8e 

complex. Subunits are colored: SpCas9 (white), single-guide RNA (sgRNA, purple), target-

strand DNA (TS, teal), non-target strand DNA (NTS, blue) and the TadA-8e dimer (red and 

pink). The theoretical connectivity of the linker region is shown as a dashed orange line between 

the Cas9 N-terminus and either TadA-8e C-terminus. 
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Fi g. 2. A B E 8 e i s a m ulti pl e -t ur n ov er e nz y m e w ith  a w i d e e diti n g w i n d ow .  

A ) S urf a c e e x p o s e d a n d si n gl e-str a n d e d t o p ol o g y of t h e n o n -t ar g et str a n d ( N T S) ( c art o o n, bl u e) 

e n g a g e d wit h t h e T a d A 8 e d o m ai n ( s urf a c e, r e d).  B ) S c h e m ati c r e pr e s e nt ati o n of A B E 8 e R N P 

c o m pl e x a cti n g o n  r a di ol a b el e d tr a n s-s s D N A or tr a n s-d s D N A s u b str at e c o nt ai ni n g a si n gl e 

a d e ni n e. (ri g ht) A r e pr e s e nt ati v e g el s h o wi n g A B E 8 e R N P si n gl e -t ur n o v er d e a mi n ati o n of r a di o-

l a b el e d s s D N A a n d d s D N A o v er ti m e ( mi n) i n tr a n s. C ) Si n gl e-t ur n o v er ki n eti c s of A B E 8 e R N P 
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measured using either dsDNA (deamination in cis) or ssDNA (deamination in trans) containing 

single adenine. The fraction of deaminated DNA plotted as a function of time, and fitted to a 

single exponential equation. Data are represented as the mean ± SD from three independent 

experiments.The apparent rate of DNA editing in trans is ~3.7 fold lower than the apparent rate 

of DNA editing in cis (kapp = 0.16 ± 0.01 min-1 vs. kapp = 0.59 ± 0.03 min-1). D) DNA deamination 

assay in multiple-turnover conditions using ABE8e RNP and either ssDNA (trans) or dsDNA 

(cis) substrate. Turnover number (a ratio of the deaminated DNA concentration and total 

concentration of ABE8e) was plotted as a function of time. The extracted turnover number for 

ssDNA deamination in trans is 4.5 ± 0.1 while for DNA in cis it is 0.97 ± 0.03. E) Gel 

representing single-turnover kinetics of ABE0, ABE7.10, miniABEmax, and ABE8e measured 

using dsDNA (cis) containing multiple adenines. Assays were performed in three independent 

replicates, and time points for ABE0, ABE7.10 and miniABEmax assays were taken at 0, 1, 3, 8, 

24 and 32 hours, while for ABE8e at 0, 1, 5, 10, 20, 60 and 180 min. Concentrations of ABE 

RNPs were 1 µM for single-turnover assays and 25 nM for multiple-turnover assays. 

Concentrations of DNA were 2.5 nM for single-turnover assays and 250 nM for multiple-turnover 

assays. 
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Fi g. 3. F a st A B E 8 e k i n eti c s r e p ort s o n a n ew  st e p i n th e S p C a s 9 t ar g et s e ar ch  p ath w a y.  

M o d el f or S p C a s 9 t ar g et s e ar c h m e c h a ni s m: (  A) a p o -C a s 9 – d s D N A i nt er a cti o n i s a r a n d o m 

c olli si o n; C a s 9 b o u n d t o g R N A g et s pri m e d f or a t ar g et s e ar c h w hi c h i niti at e s vi a r a n d o m 

i nt er a cti o n wit h t h e D N A, f oll o w e d b y u ni dir e cti o n al ( N T S-3’ t o 5’) C a s 9 R N P diff u si o n al o n g 

d s D N A (f or ~ 2 7 b p) i n s e ar c h of P A M a n d r a pi d di s s o ci ati o n fr o m D N A u nl e s s P A M i s 

e n c o u nt er e d; (  B) o n c e C a s 9 R N P c o m e s a cr o s s P A M it s r e si d e n c e ti m e o n D N A i n cr e a s e s a n d 

it u n wi n d s fir st f e w n u cl e oti d e s a dj a c e nt t o P A M t o pr o b e f or g ui d e R N A c o m pl e m e nt arit y; C a s 9 

R N P at c orr e ct t ar g et sit e s i niti at e s a n R -l o o p f or m ati o n vi a s e q u e nti al u n wi n di n g ( 9, 1 0). C ) G el 

r e pr e s e nti n g si n gl e-t ur n o ver ki n eti c s of a p o -A B E 8 e a cti n g o n eit h er s s D N A ( tr a n s) or d s D N A 

(tr a n s), of A B E 8 e R N P pr o gr a m m e d wit h t ar g eti n g g R N A d e a mi n ati n g s s D N A (tr a n s) or d s D N A 

(ci s ), a n d of A B E 8 e R N P pr o gr a m m e d wit h n o n-t ar g eti n g g R N A d e a mi n ati n g s s D N A (tr a n s) or 

d s D N A (tr a n s). Ti m e p oi nt s w er e t a k e n at 0, 1, 1 0 a n d 6 0 mi n.  D ) G el r e pr e s e nti n g si n gl e-
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turnover kinetics of apo-ABE8e, ABE8e targeting RNP and ABE8e non-targeting RNP acting on 

dsDNA that lacks PAM sequence.  Time points were taken at 0, 1, 10 and 60 min. 

Concentrations of ABE RNPs were 1 µM and concentrations of DNA were 1 nM. 
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Fi g. 4.   M e ch a ni s m of A B E 8 e s u b str at e s p e cifi cit y.  

A ) S u p er p o siti o n of T a d A -8 e ( c art o o n, r e d) a n d T a d A -W T ( c art o o n, y ell o w) s h o wi n g t h e alt er e d 

di s p o siti o n of ɑ 5 -h eli x. B ) Si n gl e -t ur n o v er ki n eti c s of A B E 8 e a n d f o ur A B E 8 e v ari a nt s u si n g 

d s D N A ( c o nt ai ni n g a si n gl e a d e n o si n e i n t h e N T S). T h e a p p ar e nt d e a mi n ati o n r at e s ar e: A B E 8 e 

0. 5 9 ± 0. 0 4  mi n - 1; A B E 8 e-P 1 5 2 R 0. 1 1 ± 0. 0 2  mi n - 1; A B E 8 e-Y 1 4 9 F 0. 0 5 ± 0. 0 2  mi n - 1; A B E 8 e-
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R111T 0.05 ± 0.04  min-1. and N.D. for ABE8e-REIK. Concentrations of ABE RNPs were 1 µM 

and concentrations of DNA were 2.5 nM. C) TadA-8e active site showing the non-target strand 

(NTS; sticks, blue) entering the TadA-8e substrate binding pocket (surface, red) with evolved 

residue R111 and Y149 shown as sticks (brown). D) TadA-8e active-site proximal pocket 

(surface, red) with evolved residues F84 and V106 shown as sticks (white). The E. coli tRNA 

U(33) is shown in yellow. E) Single-turnover RNA deamination kinetics of all four ABEs 

programmed with targeting sgRNA (Table S2) using hpRNA as a substrate which contains 

single adenine. The fraction of deaminated hpRNA plotted as a function of time and fitted to a 

single exponential equation. The extracted apparent deamination rates of ABE0 (blue) and 

ABE7.10 (black) are 1.38 ± 0.28  min-1 and 0.41 ± 0.08 min-1, respectively. The kinetics of 

miniABEmax and ABE8e were much slower, and non-exponential. Data are represented as the 

mean ± SD from three independent experiments. Concentrations of ABE RNPs were 1 µM and 

concentrations of RNA were 1 nM. F) Single-turnover kinetics of all four ABEs programmed with 

targeting sgRNA (Table S2) using ssRNA as a substrate which contains single adenine. The 

fraction of deaminated hpRNA plotted as a function of time and fitted to a single exponential 

equation. The extracted apparent deamination rate of ABE8e (red) is 0.02 ± 0.01  min-1. The 

kinetics of ABE0, ABE7.10, and  miniABEmax were much slower, and non-exponential. Data 

are represented as the mean ± SD from three independent experiments. Concentrations of ABE 

RNPs were 1 µM and concentrations of RNA were 1 nM.  
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