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Abstract

We consider the problem of kernel classification with nonignorable missing data. Instead
of imposing a fully parametric model for the selection probability, which can be quite sensitive
to the violations of model assumptions, here we consider a semiparametric exponential tilting
selection probability model in the spirit of Kim and Yu (2011). In addition to the existing
parameter estimators, we also develop some new estimators of the unknown components of the
model that are particularly suitable for classification problems. We also study various strong
optimality properties of the proposed kernel-type classifiers.
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1 Introduction

In recent years, the problem of statistical estimation, prediction, and inference with nonignorable
missing data has received considerable attention. This is the situation where, unlike the missing
at random assumption, the probability that a variable is missing depends on the variable itself as
well. Recent key results on nonignorable missing response data include the landmark paper of Kim
and Yu (2011) as well as those of Zhao and Shao (2015), Shao and Wang (2016), Morikawa, et
al. (2017), Zhao et al. (2017), Uehara and Kim (2018), Morikawa and Kim (2018), Morikawa and
Kano (2018), Fang et al. (2018), O’Brien et al. (2018), Maity et al. (2019), Sadinle and Reiter
(2019), Zhao et al. (2019), Yuan et al. (2020), Chen et al. (2020), and Liu et al. (2021). As
discussed in virtually all of the above cited papers, nonignorable missing data mechanisms pose
major challenges in terms of the estimation of various unknown quantities in the model.

In the context of predictive models (as in regression and classification), where a response variable
Y is to be predicted based on the covariates X € R Kim and Yu (2011) considered the following
model where Y may be missing nonignorably according to

w(@.y) = P0=11X ==Y =y} = [+ explo(a)} -explyy)] . 1)

where the indicator variable § = 0 if Y is missing (and § =1, otherwise). Here g is a completely
unspecified function and + is an unknown parameter. Additionally, Kim and Yu (2011) developed
a kernel estimator of the function exp{g(x)} for the case of a known 7. As for the parameter -,
these authors assume that it can be estimated from an independent external data; this approach
has been further studied and refined by, for example, Zhao, et al. (2013) and Tang, et al. (2014),
who still need v to be estimated from some available external data. To circumvent the requirement
of external data, Shao and Wang (2016) showed that if the function ¢g() in (1) depends only on
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some subset of the covariates in @, then all unknown components of the model will be identifiable
and can be consistently estimated; their proposed method is based on estimating equations.

The focus of this article is on the problem of nonparametric classification in the presence of
nonignorable missing data, where we develop new kernel-type classification rules that are asymptot-
ically strongly optimal under fairly standard assumptions. Here, optimality means that the error of
the proposed classification rule converges to that of the theoretically best (but unknown) classifier.
This problem has only been tackled for the simpler case of Missing At Random (MAR) scenarios
in the literature; see, for example, Reese and Mojirsheibani (2017) and Mojirsheibani and Reese
(2017). In fact, to the best of our knowledge, our results in this paper are the first to tackle the
problem of nonparametric classification with nonignorable missing data.

Our contributions in this paper are two-fold. First, we propose an initial kernel-based classifier
that takes into account the nonignorable selection probability in (1); we also derive probabilistic
upper bounds on the performance of this classifier. These bounds depend on the quantity P(|y—-y| >
¢), where c is a fixed constant and 7 is any estimator of y. As a result, the optimality of this classifier
will depend on the quality of 7. For example, the estimator of Kim and Yu (2011) works well but
it requires external data. Similarly, the estimator of Shao and Wang (2016) requires the function
g in (1) to depend only on some parts of x.

The second part of our contributions involves a new estimator of the nonignorability component
©(y) := exp{yy} in (1). The new estimation approach, which also works for more general functions
©(y), does not require any external data (as in Kim and Yu (2011). This approach also evades
the conditions imposed by Shao and Wang (2016) on the function g in (1). Furthermore, we show
that the corresponding revised kernel classifier is strongly asymptotically optimal with this new
estimator. This improvement owes to the fact that our new estimator, which is based on the
approximation theory of totally bounded classes of functions, is selected to minimize a measure of
the empirical error of the proposed kernel classifier (see (15)). Our key results along these lines
include the exponential performance bound in Theorem 3 and its consequence in terms of the strong
optimality of the proposed classifier.

In passing, we also note that although our results are stated for kernel classifiers, similar results
can be obtained if we replace kernels with other popular methods such as nearest neighbors and
cubic histogram classification rules. However, due to page limitations and for the sake of concrete-
ness, we only present kernel rules here. This paper is organized as follows. Section 2 presents the
main results. Theorem 3 provides asymptotic exponential performance bounds on the deviations
of the misclassification error of the proposed kernel classification rule from that of the theoretically
optimal (but unknown) classifier. Such bounds in conjunction with the Borel-Cantelli lemma im-
mediately yield strong (i.e., almost-sure) optimality results for the proposed classifiers. All proofs
are deferred to Section 4. Furthermore, several numerical examples are presented in Section 3; these
numerical results confirm the good finite-sample performance of the proposed kernel classifier.



2 Main results

2.1 Some background

To state our main results, consider the following standard two-group classification problem. Let
(X,Y) € R? x {0,1} be a random pair where the class variable Y has to be predicted based on
the covariate vector X. In classification, one seeks to find a function (a classifier) ¢ : R — {0,1}
for which the misclassification error, defined by L(1)) := P{¢(X) # Y}, is as small as possible.
The best classifier, denoted by g, is the one that has the smallest misclassification error, i.e.,
P{yp(X) # Y} = minypa_,q,13 L(1). If we let 1) be the class conditional probability for class 1,
ie.,

ne)=E[Y|X=z] =P{Y =1|X =z}, (2)

then it is straightforward to see that the best classifier is (see, for example, Devroye et al. (1996,

Sec. 2))
1 x 1
wB(w)z{l fal@) > 5 (3)

0 otherwise.

Clearly, in practice, the regression function n(x) is not available because the distribution of
(X,Y) is virtually always unknown. One general approach in nonparametric setups is to replace
the unknown regression function n(x) in (3) by some estimate, say 77(x), based on the iid data
D, = {(X1,Y1),...,(Xn,Yn)}, and use the plug-in version of (3) given by v, (z) = 1 if 7j(z) > :
(otherwise, ¢, (z) = 0).

Now suppose that some of the Y;’s may be missing nonignorably, i.e., the probability that
Y; is missing depends on Y; (and possibly on X;). In order to take this fact into account when
constructing sample versions of (3), first observe that for each fix v in (1), the regression function
n(x) in (2) can also be written as (see Lemma 3 in Sec. 4):

E [0Y exp{7Y}| X =]
E [0 exp{7YV}| X = z]

n(x)=E[0Y|X =] + -E[l - §|X = =z]. (4)
Next, let 5 be any estimator of 7; this could be, for example, the estimator proposed by Shao
and Wang (2016), or the estimators discussed by Kim and Yu (2011) based on external data. In
general, here we do not require 4 to be independent of the data D,,. Now, consider the kernel-type

estimator of n(x) given by
iz) = Y1 0YiK (@ = X3)/h) | 35, diYiexp {FYi} K((@ — X4)/h)
2zt K((@ — X3)/h) Ylicy diexp{YYi} K((z — X4)/h)
o 2ici(l = 0)K((z — X3)/h)
Yo K((@ = X3)/h) 7

where K : R* — R_ is the kernel used with bandwidth h. Therefore, we have the plug-in kernel

()

type classification rule

- _{1 if () > 3 ©)

0 otherwise.

How good is the classifier zz;n(a:) in (6) as compared to the optimal classifier 15 in (3)? To answer
this, we will assume that the kernel K is regular (Devroye and Krzyzak (1989)): A nonnegative



kernel K is said to be regular if there are constants b > 0 and r > 0 such that K(u) > bI{u € Sy}
and fsupyewrsw K(y) du < oo, where So, is the ball of radius v with center at the origin.

We also need the following assumption regarding the missing probability mechanism 7 (&, y) in
(1), which is also used by Kim and Yu (2011). It implies, in a sense, that Y can be observed with
a nonzero probability for all values of  and y.

Assumption Al. inf,, n(x,y) =: 7., > 0, for some arbitrarily small m,;,.

Our first result below provides upper bounds on the performance of the proposed classifier, un-
der rather standard assumptions, which can then be used to study the strong/weak optimality

properties of this classifier (see Remark 1).

Theorem 1 Let 7 be any estimator of v in (1) and let n(x) be the kernel estimator appearing
in (5), where the kernel K is regular, and suppose that assumption A1 holds. Let @n(m) be the
classifier defined via (6) and (5), and suppose that h — 0 and nh® — oo, as n — oo. Then, for
every € > 0, any distribution of (X,Y), and n large enough, one has

P{La(f) = Ls) >} < cre™ e 4o P{|7 =] > o}, (7)

where c1, ..., c5, and Cy are positive constants not depending on n, L(vp) = P{ys(X) # Y}, and
Ly, () = P{’(/)n(X) % Y‘ Dn} is the conditional error of the classifier 1.,.

Remark 1 Due to the presence of the term P{|y — | > Co} in (7), the bound given in Theorem
1 falls short of the classical exponential bounds established by Devroye and Krzyzak (1989) for the
usual kernel estimators with no missing data. This is the price to pay to allow 7 to be any arbitrary
estimator of v in Theorem 1. Therefore, (7) does not guarantee the almost sure convergence of the
error Ln(@\n) —%5 L(1p), unless P{|7—~y| > Cy} goes to zero fast enough (e.g. P{|y—~| > Cy} <
n=¢ for some a > 1). Of course, if ¥ =P v (as in, for example, Kim and Yu (2011) or Shao and
Wang (2016)), then weak consistency follows immediately, i.e., Ln({p\n) =P L(p).

2.2 A more general approach

Remark 1 together with Theorem 1 show that the performance of the initial proposed classifier
zzn(:c) in (6) depends on the quality of 7. Furthermore, the currently available estimators of
7 require some stringent conditions that may not hold in practice. For example, the estimator
proposed by Kim and Yu (2011), and further refined by others such as Zhao, et al. (2013) and
Tang, et al. (2014), still requires the availability of the missing y values for a randomly selected
validation subset of the nonrespondents through external data. Similarly, for the estimator of Shao
and Wang (2016), one must find a part z of the vector x = (u, z) that is not involved in the function
g in (1), i.e., one must work with some g(u) instead of g(x) in the definition of 7(x,y) in (1). These
assumptions are needed in order to be able to estimate various parameters consistently. In this
section, we propose alternative estimators that still yield strongly optimal kernel classifier without
the types of assumptions imposed in the above cited references. Our estimators are based on the
approximation theory of totally bounded classes of functions. More specifically, consider the more

general nonignorable missing probability model

r@.y) = mo(@.y) = [L+expo(@) )] ®)
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where ¢(y) > 0 is unknown. To develop a theoretical framework for our estimator, we consider the
situation where ¢ belongs to a totally bounded class of functions F and y may be any bounded
variable. We then apply our results to the particular case of interest where ¢(y) = € as in (1)
but with y € {0, 1}. More specifically, let F be a given class of functions ¢ : [-L, L] — (0, B], for
some B < oco. Fix € > 0 and suppose that the finite collection of functions F. = {¢1,...,¢nw}s
@; : [-L,L] — (0,B], is an e-cover of F, i.e., for each ¢ € F, there is a ¢! € F. such that
o — ¢ |loo < €; here, ||[|oo is the usual supnorm. We also note that F C Ui<i<n(e) Blgi, €), where
B(yi, €) is the ball of functions centered at ¢;, with ||||s-radius equal to €. The cardinality of the
smallest e-cover of F is called the covering number of the family F and will be denoted by N (e, F).
If N(e, F) < oo for every € > 0, then the family F is said to be totally bounded (with respect to
llls). For more on such concepts from the approximation theory, one may refer to, for example,
van der Vaart and Wellner (1996; p. 83). The following simple example illustrates this approach.

Comnsider the class of functions F of the form

e if |y| <L, |y] <M, (forsome L < oo and M < o0)
ely) = { (9)

0 otherwise,

which is in the spirit of the model proposed by Kim and Yu (2011); see the term exp{vyy} in (1).
Now, let

2ie MLexp{ML} . MLexp{ML}
= — " wh B Bt & S 8 I P (i S’
T Texp(ML}® O° { e J == { e
and define the set
2ie MLexp{ML} . MLexp{ML}
O, =<v=| | ———| < i < |———| P U {-M} U {M}.
{7 Lexp{ML} [ e J—Z—[ e (=M} U M)

Then F, = {ew ‘ —L<y<L, ~vE€ @g} is an e-cover of the family F of functions of the form

(9). To see this, observe that if v* € [~ M, M] with the corresponding function ¢*(y) = ¥’V € F,
and if ¥ € O, is the closest value to v*, then for every ¢ > 0

sup [e7¥ — e%‘ = sup ‘y eXp{Vy}‘ |7 ="|, where 7€ (FAY*, VYY)
—L<y<L —L<y<L
< Lexp{ML}-|y—+"|
€
= 8’

where we have used the fact that the distance between v* and its nearest value in O is bounded by
(Lexp{ML})~'e. Therefore, the class F is totally bounded and its e-covering number is bounded
by the quantity 2|MLexp{ML}e™!| + 3. Of course, in the case of classification with y € {0,1},
the constant L becomes 1 everywhere.
To construct our estimators, for each ¢ € F define the classifier
Pol@) = { i Rlwse) > ) (10)

0  otherwise,



where R(x; ) := E[Y|X = x|. The function R(w;¢) can also be expressed as (see Lemma 3)

E[0Y (V)| X =]
E6p(Y)|X =x]

R(z;p) = E[§Y|X =z] + E[l—-0|X = =z). (11)

Here, F is any class of functions of the form ¢ : [0,1] — (0, B] for some finite B. Also let ¢* be
the true value of ¢, i.e., we have

L* == P{y(X)#Y} = inf P{Y(X)#Y}; alsoput ¢*(x):= 1, () (12)

P:RE—{0,1}

i.e., 1o, which is obtained by substituting ¢* for ¢ in (10) and (11), is the best classifier. Of
course, ¢* may or may not be in F. Now, let D, = {(X1,Y1,01),..., ((Xn,Yn,0n)} represent
the data, where ¢; = 0 if Y; is missing (and d; = 1 otherwise). To present our estimators and
various classifiers, start by randomly splitting D,, into a training sample Dy, of size m and a testing
sequence Dy of size £ = n —m. Here, D,,, UD; = D,, and D,, "Dy, = &. The choices of m and £ will
be discussed later. Now, for each ¢ € F, define the sample based classification rule constructed
based on D, by

~ 1 if Ron(e; 1
Y o(T) = iR (a:, ) > 3 for each ¢ € F, (13)
’ 0  otherwise,

where 7/?\,m(:13, ) is the kernel estimator of the regression function R(z; ¢), based on D, given by
R (z:p) = Zii(XuYi,éi)EDm 6:;YiK((w — X;)/h)
e Zz’:(Xi,Yi,&‘)e]D)m K((z — Xi)/h)
Di(X 1 Yi0:)eD,, 0 Yi (Vi) K ((x — X3)/h)
D ii(X5,Yi,01)€Dy, 06 P (Yi) K (& — X) /h)
y D i (X1.Yi0:)eDy, (L = 0) K (@ — X) /h)
DX vion)en,, K@ — X;)/h)

Next, for each ¢ € F, let fg(zzmyﬁp) be the weighted empirical error of @m,@ committed on the

(14)

testing sequence Dy, i.e., for each ¢ € F,

ug) = €1 Y s Mol X0) £ Vi) (15

(X 4,Y5,04) EDZ
where, for each ¢ € F the quantity 7, in the denominator of (15) is given by
Zj:(Xj,Y}',5j) €y, (]‘ - 5])K(('XZ - X])/h)
25 (X,.v3.8,) €y 05 0(Y) K (X5 — X5)/h)
We note that (16) is justified as a kernel estimator by the fact that the term exp{g(x)} in (8) can

alternatively be written as

~1
eYi)| - (16)

To(X3, Y) = |1 +

_ EB[1-4|X =2x]
exp{g(w)}—Ewy)‘X:m]-

Remark 2 below provides some explanation for the type of empirical error employed in (15). Next,

(17)

fix e > 0 and let Fr = {¢1,..., ON(e } C F be any e-cover of . Then, our estimate of the unknown
function ¢ is given by
$ = pn = argmin Lé(wm,tp)a (18)
peFe
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where we note that @ depends on the entire data D,. Finally, our proposed classifier under the
general setup of Section 2.2 is

- { 1 if Ry(a;9) > 4 (19)

0  otherwise,

where ﬁ,m(m, ®) is obtained from ﬁm(a), ) upon replacing the function ¢ by @ everywhere in (14).

¢ in (19) signifies the fact that it depends on the whole

data. Of course, if the estimator ¢ is replaced by a nonrandom function ¢ € F, then the notation

In our notation, the presence of n at @/[)\n

{b\n@ will immediately reduce to me which is given by (13).

Remark 2 Qur definition of the empirical error in (15) looks quite different from the more usual
empirical error fg(z/ﬁ\mw) = ¢! Zi:(Xi7Y;,6i)6Dz I{@?)\m7¢(Xi) # YZ} that counts the number
of errors committed by the classifier {/;\mw on the testing sequence Dy. This is because fg(ql)\m#,)
is not necessarily computable (since some of the Y;’s are missing). Furthermore, working with
the alternative quantity, ZZ({b\m,w) = ¢! Zi:(Xi;Yiylsi)EDlZ 5Z~I{12)\m7¢(Xi) % Yi}, is not/:qoing to
resolve the issue as it is no longer an unbiased estimator of the error probability Ly, (1m.,) =
P{zfp\m,w(X) 2 Y‘Dm}, (not even asymptotically), which is due to the fact that the expected value
of fzf, conditional on D, is not equal to Lm(izm7<p). Of course, the more natural choice is to use
mo(X3,Y;) instead of T,(X;,Y;) in the denominator of (15), but m, is unknown.

To study the performance of the proposed classifier 121\,1@(:1:) in (19) and the closeness and conver-
gence of its error rate to that of the optimal classifier 1)* given by (12), first let

Ln(&)\m@) = P{&)\n,@(X) 7é Y‘Dn} and L* = L(’t,b*) = P{¢*(X) 7é Y}7 (20)

and observe the fundamental decomposition

Ln(hug) =L = [Ln(Bug) = inf Liwy)| + [ inf Lissy) —L°). (21)

where L(1,) = P{¢,(X) # Y} is the misclassification error of any classifier v, of the form (10).
The first bracketed term in (21) is referred to as the estimation error, whereas the second term is
the approximation error. To investigate their properties, we first state a number of assumptions

which are quite standard in kernel regression estimation:

Assumption A2. The probability density function f(x) of X is compactly supported and is
bounded away from zero and infinity on its compact support. Additionally, the first-order partial
derivatives of f exist and are bounded on the interior of its support.

Assumption A3. The kernel K satisfies [pq K(x)dr = 1 and [y |zi|K(z) de < oo, for z; €
(z1,--- ,2q)" = x. Also, the smoothing parameter h satisfies h — 0 and mh?¢ — oo, as n — co.

Assumption A4. The partial derivatives a%iEWX = ] and %E[&p(YﬂX = ] exist for
1=1,...,d, and are bounded on the compact support of f.

Assumption A5. E[6 p(Y)|X = x] > ¢, for p—a.e.z and each ¢ € F, for some finite @gp > 0.



Assumption A2 is often imposed in nonparametric regression to avoid having unstable estimates
in the tails of f. Assumption A3 is not much of a constraint because the choice of K is at our
discretion. We note that if m = [cn] for some ¢ € (0,1), then requiring nh? — oo is equivalent
to mh? — oo, however, we do not want to impose such restrictions on the choice of m. As-
sumption A4 is technical; in fact, the first part of Assumption A4 has already been used in the
literature (Cheng and Chu (1996)). Assumption A5 is not as restrictive as it appears because
E§¢(Y)|X] = E[E{0p(Y)|X,Y}|X] = E[p(Y)E(§|X,Y)|X] > mminE[p(Y)|X], as. (by As-
sumption Al), and the fact that ¢(y) > 0 for all y. Therefore, Assumption A5 is weaker than
requiring E[p(Y)|X] > ag > 0, a.s., for some oy > 0. The following result deals with the estima-
tion error, i.e. the error represented by the first bracketed term on the right side of (21). More
specifically, we have

Theorem 2 Let F be a totally bounded class of functions ¢ : [0,1] — (0, B], for some B < oo. Let
the selection probability w be as in (8) and suppose that assumptions A1 — A5 hold. Then for every
B >0, every € > 0, and n large enough,

P{Ln(zﬁn@) — 1é1]f_ L(1,) >ﬁ} < 2|]:€|e—4,62/32Jr Cog €00
2] €
+ ELFE\'(Czoe’cﬂ””hdﬁz4—017676w7nhd)

where ag and co1 are positive constants depending on B, but not on m or £. Here, c17,c18, and ¢y

are also positive constants, not depending on m or £ or (.

Theorem 2 in conjunction with the Borel-Cantelli lemma immediately yields the strong convergence
of the estimation error (to zero), i.e., Ln(in@) —infue 7 L(1h,) =% 0, whenever (m h9)~tlogl —
0, as n — oo. To deal with the approximation error in (21), suppose that ¢* € F, (where ¢* is as
in (12)), and let ¢ € F. be such that ¢* € B(p,¢). Such a ¢ exists because F. is an e-cover of F
and ¢* € F.  Now let R(z;¢) be as in (11) and observe that in view of the results of Devroye et
al. (1996, p.93)

inf L(y,) —L* < L(yg) — L"

peF:
< 2 [ [Ri@: ) ~ Riai ") utda)
< ko sup |@(y) —¢*(y)|, by Lemma 4
0<y<1
< Koe, for some constant kg > 0, (22)

where the last line follows because ¢* € B(p,¢). Now, the bound in (22) shows that the second
term on the right side of (21) can converge to zero if € is replaced by a decreasing sequence &, | 0,
as m — oo. At the same time, ¢, should not converge to zero too rapidly because F.,, — oo, as
em 4 0, and, as a result, the first term on the right side of (21) may not necessarily converge to
zero anymore (in view of the bound in Theorem 2). To address these points more formally, we first
state the following theorem regarding the error difference Ln(&)\n@) — L*, (i.e., the left side of (21)),
followed by a corollary that captures the key points regarding the asymptotic choices of m, ¢, and
em that yield strong optimality results for the proposed classifier.



Theorem 3 Suppose that the assumptions of Theorem 2 hold. Then for every e, > 0 satisfying
em 4+ 0, as m — oo, every B > 0, and n large enough

P {Ln(ﬁ)\m@) —L* > ﬂ} < 20F,, | exp{—A4,. l}+ co5 exp {—BB,Emm}
+ 0| F]- (026 exp {—Cﬁ,smmhd} + co7 exp { — 28 mhd}),

whenever ¢* € F, where A, , B, _ , and C,_  are posiltive constants depending on [ and ey,

B.em
through the positive quantity tp, = (8 — ko £m) only, but not depending on m or B directly, and kg
is as in (22). Furthermore, cos, Cog, Co7, and cag are positive constants not depending on m, £, f3,

oT Em.-

Theorem 3, which provides exponential bounds on the performance of the error of
the proposed classifier, can be viewed as a more general version of the classical re-
sult of Devroye and Krzyzak for kernel classifiers (see Theorem 10.1 of Devroye et
al. (1996)). Additionally, Theorem 3 in conjunction with the Borel-Cantelli lemma
yields the strong optimality of the proposed classifier. More specifically, we have the
following corollary

Corollary 1 Suppose that the conditions of Theorem 3 hold. If ¢, | 0, as n — oo, and
¢~tlog|F., | =0, (mh®)~'logl—0, and (mh?)~!log|F.,,|—0,

then 121\,17@ 1s strongly optimal, 1.e.,
Ln(&n,@) B S N

Remark 3 The choice of the bandwidth h is always important in practice. It is well-understood
that the optimal bandwidth that minimizes quantities such as the MISE or ISE is not necessarily
optimal in kernel classification (in the sense of minimizing the classification error); see, for ezample,
Devroye et al. (1996; Sec. 25.9). In fact, a counter-ezample is presented in Theorem 25.9 of the
cited monograph, where it is shown that the optimal bandwidth based on the MISE can result in large
misclassification errors. As argued in Chapter 25 of the cited monograph, the optimal bandwidth
hop: 18 the one that minimizes the error Ln(zi)\n@) in (20) which is unfortunately always unknown;
see Devroye et al. (1996; Sec. 25.1). In a similar vein, Hall and Kang (2005) noted that for kernel-
based classification with univariate distributions and just two classes, the optimal bandwidth can
be different for each class and its asymptotic magnitude can vary from terms of order O(n='/%) to
O(nil/g) depending on the conditions imposed on the relationship between higher order derivatives
of the marginal densities. Furthermore, their results show that there are no closed form expression
for any one of their bandwidths. These issues are further compounded by the fact that finding a
data-dependent bandwidth Bom which is in some sense close to h,, does not necessarily imply the
closeness of the corresponding misclassification errors. Since, in classification, consistency (i.e.,
the convergence of Ln(&)\n,@) to L*) is often the minimum requirement for a classifier, ;Lopt must
be chosen in such a way that the resulting classifier will be consistent; see Devroye et al. (1996;
p-424). To that end, several methods have been proposed in the literature for finding data-dependent
bandwidths that yield the minimum requirements; these methods include (i) minimizing the Apparent
Error Rate that chooses h > 0 to minimize the error committed by the classifier on the data itself,
and (i) the cross-validation method; see Devroye et al. (1996; Ch. 25) for detail.



3 Numerical Examples

In this section we perform some numerical work to study the performance of the proposed classifier.

EXAMPLE 1.
In this example, we consider the prediction of the class variable, Y = 1 or 0, based on the vector
of covariates X € RY, where d = 50 and d = 100. If Y =1 (i.e., class 1) then

X ~ Nyg(0, ¢%), ¢>0, where ¥ = (0y), with o =271 i i=1,...4d, (23)

where ¢ > 0 will be specified later. When Y = 0 (class 0) then X is a d-dim standard Cauchy
random vector with independent components, i.e., the elements of X are independent standard
Cauchy random variables. The unconditional class probabilities are P{Y =1} = 0.5 = P{Y = 0}.
The fact that both distributions are centered at zero makes the problem of classification rather
challenging here. Next, we consider several response models.

Response Model A [Nonignorable].

m(z,y) = [1 +exp {ap + 2521 it + vy}

Here, we consider four models under A. The choices of the coefficients below produce approximately

-1

50% missing data:

Model Al.
For d = 50: (v, ap) = (0.5,—0.35), a; = —0.11 for 1 <i < g, and a; = 0.07 for % <1 <d.
For d = 100: (v, ap) = (0.5,—0.35), a; = —0.04 for 1 <i < %, and a; = 0.06 for g <1 <d.

Model A2.

For d = 50: (v, ap) = (1.5,—0.96), a; = —0.03 for 1 < i < %, and «; = 0.06 for % <1 <d.
For d = 100: (v, ap) = (1.5,—0.98), c; = —0.05 for 1 <4 < &, and a; = 0.06 for ¢ < i < d.
Model AS.

For d = 50: (v, ) = (2.5,—1.6), a; = —0.03 for 1 <i < ¢, and a; = 0.05 for ¢ <i < d.
For d = 100: (v, ap) = (2.5, —1.6), a; = —0.07 for 1 <i < 4, and o; = 0.08 for ¢ < i < d.

Model A4.
For d = 50: (v,ap) = (5,—-3.3), a; = —0.04 for 1 <i < %, and a; = 0.04 for % <1 <d.

For d = 100: (v, a0) = (5,-3.4), a; = —0.08 for 1 <i < %, and o; = 0.11 for ¢ < i < d.

The next three models do not satisfy the response probability assumption (1); they are intention-
ally included to examine the robustness of the proposed classifiers against departures from model

assumptions.

Response Model B [Nonignorable with Interaction).
-1
To(®,y) = [1 + exp{ao + a1 z1 + agzs + sz + cuzry + vy}t -
In each of the following four models under B, the coefficients are chosen to produce approximately
50% missing data (for both d = 50 and 100)

Model B1. (v,a0) = (0.5,—-0.3), a1 = 0.4, ag = —0.3, a3 = —0.5, and ay = —0.2.
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Model B2. (v,ap) = (1.5,—0.8), a1 = 0.4, ap = 0.1, a3 = —0.7, and ay = —0.2.
Model B3. (v,ap) = (2.5,—1.1), a1 = —0.7, ay = —0.8, a3 = —1.9, and ay = —0.2.
Model B. (v,aq) = (5,—1.65), a3 = —0.6, ap = —0.7, a3 = —1.3, and ay = —0.2.

Response Model C [Nonignorable Probit Model].

To(x,y) = P{Z < oo + a1z + aszs + aszs + vy},
where Z ~ N(0,1). The coefficients below yield about 50% missing rate (for both d =50 and 100).
Model C1. (v,ap) = (0.5,—-0.5), a1 = —0.7, ap = 0.2, a3 = —0.2.
Model C2. (v,a0) = (1.5,—1.2), a1 = —0.9, ap = 0.3, a3 = —0.2.
Model C3. (v,a0) = (2.5,—1.7), a1 = 0.7, ap = 0.1, a3 = —0.5.
Model C4. (v,) = (5,-2.0), a1 =0.9, as = —0.3, a3 = —1.2.

Response Model D [Nonignorable sinusoidal].

-1

m(z,y) = [1 +exp {ag+ Li, i} - w(y)} , where ¢(y) = sin(ymy) +0.1, v €0, 1/2],
which is as in (8). It is also the same as (1) but with exp{~yy} replace by the above function ¢(y).
Here, we consider two models under D, each of which produces approximately 50% missing data:

Model D1.

For d = 50: (v, ap) = (0.2,1.05), a; = —0.05 for 1 < < % and a; = 0.06 for g <1 <d.
For d = 100: (,a9) = (0.2,1.1), a; = —0.06 for 1 < < % and a; = 0.07 for g <1 <d.
Model D2.

For d = 50: (v, ap) = (0.4,0.75), o = —0.08 for 1 < i < g, and o; = 0.09 for ¢ < i <d.
For d = 100: (y,g) = (0.4,0.74), o; = —0.06 for 1 < i < ¢ §, and o; = 0.04 for % <1 <d.

Four classifiers are considered here: the proposed kernel classifier in (19), where 7 is estimated
using the proposed estimator as well as the approach of Kim and Yu (2011). These are denoted
by QZ)\n,(’; and QZKy, respectively. We also consider the classifier of Mojirsheibani and Reese (2017),
denoted by @MR, and the complete-case kernel classifier, z,//)\cc, that only uses the complete cases. To
construct  various classifiers, we consider two sample sizes: n = 200 and 400. As for the external
data needed to construct the estimator of Kim and Yu, we employed 20% of the simulated missing
Y; values. Of course, in practice, one does not have external values of real data sets. For the new
estimator of y (equivalently, ¢(y) = exp{~yy}) we used the data-splitting approach outlined in Sec.
2.2 with m = 0.7n and ¢ = 0.3n = n — m, where 7y was selected to minimize (15) over a grid of
equally-spaced values of vy in [—M, M]. Here, we took M = 20 but a smaller value such as M =5
would have been sufficient.

As for the choice of the kernel, we used the standard Gaussian kernel, where the bandwidth was
determined using the cross-validation approach to minimize the empirical error of the classifier; see
Remark 3 for this choice. Next, the misclassification error of each classifier is estimated based on
an additional sample of 2000 observations generated in the same way as the original data (with
1000 from each class) and used as our “test” sample. The entire above process was repeated 500
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Table 1: Misclassification errors for Example 1 when the dimension of x is 50 and ¢=8 in (23).

Missing N N N
Response n  Model @bn 3 Yy Ymr Yee
A 200 A1l 0.1268 (0.0023) 0.1354 (0.0025) 0.3090 (0.0013) 0.1413 (0.0025
A2 0.1359 (0.0027) 0.1497 (0.0028) 0.3471 (0.0016) 0.1540 (0.0028
A3 0.1564 (0.0029) 0.1566 (0.0029) 0.3778 (0.0011) 0.1602 (0.0028)
A4 | 0.2157 (0.0036) 0.2232 (0.0037) 0.4228 (0.0012) 0.2325 (0.0037)
400 A1l 0.1069 (0.0019) 0.1117 (0.0015) 0.3047 (0.0010) 0.1208 (0.0015)
A2 0.1162 (0.0016) 0.1229 (0.0017) 0.3297 (0.0007) 0.1332 (0.0017)
A3 0.1065 (0.0013) 0.1163 (0.0016) 0.3503 (0.0007) 0.1283 (0.0016)
A4 ] 0.1839 (0.0021) 0.1847 (0.0023) 0.4216 (0.0011) 0.1993 (0.0023)
B 200 B1 0.1278 (0.0023) 0.1365 (0.0024) 0.3088 (0.0014) 0.1431 (0.0025)
B2 0.1363 [0.0029] 0.1499 (0.0026) 0.3501 [0.0015] 0.1590 (0.0029)
B3 0.1622 (0.0031) 0.1602 (0.0031) 0.3782 (0.0012) 0.1704 (0.0030
B4 0.2172 (0.0038) 0.2247 (0.0039) 0.4231 (0.0013) 0.2387 (0.0038
400 B1 0.1071 (0.0018) 0.1118(0.0015)  0.3046 (0.0009) 0.1201 (0.0016)
B2 0.1154 (0.0015) 0.1219 (0.0016) 0.3291 (0.0007) 0.1330 (0.0018)
B3 0.1070 (0.0014) 0.1177 (0.0017) 0.3509 (0.0007) 0.1294 (0.0017
B4 0.1848 (0.0022) 0.1858 (0.0023) 0.4221 (0.0010) 0.2049 (0.0024
C 200 C1 0.1294 (0.0018) 0.1378 (0.0017) 0.3093 [0.0009] 0.1469 (0.0016
C2 0.1379 (0.0017) 0.1531 (0.0015) 0.3519 (0.0007) 0.1664 (0.0012
C3 0.1834 (0.0014) 0.1907 (0.0015) 0.3592 (0.0006) 0.2115 (0.0016)
C4 0.2281 (0.0016) 0.2308 (0.0017) 0.4238 (0.0007) 0.2499 (0.0018)
400 C1 0.1252 (0.0016) 0.1309 (0.0014) 0.3066 (0.0009) 0.1402 (0.0015)
C2 0.1168 (0.0014) 0.1232 (0.0013) 0.3302 (0.0006) 0.1348 (0.0011)
C3 0.1012 (0.0010) 0.1128 (0.0011) 0.3243 (0.0005) 0.1426 (0.0013)
C4 0.1935 (0.0011) 0.1942 (0.0012) 0.4119 (0.0006) 0.2092 (0.0011)
D 200 D1 0.1342 (0.0025) 0.1476 (0.0030) 0.3548 (0.0015) 0.1598 (0.0031)
D2 0.1485 (0.0031) 0.1469 (0.0027) 0.3456 (0.0015) 0.1592 (0.0028)
400 D1 0.1159 (0.0022) 0.1202 (0.0023) 0.3448 (0.0011) 0.1356 (0.0024)
D2 0.1397 (0.0026) 0.1417 (0.0023) 0.3449 (0.0010) 0.1543 (0.0024)

times and the average errors, over the 500 Monte Carlo runs, were computed for each classifier,
each model, and each sample size n.

The results are summarized in Table 1 for 50-dim covariates with ¢=8 in (23). This value of ¢
inflates the normal variances, thus making it more challenging to discriminate between Normal and
Cauchy populations. The first two classifiers are based on the proposed kernel method, however
d)n,@ uses the data-splitting estimator of v outlined in Sec. 2.2, whereas ’l/JKY is based on the
estimator 7 of Kim and Yu (2011) which requires external data. As Table 1 shows, the error of
an@ is slightly better than that of QQJ\KY; this s despite the fact that @KY uses some external data
as well (it uses the values of 20% of the missing Y;’s). Clearly, external data is not available in
practice when dealing with real data sets. As the table shows, both of these classifiers perform
better than z/p\MR (which requires the MAR assumption) and the complete-case kernel classifier, zi)\cc.
These conclusions hold for the four response models A, B, C, and D. Table 2 presents the same
analysis for the case of 100-dim covariates. Here we took ¢=15 in (23) in order to make the task
of classification much more challenging (the variance of the normals is 15 here). The conclusion
based on this table is essentially the same as before: the proposed kernel classifier 1;”7@ works well
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Table 2:

Misclassification errors for Example 1 when the dimension of x is 100 and ¢=8 in (23).

Missing N N N
Response n  Model @bn 0 Yy g Yee
A 200 Al 0.1172 (0.0037) 0.1320 (0.0036) 0.3169 (0.0023) 0.1412 (0.0035
A2 0.1077 (0.0034) 0.1211 (0.0041) 0.3138 (0.0022) 0.1319 (0.0042
A3 0.1442 (0.0051) 0.1466 (0.0046) 0.3359 (0.0025) 0.1587 (0.0047)
A4 0.1865 (0.0038) 0.1874 (0.0036) 0.3551 (0.0015) 0.1988 (0.0038)
400 Al 0.1038 (0.0024) 0.1121 (0.0022) 0.3180 (0.0015) 0.1192 (0.0022)
A2 0.0960 (0.0023) 0.1211 (0.0028) 0.3369 (0.0017) 0.1230 (0.0029)
A3 0.1193 (0.0040) 0.1279 (0.0037) 0.3253 (0.0016) 0.1314 (0.0038)
A4 0.1685 (0.0033) 0.1777 (0.0032) 0.3599 (0.0014) 0.1851 (0.0034)
B 200 B1 0.1174 (0.0036) 0.1321 (0.0035) 0.3174 (0.0023) 0.1385 (0.0034)
B2 0.1080 (0.0038) 0.1225 (0.0043) 0.3140 (0.0024) 0.1274 (0.0045)
B3 0.1871 (0.0054) 0.1882 (0.0048) 0.3560 (0.0027) 0.1944 (0.0047
B4 0.1882 (0.0039) 0.1893 (0.0038) 0.3571 (0.0016) 0.1984 (0.0036
400 B1 0.1039 (0.0025) 0.1123 (0.0023) 0.3179 (0.0015) 0.1174 (0.0022)
B2 0.0958 (0.0022) 0.1198 (0.0026) 0.3365 (0.0018) 0.1245 (0.0027)
B3 0.1198 (0.0041) 0.1287 (0.0039) 0.3258 (0.0016) 0.1337 (0.0039
B4 0.1712 (0.0037) 0.1805 (0.0035) 0.3611 (0.0014) 0.1921 (0.0033
C 200 C1 0.1251 (0.0033) 0.1415 (0.0032) 0.3198 (0.0023) 0.1483 (0.0033
C2 0.1123 (0.0024) 0.1266 (0.0022) 0.3149 (0.0019) 0.1362 (0.0021
C3 0.1914 (0.0028) 0.1918 (0.0023) 0.3562 (0.0010) 0.1952 (0.0023)
C4 0.1927 (0.0023) 0.1930 (0.0021) 0.3568 (0.0008) 0.2012 (0.0022)
400 C1 0.1124 (0.0024) 0.1305 (0.0023) 0.3182 (0.0014) 0.1351 (0.0024)
C2 0.1087 (0.0017) 0.1196 (0.0016) 0.3125 (0.0012) 0.1267 (0.0016)
C3 0.1828 (0.0018) 0.1830 (0.0017) 0.3517 (0.0007) 0.1912 (0.0017)
C4 0.1845 (0.0016) 0.1839 (0.0016) 0.3524 (0.0006) 0.1987 (0.0015)
D 200 D1 0.1433 (0.0037) 0.1569 (0.0034) 0.3482 (0.0013) 0.1697 (0.0035)
D2 0.1683 (0.0051) 0.1691 (0.0049) 0.3437 (0.0024) 0.1817 (0.0049)
400 D1 0.1282 (0.0032) 0.1344 (0.0029) 0.3402 (0.0010) 0.1487 (0.0030)
D2 0.1455 (0.0041) 0.1594 (0.0038) 0.3431 (0.0014) 0.1731 (0.0037)

compared to the existing methods and it does so without requiring additional external data.

EXAMPLE 2. [The German Credit Dataj.
This real data set consisting of 1000 individuals, 700 of whom have been identified as having “good

credit”, i.e., class 1, and the remaining 300 have “bad credit”, which is class 0. A total of 24 numeri-

cal covariates are associated with each person. A full description of this data set can be found in the

UCIT repository of machine learning data sets at https://archive.ics.uci.edu/ml/index.php.

To perform the analysis, we randomly selected 300 of the 1000 observations to be set aside as a

test sequence to estimate the misclassification error of each classifier.

To compare the effectiveness of various methods, we deliberately deleted some of the y val-

ues according to the four response models discussed in Example 1.

., 24, we took (v,ap,a;) to be (0.5,2.4,—-0.023) for Model Al, (1.5,1.2,

A2, (2.5,0.7,—0.022) for Model A3, and (5,

More specifically, for j
—0.020) for Model
—1.54,—-0.021) for Model A4. Similarly, we took

(7, awp, a1, @2, g, aug) to be (0.5, —0.15, —0.019, —0.019, —0.019, 0.14) for Model B1, (1.5, 0.13, —0.08,
—0.08,—0.08,0.33) for Model B2, (2.5,2.1,
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—0.22,-0.22,-0.22,0.67) for Model B3, (5,1.7, —0.28,



—0.28,—0.28,0.56) for Model B4. For the response models under C we took (v, ag, a1, g, as)
to be (0.5,2.4,—0.11,—-0.11, —0.11) for Model C1, (1.5,1.85,—0.12,—0.12, —0.12) for Model C2,
(2.5,1.53,-0.14, —0.14, —0.14) for Model C3, and (5,1.9,—0.23, —0.23, —0.23) for Model C4. Fi-
nally, for 1 < j <24, we took (7, ag, a;) to be (0.2, —2.6,0.03) for Model D1 and (0.4, —2.95, —0.03)
for Model D2. In each case, these values produced approximately 50% missing rates. Next, each

Table 3: Misclassification errors for the German Credit data of Example 2.

Missing R R N N

Response Model Vn.p Pry PR Pee

A A1l | 0.2746 (0.0024) 0.2798 (0.0023) 0.3810 (0.0014) 0.3015 (0.0024)
A2 | 0.2842 (0.0026) 0.2881 (0.0026) 0.3918 (0.0015) 0.3113 (0.0025)
A3 0.2984 (0.0030) 0.2998 (0.0031) 0.4152 (0.0014) 0.3275 (0.0030)
A4 0.3261 (0.0038) 0.3293 (0.0037) 0.4325 (0.0016) 0.3718 (0.0037)

B B1 0.2980 (0.0025) 0.2990 (0.0024) 0.3823 (0.0016) 0.3124 (0.0025)
B2 0.2988 (0.0028) 0.2997 (0.0028) 0.3983 (0.0017) 0.3195 (0.0027)
B3 0.3521 (0.0030) 0.3574 (0.0031) 0.4195 (0.0015) 0.3755 (0.0031)
B4 0.3752 (0.0031) 0.3811 (0.0032) 0.4410 (0.0015) 0.4072 (0.0032)

C C1 0.3185 (0.0019) 0.3214 (0.0017) 0.3945 (0.0008) 0.3450 (0.0018
C2 0.3261 (0.0016) 0.3288 (0.0016) 0.3998 (0.0007) 0.3375 (0.0017
C3 0.3718 (0.0015) 0.3807 (0.0014) 0.4153 (0.0007) 0.3989 (0.0014)
C4 0.3850 (0.0017) 0.3895 (0.0017) 0.4340 (0.0008) 0.4160 (0.0018)

D DI | 0.3449 (0.0027) 0.3580 (0.0026) 0.3978 (0.0015) 0.3746 (0.0027)
D2 0.3618 (0.0035) 0.3712 (0.0029) 0.4109 (0.0016) 0.3955 (0.0031)

classifier was constructed based on the sample of size 700 (using the same approach as in Example
1) and tested on the remaining sequence of 300 data values. Repeating this process 500 times, the
average errors (over 500) and their standard errors were computed; these are reported in Table 3.
The empirical effectiveness of the proposed classifier follows from the numerical results under {b\n@
and JKY of Table 3. Furthermore, unlike QZJ\Ky, the classifier 1,//1\,17@ does not require any external data

in terms of access to some of the missing y values.

Remark 4 In the case of high-dimensional x, one may face the curse of dimensionality in es-
timating n(x) that often occurs in multivariate kernel estimation. It is well-understood that the
curse of dimensionality manifests itself in the error of estimation, as seen in the expected L? error
of kernel estimators, which is of order O(n=2/{44+2)) where d is the dimension (Gyérfi et al. (2002;
Theorem 5.2)). To overcome this issue, lately substantial efforts have been made to develop ways
for evading the curse of dimensionality. One main approach is through the use of vine copulas as
proposed by Nagler and Czado (2016), Kraus and Czado (2017), and Noh et al. (2013).

4 Proofs

To prove our main results, we start by stating a number of lemmas.

Lemma 1 Let 1 be any probability measure on the Borel sets of R:. If K is a reqular kernel then
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there is a positive constant p(K), depending on the kernel K but not n, such that for every h >0

(=1
5;% /E X)/h)] p(de) < p(K).

PROOF OF LEMMA 1
The proof can be found in, for example, Devroye and Krzyzak (1989; Lemma 1).
[l

Lemma 2 Let (X,V),(X1,V1),...,(X,, Vy) be éid R? x [—L, L]-valued random vectors, 0 < L <
0o, and define thn(z) = Y1 | V; K((@—X;)/h) /{nE[K ((x—X)/h)]}, where K is a regular kernel.
If h = 0 and nh® — 0o, as n — oo, then for every € > 0 and large enough n,

gl

where 1 is the probability measure of X and p(K) is as in Lemma 1.

mn(x) — E[V|X = m]‘,u(da:) > 5} < exp {—ne?/(64L%p*(K))}

PROOF OF LEMMA 2
The proof of this lemma appears in Gyorfi et al. (2002; Lemma 23.9).

Lemma 3 Consider the random pair (X,Y) € R? x R where Y could be nonignorably missing
according to (1). Let ¢ be any map of the form ¢ : R — (0,00). Then, when the expectations exist,

we have

B[SY p(Y)|X =a]

EY|X =z] = EJ0Y| X =x]+ E]l1 -90|X ==z, 24
YIX =a] = BPY|X =a] + e fon s = Bl - 0X =] (24
PROOF OF LEMMA 3

The proof is straightforward and will not be given. O

Lemma 4 Let R(x;¢1) and R(x; p2) be asin (11), where p1, s : [0,1] — (0, B] for some positive
number B. Then, under assumption A5, one has

E|R(X;01) = R(X;902)| < c7- sup |o1(y) — w2(y)|,
0<y<1

where c7 is a positive constant.

PROOF OF LEMMA 4
Define the quantities S;(X) = E[0Y;(Y)|X] and T;(X) = E[6 ¢;(Y)|X], j = 1,2. Then it is
straightforward to see that

Si1(X) SQ(X)‘
(X)) Ty(X)
—S51(X) Ti(X) —Ta(X) | Si(X) = 5(X

EX) Tz(X) T»(X)
Oﬂ To(X)| + [$1(X) - 5:(X)]) . (25)

R(X;¢1) — R(X;soz)‘ = E[1-4X]-

-

=
>
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However, T5(X) > pgo > 0, almost surely, by assumption A5. Furthermore,

S1X) = 0] < B[6Y]-[r(V) (V)] [X] £ swp for(y) — (o)
<y<
Similarly, |T1(X) — To(X)| < supp<, <1 ‘cpl(y) - <p2(y)‘. Lemma 4 now follows from these bounds
together with (25).
a

Lemma 5 Let (X,Y),(X1,Y1),...,(Xn,Ys) be iid R x [—L, L]-valued random vectors, where Y
could be nonignorably missing according to (1). Define the indicator variable 6; = 0 if Y; is missing

(otherwise §; = 1). Also, let 5 be any estimator of v in (1) and put

T, GYK (@ = X0)/h) | T, 6Yiexp{3YK (@ = Xi)/h)
YL K(@=X/h) XL sexp{(YK (@ — X0)/h)
(1= K (@ = Xo)/h)
S K(@—X)/h)

where K is a reqular kernel. Suppose that assumption A1 holds. If h — 0 and nh® — 0o, asn — o0,
then for every e > 0, every 1 < p < 0o, and any distribution of (X,Y") satisfying |Y| < L < oo,

m(z)

p {/ ‘7’7\1(:1:) —ElY|X = m]‘p,u(dm) > E} < de 4200 +4P{[7—7|>cw0} (26)

for n large enough, where u is the probability measure of X, and cg, cg, and ci9 are positive

constants not depending on n.

PROOF OF LEMMA 5.

Since, for every p > 1, |f(z) — E[Y|X=2]|" < (|m(z)| + |EY|X = 2]|)"" |f(z) - E[Y|X =
J,'H < (3Lyp-t. ‘r’ﬁ(a:) - EY|X = :c]‘, it is sufficient to prove the lemma for the case of p = 1.
The proof is along standard arguments and goes as follows. First observe that in view of Lemma
3, with ¢(y) = exp{~yy}, we have

|m(z) — E[Y|X = z]|
>im1 0YiK ((x — X)/h)

S | S K@ Xy VX =l
S e (Y K (e — X0 /h) | S0 00K (@ — X)/h)
S G e YR (@ — X)) S (@ — Xi)/h)
B E[0Y exp{7yY }| X = z] . B .
BlfexpV X =2 110X =7
=: |L(z)| + |, ()| (27)

By the results of Devroye and Krzyzak (1989), for every distribution of (X,0Y") with |0Y| < L < o0
and every £ > 0, there is a positive constant b; depending on ¢ (but not n) such that for large
enough n,

P{ [ @) (o) > 5} < et (28)
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Next, to deal with the term |I,(x)| in (27), we note that since ‘E = 55Yei);>r{)g/)§(1§((;i})f)i%];)‘ <
Vi, |Y;| < L, one finds

L ()| =

2oi1 0Yiexp{AVi} K (& — X3)/h) ] 305, (1 = 6) K((® — Xi)/h)
2 iy 0 exp{YYi} K ((x — X)/h) 2ie1 K (@ — X3)/h)

E[l—§|X = m]} - EE[?(?GZZ??Y’;};T‘;X::::]Z] B[l -6 X =z

( Xi)/h) _ E[6Y exp{yY}|X = ]
Xi)/h)  Elbexp{nY}|X = z]

IN

‘ Py = 0;Y; exp{7Y;} K

(
>ie1 diexp{VYi} K ((z

X (- 0)K (@ = Xa)/h) o
LSS Rwoxn PR IX =4l
= |W1(@)] + Ia(a)). (29)

But, again by the results of Devroye and Krzyzak (1989), for every distribution of (X, d) and every
e > 0, there is a positive constant by depending on ¢ such that for n large enough,

/|11n2 )| u(dz) } < etem, (30)

As for the term |IL, i (z)| in (29), start by defining the quantities

bi(x) = ZéYexp{ny}K(a:— ZK r—X (31)
i=1

po(z) = Zé exp{Y7Y;} K((x — X ZK z—X (32)
=1

b1(z) = ZéYexp{yY}K (x—-X ZK (x—X (33)
=1

B = > depVK(@ - X, ZK z- X (34)
1=1

p1(x) = E[0Y exp{7V}|X = z] (35)

p2(x) = E[dexp{7V}|X ==z]. (36)

Then it is straightforward to see that

hi(@) da(@) — a(@) | i(@) — ()
bo() Pa(x) P2()

(@) " (L |f2() = d2(@)| + |B1() = ()|
(where we have used the fact that b1 (:c)/ggg(a:) <L)
< moexp{IL} - (L [fa(@) - 2(@)| + [$1(@) - 41(=)])

where the last line follows since, by assumption Al, ¢o(X) = E[E(é exp{yY}‘X,Y)‘X] =
E|exp{yY}- W(X,Y)‘X] > Tomin - €xXp{—|7y|L}. Therefore, for every € > 0, one has

P{/I]In,1(w)|p(da:) > Z} < P{/‘$1(m) - 51(1')‘ p(dx) > 7r’;71(;‘66—|7|L}

17

M1 (2)] = ‘—

IN




b1(z) — ¢ ()| p(de) > 7T17166 e*lvlL}

/‘;2(“’)—%(%’) p(dx) > % —|’Y|L}

-I-P{/ 52(28) — ¢o(x)| p(de) > % 7|7|L}
= Ap(1)+ An(2) + Ap(3) + Ap(4). -

+

N
—
—

P

-+

—

Now, once again, by the results of Devroye and Krzyzak (1989), for n large enough,
An(2) <e™™" and  Ap,(4) < e tm (38)

where b3 and by are positive constants depending on £ but not n. Next, to deal with the term
Ap(1) in (37), observe that

~ S 1(5Y e“’Y eVYi)K((:B—XZ-)/h)
hi@)— e ‘ nB K (@ — X)/h)]

' [z 8 (7 - ) Ko~ X))

< ( 1 - : )
nE[K((x—X)/h)] Y K((@—X;)/h)

= |Un ()| + [Uno(2)]- (39)

On the other hand,

/ |Un,1 ()| p(dz) < n*;\m (em—em)"stip/ nEI[(Ig((Tm_—u;é;l/)h)] Hlde)

n
< n'Lp(K)

=1

i (ani — 67Yi> ‘, by Lemma 1. (40)

= |Yi exp{7Yi} - (7 = 7)| < L exp {|7 -
Y| L+7Y;}- ‘7)7—7‘, where 7 is a point on the interior of the line segment joining 7 and -y. Therefore,

However, a one-term Taylor expansion gives ‘e”yi —

for any constants € > 0 and C >0

{/ ‘Unl ‘:U‘ dw 32m1|117|L}

- - - Tonin € ~
SP{[n‘V—V\GXP{W—W'L}ZWY mmw()]”[h—ﬂﬁc}}

=1
+ P{I7 -1 > C}

Tlmin €

YY1 5
< nP{5le > 320 L2 C+RE oK) } +P{|’y vl > C’}, (41)

where, in arriving at (41), we have used the fact that |y —y| < |3 — 4| < C holds on the set
{W — | < C}. Now, since §; 7" < el"1L | the first term on the right side of (41) becomes zero
upon choosing C' > 0 to satisfy (32CL2e“Lp(K))te Ml x i e > ellE. This choice of C yields

{/ U ()| i) > ;“;;lL} < P{-+1>c}. (42)
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Next, we can handle the term |Uy2()| in (39) as follows. First note that

) [BLte =X
nE[K(@=X)/M] |

Therefore, using the arguments that led to (41), one finds for every € > 0

P{ [ |nat@)| o) > 722 |
: > i1 K((@ — X;)/h) Tinin €
= P{CLeCL <i<n (6:7) / njE[lK((a: —X)]/h)] N 1‘ plde) 32Le|’Y|L}

+ P{|/7\—fy| > C}, where C'is as in (42)

Una(@)| < L+ max (6 ]e7 -

—nn?, ¢
< e min +P{A— >c}, 43
= o { (32)2(64)CL4p(K) - exp {2L(C + 21])} th )
for n large enough, by Lemma 2; it is the special case of Lemma 2 where V; 2" 1 for alli = 1,...,n,

and E[V|X = z] = 1. Putting together (43), (42), and (39), one arrives at

—’I’L7T2» 62

Anll) < exp { (32)(64) P L' p(K) - exp {2L(C + 2])} } vep{fi-al>ch @)

where C' is as in (42). Similarly, it is straightforward to show that the term A, (3) in (37) can also
be bounded by (44). Now, Lemma 5 follows from this together with (44), (28), (29), (30), (37),
and (38), where the constants cg and ¢g in Lemma 5 can be taken to be ¢g = min{by, b2, b3, b4} and

= [(32)%(64)C2L*p(K) - exp {2L(C +2[4|) }] "2

mln

|

Lemma 6 Let R(x;p) be as in (11) for a known function ¢ : [0,1] — (0, B] for some B < oo.
Also, let R (z;0) be the kernel estimator defined by (14), where the kernel K in (14) is regular.
Suppose that assumption A1 holds. If h — 0 and mh® — 0o, as n — oo (and thus m — o), then
for every € > 0, every 1 < p < oo, and n large enough

P{/‘ﬁm(w;@)—mw;@)\pu(w) > 6} < 4emmom

where ag 1s a positive constant depending on € but not m or /.

PROOF OF LEMMA 6

The proof of this lemma is similar to (and, in fact, much easier than) that of Lemma 5 and will
not be given; it is easier because the function ¢ appearing in ﬁm(m, ) is fixed instead of being an
estimator.

PROOF OF THEOREM 1

Let n(x) and 7(x) be as in (4) and (5), respectively. Then (see Devroye et al. (1996, Corollary
6.1))

Lo () = L) < 2 [ [i@) = @) u(de).
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Thus, for every € > 0,

P{Lu@) - L0 >} < P{ [[it@) - ate)|niae) > £},

Theorem 1 now follows from Lemma 5 with p = 1.

a
PROOF OF THEOREM 2
Let Ln(lzn,g) and L* be as given in (20). Furthermore, for any ¢ € F define
Lin(hmp) = Plibmo(X) #Y[Dn} and  L(hy) = P{(X) # Y}, (45)

where 1), is as in (10). Now let Eé(’lj{)\n’@) be the weighted empirical error of the proposed classifier
an,g (see (15)) and observe that

Ln(thng) = if LWg) = |La@ug) = Lelthng)] + | Le(ng) = 10 Lyn(dhn )
+ [(piél]f.s Lp, (QZ‘\m#p) - (piél]frs L(d’w)}
= R(1) + R(2) + R(3). (46)
But
R(1) < sp |Ln(thmp) = Le(thm)| (47)
pEFe

where we have taken into account the fact that upon replacing @ (which depends on both D,
and Dy as shown in (18)) by ¢, the error term L, (zi)\n (p) reduces to Ly, (@mygp). Next, let ¢ =
argminge . Ly, (¢m o); here, ¢ depends on Dy, because z/)m .o does. Then

R@2) = Le(¥ngz) — Lmn($mgp)
< Lo(mg) — Lin(thm.3)
(since by (18), Lg(’t/)n (p) < L ($m7¢), Vo € F.; furthermore 12)\,“5 = zzm,¢)

< sup Eé(&;m,so) — Lin (4 (48)
peFe
Therefore, in view of (47) and (48),
R+ RE)| < 2 sup |Eeng) = Ln(ns)| (49)

pEFe

As for the term R(3) in (46), we note that with R(z; @) and Ry, (z; @) as in (11) and (14), respec-
tively, one has

R(3) = wig]f:ELm(zZm,w)—L(sz), where ¢’ = argmin L(1;)
< In(fmg) - (%)
< / Ron: ') = Rias )| (i), (50)
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where (50) follows from the results in Devroye et al. (1996, Corollary 6.1). Here, y is the probability
measure of X. Therefore, by (46), (49), and (50), for every S > 0,

P{igr- g 10>} < 2o op [~ Lt > 5]

pEFe

P { [ |Rtaie) - Ries)| utz) > 4}
= Sp1+ Sna. (51)
But, taking p = 1 in Lemma 6, one has, for n large enough
Spo < 4e ™, (52)

where a is a positive constant depending on 8 but not on m or £. To deal with the term S, 1, first
observe that with m, and 7, given by (8) and (16), the fact that

0i I{thmo(X3) £ Vi) 6:1{thm (X)) # Y3}
(X, Ys) B (X4, Y5)

~ 1 1
- 521{1:07’71:@ #Y}[ X“Y) Lp(XZ7}/l):|

implies that

5T {thm,p(X;) # Yi}
WW(XZ'a sz)

Sp1 < P« sup at Z
996]:5 i (X“Y;,(SZ) E]D)Z

_P {Jm,w(X) ” Y‘Dm} >

~ 1 1
+ P sup |07 Z H{tpm,p(X) 7'éyi}[wgp(Xi,Y;-) a %]p(Xi,Yz')] g g

peFe 1: X;,Y;,0, €Dy

But, for each (X;,Y;, ;) € Dy, one has

mp(XZ,Y

(A x )
WW(XZ, Y;
]D)m]

where the last line follows from the definition of 7,(X;, Y;) and the independence of Dy, and 9; € D,.
Therefore, if we define the quantity

. I{’(Zm,cp ) 75 z} ) v
- 5| e B, X Y)

= P{ny(X) £ YD} = Lin(Pmy)

SN 0;
Li(pmy) = €' ) if{wm,w X)#Y:),  p€F, (54)

To( X
i:(X;,Y,0;) €Dy gp( i ¥

where 7, (x,y) is as in (8), then the term P, (1) in (53) can be written as

P,(1) = E . (where Lg(¢m,) is as in (54))

P { sup Eg(qﬁm#,) — Lm({b\m,(p)‘ > g ‘Dm}

peEFe
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= -~ B
< ‘.7:5‘ - sup P{‘Lf(?ﬁMM) — Lm(gbm’(p)‘ > F D,
pEFe
< 2|F |t/ (by Hoeffding’s (1963) inequality). (55)

Next, to deal with the term F,(2) in (53), observe that

Pa(2)

~ 1 1
< ‘}'g‘- sup P{ﬁl Z I{tpmo(X3) # Yi} [ (X:,Y;) T (X, Y)] g g}
( iy X4 )+

pETe i: (X 3,Y5,0;) €Dy
(where 7,(X;,Y;) and Ww(XZ,YZ‘) are as in (16) and 8))

7 per i:(Xth,éi)eD[ Z (X;.Y3,6;) CDim 5j<P(Yj)K((Xz'—Xj)/h)

IN

E[1 — 6;| X;]
El6;p(Y3)| X ]

o) > & ‘XY} , (56)

where we have replaced the term exp{g(z)} by (17) in the definition of w,(x,y) in (8). Now, define
the quantities

D5 (X,,Y;,0,)eby (1 — ) K (X — X )/h)

Q1(X;) = >, v e K (X — X))
Ay D5 (X,Y1,8,)eDy, 05 P (Y) K (X — X5)/h)
QQ(XZ) - Z P ((.X - xX. )/h)

)—Q1(X;)

Xi) QX)) Q1
Xi)

; Qu(Xi) _
and observe that since ‘@2(X¢) 0s(X) 52(X
bound the inner conditional probability in (56) as follows
P 225X, .05) ebn (L= ) K (X = X5)/h)  E[1 - 6| X]
zu(xj,yj,memm 5 (V) K(X: = X,)/h)  Elbwp(V)|X]
. { Q1(X
Q2(X

Xi,Yz}
+ P{\Ql(xi) ~Qi(x)| >
= Api(1) + Ani(2) (57)

where g is as in assumption Ab. Using standard arguments, it can be shown that under assump-

tions A1 — A5, for n (and thus m) large enough, one has

Ai(2) < Cho exp{ — C1ymh?p?}, (58)

‘Q2 )—Q2(X
Q2(X)

, one can

XZ,Y}

o(Y;) > g

‘QQ — Q2(X5)

where Cy and Cy; are positive constants not depending on m or . To deal with A,;(1) in (57),
first observe that
X, }

Api(1) < P{Q(l_ﬁmin)- Q2(X;) — Q2Xy)| > )

16B

©00/2
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+P{Qu(X0) > 201 = min) | X, Y} + P{Qa(X0) < u0/2 | X0, Vi}
= qn(1) + qn(2) + gn(3) (59)

~ 2
Once again, as in (58), one obtains gn(1) = P{|Q2(X;) — Q2(Xi)| > M(Bl(fi% XY} <
C1o exp {—013 mhdﬂQ}, for n large enough, where C}5 and C13 are positive constants not depending
on m. Furthermore, g,(2) = P{Q1(X;)— Q1(X;) > 2(1—mmin) — Q1(X:)|X;,Yi} < P{|Q1(Xi)—
Ql(Xi)‘ > 1-— ﬂ'min‘XZ‘, E} < Cis exp{ —Ci5 mhd}, for n large enough, where we used the fact
that Q1(X;) <1—7yiy. Similarly, one finds ¢,(3) < Cis exp{ — Ch7 mhd}, for n large enough.

Here C14 — Ci7 are positive constants not depending on n. Putting all the above together with

(59), one arrives at
Api(1) < Cig exp{ — Cizmh?B*} + Cis exp { — C1g mh?},

for n large enough, where one can take Cig = C14 + C1g and Cig = C15 A Cy17. This last bound in
conjunction with (58), (57), (56), (55), and (53) implies that S, ; (in (51)) satisfies

Sn1 < 2| F| e~132 4y | Fe| (Czo e M 4 ¢ emrs mh2) (60)

where one can take cyy = Cig + Ci2, c91 = Ci1 A C13, c17 = Cig, and ¢33 = Cy7. Finally, the
theorem follows from (60) and (52).
O

PROOF OF THEOREM 3
First note that for every > 0, one can write

P{Lalng) ~ 1> 8} = P{LG)— iut L) >0 (iuf L) - 1)}
< P {Ln("i)\n,@) - weiIJl»‘Em L("/)cp) > 8 — Ko 5m} s

for some constant kg > 0, where the last line follows by virtue of (22). Now, observe that we can
choose m large enough so that f — kge, > 0. Therefore, for n (and thus m) large enough, the
result follows from Theorem 2.

O

PROOF OF COROLLARY 1
The proof follows from an application of the Borel-Cantelli lemma in conjunction with the bound
in Theorem 3.

O
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