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RANDOMIZED GRADIENT BOOSTING MACHINE\ast 

HAIHAO LU\dagger AND RAHUL MAZUMDER\ddagger 

Abstract. The Gradient Boosting Machine (GBM) introduced by Friedman [J. H. Friedman,
Ann. Statist., 29 (2001), pp. 1189--1232] is a powerful supervised learning algorithm that is very widely
used in practice---it routinely features as a leading algorithm in machine learning competitions such
as Kaggle and the KDDCup. In spite of the usefulness of GBM in practice, our current theoretical
understanding of this method is rather limited. In this work, we propose the Randomized Gradient
Boosting Machine (RGBM), which leads to substantial computational gains compared to GBM by
using a randomization scheme to reduce search in the space of weak learners. We derive novel
computational guarantees for RGBM. We also provide a principled guideline towards better step-size
selection in RGBM that does not require a line search. Our proposed framework is inspired by a
special variant of coordinate descent that combines the benefits of randomized coordinate descent
and greedy coordinate descent, and may be of independent interest as an optimization algorithm.
As a special case, our results for RGBM lead to superior computational guarantees for GBM. Our
computational guarantees depend upon a curious geometric quantity that we call the Minimal Cosine
Angle, which relates to the density of weak learners in the prediction space. On a series of numerical
experiments on real datasets, we demonstrate the effectiveness of RGBM over GBM in terms of
obtaining a model with good training and/or testing data fidelity with a fraction of the computational
cost.
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computational guarantees, first order methods
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1. Introduction. The Gradient Boosting Machine (GBM) [15] is a powerful su-
pervised learning algorithm that combines multiple weak learners into an ensemble
with excellent predictive performance. It works very well in several prediction tasks
arising in spam filtering, online advertising, fraud detection, anomaly detection, com-
putational physics (e.g., the Higgs Boson discovery), etc., and has routinely featured
as a top algorithm in Kaggle competitions and the KDDCup [7]. GBM can naturally
handle heterogeneous datasets (highly correlated data, missing data, categorical data,
etc.) and leads to interpretable models by building an additive model [14]. It is also
quite easy to use with several publicly available implementations: Scikit-learn [30],
Spark MLlib [25], LightGBM [20], XGBoost [7], TensorFlow Boosted Trees [31], etc.

In spite of the usefulness of GBM in practice, there is a considerable gap between
its theoretical understanding and its success in practice. The traditional interpre-
tation of GBM is to view it as a form of steepest descent in a certain functional
space [15]. While this viewpoint serves as a good starting point, the framework lacks
rigorous computational guarantees, especially when compared to the growing body of
literature in first order convex optimization. There has been some work on deriving
convergence rates of GBM---see, for example, [3, 11, 26, 39], and our discussion in
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RANDOMIZED GRADIENT BOOSTING MACHINE 2781

section 1.3. Moreover, there are many heuristics employed by practical implemen-
tations of GBM that work well in practice---for example, the constant step-size rule
and column subsampling mechanism implemented in XGBoost [7]. However, a formal
explanation of these heuristics seems to be lacking in the current literature. This pre-
vents us from systematically addressing important (tuning) parameter choices that
may be informed by answers to questions like, how might one choose an optimal step-
size, and how many weak learners should one subsample? Building a framework to
help address these concerns is one goal of this paper. In this work we build a method-
ological framework for understanding GBM and its randomized variant introduced
here, Randomized Gradient Boosting Machine (RGBM), by using tools from convex
optimization. Our hope is to narrow the gap between the theory and practice of GBM
and its randomized variants. Below, we revisit the classical GBM framework and then
introduce RGBM.

1.1. Gradient Boosting Machine. We consider a supervised learning prob-
lem [18], with n training examples (xi, yi), i = 1, . . . , n, such that xi \in Rp is the
feature vector of the ith example and yi \in R is a label (in a classification problem) or
a continuous response (in a regression problem). In the classical version of GBM [15],
the prediction corresponding to a feature vector x is given by an additive model of
the form

(1) f(x) :=

M\sum 
m=1

\beta jmb(x; \tau jm),

where each basis function b(x; \tau ) \in R (also called a weak learner) is a simple function
of the feature vector indexed by a parameter \tau , and \beta j is the coefficient of the jth
weak learner. Here, \beta jm and \tau jm are chosen in an adaptive fashion to improve the data
fidelity (according to a certain rule), as discussed below. Examples of weak learners
commonly used in practice [18] include wavelet functions, support vector machines,
tree stumps (i.e., decision trees of depth one), and classification and regression trees
(CART) [5]. We assume here that the set of weak learners is finite with cardinality
K---in many of the examples alluded to above, K can be exponentially large, thereby
posing computational challenges.

Let \ell (y, f(x)) be a measure of data fidelity at the observation (y, x) for the loss
function \ell , which is assumed to be differentiable in the second coordinate. A primary
goal of machine learning is to obtain a function f that minimizes the expected loss
EP (\ell (y, f(x))), where the expectation is taken over the unknown distribution of (y, x)
(denoted by P ). One way to achieve this goal is to consider the empirical loss and
approximately minimize it using an algorithm like GBM.1 GBM is an algorithm that
finds a good estimate of f by approximately minimizing the empirical loss:

(2) min
f

n\sum 
i=1

\ell (yi, f(xi)),

where \ell (yi, f(xi)) measures data fidelity for the ith sample (yi, xi). The original
version of GBM [15] (presented in Algorithm 1) can be viewed as applying a steepest

1Approximately minimizing the empirical loss function via GBM is empirically found to lead
to models with good generalization properties---see, e.g., [43] for some formal explanation (under
simple settings). The focus of this paper is on the algorithmic properties of GBM as opposed to its
generalization properties.
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2782 HAIHAO LU AND RAHUL MAZUMDER

Algorithm 1. Gradient Boosting Machine (GBM) [15].

Initialization. Initialize with f0(x) = 0.
For m = 0, . . . ,M  - 1 do:

(1) Compute pseudoresidual rm =  - 
\Bigl[ 
\partial \ell (yi,f

m(xi))
\partial fm(xi)

\Bigr] 
i=1,...,n

.

(2) Find the best weak learner: jm = argminj\in [K] min\sigma 
\sum n

i=1(r
m
i  - \sigma b(xi; \tau j))

2.

(3) Choose the step-size \rho m by line search: \rho m = argmin\rho 
\sum n

i=1 \ell (yi, f
m(xi) +

\rho b(xi; \tau jm)).
(4) Update the model fm+1(x) = fm(x) + \rho mb(x; \tau jm).

Output. fM (x).

descent algorithm to minimize the loss function (2). GBM starts from a null model
f \equiv 0 and at iteration m computes the pseudoresidual rm, i.e, the negative gradient
of the loss function with respect to the prediction. Note that the ith coordinate of
rm is given by rmi =  - \partial \ell (yi, f

m(xi))/\partial f
m(xi) for i = 1, . . . , n. GBM finds the best

weak learner that fits rm in the least squares sense:

(3) jm = argmin
j\in [K]

min
\sigma 

n\sum 
i=1

(rmi  - \sigma b(xi; \tau j))
2,

where [K] is a shorthand for the set \{ 1, . . . ,K\} . (In case of ties in the ``argmin""
operation in (3), we choose the one with the smallest index---this convention is used
throughout the paper.) We then add the jmth weak learner into the model by using a
line search. As the iterations progress, GBM leads to a sequence of models \{ fm\} m\in [M ]

(see Algorithm 1), indexed by m (the number of GBM iterations). Each model fm

corresponds to a certain data fidelity and a (small) number of basis elements with
corresponding coefficient weights [11, 15]. Together, they control the out-of-sample
(or generalization) performance of the model. The usual intention of GBM is to stop
early, i.e., approximately minimize problem (2)---with the hope that the corresponding
model will lead to good predictive performance [11, 15, 43].

Note that since we perform a line search, rescaling the prediction vector [b(xi; \tau j)]i\in [n]

does not change the output of Algorithm 1. Hence, without loss of generality, we as-
sume that the prediction vector is normalized throughout the paper.

Assumption 1.1. The prediction vector corresponding to each weak learner is
normalized---that is, for every \tau , we have

\sum n
i=1 b(xi; \tau )

2 = 1.

Remark 1.1. Note that Assumption 1.1 is mainly used to simplify the notation
and proofs in the paper (that follow). This assumption does not change the conver-
gence guarantees in Theorems 4.1 and 4.2.

1.2. Randomized Gradient Boosting Machine. The most expensive step in
GBM involves finding the best weak learner (step (2) in Algorithm 1). For example,
when the weak learners are decision trees of depth d, finding the best weak learner

requires one to go over O(n2d - 1p2
d - 1) possible tree splits---this is computationally

intractable for medium-scale problems, even when d = 1.
It seems natural (and practical) to use a randomization scheme to reduce the

cost associated with step (2) in Algorithm 1. To this end, we propose RGBM (see
Algorithm 2), where the basic idea is to use a randomized approximation for step (3).
To be more specific, in each iteration of RGBM, we randomly pick a small subset of
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RANDOMIZED GRADIENT BOOSTING MACHINE 2783

weak learners J by some rule (see section 1.2.1) and then choose the best candidate
from within J :

(4) jm = argmin
j\in J

min
\sigma 

n\sum 
i=1

(rmi  - \sigma b(xi; \tau j))
2 .

If we set | J | (the size of J) to be much smaller than the total number of weak learners
K, the cost per iteration in RGBM will be much lower than GBM. We note that
the implementation of XGBoost utilizes a related heuristic (called column subsam-
pling) [7], which has been shown to work well in practice. However, to our knowledge,
we are not aware of any prior work that formally introduces and studies the RGBM
algorithm---this is the main focus of our paper.

Note that the randomized selection rule we are advocating in RGBM is different
from that employed in the well-known Stochastic Gradient Boosting framework by
Friedman [16], in which Friedman introduced a procedure that randomly selects a
subset of the training examples to fit a weak learner at each iteration. In contrast,
we randomly choose a subset of weak learners in RGBM. Indeed, both feature and
sample subsampling are applied in the context of random forests [21]; however, we
remind the reader that random forests are quite different from GBM.

Algorithm 2. Randomized Gradient Boosting Machine (RGBM).

Initialization. Initialize with f0(x) = 0.
For m = 0, . . . ,M  - 1 do:

(1) Compute pseudoresidual rm =  - 
\Bigl[ 
\partial \ell (yi,f

m(xi))
\partial fm(xi)

\Bigr] 
i=1,...,n

.

(2) Pick a random subset J of weak learners by some rule (i.e., one of Type 0--
Type 3).
(3) Find the best weak learner in J : jm = argminj\in J min\sigma 

\sum n
i=1(r

m
i  - \sigma b(xi; \tau j))

2.
(4) Choose the step-size \rho m by one of the following rules:

\bullet line search: \rho m = argmin\rho 
\sum n

i=1 \ell (yi, f
m(xi) + \rho b(xi; \tau jm));

\bullet constant step-size: \rho m = \rho (
\sum n

i=1 r
m
i b(xi; \tau jm)), where \rho is a constant

specified a priori.
(5) Update the model fm+1(x) = fm(x) + \rho mb(x; \tau jm).

Output. fM (x).

1.2.1. Random selection rules for choosing subset \bfitJ . We present a set of
selection rules to choose the random subset J in step (2) of Algorithm 2:

[Type 0]: (Full deterministic selection.) We choose J as the whole set of weak
learners. This is a deterministic selection rule.
[Type 1]: (Random selection.)We choose uniformly at random t weak learners
from all possible weak learners without replacement---the collection is denoted
by J .
[Type 2]: (Random single group selection.) Given a nonoverlapping partition
of the weak learners, we pick one group uniformly at random and denote the
collection of weak learners in that group by J .
[Type 3]: (Random multiple group selection.) Given a nonoverlapping parti-
tion of the weak learners, we pick t groups uniformly at random and let the
collection of weak learners across these groups be J .

Remark 1.2. RGBM with Type 0 selection rule leads to GBM.
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2784 HAIHAO LU AND RAHUL MAZUMDER

We present an example to illustrate the different selection rules introduced above.

Example. We consider GBM with decision stumps for a binary classification prob-
lem. Recall that a decision stump is a decision tree [18] with unit depth. The pa-
rameter \tau of a decision stump contains two pieces of information: (i) which feature to
split, and (ii) what value to split on. More specifically, a weak learner characterized
by \tau = (g, s) for g \in [p] and s \in R is given by (up to a sign change)

(5) b(x; \tau = (g, s)) =

\biggl\{ 
1 if xg \leq s,
 - 1 if xg > s.

Notice that for a given feature xg and n training samples, it suffices to consider at most
n different values for s (and equality holds when the feature values are all distinct).
This leads to K = np many tree stumps \{ b(x; \tau )\} \tau indexed by \tau . For the Type 0
selection rule, we set J to be the collection of all np tree stumps in a deterministic
fashion. As an example of the Type 1 selection rule, J can be a collection of t tree
stumps selected randomly without replacement from all of np tree stumps. Let Ig
be a group comprising all tree stumps that split on feature xg---i.e., Ig = \{ (g, s) | s\} 
for a feature index g \in [p]. Then \{ Ig\} g\in [p] defines a partition of all possible tree
stumps. Given such a partition, an example of the Type 2 selection rule is as follows:
We randomly choose g \in [p] and set J = Ig. Instead, one can also pick t (out of p)
features randomly and choose all nt tree stumps on those t features as the set J---this
leads to an instance of the Type 3 selection rule. Note that a special case of Type 3
with t = 1 is the Type 2 selection rule.

For motivation, we illustrate the key operating characteristics of RGBM with a
real-data example. Figure 1 shows the computational gains of RGBM for solving a
binary classification problem with decision stumps. Here we use the Type 3 selection
rule (as described above), where each group represents all tree stumps splitting on a
single feature, and G = 123 is the total number of groups. Different lines correspond
to different t values---namely, how many groups appear in the random set J in each
iteration. The blue line corresponds to GBM (Algorithm 1) as it uses all the groups.
The major computational cost stems from computing the best weak learner from a
subset of weak learners. The implementation details (leading to Figure 1) can be found
in section 5. The left column of Figure 1 presents the training and testing loss versus
number of iterations. We can see that when the number of groups t gets smaller, we
may get less improvement (in training loss) per iteration, but not by a large margin
(for example, the case t = 24 has similar behavior to the case t = 123). The right
column of Figure 1 shows the training/testing loss versus running time (in seconds).
We can see that with a smaller t, the cost per iteration decreases dramatically---overall,
a small value of t (though not the smallest) requires less computation (compared to
a larger value of t) to achieve a similar training/testing error.

1.3. Related literature.

Convergence guarantees for GBM. The development of general convergence
guarantees for GBM has seen several milestones in the past decade. After being pro-
posed by Friedman [15], Collins, Schapire, and Singer [9] showed the convergence of
GBM, without any rates. Bickel, Ritov, and Zakai [3] proved an exponential conver-
gence rate (more precisely O(exp(1/\varepsilon 2))) when the loss function is both smooth and
strongly convex. Telgarsky [39] studied the primal-dual structure of GBM. By taking
advantage of the dual structure, Telgarsky presented a linear convergence result for
GBM with the line-search step-size rule. However, the constants in the linear rate
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RANDOMIZED GRADIENT BOOSTING MACHINE 2785

Fig. 1. Plots showing the training optimality gap in log scale (top panel) and testing loss (bottom
panel) versus number of RGBM iterations and the associated running time (secs) for RGBM with
different t values. We consider the a9a dataset (for a classification task) from the LIBSVM library
(see text for details). A smaller value of t corresponds to a smaller cost per iteration. As expected,
we see overall computational savings for a value of t that is smaller than the maximum t = 123,
which corresponds to GBM.

are not as transparent as the ones we obtain in this paper, with the only exception
being the exponential loss function.2 Several works have studied the convergence
rate as applied to specific loss functions. Freund and Schapire [13] showed a linear
convergence rate for AdaBoost (this can be thought of as GBM with exponential
loss and line-search rule) under a weak learning assumption. Mukherjee, Rudin, and
Schapire [26] showed an O(1/\varepsilon ) rate for AdaBoost, but the constant depends on the
dataset and can be exponentially large in the dimension of the problem. We refer the
reader to [39] for a nice review on the early work on Boosting. For LS-Boost (gradi-
ent boosting with a least squares loss function), Freund, Grigas, and Mazumder [11]
recently showed a linear rate of convergence, but the rate is not informative when
the number of weak learners is large. Our analysis here provides a much sharper
description of the constant---we achieve this by using a different analysis technique.

Convergence rates of iterative algorithms for classification are closely related to
the notion of margins [12]. Ramdas and Pena [32, 33] established interesting geometric
connections between margins, iterative algorithms for classification problems (e.g., the
Perceptron and von Neumann algorithms), and condition numbers arising in the study
of convex feasibility problems [8, 10].

2The rate for other loss functions involves a quantity that can be exponentially large in the
number of features p.
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2786 HAIHAO LU AND RAHUL MAZUMDER

Coordinate descent. Coordinate descent (CD) methods have a long history
in optimization, and convergence of these methods has been extensively studied in
the optimization community in the 1980s and 1990s---see [2, 23, 24] and [40] for a
nice overview. There are roughly three types of CD methods, depending on how the
coordinate is chosen: randomized, greedy, and cyclic CD. Randomized CD has re-
ceived considerable attention since the seminal paper of Nesterov [28]. Randomized
CD chooses a coordinate randomly from a certain fixed distribution. [34] provides
an excellent review of theoretical results for randomized CD. Cyclic CD chooses the
coordinates in a cyclic order (see [1] for its first convergence analysis). Recent work
shows that cyclic CD may be inferior to randomized CD in the worst case [38]---in
some examples arising in practice, however, cyclic CD can be better than randomized
CD [1, 17, 19]. In greedy CD, we select the coordinate yielding the largest reduction
in the objective function value. Greedy CD usually delivers better function values
at each iteration (in practice), though this comes at the expense of having to com-
pute the full gradient in order to select the coordinate with the largest magnitude of
the gradient. On a related note, for the same training data fidelity (i.e., objective
function value), greedy CD usually leads to a model with fewer nonzeros compared
to randomized CD---in other words, greedy CD leads to models that are more sparse
than randomized CD.3

As we will show later, GBM is precisely related to greedy CD. Thus, we focus here
on some of the recent developments in greedy CD. [29] showed that greedy CD has
faster convergence than random CD in theory, and also provided several applications
in machine learning where the full gradient can be computed cheaply. Several parallel
variants of greedy CD methods have been proposed in [35, 36, 41], and numerical
results demonstrate their advantages in practice. [37] presents a useful scalability
idea for steepest CD by maintaining an approximation of the entire gradient vector,
which is used to identify the coordinate to be updated. More recently, [22] proposes
an accelerated greedy coordinate descent method.

1.4. Contributions. Our contributions in this paper can be summarized as
follows:

1. We propose RGBM, a new randomized version of GBM which leads to sig-
nificant computational gains compared to GBM. This is based on what we call a
Random-then-Greedy procedure (i.e., we select a random subset of weak learners and
then find the best candidate among them by using a greedy strategy). In particular,
this provides a formal justification of heuristics used in popular GBM implementa-
tions like XGBoost, and also suggests improvements. Our framework may provide
guidelines for a principled choice of step-size rules in RGBM.

2. We derive new computational guarantees for RGBM based on a CD inter-
pretation. In particular, this leads to new guarantees for GBM that are superior to
existing guarantees for certain loss functions. The constants in our computational
guarantees are in terms of a curious geometric quantity that we call the Minimal
Cosine Angle---this relates to the density of the weak learners in the prediction space.

3. From an optimization viewpoint, our Random-then-Greedy CD procedure
leads to a novel generalization of CD-like algorithms and promises to be of indepen-
dent interest as an optimization algorithm. Our proposal combines the efficiency of
randomized coordinate descent and the sparsity of the solution obtained by greedy CD.

3We assume here that CD is initialized with a zero solution.
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Notation. For an integer s, let [s] denote the set \{ 1, 2, . . . , s\} . For a, b \in 
Rp, cos(a, b) denotes the cosine of the angle between a and b, that is, cos(a, b) =
\langle a, b\rangle /(\| a\| 2\| b\| 2). Matrix B denotes the prediction for all samples over every possible
weak learner, namely, Bi,j = b(xi; \tau j) for i \in [n], j \in [K]. B:j is the jth column of B
and Bi: is the ith row of B. We say \{ Ig\} g\in [G] is a partition of [K] if \cup g\in [G]Ig = [K]
and Igs are disjoint. We often use the notation [ai]i to represent a vector a.

2. Random-then-Greedy Coordinate Descent in the coefficient space.
Let [b(x; \tau j)]j\in [K] be a family of all possible weak learners. Let

f(x) =
K\sum 
j=1

\beta jb(x; \tau j)

be a weighted sum of all K weak learners b(x; \tau j), where \beta j is the coefficient of the
jth weak learner (we expect a vast majority of the \beta j 's to be zero). We refer to the
space of \beta \in RK as the ``coefficient space."" We can rewrite the minimization problem
(2) in the coefficient space as

(6) min
\beta 

L(\beta ) :=

n\sum 
i=1

\ell 

\left(  yi, K\sum 
j=1

\beta jb(xi; \tau j)

\right)  .

Here, we assume K to be finite (but potentially a very large number). We expect that
our results can be extended to deal with an infinite number of weak learners, but we
do not pursue this direction in this paper for simplicity of exposition.

Recall that B is an n \times K matrix of the predictions for all feature vectors over
every possible weak learner, namely, B = [b(xi; \tau j)]i\in [n],j\in [K]. Then each column of

B represents the prediction of one weak learner for the n samples, and each row of B
represents the prediction of all weak learners for a single sample. Thus we can rewrite
(6) as

(7) min
\beta 

L(\beta ) :=
n\sum 

i=1

\ell (yi, Bi:\beta ) .

Algorithm 3 presents the Random-then-Greedy Coordinate Descent (RtGCD)
algorithm for solving (7). We initialize the algorithm with \beta = 0. At the start of the
mth iteration, the algorithm randomly chooses a subset J of the coordinates using
one of the four types of selection rules described in section 1.2.1. The algorithm
then ``greedily"" chooses jm \in J by finding a coordinate in \nabla JL(\beta 

m) with the largest
magnitude. We then perform a coordinate descent step on the jmth coordinate with
either a line-search step-size rule or a constant step-size rule.

Remark 2.1. RtGCD forms a bridge between random CD and greedy CD. RtGCD
leads to greedy CD when J is the set of all coordinates and random CD when J is
a coordinate chosen uniformly at random from all coordinates. To our knowledge,
RtGCD is a new coordinate descent algorithm and promises to be of independent
interest as an optimization algorithm.

The choice of the group structure (or J) depends upon the application. For exam-
ple, in the context of Boosting (using trees as weak learners), the groups are informed
by the Boosting procedure---this is usually specified by the practitioner. In the context
of parallel CD algorithms, [36] proposed a method to group coordinates into blocks for
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2788 HAIHAO LU AND RAHUL MAZUMDER

Algorithm 3. Random-then-Greedy Coordinate Descent (RtGCD) in the coefficient
space.

Initialization. Initialize with \beta 0 = 0.

For m = 0, . . . ,M  - 1 do:
Perform updates:
(1) Pick a random subset J of coordinates by some rule (i.e., one of Type 0--

Type 3).
(2) Use a greedy rule to find a coordinate in J : jm = argmaxj\in J | \nabla jL(\beta 

m)| .
(3) Choose the step-size \rho m by

\bullet line search: \rho m = argmin\rho 
\sum n

i=1 \ell (yi, Bi:\beta 
m + \rho Bi,jm);

\bullet constant step-size: \rho m =  - \rho \nabla jmL(\beta m) for a given constant \rho .
(4) Update coefficients: \beta m+1 = \beta m + \rho mejm .

Output. The coefficient vector \beta M .

algorithmic efficiency---their method updates multiple coordinates within each block.
While the context of our work and that of [36] are different, it will be interesting to
see how ideas in [36] can be used with Algorithm 3 for improved performance.

The following proposition shows that RGBM (Algorithm 2) is equivalent to Rt-
GCD in the coefficient space (Algorithm 3).

Proposition 2.1. Suppose Algorithm 2 makes the same choice of the random set
J as Algorithm 3 (in each iteration), and the step-size rules are chosen to be the same
in both algorithms. Then the outputs of Algorithms 2 and 3 are the same.

Proof. We will show by induction that fm(x) in Algorithm 2 is the same as\sum K
j=1 \beta 

m
j b(x; \tau j) in Algorithm 3 for m = 0, 1, . . . ,M . Then Proposition 2.1 holds as

a special case for m = M .
For m = 0, we have f0(x) = 0 =

\sum K
j=1 \beta 

0
j b(x; \tau j). Suppose that fm(x) =\sum K

j=1 \beta 
m
j b(x; \tau j). Then

(8) \nabla jL(\beta 
m) =  - \langle B:j , r

m\rangle ,

where rm is the pseudoresidual. In iteration m, the same random subset J is chosen
by both algorithms. Next, Algorithm 2 greedily chooses the weak learner by

jm = argmin
j\in J

min
\sigma 

n\sum 
i=1

(rmi  - \sigma b(xi; \tau j))
2 = argmin

j\in J
min
\sigma 

\| rm  - \sigma B:j\| 22 .

Notice that for any j, it holds that argmin\sigma \| rm  - \sigma B:j\| 22 = \langle B:j , r
m\rangle . Hence, we

have that

jm = argmin
j\in J

\| rm  - \langle B:j , r
m\rangle B:j\| 22 = argmin

j\in J

\biggl( 
 - 1

2
\langle B:j , r

m\rangle 2
\biggr) 

= argmax
j\in J

| \langle B:j , r
m\rangle | = argmax

j\in J
| \nabla jL(\beta 

m)| ,

where the second equality follows from \| B:j\| 22 =
\sum n

i=1 b(xi, \tau j)
2 = 1 due to As-

sumption 1.1 and the last equality utilizes (8). Therefore, coordinate jm obtained by
Algorithm 2 in the mth iteration is the same as that obtained by Algorithm 3.
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RANDOMIZED GRADIENT BOOSTING MACHINE 2789

Suppose that both algorithms use a step-size based on the line-search rule. Then
the step-size in Algorithm 2 is given by

\rho m = argmin
\rho 

n\sum 
i=1

\ell (yi, f
m(xi) + \rho b(xi; \tau jm)) = argmin

\rho 

n\sum 
i=1

\ell (yi, Bi:\beta 
m + \rho Bi,jm) ,

where we have (by the induction hypothesis) that fm(xi) = Bi:\beta 
m. Thus the step-size

\rho m is the same as that chosen by Algorithm 3 (with line-search rule).
Now, suppose both algorithms use a constant step-size rule with the same constant

\rho . Then the step-size in Algorithm 2 is given by

\rho m = \rho 

\Biggl( 
n\sum 

i=1

rmi b(xi; \tau jm)

\Biggr) 
= \rho \langle rm, B:,jm\rangle =  - \rho \nabla jmL(\beta m) ,

which is the same step-size as that in Algorithm 3 (with constant step-size rule).
Thus, the step-size \rho m at the mth iteration in Algorithm 2 is the same as that of

Algorithm 3 for both step-size rules. Therefore, it holds that

fm+1(x) = fm(x) + \rho mb(x; \tau jm) =
K\sum 
j=1

\beta m
j b(x; \tau j) + \rho mb(x; \tau jm) =

K\sum 
j=1

\beta m+1
j b(x; \tau j) ,

which completes the proof by induction.

Remark 2.2. In the special case when J contains all weak learners (i.e., with
Type 0 random selection rule), Algorithm 3 reduces to standard greedy coordinate
descent and Proposition 2.1 shows that GBM (Algorithm 1) is equivalent to greedy
coordinate descent in the coefficient space.

3. Machinery: Structured norms and random selection rules. In this
section, we introduce four norms and establish how they relate to the four types of
selection rules (for J), as described in section 1.2.1.

3.1. Infinity norm, ordered \ell \bfone norm, \ell \bfone ,\infty group norm, and an ordered
mixed norm. We introduce the following definitions.

Definition 3.1. The ``infinity norm"" \| \cdot \| \infty of vector a \in RK is defined as

\| a\| \infty = max
j\in [K]

| aj | . (Infinity norm)

Definition 3.2. The ``ordered \ell 1 norm"" \| \cdot \| \scrS with parameter \gamma \in RK of vector
a \in RK is defined as

\| a\| \scrS =
K\sum 
j=1

\gamma i| a(j)| , (Ordered \ell 1 norm)

where the parameter \gamma satisfies \gamma 1 \geq \gamma 2 \geq \cdot \cdot \cdot \geq \gamma K \geq 0 with
\sum K

j=1 \gamma j = 1, and
| a(1)| \geq | a(2)| \geq \cdot \cdot \cdot \geq | a(K)| are the decreasing absolute values of the coordinates of a.

Definition 3.3. If \{ Ig\} g\in [G] is a partition of [K], then the ``\ell 1,\infty group norm""
of vector a \in RK is defined as

\| a\| \scrG =
1

G

G\sum 
g=1

\| aIg\| \infty , (Group norm)
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2790 HAIHAO LU AND RAHUL MAZUMDER

where \| aIg\| \infty is the infinity norm of aIg (i.e., the subvector of a restricted to Ig) for
g \in [G].

Definition 3.4. If \{ Ig\} g\in [G] is a partition of [K], then the ``ordered mixed norm""4

with parameter \gamma \in RG of vector a \in RK is defined as

\| a\| \scrC =
G\sum 

g=1

\gamma g\| aI(g)\| \infty , (Ordered mixed norm)

where the parameter \gamma satisfies \gamma 1 \geq \gamma 2 \geq \cdot \cdot \cdot \geq \gamma G \geq 0 and
\sum G

g=1 \gamma g = 1. Note that
\| aI(1)\| \infty \geq \| aI(2)\| \infty \geq \cdot \cdot \cdot \geq \| aI(G)

\| \infty are the sorted values of \| aIg\| \infty , g \in [G].

Remark 3.1. Note that the group norm [27] and ordered \ell 1 norm (arising in the
context of the Slope estimator) [4] appear as common regularizers in high-dimensional
linear models. In this paper, however, they arise in a very different context---see
section 3.2.

It can be easily seen that the ordered \ell 1 norm is a special instance of the ordered
mixed norm where each group contains one element, and the \ell 1,\infty group norm is
another special instance of the ordered mixed norm where the parameter \gamma g \equiv 1/G
for g \in [G].

With some elementary calculations, we can derive the dual norms of each of the
above norms.

Proposition 3.1. (1) The dual norm of the ordered \ell 1 norm is

(9) \| b\| \scrS \ast = max
1\leq i\leq K

\sum i
j=1 | b(j)| \sum i
j=1 \gamma j

.

(2) The dual norm of the \ell 1,\infty group norm is

\| b\| \scrG \ast = G max
1\leq g\leq G

\| bIg\| 1 .

(3) The dual norm of the ordered mixed norm is

\| b\| \scrC \ast = max
1\leq g\leq G

\sum g
j=1 \| bI(j)\| 1\sum g

j=1 \gamma j
,

where \| bI(1)\| 1 \geq \| bI(2)\| 1 \geq \cdot \cdot \cdot \geq \| bI(G)
\| 1 are the values of \| bIg\| 1, g \in [G], sorted in

decreasing order.

Remark 3.2. The proof for part (1) of Proposition 3.1 can be found in Theorem 1
in [42]. The proof of part (2) is straightforward, and the proof of part (3) follows from
those of (1) and (2).

3.2. Random-then-Greedy procedure. Here we introduce a Random-then-
Greedy (RtG) procedure that uses a randomized scheme to deliver an approximate
maximum of the absolute entries of a vector a \in RK . The expected value of the (ran-
dom) output available from the RtG procedure with four types of selection rules (cf.
section 1.2.1) can be shown to be related to the four norms introduced in section 3.1.

4The name stems from the fact that it is a combination of the ordered \ell 1 norm and the \ell 1,\infty 
group norm.
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Formally, the RtG procedure is summarized below.

Random-then-Greedy (RtG) procedure
Given a \in RK ,
1. Randomly pick a subset of coordinates J \subseteq [K].
2. Output \^j = argmaxj\in J | aj | and | a\^j | .

We will next obtain the probability distribution of \^j, and the expectation of | a\^j | .
Let J be chosen by the Type 1 selection rule, namely, J is given by a collection of

t coordinates, chosen uniformly at random from [K] without replacement. A simple
observation is that the probability of a coordinate j being chosen depends upon the
magnitude of aj relative to the other values | ai| , i \not = j, and not the precise values
of the entries in a. Note also that if the value of | aj | is higher than others, then the
probability of selecting j increases: this is because (i) all coordinate indices in [K ] are
equally likely to appear in J , and (ii) coordinates with a larger value of | aj | are chosen
with higher probability. The following proposition formalizes the above observations
and presents the probability of a coordinate being chosen.

Proposition 3.2. Consider the RtG procedure for approximately finding the max-
imal coordinate of a \in RK (in absolute value). Recall that (j) is the index of the jth
largest coordinate of a in absolute value,5 namely, | a(1)| \geq | a(2)| \geq \cdot \cdot \cdot \geq | a(K)| . If the
subset J is chosen by the Type 1 selection rule, the probability that (j) is returned is

(10) P
\Bigl( 
\^j = (j)

\Bigr) 
:= \gamma K

t (j) =

\bigl( 
K - j
t - 1

\bigr) \bigl( 
K
t

\bigr) .

Proof. There are
\bigl( 
K
t

\bigr) 
different choices for the subset J , and each subset is chosen

with equal probability. The event \^j = (j) happens if and only if (j) \in J and the
remaining t - 1 coordinates are chosen from the K  - j coordinates. There are

\bigl( 
K - j
t - 1

\bigr) 
different choices of choosing such a subset J , which completes the proof of Proposition
3.2.

Remark 3.3. Note that \gamma K
t (j) is monotonically decreasing in j for fixed K, t (be-

cause j \rightarrow 
\bigl( 
K - j
t - 1

\bigr) 
is monotonically decreasing in j). This corresponds to the intuition

that the RtG procedure returns a coordinate j with a larger magnitude of aj , with
higher probability.

For most cases of interest, the dimension K of the input vector is very large.
When K is asymptotically large, it is convenient to consider the distribution of the
quantile q = j/K (where 0 < q < 1), instead of j. The probability distribution of this
quantile evaluated at j/K is given by K\gamma K

t (j). The following proposition states that
K\gamma K

t (j) asymptotically converges to t(1  - q)t - 1, the probability density function of
the Beta distribution with shape parameters (1, t), i.e., Beta(1, t).

Proposition 3.3. We have the following limit for a fixed q \in (0, 1):

lim
j,K\rightarrow \infty , j/K=q

K\gamma K
t (j) = t(1 - q)t - 1 .

Proof. By using the expression of \gamma K
t (j) and canceling out the factorials, it holds

5In case of ties, we choose the smallest index.
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2792 HAIHAO LU AND RAHUL MAZUMDER

Fig. 2. Figure shows the profiles of K\gamma K
t (j) (i.e., the probability distribution of the quantile

q = j/K for the RtG procedure, as described in the text) as a function of q. We consider three
profiles (of K\gamma K

t (j)) for three different values of K, and the Beta(1, 10) density function (we fix
t = 10). We observe that for K \approx 40, the profile of K\gamma K

t (j) and that of the Beta(1, 10) distribution
are almost indistinguishable.

that

\gamma K
t (j) =

(K - j
t - 1 )
(Kt )

= t
K

(K - t)(K - t - 1)\cdot \cdot \cdot (K - j - t+2)
(K - 1)(K - 2)\cdot \cdot \cdot (K - j+1)

= t
K

\Bigl( 
1 - t - 1

K - 1

\Bigr) \Bigl( 
1 - t - 1

K - 2

\Bigr) 
\cdot \cdot \cdot 
\Bigl( 
1 - t - 1

K - j+1

\Bigr) 
.

Denote AK
t (j) =

\bigl( 
1 - t - 1

K - 1

\bigr) \bigl( 
1 - t - 1

K - 2

\bigr) 
\cdot \cdot \cdot 
\bigl( 
1 - t - 1

K - j+1

\bigr) 
. Then it holds that

lim
j,K\rightarrow \infty , j/K=q

lnAK
t (j) = lim

j,K\rightarrow \infty , j/K=q

j - 1\sum 
l=1

ln

\biggl( 
1 - t - 1

K  - l

\biggr) 

= lim
j,K\rightarrow \infty , j/K=q

j - 1\sum 
l=1

 - t - 1

K  - l

= lim
j,K\rightarrow \infty , j/K=q

(t - 1) ln

\biggl( 
K  - j

K

\biggr) 
= (t - 1) ln(1 - q) ,

where the second equality uses ln
\bigl( 
1  - t - 1

K - l

\bigr) 
\approx  - t - 1

K - l and the third equality is from\sum j - 1
l=1

1
K - l \approx lnK  - ln(K  - j) = ln( K

K - j ), when both j,K are large and j/K \approx q.
Therefore,

lim
j,K\rightarrow \infty ,j/K=q

K\gamma K
t (j) = t lim

j,K\rightarrow \infty ,j/K=q
exp
\Bigl( 
lnA

(K,j)
t

\Bigr) 
= t(1 - q)t - 1 ,

which completes the proof.

Figure 2 compares the probability distribution of the discrete random variable
j/K and its continuous limit: as soon as K \approx 40, the function K\gamma K

t (j) becomes
(almost) identical to the Beta density.
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Given a partition \{ Ig\} g\in [G] of [K], let us denote for every g \in [G]

(11) bg = max
j\in Ig

| aj | and kg = argmax
j\in Ig

| aj | .

For the RtG procedure with Type 2 random selection rule, note that P(\^j = kg) = 1/G
for all g \in [G]. The Type 3 selection rule is a combination of the Type 1 and Type 2
selection rules. One can view the RtG procedure with Type 3 selection rule as a two-
step procedure: (i) compute bg and kg as in (11); and (ii) use an RtG procedure with
Type 1 rule on \{ bg\} g\in [G]. Using an argument similar to that used in Proposition 3.2,
we have

(12) P(\^j = k(g)) = \gamma G
t (g) ,

where we recall that | ak(1)
| \geq | ak(2)

| \geq \cdot \cdot \cdot \geq | ak(G)
| and b(g) = | ak(g)

| for all g.
The following proposition establishes a connection among the four types of selec-

tion rules and the four norms described in section 3.1.

Proposition 3.4. Consider the RtG procedure for finding the approximate max-
imum of the absolute values of a. It holds that

E[| a\^j | ] = \| a\| \scrF ,

where \scrF denotes infinity norm, the ordered \ell 1 norm with parameter \gamma = [\gamma K
t (j)]j, the

\ell 1,\infty group norm, or the ordered mixed norm with parameter \gamma = [\gamma G
t (j)]j when the

selection rule is Type 0, Type 1, Type 2, or Type 3 (cf. section 1.2), respectively.

Proof.
Type 0: This corresponds to the deterministic case and | a\^j | = maxj | aj | = \| a\| \infty .

Type 1: It follows from Proposition 3.2 that P(\^j = (j)) = \gamma K
t (j), and thus

E[| a\^j | ] =
K\sum 
j=1

\gamma K
t (j)| a(j)| = \| a\| \scrS .

Type 2: For the Type 2 random selection rule, we have P(\^j = kg) = 1
G for any

g \in [G], and thus

E[| a\^j | ] =
1

G

G\sum 
g=1

bg =
1

G

G\sum 
g=1

\| aIg\| \infty = \| a\| \scrG .

Type 3: It follows from (12) that

E[| a\^j | ] =
G\sum 

g=1

\gamma G
t (g)b(g) =

G\sum 
g=1

\gamma G
t (g)\| aI(g)\| \infty = \| a\| \scrC .

4. Computational guarantees for RGBM. Here we derive computational
guarantees for RGBM. We first introduce some standard regularity/continuity condi-
tions on the scalar loss function \ell (y, f) that we require in our analysis.

Definition 4.1. We denote by \partial \ell (y, f)/\partial f the derivative of the scalar loss func-
tion \ell with respect to the prediction f . We say that \ell is \sigma -smooth if for any y and
predictions f1 and f2 it holds that

\ell (y, f1) \leq \ell (y, f2) +
\partial \ell (y, f2)

\partial f
(f1  - f2) +

\sigma 

2
(f1  - f2)

2.
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We say \ell is \mu -strongly convex (with \mu > 0) if for any y and predictions f1 and f2
it holds that

\ell (y, f1) \geq \ell (y, f2) +
\partial \ell (y, f2)

\partial f
(f1  - f2) +

\mu 

2
(f1  - f2)

2.

We present examples of some loss functions commonly used in GBM along with
their regularity/continuity parameters:

Squared \ell 2 or least squares loss: \ell (y, f) = 1
2 (y  - f)2 is 1-smooth and 1-strongly

convex.
Huber loss: The Huber loss function with parameter d > 0, given by

ld(y, f) =

\biggl\{ 
1
2 (y  - f)2 for | f  - y| \leq d,
d| y  - f |  - 1

2d
2 otherwise ,

is 1-smooth but not strongly convex.
Logistic loss: We consider a regularized version of the usual logistic loss function:

\ell d(y, f) = log(1 + e - yf ) + d
2f

2 with d \geq 0, which is ( 14 + d)-smooth and d-strongly
convex (when d > 0). A special case is the usual logistic loss when d = 0, which is
1
4 -smooth but not strongly convex.

Exponential loss: \ell (y, f) = exp( - yf) is neither strongly convex nor smooth.

Notice that the objective function L(\beta ) has an invariant subspace in the coefficient
space, namely, for any \omega \in Ker(B), it holds that L(\beta ) = L(\beta + \omega ). Let us denote

(13) Z( \^\beta ) :=
\Bigl\{ 
\beta | B\beta = B \^\beta 

\Bigr\} 
as the invariant subspace of \^\beta . Recall that \scrF \in \{ \infty ,\scrS ,\scrG , \scrC \} and \scrF \ast is the dual norm
of \scrF (see section 3.1). We define a distance metric in the \beta -space as

DistB\scrF \ast (\beta 1, \beta 2) := Dist\scrF \ast (Z(\beta 1), Z(\beta 2)) = min
b\in Z(\beta 1),\^b\in Z(\beta 2)

\| b - \^b\| \scrF \ast 

= min
\omega \in Ker(B)

\| \beta 1  - \beta 2  - \omega \| \scrF \ast ,

which is the usual notion of distance between subspaces in the \scrF \ast norm. In particular,
if \beta 1, \beta 2 \in Z( \^\beta ), then DistB\scrF \ast (\beta 1, \beta 2) = 0. Note that DistB\scrF \ast is a pseudonorm---
Proposition 4.1 lists a few properties of DistB\scrF \ast .

Proposition 4.1.
1. DistB\scrF \ast (\beta 1, \beta 2) is symmetric: i.e., for any \beta 1 and \beta 2, we have

DistB\scrF \ast (\beta 1, \beta 2) = DistB\scrF \ast (\beta 2, \beta 1) .

2. DistB\scrF \ast (\beta 1, \beta 2) is translation invariant: i.e., for any \beta 1, \beta 2 and \^\beta , we have

DistB\scrF \ast (\beta 1  - \^\beta , \beta 2  - \^\beta ) = DistB\scrF \ast (\beta 1, \beta 2) .

Proof.
1. The proof of this part follows from

DistB\scrF \ast (\beta 1, \beta 2) = min
b\in Z(\beta 1),\^b\in Z(\beta 2)

\| b - \^b\| \scrF \ast = min
b\in Z(\beta 1),\^b\in Z(\beta 2)

\| \^b - b\| \scrF \ast = DistB\scrF \ast (\beta 2, \beta 1) .

2. The proof of this part follows from

DistB\scrF \ast (\beta 1  - \^\beta , \beta 2  - \^\beta ) = min
\omega \in Ker(B)

\| (\beta 1  - \^\beta ) - (\beta 2  - \^\beta ) - \omega \| \scrF \ast 

= min
\omega \in Ker(B)

\| \beta 1  - \beta 2  - \omega \| \scrF \ast = DistB\scrF \ast (\beta 1, \beta 2) .
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RANDOMIZED GRADIENT BOOSTING MACHINE 2795

Fig. 3. Illustration of the relationship between \Theta \infty and density of weak learners in a 2D
example. Figures in panels (a), (b), and (c) represent poorly spread weak learners, moderately
spread weak learners, and densely spread weak learners, respectively. When \scrF is the infinity norm,
the values of \Theta \infty are given by (a) \Theta 2

\infty \approx 0; (b) \Theta 2
\infty = 1/2; and (c) \Theta 2

\infty \approx 0.933---the weak learners
are more spread out for higher values of \Theta \infty .

4.1. Minimal Cosine Angle. Here we introduce a novel geometric quantity,
the Minimal Cosine Angle \Theta \scrF , which measures the density of the collection of weak
learners in the prediction space with respect to the \scrF norm. We show here that
Minimal Cosine Angle plays a key role in the computational guarantees for RGBM.

Definition 4.2. The Minimal Cosine Angle (MCA) of a set of weak learners
(given by the columns of the matrix B) with respect to the \scrF norm is defined as

(14) \Theta \scrF := min
c\in Range(B)

\bigm\| \bigm\| \bigm\| [cos(B:j , c)]j=1,...,K

\bigm\| \bigm\| \bigm\| 
\scrF 
.

Remark 4.1. At first look, the MCA quantity seems to be similar to the Cheung--
Cucker condition number for solving a linear system. See [8, 10] for details on the
Cheung--Cucker condition number, and [32, 33] for how it connects to margins and
the convergence rate for iterative algorithms (e.g., the Perceptron and von Neumann
algorithms) arising in binary classification tasks. However, there is an important basic
difference: Our measure MCA looks at the columns of the basis matrix B, whereas
the Cheung--Cucker condition number is based on the rows of B.

The quantity \Theta \scrF measures the ``density"" of the weak learners in the prediction
space. Figure 3 provides an illustration in a simple 2D example when \scrF is the infinity
norm. Given weak learners B:1, . . . , B:K , we compute the cosine of the angle between
each weak learner and a direction c. The \scrF norm can be viewed as an approximation to
the infinity norm, which is the norm corresponding to traditional GBM. The quantity
MCA refers to the minimum (over all directions indexed by c) of such reweighted
angles.

We next present some equivalent definitions of \Theta \scrF .

Proposition 4.2.

(15) \Theta \scrF = min
c\in Range(B)

\| BT c\| \scrF 
\| c\| 2

= min
a

\| Ba\| 2
DistB\scrF \ast (0, a)

> 0 .

Proof. The first equality follows directly by rewriting (14). Notice that for any
norm \scrF in RK (a finite-dimensional space), there exists a scalar \gamma > 0 such that
\| BT c\| \scrF \geq \gamma \| BT c\| \infty . Thus

\Theta \scrF = min
c\in Range(B),\| c\| 2=1

\| BT c\| \scrF \geq \gamma \| BT c\| \infty > 0 ,
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2796 HAIHAO LU AND RAHUL MAZUMDER

where the second inequality follows from the observation that c \in Range(B). We now
proceed to show the second equality of (15).

By the definition of DistB\scrF \ast and the definition of the dual norm, we have

DistB\scrF \ast (0, a)= min
\omega \in Ker(B)

\| a - \omega \| \scrF \ast = min
\omega \in Ker(B)

max
\| b\| \scrF \leq 1

\langle a - \omega , b\rangle = max
\| b\| \scrF \leq 1

min
\omega \in Ker(B)

\langle a - \omega , b\rangle 

= max
\| b\| \scrF \leq 1,b\in Range(BT )

\langle a, b\rangle = max
\| b\| \scrF \leq 1,b\in Range(BT )

| \langle a, b\rangle | = max
b\in Range(BT )

| \langle a, b\rangle | 
\| b\| \scrF 

,

where the third equality uses von Neumann's Minimax Theorem, and the fourth
equality is based on the observation

min
\omega \in Ker(B)

\langle a - \omega , b\rangle =
\biggl\{ 

 - \infty for b \not \in Range(BT ) ,
\langle a, b\rangle for b \in Range(BT ) .

Therefore,

min
a

\| Ba\| 2
DistB\scrF \ast (0, a)

= min
b\in Range(BT ),a

\| Ba\| 2\| b\| \scrF 
| \langle a, b\rangle | 

.

Denote PB = BT (BBT )\dagger B as the projection matrix onto Range(BT ). Then we have
PBb = b for any b \in Range(BT ). Thus
(16)

min
a

\| Ba\| 2
DistB\scrF \ast (0, a)

= min
b\in Range(BT ),a

\| Ba\| 2\| b\| \scrF 
| \langle a, PBb\rangle | 

= min
b\in Range(BT ),a

\| Ba\| 2\| b\| \scrF 
| \langle Ba, (BBT )\dagger Bb\rangle | 

.

Now denote c = (BBT )\dagger Bb. Then c \in Range(B) and BT c = PBb = b. Note that
for any a, we have \| Ba\| 2\| c\| 2 \geq | \langle Ba, c\rangle | , which implies

min
a

\| Ba\| 2
| \langle Ba, c\rangle | 

\geq 1

\| c\| 2
.

Since c \in Range(B), there exists a vector a satisfying Ba = c, which leads to

\| Ba\| 2
| \langle Ba, c\rangle | 

=
\| c\| 2
\| c\| 22

=
1

\| c\| 2
,

from which it follows that

(17) min
a

\| Ba\| 2
| \langle Ba, c\rangle | 

=
1

\| c\| 2
.

Substituting c = (BBT )\dagger Bb and combining (16) and (17) yields

min
a

\| Ba\| 2
DistB\scrF \ast (0, a)

= min
c\in Range(B)

\| BT c\| \scrF 
\| c\| 2

,

which completes the proof.

To gain additional intuition about MCA, we consider some examples.

Example 1 (orthogonal basis with infinity norm). Suppose \scrF is the infinity norm
and the set of weak learners in Rp forms an orthogonal basis (e.g., the discrete Fourier
basis in Rp). Then \Theta \infty = 1/

\surd 
p.
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Example 2 (orthogonal basis with ordered \ell 1 norm). Suppose \scrF is the ordered
\ell 1 norm with a parameter sequence \gamma \in Rp and the set of weak learners in Rp forms
an orthogonal basis. Then

(18) \Theta \scrS = min

\biggl\{ 
\gamma 1,

1\surd 
2
(\gamma 1 + \gamma 2), . . . ,

1
\surd 
p
(\gamma 1 + \cdot \cdot \cdot + \gamma p)

\biggr\} 
.

We present a proof for (18)---note that the result for Example 1 follows as a
special case. Without loss of generality, we assume B to be an identity matrix. It
then follows from the second equality of (15) that

(19) \Theta \scrS = min
\| a\| \scrS \ast =1

\| a\| 2 .

By flipping the constraint and the objective function of (19) we can instead consider
the equivalent problem

\Phi = max
\| a\| 2=1

\| a\| \scrS \ast = max
\| a\| 2\leq 1

\| a\| \scrS \ast ,

and we have \Theta \scrS = 1/\Phi . Using the definition of the dual of the ordered \ell 1 norm (see
(9)), notice that for any i \in [p], it follows from the \ell 1-\ell 2 norm inequality that

i\sum 
j=1

| a(j)| \leq 

\sqrt{}     i

\left(  i\sum 
j=1

a2(j)

\right)  \leq 
\surd 
i\| a\| 2 \leq 

\surd 
i ,

and therefore

\Phi = max
\| a\| 2\leq 1

max
i\in [p]

\Biggl\{ \sum i
j=1 | a(j)| \sum i
j=1 \gamma j

\Biggr\} 
\leq max

i\in [p]

\Biggl\{ \surd 
i\sum i

j=1 \gamma j

\Biggr\} 
.

For any i \in [p] define \~a1 = \cdot \cdot \cdot = \~ai = 1/
\surd 
i and \~ai+1 = \cdot \cdot \cdot = \~ap = 0. Then we have

\Phi \geq \| \~a\| \scrS \ast =
\surd 
i/(
\sum i

j=1 \gamma j). Therefore, we have

\Phi = max
i\in [p]

\Biggl\{ \surd 
i\sum i

j=1 \gamma j

\Biggr\} 
=

1

\Theta \scrS 
,

which completes the proof of (18).

Remark 4.2. Consider using a Type 1 random selection rule in RGBM. Then
the corresponding norm \scrF is the ordered \ell 1 norm with parameter \gamma p

t = [\gamma p
t (j)]j as

defined in (10). Figure 4 shows the value of \Theta \scrS (computed by formula (18)) versus
the dimension p---we consider different values of t and use an orthogonal basis. The
figure suggests that \Theta \scrS depends upon p, t as follows:

\Theta \scrS \sim 

\Biggl\{ 
1\surd 
p if p \leq t2 ,
t
p otherwise .

Example 3 (binary basis with infinity norm). Suppose \scrF is the infinity norm,
and the basis matrix B has entries Bi,j \in \{  - 1, 0, 1\} ---leading to 3p different weak
learners. In this case,

(20) \Theta \infty =
1\sqrt{} 

12 + (
\surd 
2 - 1)2 + \cdot \cdot \cdot + (

\surd 
p - 

\surd 
p - 1)2

\propto 1\surd 
ln p

.
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2798 HAIHAO LU AND RAHUL MAZUMDER

Fig. 4. Plot shows how \Theta \scrS varies with p (log-log plot) when the weak learners are orthogonal
and \scrF corresponds to the ordered \ell 1 norm with parameter \gamma = [\gamma p

t (j)]j (see (10)). We show three
profiles for three different values of t. Note that \Theta \scrS is defined only for p \geq t. The setup is described
in Remark 4.2.

We present a proof for (20). Since Bi,j \in \{  - 1, 0, 1\} , we have

(21)

\Theta \infty = min
c

max
j

| cos(B:j , c)| = min
c

max
i\in [p]

max
\| B:j\| 1=i

| cos(B:j , c)| 

= min
c

max
i\in [p]

\sum i
k=1 | c(k)| \surd 
i\| c\| 2

.

Let us recall the form of \scrS \ast , i.e., the dual ordered \ell 1 norm appearing in Proposition 3.1.
Observe that maxi\in [p](

\sum i
k=1 | c(k)| /

\surd 
i) = \| c\| \scrS \ast , where \gamma = [

\surd 
i  - 

\surd 
i - 1]i\in [p] is the

parameter of the ordered \ell 1 norm \scrS . Thus

\Theta \infty = min
c

\| c\| \scrS \ast 

\| c\| 2
= min

a

\| a\| 2
\| a\| \scrS 

= min
\| a\| \scrS =1

\| a\| 2 ,

where the second equality uses (15) with \scrF = \scrS \ast and B as the identity matrix.
By flipping the constraint and the objective function, we can instead consider the
equivalent problem

\Phi = max
\| a\| 2=1

\| a\| \scrS = max
\| a\| 2\leq 1

\| a\| \scrS ,

with \Theta \infty = 1/\Phi . By the Cauchy--Schwarz inequality, it holds that

\| a\| 2S =

\Biggl( 
p\sum 

i=1

\gamma i| a(i)| 

\Biggr) 2

\leq 

\Biggl( 
p\sum 

i=1

\gamma 2
i

\Biggr) 
\| a\| 22 =

\Biggl( 
p\sum 

i=1

\Bigl( \surd 
i - 

\surd 
i - 1
\Bigr) 2\Biggr) 

\| a\| 22 ,

with equality being achieved when a \propto [
\surd 
i  - 

\surd 
i - 1]i. Thus we have that \Phi =\sqrt{} \sum p

i=1

\bigl( \surd 
i - 

\surd 
i - 1
\bigr) 2

and \Theta \infty = 1/\Phi . Notice that

1

4

p\sum 
i=1

1

i
\leq 

p\sum 
i=1

\Bigl( \surd 
i - 

\surd 
i - 1
\Bigr) 2

=

p\sum 
i=1

1\bigl( \surd 
i+

\surd 
i - 1
\bigr) 2 \leq 1 +

1

4

p\sum 
i=2

1

i - 1
,

where the left- and right-hand sides of the above are both O(ln p). This implies that\sum p
i=1

\bigl( \surd 
i - 

\surd 
i - 1
\bigr) 2 \propto ln p, thereby completing the proof.

Remark 4.3. The binary basis described in Example 3 (with \Theta \infty = O(1/
\surd 
ln p))

is more densely distributed in the prediction space when compared to Example 1 (with
\Theta \infty = O(1/

\surd 
p))---see Figures 3(b) and 3(c) for a schematic illustration.
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4.2. Computational guarantees: Strongly convex loss function. We es-
tablish computational guarantees for RGBM when the scalar loss function \ell is both
smooth and strongly convex. Let Em denote the expectation over the random selec-
tion scheme at iteration m, conditional on the selections up to iteration m  - 1. Let
E\xi m denote the expectation over the random selection scheme up to (and including)
iteration m. The following theorem presents the linear convergence rate for RGBM.

Theorem 4.1. Let \ell be \mu -strongly convex and \sigma -smooth. Consider RGBM (Algo-
rithm 2) or RtGCD (Algorithm 3) with either a line-search step-size rule or constant
step-size rule with \rho = 1/\sigma . If \Theta \scrF denotes the value of the corresponding MCA, then
for all M \geq 0 we have

(22) E\xi M [L(\beta M ) - L(\beta \ast )] \leq 
\bigl( 
1 - \mu 

\sigma \Theta 
2
\scrF 
\bigr) M \bigl( 

L(\beta 0) - L(\beta \ast )
\bigr) 
.

Notice that in the special case when J is chosen deterministically as the set of all
weak learners, Theorem 4.1 leads to a linear convergence rate for GBM [15]. Some
prior works have also presented a linear convergence rate for GBM, but our results
are different. For example, [39] shows a linear convergence rate, but the constant is
exponential in the number of features p, except for the exponential loss.6 [11] presents
a linear convergence rate for LS-Boost (GBM with a least squares loss function) of the
form O(\tau M ), where the parameter \tau = 1 - \lambda pmin(B

TB)/4K depends upon \lambda pmin(A),
the minimal nonzero eigenvalue of a matrix A. In GBM, K is usually exponentially
large, and thus \tau can be close to one. The linear convergence constant derived herein
(i.e., 1  - \mu 

\sigma \Theta 
2
\scrF ) has a superior dependence on the number of weak learners, and it

stays away from 1 as K becomes large. We obtain an improved rate since we employ
a different analysis technique based on MCA.

Remark 4.4. We study the convergence rate of RGBM as a function of t using
the same setup considered in Remark 4.2. Using an ``epoch"" (i.e., the cost to evaluate
all weak learners across all samples) as the unit of computational cost, the cost per
iteration of RGBM is t/p epochs. Then the (multiplicative) improvement per epoch
is \Bigl( 

1 - \mu 

\sigma 
\Theta 2

\scrS 

\Bigr) p/t
\sim 

\left\{     
\Bigl( 
1 - \mu 

p\sigma 

\Bigr) p/t
if t \geq \surd 

p,\Bigl( 
1 - t2\mu 

p2\sigma 

\Bigr) p/t
otherwise.

This suggests that we should choose t \sim \surd 
p when the weak learners are almost

orthogonal. Recall that from a coordinate descent perspective, RtGCD with t = 1
leads to random CD, and RtGCD with t = p leads to greedy CD. Choosing t to be
larger than O(

\surd 
p) will not lead to any improvement in the theoretical convergence

rate, though it will lead to an increase in computational cost.

Remark 4.5. Since traditional GBM is equivalent to greedy CD in the coefficient
space, theoretical guarantees of greedy CD can be used to analyze GBM. In this case,
however, the resulting computational guarantees may contain the total number of
weak learners K---the bounds we present here are of a different flavor (they depend
upon MCA).

Recently, interesting techniques have been proposed to improve the efficiency of
greedy CD. For example, [37] proposed a scheme to approximate the entire gradient
vector and use it to update the coordinates (in the spirit of approximate steepest

6The result of [39] for the exponential loss function is superior to that presented here, as their
analysis is targeted towards this loss function.
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2800 HAIHAO LU AND RAHUL MAZUMDER

CD). It will be interesting to adapt the ideas from [37] to the case of Boosting-like
algorithms presented herein.

Propositions 4.3--4.5 presented below will be needed for the proof of Theorem 4.1.
Proposition 4.3 establishes a relationship among the four selection rules for choosing
subset J in RGBM (Algorithm 3) and the norms introduced in section 3.1.

Proposition 4.3. Consider Algorithm 3 with the four types of selection rules for
choosing the set J as described in section 1.2.1. For any iteration index m, we have

Em

\bigl[ 
(\nabla jmL(\beta m))2

\bigr] 
=
\bigm\| \bigm\| \bigm\| \bigl[ \nabla jL(\beta 

m)2
\bigr] 
j

\bigm\| \bigm\| \bigm\| 
\scrF 
\geq \| \nabla L(\beta m)\| 2\scrF ,

where \scrF is the infinity norm, the ordered \ell 1 norm with parameter \gamma = [\gamma K
t (j)]j, the

\ell 1,\infty group norm, or the ordered mixed norm with parameter \gamma = [\gamma G
t (j)]j when the

selection rule is Type 0, Type 1, Type 2, or Type 3, respectively.

Proof. The equality is a direct result of Proposition 3.4 with aj = (\nabla jL(\beta 
m))2.

Notice that the \scrF norm of a is a weighted sum of its coordinates---for notational conve-
nience, we denote these weights by a vector \lambda \in RK that satisfies

\bigm\| \bigm\| \bigl[ \nabla Lj(\beta 
m)2
\bigr] 
j

\bigm\| \bigm\| 
\scrF =\sum 

j \lambda j (\nabla jL(\beta 
m))

2
and \lambda j \geq 0, j \in [K],

\sum 
j \lambda j = 1. Thus we have

\bigm\| \bigm\| \bigm\| \bigl[ \nabla Lj(\beta 
m)2
\bigr] 
j

\bigm\| \bigm\| \bigm\| 
\scrF 
=

\left(  \sum 
j

\lambda j

\right)  \left(  \sum 
j

\lambda j (\nabla jL(\beta 
m))

2

\right)  \geq 

\left(  \sum 
j

\lambda j | \nabla jL(\beta 
m)| 

\right)  2

= \| \nabla L(\beta m)\| 2\scrF ,

where the inequality above follows from the Cauchy--Schwarz inequality.

The following proposition can be viewed as a generalization of the mean-value
inequality.

Proposition 4.4. For a \in Range(BT ) and t > 0, it holds that

min
\beta 

\biggl\{ 
\langle a, \beta  - \beta \ast \rangle + t

2
DistB\scrF \ast (\beta , \beta \ast )2

\biggr\} 
=  - 1

2t
\| a\| 2\scrF .

Proof. Let b = \beta  - \beta \ast , Ker(B) = \{ \omega | B\omega = 0\} , and c = b+ \omega . By the definition
of DistB\scrF \ast , we have

min
\beta 

\biggl\{ 
\langle a, \beta  - \beta \ast \rangle + t

2
DistB\scrF \ast (\beta , \beta \ast )2

\biggr\} 
= min

b
min

\omega \in Ker(B)

\biggl\{ 
\langle a, b\rangle + t

2
\| b+ \omega \| 2\scrF \ast 

\biggr\} 

= min
\omega \in Ker(B)

\biggl\{ 
 - \langle a, \omega \rangle +min

b+\omega 
\langle a, b+ \omega \rangle + t

2
\| b+\omega \| 2\scrF \ast 

\biggr\} 
= min

\omega \in Ker(B)
min
c

\biggl\{ 
\langle a, c\rangle + t

2
\| c\| 2\scrF \ast 

\biggr\} 

= min
c

\biggl\{ 
\langle a, c\rangle + t

2
\| c\| 2\scrF \ast 

\biggr\} 
,

where the third equality considers a \in Range(BT ) and makes use of the observation
that \langle a, \omega \rangle = 0 for \omega \in Ker(B). Notice that

t

2
\| c\| 2\scrF \ast +

1

2t
\| a\| 2\scrF \geq \| c\| \scrF \ast \| a\| \scrF \geq | \langle a, c\rangle | 
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and hence minc
\bigl\{ 
\langle a, c\rangle + t

2\| c\| 
2
\scrF \ast 

\bigr\} 
\leq  - 1

2t\| a\| 
2
\scrF . Now, if \^c = 1

t \| a\| \scrF argmin\| c\| \scrF \ast \leq 1 \langle a, c\rangle ,
we have

\| \^c\| \scrF \ast = 1
t \| a\| \scrF and \langle a, \^c\rangle =  - 1

t \| a\| \scrF max
\| c\| \scrF \ast \leq 1

\langle a, c\rangle =  - 1
t \| a\| 

2
\scrF ,

whereby \langle a, \^c\rangle + t
2\| \^c\| 

2
\scrF \ast =  - 1

2t\| a\| 
2
\scrF . Therefore it holds that

min
c

\bigl\{ 
\langle a, c\rangle + t

2\| c\| 
2
\scrF \ast 

\bigr\} 
=  - 1

2t\| a\| 
2
\scrF ,

which completes the proof.

Proposition 4.5. If \ell is \mu -strongly convex, it holds for any \beta and \^\beta that

L( \^\beta ) \geq L(\beta ) +
\Bigl\langle 
\nabla L(\beta ), \^\beta  - \beta 

\Bigr\rangle 
+

1

2
\mu \Theta 2

\scrF DistB\scrF \ast ( \^\beta , \beta ) .

Proof. Since \ell is \mu -strongly convex, we have

(23)

L( \^\beta ) =

n\sum 
i=1

\ell (yi, Bi:
\^\beta )

\geq 
n\sum 

i=1

\Biggl\{ 
\ell (yi, Bi:\beta ) +

\partial \ell (yi, Bi:
\^\beta )

\partial f
\langle Bi:, \^\beta i  - \beta i\rangle + \mu 

2 \| Bi:\| 22( \^\beta i  - \beta i)
2

\Biggr\} 

= L(\beta ) + \langle \nabla L(\beta ), \^\beta  - \beta \rangle + \mu 
2 \| B( \^\beta  - \beta )\| 22

\geq L(\beta ) + \langle \nabla L(\beta ), \^\beta  - \beta \rangle + \mu \Theta 2
\scrF 

2 DistB\scrF \ast (0, \^\beta  - \beta )2

= L(\beta ) + \langle \nabla L(\beta ), \^\beta  - \beta \rangle + \mu \Theta 2
\scrF 

2 DistB\scrF \ast ( \^\beta , \beta )2 ,

where the second inequality follows from Proposition 4.2, and the last equality utilizes
the symmetry and translation invariance of DistB\scrF \ast (Proposition 4.1).

Proof of Theorem 4.1. For either the line-search step-size rule or the constant
step-size rule, it holds that

(24)

L(\beta m+1) \leq L(\beta m  - 1
\sigma \nabla jmL(\beta m)ejm)

\leq L(\beta m) - 1
\sigma \nabla jmL(\beta m)\langle \nabla L(\beta m), ejm\rangle + 1

2\sigma \| \nabla jmL(\beta m)ejm\| 2

= L(\beta m) - 1
\sigma (\nabla jmL(\beta m))

2
+ 1

2\sigma (\nabla jmL(\beta m))
2

= L(\beta m) - 1
2\sigma (\nabla jmL(\beta m))

2
,

where the second inequality uses the fact that the loss function \ell is \sigma -smooth. Thus
L(\beta m+1) \leq L(\beta m) with probability one. As a result of Proposition 4.3, taking expec-
tation over both sides of (24) with respect to Em+1 yields

(25) Em+1[L(\beta 
m+1)] \leq L(\beta m) - 1

2\sigma \| \nabla L(\beta m)\| 2\scrF .
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2802 HAIHAO LU AND RAHUL MAZUMDER

Meanwhile, it follows from Proposition 4.5 that

(26)

L(\beta \ast ) = min
\beta 

L(\beta )

\geq min
\beta 

\Bigl[ 
L(\beta m) + \langle \nabla L(\beta m), \beta  - \beta m\rangle + \mu \Theta 2

\scrF 
2 DistB\scrF \ast (\beta , \beta m)

\Bigr] 
= L(\beta m) - 1

2\mu \Theta 2
\scrF 
\| \nabla L(\beta m)\| 2\scrF ,

where the last equality utilizes Proposition 4.4. Note that (26) together with (25)
leads to

Em+1[L(\beta 
m+1)] - L(\beta \ast ) \leq L(\beta m) - L(\beta \ast ) - 1

2\sigma 
\| \nabla L(\beta m)\| 2\scrF \leq (1 - \mu 

\sigma \Theta 
2
\scrF )(L(\beta 

m) - L(\beta \ast )) ,

and finally (22) follows by a telescoping argument.

4.3. Computational guarantees: Non-strongly convex loss function.
Define the initial level set of the loss function in the \beta -space (i.e., coefficient space) as

\scrL \scrS 0 =
\bigl\{ 
\beta | L(\beta ) \leq L(\beta 0)

\bigr\} 
and its maximal distance to the optimal solution set in DistB\scrF \ast as

Dist0 = max
\beta \in \scrL \scrS 0

DistB\scrF \ast (\beta , \beta \ast ) .

Note that \scrL \scrS 0 is unbounded if Z(\beta 0) (cf. (13)) is unbounded. But interestingly, \scrL \scrS 0

is bounded in Dist\scrF \ast , i.e., Dist0 < \infty , when the scalar loss function \ell has a bounded
level set.

Proposition 4.6. Suppose \ell has a bounded level set. Then Dist0 is finite.

Proof. Since the convex function \ell has a bounded level set, the set \{ B(\beta  - \beta \ast ) | \beta \in 
\scrL \scrS 0\} is bounded. Thus there is a finite constant C such that max\beta \in \scrL \scrS 0 \| B(\beta  - 
\beta \ast )\| 2 \leq C. Therefore,

Dist0 = max
\beta \in \scrL \scrS 0

DistB\scrF \ast (0, \beta  - \beta \ast )

\leq max
\| B(\beta  - \beta \ast )\| 2\leq C

DistB\scrF \ast (0, \beta  - \beta \ast )

= max
\| Ba\| 2\leq C

DistB\scrF \ast (0, a)

\leq max
\| Ba\| 2\leq C

\| Ba\| 2
\Theta \scrF 

=
C

\Theta \scrF 
,

where the second inequality follows from Proposition 4.2.

Theorem 4.2 presents convergence guarantees (that hold in expectation over the
random selection rule) for Algorithms 2 and 3 for a non-strongly convex loss function \ell .

Theorem 4.2. Consider RGBM (Algorithm 2) or, equivalently, RtGCD (Algo-
rithm 3) with either line-search step-size rule or constant step-size rule with \rho = 1/\sigma .
If \ell is a \sigma -smooth function and has a bounded level set, it holds for all M \geq 0 that

E\xi M [L(\beta M ) - L(\beta \ast )] \leq 1
1

L(\beta 0) - L(\beta \ast ) +
M

2\sigma Dist20

\leq 2\sigma Dist20
M

.
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Before presenting the proof of Theorem 4.2, we present the following proposition,
which is a generalization of the Cauchy--Schwarz inequality.

Proposition 4.7. For a \in Range(BT ), it holds that

\| a\| \scrF DistB\scrF \ast (\beta , \^\beta ) \geq 
\Bigl\langle 
a, \beta  - \^\beta 

\Bigr\rangle 
.

Proof. Assume a = BT s and let t = argmint\in Z( \^\beta ) \| \beta  - t\| \scrF \ast . Then it holds that

\| a\| \scrF DistB\scrF \ast (\beta , \^\beta ) = \| BT s\| \scrF \| \beta  - t\| \scrF \ast \geq 
\bigl\langle 
BT s, \beta  - t

\bigr\rangle 
= \langle s,B\beta  - Bt\rangle 

=
\Bigl\langle 
s,B\beta  - B \^\beta 

\Bigr\rangle 
=
\Bigl\langle 
BT s, \beta  - \^\beta 

\Bigr\rangle 
=
\Bigl\langle 
a, \beta  - \^\beta 

\Bigr\rangle 
.

Proof of Theorem 4.2. Recall from (25) that for both step-size rules it holds that

(27) Em+1[L(\beta 
m+1)] \leq L(\beta m) - 1

2\sigma 
\| \nabla L(\beta m)\| 2\scrF .

Moreover, it follows from (24) that L(\beta m+1) \leq L(\beta m) (with probability one),
and thus for any iteration m, with probability one, we have \beta m \in \scrL \scrS 0. Noting that
\nabla L(\beta m) \in Range(BT ) and by using Proposition 4.7 we have

Em+1[L(\beta 
m+1)] \leq L(\beta m) - \langle \nabla L(\beta m), \beta m  - \beta \ast \rangle 2

2\sigma DistB\scrF \ast (\beta m, \beta \ast )2
\leq L(\beta m) - \langle \nabla L(\beta m), \beta m  - \beta \ast \rangle 2

2\sigma Dist20

\leq L(\beta m) - (L(\beta m) - L(\beta \ast ))2

2\sigma Dist20
,

where the second inequality is due to \beta m \in \scrL \scrS 0 (almost surely), and the third in-
equality follows from the convexity of L. Taking expectation with respect to \xi m, we
arrive at

E\xi m+1 [L(\beta 
m+1)] \leq E\xi m [L(\beta m)] - E\xi m [(L(\beta m) - L(\beta \ast ))2]

2\sigma Dist20

\leq E\xi m [L(\beta m)] - (E\xi m [L(\beta m) - L(\beta \ast )])
2

2\sigma Dist20
.

Now define \delta m := E\xi m [L(\beta m) - L(\beta \ast )]. Then we have \delta m \geq 0 and

\delta m+1 \leq \delta m  - \delta 2m
2\sigma Dist20

.

Noticing that \delta m+1 = E\xi m [Em+1[L(\beta 
m+1) | \xi m] \leq E\xi m [L(\beta m)] = \delta m, we have

\delta m+1 \leq \delta m  - \delta m\delta m+1

2\sigma Dist20
.

Dividing both sides by \delta m\delta m+1, we arrive at

1

\delta m+1
\geq 1

\delta m
+

1

2\sigma Dist20
.

Hence, we have that
1

\delta M
\geq 1

\delta 0
+

M

2\sigma Dist20
,

which completes the proof of the theorem.
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5. Numerical experiments. In this section, we present computational exper-
iments discussing the performance of RGBM for solving classification and regres-
sion problems with tree stumps as weak learners. Our code is publicly available at
https://github.com/haihaolu/RGBM.

Datasets. The datasets we use in the numerical experiments were gathered from
the LIBSVM library [6]. Table 1 presents basic summary statistics of these datasets.
For each dataset, we randomly choose 80\% as the training dataset and the remainder
as the testing dataset. In our experiments, we use the squared \ell 2 loss for the regres-
sion problem. To be consistent with our theory (i.e., to have a strongly convex loss
function), we use a regularized logistic loss with a small parameter d = 0.0001 for the
classification problems (see section 4).

Table 1
Basic statistics of the (real) datasets used in numerical experiments. The training/testing

datasets are obtained by a 80\%/20\% (random) split on these sample sizes.

Dataset Task \# Samples \# Features
a9a classification 32,561 123

colon-cancer classification 62 2,000
rcv1 classification 20,242 47,236

YearPrediction regression 463,715 90

RGBM with tree stumps. All algorithms consider tree stumps (see (5)) as
the weak learners, as described in section 1.2. In our experiments (involving datasets
with n > 10,000), to reduce the computational cost, we decrease the number of
candidate splits for each feature by considering 100 quantiles instead of all n quantiles
(corresponding to n samples). (We note that this simply reduces the number of weak
learners considered, and our methodological framework applies.) This strategy is
commonly used in implementations of GBM, e.g., XGBoost [7]. For each feature, we
consider the candidate splitting points according to the percentiles of its empirical
distribution; thus there are in total 100p weak learners. All the tree stumps that
perform a split on one feature are considered as a group---thereby, resulting in p
groups. In RGBM, we randomly choose t out of p features and consider the 100t
features as the set J , among which we pick the best weak learner to perform an
update. The values of t are chosen on a geometrically spaced grid from 1 to p with
five values for each dataset. In particular, the case t = p corresponds to traditional
GBM.

Performance measures. Figure 5 shows the performance of RGBM with dif-
ferent t values. The x-axis is the running time (in seconds). All computations were
carried out on MIT Sloan's Engaging Cluster on an Intel Xeon 2.30GHz machine (one
CPU) with 10GB of RAM memory. The y-axis denotes the quality of solution (or
the data fidelity) obtained, i.e., the objective value, for both the training and testing
datasets.

Comparisons. For all datasets, RGBM with a medium t value leads to a model
with the smallest training error with the same running time. This demonstrates the
(often significant) computational gains possible by using RGBM. For datasets with
n \gg p, the profile of the testing loss is similar to that of the training loss. The colon-
cancer dataset is a high-dimensional problem with p \gg n, and its training/testing
profile is somewhat different from the other datasets---here, the model with the best
test error corresponds to a moderately large training error, and models with the
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RANDOMIZED GRADIENT BOOSTING MACHINE 2805

Fig. 5. Plots showing the training optimality gap (in log scale) and testing loss versus running
time for four different datasets. We consider RGBM for different t values (with the largest cor-
responding to GBM). The general observations are similar to that in Figure 1---we get significant
computational savings by using a smaller value of t, without any loss in training/testing error.
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2806 HAIHAO LU AND RAHUL MAZUMDER

smallest training error lead to poor generalization. In many examples, we observe
that a choice of t in the interior of its range of possible values, leads to a model
with best test performance. For many examples (e.g., the third and fourth rows),
we see that the testing error profiles saturate near the minimum even if the training
error continues to decrease. The last two observations empirically suggest that the
randomization scheme within RGBM potentially imparts additional regularization
resulting in good generalization performance.

6. Discussion. In this paper we present a greedy coordinate descent perspective
of the popular GBM algorithm, where the coordinates correspond to weak learners and
the collection of weak learners/coordinates can be exponentially large. We introduce
and formally analyze RGBM, a randomized variant of popular GBM. RGBM can be
thought as a Random-then-Greedy Coordinate Descent procedure where we randomly
select a subset of weak learners and then choose the best weak learner from these can-
didates by a greedy mechanism. This presents a formal algorithmic justification of
common heuristics used within the popular GBM implementations (e.g., XGBoost).
From an optimization perspective, RGBM can be interpreted as a natural bridge be-
tween greedy coordinate descent on one end and randomized coordinate descent on
the other. Our Random-then-Greedy Coordinate Descent procedure can be used as a
stand-alone algorithm and can be potentially employed in machine learning contexts
where coordinate descent is a popular choice [40]. On a related note, recent develop-
ments in large scale coordinate descent---such as the works of [36] and [37]---may be
used to improve upon our proposed coordinate descent procedure (and in particular
RGBM). We derive new computational guarantees for RGBM based on a coordinate
descent interpretation. The guarantees depend upon a quantity that we call MCA
(Minimum Cosine Angle) relating to the density of the weak learners or basis elements
in the prediction space. The MCA quantity seems to bear some similarities with the
Cheung--Cucker condition number [8, 33] used to analyze computational guarantees
of solving feasibility problems in a linear system. A precise connection between these
quantities does not seem to be straightforward, and a detailed investigation of their
links is an interesting direction for future research.

The focus of our paper is on the algorithmic properties of RGBM---in terms of
minimizing the empirical loss function as opposed to the population risk. Boosting
is empirically known to lead to excellent out-of-sample properties by virtue of its
implicit regularization properties [18, 39, 43] that are imparted by the algorithm. As
our numerical experiments suggest, RGBM appears to have superior generalization
properties by virtue of its random-then-greedy selection rule as opposed to a pure
greedy method (as in GBM). A formal explanation of the generalization ability of
RGBM is not addressed in this work and is an important topic of future research.

Acknowledgments. The authors would like to thank Robert Freund for helpful
discussions and feedback. The authors would also like to thank the Associate Editor
and reviewers for their helpful feedback that helped us improve the paper.
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