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Abstract

We consider the problem of kernel classi�cation with nonignorable missing data. Instead

of imposing a fully parametric model for the selection probability, which can be quite sensitive

to the violations of model assumptions, here we consider a semiparametric exponential tilting

selection probability model in the spirit of Kim and Yu (2011). In addition to the existing

parameter estimators, we also develop some new estimators of the unknown components of the

model that are particularly suitable for classi�cation problems. We also study various strong

optimality properties of the proposed kernel-type classi�ers.

Keywords Kernel, missing data, regression, classi�cation, convergence.

1 Introduction

In recent years, the problem of statistical estimation, prediction, and inference with nonignorable

missing data has received considerable attention. This is the situation where, unlike the missing

at random assumption, the probability that a variable is missing depends on the variable itself as

well. Recent key results on nonignorable missing response data include the landmark paper of Kim

and Yu (2011) as well as those of Zhao and Shao (2015), Shao and Wang (2016), Morikawa, et

al. (2017), Zhao et al. (2017), Uehara and Kim (2018), Morikawa and Kim (2018), Morikawa and

Kano (2018), Fang et al. (2018), O'Brien et al. (2018), Maity et al. (2019), Sadinle and Reiter

(2019), Zhao et al. (2019), Yuan et al. (2020), Chen et al. (2020), and Liu et al. (2021). As

discussed in virtually all of the above cited papers, nonignorable missing data mechanisms pose

major challenges in terms of the estimation of various unknown quantities in the model.

In the context of predictive models (as in regression and classi�cation), where a response variable

Y is to be predicted based on the covariates X 2 Rd, Kim and Yu (2011) considered the following

model where Y may be missing nonignorably according to

�(x; y) := P f� = 1jX = x; Y = yg =
h
1 + expfg(x)g � expf
yg

i�1
; (1)

where the indicator variable � = 0 if Y is missing (and � =1, otherwise). Here g is a completely

unspeci�ed function and 
 is an unknown parameter. Additionally, Kim and Yu (2011) developed

a kernel estimator of the function expfg(x)g for the case of a known 
. As for the parameter 
,

these authors assume that it can be estimated from an independent external data; this approach

has been further studied and re�ned by, for example, Zhao, et al. (2013) and Tang, et al. (2014),

who still need 
 to be estimated from some available external data. To circumvent the requirement

of external data, Shao and Wang (2016) showed that if the function g(x) in (1) depends only on
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some subset of the covariates in x, then all unknown components of the model will be identi�able

and can be consistently estimated; their proposed method is based on estimating equations.

The focus of this article is on the problem of nonparametric classi�cation in the presence of

nonignorable missing data, where we develop new kernel-type classi�cation rules that are asymptot-

ically strongly optimal under fairly standard assumptions. Here, optimality means that the error of

the proposed classi�cation rule converges to that of the theoretically best (but unknown) classi�er.

This problem has only been tackled for the simpler case of Missing At Random (MAR) scenarios

in the literature; see, for example, Reese and Mojirsheibani (2017) and Mojirsheibani and Reese

(2017). In fact, to the best of our knowledge, our results in this paper are the �rst to tackle the

problem of nonparametric classi�cation with nonignorable missing data.

Our contributions in this paper are two-fold. First, we propose an initial kernel-based classi�er

that takes into account the nonignorable selection probability in (1); we also derive probabilistic

upper bounds on the performance of this classi�er. These bounds depend on the quantity P (jb
�
j >
c), where c is a �xed constant and b
 is any estimator of 
. As a result, the optimality of this classi�er
will depend on the quality of b
. For example, the estimator of Kim and Yu (2011) works well but

it requires external data. Similarly, the estimator of Shao and Wang (2016) requires the function

g in (1) to depend only on some parts of x.

The second part of our contributions involves a new estimator of the nonignorability component

'(y) := expf
yg in (1). The new estimation approach, which also works for more general functions

'(y), does not require any external data (as in Kim and Yu (2011). This approach also evades

the conditions imposed by Shao and Wang (2016) on the function g in (1). Furthermore, we show

that the corresponding revised kernel classi�er is strongly asymptotically optimal with this new

estimator. This improvement owes to the fact that our new estimator, which is based on the

approximation theory of totally bounded classes of functions, is selected to minimize a measure of

the empirical error of the proposed kernel classi�er (see (15)). Our key results along these lines

include the exponential performance bound in Theorem 3 and its consequence in terms of the strong

optimality of the proposed classi�er.

In passing, we also note that although our results are stated for kernel classi�ers, similar results

can be obtained if we replace kernels with other popular methods such as nearest neighbors and

cubic histogram classi�cation rules. However, due to page limitations and for the sake of concrete-

ness, we only present kernel rules here. This paper is organized as follows. Section 2 presents the

main results. Theorem 3 provides asymptotic exponential performance bounds on the deviations

of the misclassi�cation error of the proposed kernel classi�cation rule from that of the theoretically

optimal (but unknown) classi�er. Such bounds in conjunction with the Borel-Cantelli lemma im-

mediately yield strong (i.e., almost-sure) optimality results for the proposed classi�ers. All proofs

are deferred to Section 4. Furthermore, several numerical examples are presented in Section 3; these

numerical results con�rm the good �nite-sample performance of the proposed kernel classi�er.
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2 Main results

2.1 Some background

To state our main results, consider the following standard two-group classi�cation problem. Let

(X; Y ) 2 Rd � f0; 1g be a random pair where the class variable Y has to be predicted based on

the covariate vector X. In classi�cation, one seeks to �nd a function (a classi�er)  : Rd ! f0; 1g

for which the misclassi�cation error, de�ned by L( ) := Pf (X) 6= Y g, is as small as possible.

The best classi�er, denoted by  B, is the one that has the smallest misclassi�cation error, i.e.,

Pf B(X) 6= Y g = min :Rd!f0;1g L( ): If we let � be the class conditional probability for class 1,

i.e.,

�(x) = E
�
Y
��X = x

�
= P

�
Y = 1

��X = x
	
; (2)

then it is straightforward to see that the best classi�er is (see, for example, Devroye et al. (1996,

Sec. 2))

 B(x) =

(
1 if �(x) > 1

2

0 otherwise.
(3)

Clearly, in practice, the regression function �(x) is not available because the distribution of

(X; Y ) is virtually always unknown. One general approach in nonparametric setups is to replace

the unknown regression function �(x) in (3) by some estimate, say e�(x), based on the iid data

Dn = f(X1; Y1); : : : ; (Xn; Yn)g, and use the plug-in version of (3) given by e n(x) = 1 if e�(x) > 1
2

(otherwise, e n(x) = 0).

Now suppose that some of the Yi's may be missing nonignorably, i.e., the probability that

Yi is missing depends on Yi (and possibly on Xi). In order to take this fact into account when

constructing sample versions of (3), �rst observe that for each �x 
 in (1), the regression function

�(x) in (2) can also be written as (see Lemma 3 in Sec. 4):

�(x) = E
�
�Y
��X = x

�
+
E
�
�Y expf
Y g

��X = x
�

E
�
� expf
Y g

��X = x
� � E[1� �jX = x]: (4)

Next, let b
 be any estimator of 
; this could be, for example, the estimator proposed by Shao

and Wang (2016), or the estimators discussed by Kim and Yu (2011) based on external data. In

general, here we do not require b
 to be independent of the data Dn. Now, consider the kernel-type

estimator of �(x) given by

b�(x) =

Pn
i=1 �iYiK((x�Xi)=h)Pn
i=1K((x�Xi)=h)

+

Pn
i=1 �iYi exp fb
 YigK((x�Xi)=h)Pn
i=1 �i exp fb
 YigK((x�Xi)=h)

�

Pn
i=1(1� �i)K((x�Xi)=h)Pn

i=1K((x�Xi)=h)
; (5)

where K : Rd ! R+ is the kernel used with bandwidth h. Therefore, we have the plug-in kernel

type classi�cation rule b n(x) =
(

1 if b�(x) > 1
2

0 otherwise.
(6)

How good is the classi�er b n(x) in (6) as compared to the optimal classi�er  B in (3)? To answer

this, we will assume that the kernel K is regular (Devroye and Krzy�zak (1989)): A nonnegative
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kernel K is said to be regular if there are constants b > 0 and r > 0 such that K(u) � b Ifu 2 S0;rg

and
R
supy2u+S0;r K(y) du <1, where S0;r is the ball of radius r with center at the origin.

We also need the following assumption regarding the missing probability mechanism �(x; y) in

(1), which is also used by Kim and Yu (2011). It implies, in a sense, that Y can be observed with

a nonzero probability for all values of x and y.

Assumption A1. infx;y �(x; y) =: �min > 0, for some arbitrarily small �min.

Our �rst result below provides upper bounds on the performance of the proposed classi�er, un-

der rather standard assumptions, which can then be used to study the strong/weak optimality

properties of this classi�er (see Remark 1).

Theorem 1 Let b
 be any estimator of 
 in (1) and let b�(x) be the kernel estimator appearing

in (5), where the kernel K is regular, and suppose that assumption A1 holds. Let b n(x) be the

classi�er de�ned via (6) and (5), and suppose that h ! 0 and nhd ! 1, as n ! 1. Then, for

every " > 0, any distribution of (X; Y ), and n large enough, one has

P
n
Ln( b n)� L( B) > "

o
� c1 e

�c2n + c3 e
�nc4"2 + c5 P

���b
 � 

�� > C0

	
; (7)

where c1; : : : ; c5, and C0 are positive constants not depending on n, L( B) = Pf B(X) 6= Y g; and

Ln( b n) = P
� b n(X) 6= Y

��Dn	 is the conditional error of the classi�er b n.
Remark 1 Due to the presence of the term Pfjb
 � 
j > C0g in (7), the bound given in Theorem

1 falls short of the classical exponential bounds established by Devroye and Krzy�zak (1989) for the

usual kernel estimators with no missing data. This is the price to pay to allow b
 to be any arbitrary

estimator of 
 in Theorem 1. Therefore, (7) does not guarantee the almost sure convergence of the

error Ln( b n)!a:s: L( B), unless Pfjb
�
j > C0g goes to zero fast enough (e.g. Pfjb
�
j > C0g �

n�� for some � > 1). Of course, if b
 !p 
 (as in, for example, Kim and Yu (2011) or Shao and

Wang (2016)), then weak consistency follows immediately, i.e., Ln( b n)!p L( B).

2.2 A more general approach

Remark 1 together with Theorem 1 show that the performance of the initial proposed classi�erb n(x) in (6) depends on the quality of b
. Furthermore, the currently available estimators of


 require some stringent conditions that may not hold in practice. For example, the estimator

proposed by Kim and Yu (2011), and further re�ned by others such as Zhao, et al. (2013) and

Tang, et al. (2014), still requires the availability of the missing y values for a randomly selected

validation subset of the nonrespondents through external data. Similarly, for the estimator of Shao

and Wang (2016), one must �nd a part z of the vector x = (u; z) that is not involved in the function

g in (1), i.e., one must work with some g(u) instead of g(x) in the de�nition of �(x; y) in (1). These

assumptions are needed in order to be able to estimate various parameters consistently. In this

section, we propose alternative estimators that still yield strongly optimal kernel classi�er without

the types of assumptions imposed in the above cited references. Our estimators are based on the

approximation theory of totally bounded classes of functions. More speci�cally, consider the more

general nonignorable missing probability model

�(x; y) � �'(x; y) :=
h
1 + expfg(x)g � '(y)

i�1
; (8)
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where '(y) > 0 is unknown. To develop a theoretical framework for our estimator, we consider the

situation where ' belongs to a totally bounded class of functions F and y may be any bounded

variable. We then apply our results to the particular case of interest where '(y) = e
y as in (1)

but with y 2 f0; 1g. More speci�cally, let F be a given class of functions ' : [�L;L] �! (0; B]; for

some B < 1. Fix " > 0 and suppose that the �nite collection of functions F" = f'1; : : : ; 'N(")g,

'i : [�L;L] ! (0; B]; is an "-cover of F , i.e., for each ' 2 F , there is a 'y 2 F" such that

k'�'yk1 < "; here, kk1 is the usual supnorm. We also note that F �
S

1�i�N(")B('i; "), where

B('i; ") is the ball of functions centered at 'i, with kk1-radius equal to ". The cardinality of the

smallest "-cover of F is called the covering number of the family F and will be denoted by N (";F).

If N (";F) < 1 for every " > 0, then the family F is said to be totally bounded (with respect to

kk1). For more on such concepts from the approximation theory, one may refer to, for example,

van der Vaart and Wellner (1996; p. 83). The following simple example illustrates this approach.

Consider the class of functions F of the form

'(y) =

(
e
y if jyj � L ; j
j �M; (for some L <1 and M <1)

0 otherwise,
(9)

which is in the spirit of the model proposed by Kim and Yu (2011); see the term expf
yg in (1).

Now, let


i =
2 i"

L expfMLg
; where �

�
ML expfMLg

"

�
� i �

�
ML expfMLg

"

�
and de�ne the set

�" =

(

i =

2 i"

L expfMLg

����� �

�
ML expfMLg

"

�
� i �

�
ML expfMLg

"

�)
[ f�Mg [ fMg:

Then F" =
n
e
y

��� � L � y � L; 
 2 �"

o
is an "-cover of the family F of functions of the form

(9). To see this, observe that if 
� 2 [�M;M ] with the corresponding function '�(y) = e

�y 2 F ,

and if e
 2 �" is the closest value to 

�, then for every " > 0

sup
�L�y�L

���e
�y � ee
y
��� = sup

�L�y�L

���y expf
yg��� � ��e
 � 
�
��; where 
 2 (e
 ^ 
� ; e
 _ 
�)

� L expfMLg �
��e
 � 
�

��
� L expfMLg �

"

L expfMLg
= " ;

where we have used the fact that the distance between 
� and its nearest value in �" is bounded by

(L expfMLg)�1". Therefore, the class F is totally bounded and its �-covering number is bounded

by the quantity 2
�
ML expfMLg"�1

�
+ 3. Of course, in the case of classi�cation with y 2 f0; 1g,

the constant L becomes 1 everywhere.

To construct our estimators, for each ' 2 F de�ne the classi�er

 '(x) =

(
1 if R(x;') > 1

2

0 otherwise,
(10)
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where R(x;') := E
�
Y
��X = x

�
. The function R(x;') can also be expressed as (see Lemma 3)

R(x;') = E
�
�Y
��X = x

�
+
E
�
� Y '(Y )

��X = x
�

E
�
� '(Y )

��X = x
� � E[1� �jX = x]: (11)

Here, F is any class of functions of the form ' : [0; 1] ! (0; B] for some �nite B. Also let '� be

the true value of ', i.e., we have

L� := P
�
 '�(X) 6= Y

	
= inf

 :Rd!f0;1g
P
�
 (X) 6= Y

	
; also put  �(x) :=  '�(x) (12)

i.e.,  '� , which is obtained by substituting '� for ' in (10) and (11), is the best classi�er. Of

course, '� may or may not be in F . Now, let Dn = f(X1; Y1; �1); : : : ; ((Xn; Yn; �n)g represent

the data, where �i = 0 if Yi is missing (and �i = 1 otherwise). To present our estimators and

various classi�ers, start by randomly splitting Dn into a training sample Dm of size m and a testing

sequence D` of size ` = n�m. Here, Dm [D` = Dn and Dm \D` = ?. The choices of m and ` will

be discussed later. Now, for each ' 2 F , de�ne the sample based classi�cation rule constructed

based on Dm by b m;'(x) =
(

1 if bRm(x;') > 1
2

0 otherwise,
for each ' 2 F ; (13)

where bRm(x;') is the kernel estimator of the regression function R(x;'), based on Dm, given by

bRm(x;') =

P
i:(Xi;Yi;�i)2Dm

�iYiK((x�Xi)=h)P
i:(Xi;Yi;�i)2Dm

K((x�Xi)=h)

+

"P
i:(Xi;Yi;�i)2Dm

�iYi '(Yi)K((x�Xi)=h)P
i:(Xi;Yi;�i)2Dm

�i '(Yi)K((x�Xi)=h)

�

P
i:(Xi;Yi;�i)2Dm

(1� �i)K((x�Xi)=h)P
i:(Xi;Yi;�i)2Dm

K((x�Xi)=h)

#
: (14)

Next, for each ' 2 F , let bL`( b m;') be the weighted empirical error of b m;' committed on the

testing sequence D`, i.e., for each ' 2 F ,

bL`( b m;') := `�1
X

i: (Xi;Yi;�i)2D`

�ib�'(Xi; Yi)
I
� b m;'(Xi) 6= Yi

	
; (15)

where, for each ' 2 F the quantity b�' in the denominator of (15) is given by

b�'(Xi; Yi) =

"
1 +

P
j: (Xj ;Yj ;�j)2Dm

(1� �j)K((Xi �Xj)=h)P
j: (Xj ;Yj ;�j)2Dm

�j '(Yj)K((Xi �Xj)=h)
� '(Yi)

#�1
: (16)

We note that (16) is justi�ed as a kernel estimator by the fact that the term expfg(x)g in (8) can

alternatively be written as

expfg(x)g =
E
�
1� �

��X = x
�

E
�
� '(Y )

��X = x
� : (17)

Remark 2 below provides some explanation for the type of empirical error employed in (15). Next,

�x " > 0 and let F" = f'1; : : : ; 'N(")g � F be any "-cover of F . Then, our estimate of the unknown

function ' is given by b' � b'n = argmin
'2F"

bL`( b m;'); (18)
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where we note that b' depends on the entire data Dn. Finally, our proposed classi�er under the

general setup of Section 2.2 is

b n;b'(x) =
(

1 if bRm(x; b') > 1
2

0 otherwise,
(19)

where bRm(x; b') is obtained from bRm(x;') upon replacing the function ' by b' everywhere in (14).

In our notation, the presence of n at b n;b' in (19) signi�es the fact that it depends on the whole

data. Of course, if the estimator b' is replaced by a nonrandom function ' 2 F , then the notationb n;b' will immediately reduce to b m;', which is given by (13).

Remark 2 Our de�nition of the empirical error in (15) looks quite di�erent from the more usual

empirical error L`( b m;') := `�1
P

i: (Xi;Yi;�i)2D`
I
� b m;'(Xi) 6= Yi

	
that counts the number

of errors committed by the classi�er b m;' on the testing sequence D`. This is because L`( b m;')
is not necessarily computable (since some of the Yi's are missing). Furthermore, working with

the alternative quantity, L
�
` (
b m;') := `�1

P
i: (Xi;Yi;�i)2D`

�i I
� b m;'(Xi) 6= Yi

	
, is not going to

resolve the issue as it is no longer an unbiased estimator of the error probability Lm( b m;') :=

P
� b m;'(X) 6= Y

��Dm	, (not even asymptotically), which is due to the fact that the expected value

of L
�
` , conditional on Dm, is not equal to Lm(

b m;'). Of course, the more natural choice is to use

�'(Xi; Yi) instead of b�'(Xi; Yi) in the denominator of (15), but �' is unknown.

To study the performance of the proposed classi�er b n;b'(x) in (19) and the closeness and conver-

gence of its error rate to that of the optimal classi�er  � given by (12), �rst let

Ln( b n;b') = P
� b n;b'(X) 6= Y

��Dn	 and L� = L( �) = Pf �(X) 6= Y g; (20)

and observe the fundamental decomposition

Ln( b n;b')� L� =
h
Ln( b n;b')� inf

'2F"
L( ')

i
+
h
inf
'2F"

L( ')� L�
i
; (21)

where L( ') = Pf '(X) 6= Y g is the misclassi�cation error of any classi�er  ' of the form (10).

The �rst bracketed term in (21) is referred to as the estimation error, whereas the second term is

the approximation error. To investigate their properties, we �rst state a number of assumptions

which are quite standard in kernel regression estimation:

Assumption A2. The probability density function f(x) of X is compactly supported and is

bounded away from zero and in�nity on its compact support. Additionally, the �rst-order partial

derivatives of f exist and are bounded on the interior of its support.

Assumption A3. The kernel K satis�es
R
Rd
K(x) dx = 1 and

R
Rd
jxijK(x) dx < 1; for xi 2

(x1; � � � ; xd)
0 = x. Also, the smoothing parameter h satis�es h! 0 and mhd !1, as n!1.

Assumption A4. The partial derivatives @
@xi
E[�jX = x] and @

@xi
E[�'(Y )jX = x] exist for

i = 1; : : : ; d, and are bounded on the compact support of f .

Assumption A5. E[� '(Y )jX = x] � '00, for �{a.e.x and each ' 2 F ; for some �nite '00 > 0.
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Assumption A2 is often imposed in nonparametric regression to avoid having unstable estimates

in the tails of f . Assumption A3 is not much of a constraint because the choice of K is at our

discretion. We note that if m = [cn] for some c 2 (0; 1), then requiring nhd ! 1 is equivalent

to mhd ! 1, however, we do not want to impose such restrictions on the choice of m. As-

sumption A4 is technical; in fact, the �rst part of Assumption A4 has already been used in the

literature (Cheng and Chu (1996)). Assumption A5 is not as restrictive as it appears because

E[� �(Y )jX] = E
�
E
�
�'(Y )

��X; Y
	��X�

= E
�
'(Y )E(�jX; Y )

��X�
� �minE

�
'(Y )

��X�
, a.s. (by As-

sumption A1), and the fact that '(y) > 0 for all y. Therefore, Assumption A5 is weaker than

requiring E['(Y )jX] � �0 > 0, a.s., for some �0 > 0. The following result deals with the estima-

tion error, i.e. the error represented by the �rst bracketed term on the right side of (21). More

speci�cally, we have

Theorem 2 Let F be a totally bounded class of functions ' : [0; 1]! (0; B], for some B <1. Let

the selection probability � be as in (8) and suppose that assumptions A1 { A5 hold. Then for every

� > 0, every " > 0, and n large enough,

P

�
Ln( b n;b')� inf

'2F"
L( ') > �

�
� 2 jF"j e

�`�2=32 + c22 e
�a0m

+ `
��F"�� � �c20 e�c21mhd�2 + c17 e

�c18mhd
�

where a0 and c21 are positive constants depending on �, but not on m or `. Here, c17; c18; and c20

are also positive constants, not depending on m or ` or �.

Theorem 2 in conjunction with the Borel-Cantelli lemma immediately yields the strong convergence

of the estimation error (to zero), i.e., Ln( b n;b')� inf'2F" L( ')!
a:s: 0, whenever (mhd)�1 log `!

0, as n!1. To deal with the approximation error in (21), suppose that '� 2 F , (where '� is as

in (12)), and let e' 2 F" be such that '� 2 B(e'; "). Such a e' exists because F" is an "-cover of F

and '� 2 F . Now let R(x;') be as in (11) and observe that in view of the results of Devroye et

al. (1996, p. 93)

inf
'2F"

L( ')� L� � L( e')� L�

� 2

Z ���R(x; e')�R(x;'�)����(dx)
� �0 sup

0�y�1

��e'(y)� '�(y)
��; by Lemma 4

� �0 "; for some constant �0 > 0, (22)

where the last line follows because '� 2 B(e'; "). Now, the bound in (22) shows that the second

term on the right side of (21) can converge to zero if " is replaced by a decreasing sequence "m # 0,

as m ! 1. At the same time, "m should not converge to zero too rapidly because F"m ! 1, as

"m # 0, and, as a result, the �rst term on the right side of (21) may not necessarily converge to

zero anymore (in view of the bound in Theorem 2). To address these points more formally, we �rst

state the following theorem regarding the error di�erence Ln( b n;b')�L�, (i.e., the left side of (21)),
followed by a corollary that captures the key points regarding the asymptotic choices of m, `, and

"m that yield strong optimality results for the proposed classi�er.
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Theorem 3 Suppose that the assumptions of Theorem 2 hold. Then for every "m > 0 satisfying

"m # 0, as m!1, every � > 0, and n large enough

P
n
Ln( b n;b')� L� > �

o
� 2 jF"m j expf�A�;"m

`g+ c25 exp
�
�B

�;"m
m
	

+ `
��F"�� � �c26 exp��C�;"m

mhd
	
+ c27 exp

�
� c28mh

d
	�
;

whenever '� 2 F , where A
�;"m

; B
�;"m

, and C
�;"m

are positive constants depending on � and �m

through the positive quantity tm := (� � �0 "m) only, but not depending on m or � directly, and �0

is as in (22). Furthermore, c25; c26; c27, and c28 are positive constants not depending on m, `, �,

or "m.

Theorem 3, which provides exponential bounds on the performance of the error of

the proposed classi�er, can be viewed as a more general version of the classical re-

sult of Devroye and Krzyzak for kernel classi�ers (see Theorem 10.1 of Devroye et

al. (1996)). Additionally, Theorem 3 in conjunction with the Borel-Cantelli lemma

yields the strong optimality of the proposed classi�er. More speci�cally, we have the

following corollary

Corollary 1 Suppose that the conditions of Theorem 3 hold. If "m # 0, as n!1, and

`�1 log jF"m j ! 0, (mhd)�1 log `! 0; and (mhd)�1 log jF"m j ! 0,

then b n;b' is strongly optimal, i.e.,

Ln( b n;b')� L� �!a:s: 0:

Remark 3 The choice of the bandwidth h is always important in practice. It is well-understood

that the optimal bandwidth that minimizes quantities such as the MISE or ISE is not necessarily

optimal in kernel classi�cation (in the sense of minimizing the classi�cation error); see, for example,

Devroye et al. (1996; Sec. 25.9). In fact, a counter-example is presented in Theorem 25.9 of the

cited monograph, where it is shown that the optimal bandwidth based on the MISE can result in large

misclassi�cation errors. As argued in Chapter 25 of the cited monograph, the optimal bandwidth

hopt is the one that minimizes the error Ln( b n;b') in (20) which is unfortunately always unknown;

see Devroye et al. (1996; Sec. 25.1). In a similar vein, Hall and Kang (2005) noted that for kernel-

based classi�cation with univariate distributions and just two classes, the optimal bandwidth can

be di�erent for each class and its asymptotic magnitude can vary from terms of order O(n�1=5) to

O(n�1=9) depending on the conditions imposed on the relationship between higher order derivatives

of the marginal densities. Furthermore, their results show that there are no closed form expression

for any one of their bandwidths. These issues are further compounded by the fact that �nding a

data-dependent bandwidth ĥopt which is in some sense close to hopt does not necessarily imply the

closeness of the corresponding misclassi�cation errors. Since, in classi�cation, consistency (i.e.,

the convergence of Ln( b n;b') to L�) is often the minimum requirement for a classi�er, ĥopt must

be chosen in such a way that the resulting classi�er will be consistent; see Devroye et al. (1996;

p. 424). To that end, several methods have been proposed in the literature for �nding data-dependent

bandwidths that yield the minimum requirements; these methods include (i) minimizing the Apparent

Error Rate that chooses h > 0 to minimize the error committed by the classi�er on the data itself,

and (ii) the cross-validation method; see Devroye et al. (1996; Ch. 25) for detail.
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3 Numerical Examples

In this section we perform some numerical work to study the performance of the proposed classi�er.

EXAMPLE 1.

In this example, we consider the prediction of the class variable, Y = 1 or 0, based on the vector

of covariates X 2 Rd, where d = 50 and d = 100. If Y = 1 (i.e., class 1) then

X � Nd(0 ; c�); c > 0; where � = (�ij) ; with �ij = 2�ji�jj; i; j = 1; : : : ; d; (23)

where c > 0 will be speci�ed later. When Y = 0 (class 0) then X is a d-dim standard Cauchy

random vector with independent components, i.e., the elements of X are independent standard

Cauchy random variables. The unconditional class probabilities are PfY = 1g = 0:5 = PfY = 0g:

The fact that both distributions are centered at zero makes the problem of classi�cation rather

challenging here. Next, we consider several response models.

Response Model A [Nonignorable].

�(x; y) =
�
1 + exp

�
�0 +

Pd
i=1 �ixi + 
y

	��1
.

Here, we consider four models under A. The choices of the coe�cients below produce approximately

50% missing data:

Model A1.

For d = 50: (
; �0) = (0:5;�0:35); �i = �0:11 for 1 � i � d
2 , and �i = 0:07 for d

2 < i � d.

For d = 100: (
; �0) = (0:5;�0:35); �i = �0:04 for 1 � i � d
2 , and �i = 0:06 for d

2 < i � d.

Model A2.

For d = 50: (
; �0) = (1:5;�0:96); �i = �0:03 for 1 � i � d
2 , and �i = 0:06 for d

2 < i � d.

For d = 100: (
; �0) = (1:5;�0:98); �i = �0:05 for 1 � i � d
2 , and �i = 0:06 for d

2 < i � d.

Model A3.

For d = 50: (
; �0) = (2:5;�1:6); �i = �0:03 for 1 � i � d
2 , and �i = 0:05 for d

2 < i � d.

For d = 100: (
; �0) = (2:5;�1:6); �i = �0:07 for 1 � i � d
2 , and �i = 0:08 for d

2 < i � d.

Model A4.

For d = 50: (
; �0) = (5;�3:3); �i = �0:04 for 1 � i � d
2 , and �i = 0:04 for d

2 < i � d.

For d = 100: (
; �0) = (5;�3:4); �i = �0:08 for 1 � i � d
2 , and �i = 0:11 for d

2 < i � d.

The next three models do not satisfy the response probability assumption (1); they are intention-

ally included to examine the robustness of the proposed classi�ers against departures from model

assumptions.

Response Model B [Nonignorable with Interaction].

�'(x; y) =
�
1 + expf�0 + �1x1 + �2x2 + �3x3 + �4x1y + 
yg

��1
.

In each of the following four models under B, the coe�cients are chosen to produce approximately

50% missing data (for both d = 50 and 100)

Model B1. (
; �0) = (0:5;�0:3); �1 = 0:4, �2 = �0:3; �3 = �0:5, and �4 = �0:2.
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Model B2. (
; �0) = (1:5;�0:8); �1 = 0:4, �2 = 0:1; �3 = �0:7, and �4 = �0:2.

Model B3. (
; �0) = (2:5;�1:1); �1 = �0:7, �2 = �0:8; �3 = �1:9, and �4 = �0:2.

Model B4. (
; �0) = (5;�1:65); �1 = �0:6, �2 = �0:7; �3 = �1:3, and �4 = �0:2.

Response Model C [Nonignorable Probit Model].

�'(x; y) = P
�
Z � �0 + �1x1 + �2x2 + �3x3 + 
y

	
,

where Z � N(0; 1). The coe�cients below yield about 50% missing rate (for both d=50 and 100).

Model C1. (
; �0) = (0:5;�0:5); �1 = �0:7, �2 = 0:2; �3 = �0:2.

Model C2. (
; �0) = (1:5;�1:2); �1 = �0:9, �2 = 0:3; �3 = �0:2.

Model C3. (
; �0) = (2:5;�1:7); �1 = 0:7, �2 = 0:1; �3 = �0:5.

Model C4. (
; �0) = (5;�2:0); �1 = 0:9, �2 = �0:3; �3 = �1:2.

Response Model D [Nonignorable sinusoidal].

�(x; y) =
h
1 + exp

�
�0 +

Pd
i=1 �ixi

	
� '(y)

i�1
, where '(y) = sin(
�y) + 0:1 ; 
 2 [0; 1=2],

which is as in (8). It is also the same as (1) but with expf
yg replace by the above function '(y).

Here, we consider two models under D, each of which produces approximately 50% missing data:

Model D1.

For d = 50: (
; �0) = (0:2; 1:05); �i = �0:05 for 1 � i � d
2 , and �i = 0:06 for d

2 < i � d.

For d = 100: (
; �0) = (0:2; 1:1); �i = �0:06 for 1 � i � d
2 , and �i = 0:07 for d

2 < i � d.

Model D2.

For d = 50: (
; �0) = (0:4; 0:75); �i = �0:08 for 1 � i � d
2 , and �i = 0:09 for d

2 < i � d.

For d = 100: (
; �0) = (0:4; 0:74); �i = �0:06 for 1 � i � d
2 , and �i = 0:04 for d

2 < i � d.

Four classi�ers are considered here: the proposed kernel classi�er in (19), where 
 is estimated

using the proposed estimator as well as the approach of Kim and Yu (2011). These are denoted

by b n;b' and b KY, respectively. We also consider the classi�er of Mojirsheibani and Reese (2017),

denoted by b MR, and the complete-case kernel classi�er, b cc, that only uses the complete cases. To

construct various classi�ers, we consider two sample sizes: n= 200 and 400. As for the external

data needed to construct the estimator of Kim and Yu, we employed 20% of the simulated missing

Yi values. Of course, in practice, one does not have external values of real data sets. For the new

estimator of 
 (equivalently, '(y) = expf
yg) we used the data-splitting approach outlined in Sec.

2.2 with m = 0:7n and ` = 0:3n = n �m, where 
 was selected to minimize (15) over a grid of

equally-spaced values of 
 in [�M;M ]. Here, we took M = 20 but a smaller value such as M = 5

would have been su�cient.

As for the choice of the kernel, we used the standard Gaussian kernel, where the bandwidth was

determined using the cross-validation approach to minimize the empirical error of the classi�er; see

Remark 3 for this choice. Next, the misclassi�cation error of each classi�er is estimated based on

an additional sample of 2000 observations generated in the same way as the original data (with

1000 from each class) and used as our \test" sample. The entire above process was repeated 500

11



Table 1: Misclassi�cation errors for Example 1 when the dimension of x is 50 and c=8 in (23).

Missing
Response n Model b n;b' b KY b MR

b cc
A 200 A1 0.1268 (0.0023) 0.1354 (0.0025) 0.3090 (0.0013) 0.1413 (0.0025)

A2 0.1359 (0.0027) 0.1497 (0.0028) 0.3471 (0.0016) 0.1540 (0.0028)
A3 0.1564 (0.0029) 0.1566 (0.0029) 0.3778 (0.0011) 0.1602 (0.0028)
A4 0.2157 (0.0036) 0.2232 (0.0037) 0.4228 (0.0012) 0.2325 (0.0037)

400 A1 0.1069 (0.0019) 0.1117 (0.0015) 0.3047 (0.0010) 0.1208 (0.0015)
A2 0.1162 (0.0016) 0.1229 (0.0017) 0.3297 (0.0007) 0.1332 (0.0017)
A3 0.1065 (0.0013) 0.1163 (0.0016) 0.3503 (0.0007) 0.1283 (0.0016)
A4 0.1839 (0.0021) 0.1847 (0.0023) 0.4216 (0.0011) 0.1993 (0.0023)

B 200 B1 0.1278 (0.0023) 0.1365 (0.0024) 0.3088 (0.0014) 0.1431 (0.0025)
B2 0.1363 [0.0029] 0.1499 (0.0026) 0.3501 [0.0015] 0.1590 (0.0029)
B3 0.1622 (0.0031) 0.1602 (0.0031) 0.3782 (0.0012) 0.1704 (0.0030)
B4 0.2172 (0.0038) 0.2247 (0.0039) 0.4231 (0.0013) 0.2387 (0.0038)

400 B1 0.1071 (0.0018) 0.1118(0.0015) 0.3046 (0.0009) 0.1201 (0.0016)
B2 0.1154 (0.0015) 0.1219 (0.0016) 0.3291 (0.0007) 0.1330 (0.0018)
B3 0.1070 (0.0014) 0.1177 (0.0017) 0.3509 (0.0007) 0.1294 (0.0017)
B4 0.1848 (0.0022) 0.1858 (0.0023) 0.4221 (0.0010) 0.2049 (0.0024)

C 200 C1 0.1294 (0.0018) 0.1378 (0.0017) 0.3093 [0.0009] 0.1469 (0.0016)
C2 0.1379 (0.0017) 0.1531 (0.0015) 0.3519 (0.0007) 0.1664 (0.0012)
C3 0.1834 (0.0014) 0.1907 (0.0015) 0.3592 (0.0006) 0.2115 (0.0016)
C4 0.2281 (0.0016) 0.2308 (0.0017) 0.4238 (0.0007) 0.2499 (0.0018)

400 C1 0.1252 (0.0016) 0.1309 (0.0014) 0.3066 (0.0009) 0.1402 (0.0015)
C2 0.1168 (0.0014) 0.1232 (0.0013) 0.3302 (0.0006) 0.1348 (0.0011)
C3 0.1012 (0.0010) 0.1128 (0.0011) 0.3243 (0.0005) 0.1426 (0.0013)
C4 0.1935 (0.0011) 0.1942 (0.0012) 0.4119 (0.0006) 0.2092 (0.0011)

D 200 D1 0.1342 (0.0025) 0.1476 (0.0030) 0.3548 (0.0015) 0.1598 (0.0031)
D2 0.1485 (0.0031) 0.1469 (0.0027) 0.3456 (0.0015) 0.1592 (0.0028)

400 D1 0.1159 (0.0022) 0.1202 (0.0023) 0.3448 (0.0011) 0.1356 (0.0024)
D2 0.1397 (0.0026) 0.1417 (0.0023) 0.3449 (0.0010) 0.1543 (0.0024)

times and the average errors, over the 500 Monte Carlo runs, were computed for each classi�er,

each model, and each sample size n.

The results are summarized in Table 1 for 50-dim covariates with c=8 in (23). This value of c

in
ates the normal variances, thus making it more challenging to discriminate between Normal and

Cauchy populations. The �rst two classi�ers are based on the proposed kernel method, howeverb n;b' uses the data-splitting estimator of 
 outlined in Sec. 2.2, whereas b KY is based on the

estimator b
 of Kim and Yu (2011) which requires external data. As Table 1 shows, the error ofb n;b' is slightly better than that of b KY; this is despite the fact that b KY uses some external data

as well (it uses the values of 20% of the missing Yi's). Clearly, external data is not available in

practice when dealing with real data sets. As the table shows, both of these classi�ers perform

better than b MR (which requires the MAR assumption) and the complete-case kernel classi�er, b cc.
These conclusions hold for the four response models A, B, C, and D. Table 2 presents the same

analysis for the case of 100-dim covariates. Here we took c=15 in (23) in order to make the task

of classi�cation much more challenging (the variance of the normals is 15 here). The conclusion

based on this table is essentially the same as before: the proposed kernel classi�er b n;b' works well
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Table 2: Misclassi�cation errors for Example 1 when the dimension of x is 100 and c=8 in (23).

Missing
Response n Model b n;b' b KY b MR

b cc
A 200 A1 0.1172 (0.0037) 0.1320 (0.0036) 0.3169 (0.0023) 0.1412 (0.0035)

A2 0.1077 (0.0034) 0.1211 (0.0041) 0.3138 (0.0022) 0.1319 (0.0042)
A3 0.1442 (0.0051) 0.1466 (0.0046) 0.3359 (0.0025) 0.1587 (0.0047)
A4 0.1865 (0.0038) 0.1874 (0.0036) 0.3551 (0.0015) 0.1988 (0.0038)

400 A1 0.1038 (0.0024) 0.1121 (0.0022) 0.3180 (0.0015) 0.1192 (0.0022)
A2 0.0960 (0.0023) 0.1211 (0.0028) 0.3369 (0.0017) 0.1230 (0.0029)
A3 0.1193 (0.0040) 0.1279 (0.0037) 0.3253 (0.0016) 0.1314 (0.0038)
A4 0.1685 (0.0033) 0.1777 (0.0032) 0.3599 (0.0014) 0.1851 (0.0034)

B 200 B1 0.1174 (0.0036) 0.1321 (0.0035) 0.3174 (0.0023) 0.1385 (0.0034)
B2 0.1080 (0.0038) 0.1225 (0.0043) 0.3140 (0.0024) 0.1274 (0.0045)
B3 0.1871 (0.0054) 0.1882 (0.0048) 0.3560 (0.0027) 0.1944 (0.0047)
B4 0.1882 (0.0039) 0.1893 (0.0038) 0.3571 (0.0016) 0.1984 (0.0036)

400 B1 0.1039 (0.0025) 0.1123 (0.0023) 0.3179 (0.0015) 0.1174 (0.0022)
B2 0.0958 (0.0022) 0.1198 (0.0026) 0.3365 (0.0018) 0.1245 (0.0027)
B3 0.1198 (0.0041) 0.1287 (0.0039) 0.3258 (0.0016) 0.1337 (0.0039)
B4 0.1712 (0.0037) 0.1805 (0.0035) 0.3611 (0.0014) 0.1921 (0.0033)

C 200 C1 0.1251 (0.0033) 0.1415 (0.0032) 0.3198 (0.0023) 0.1483 (0.0033)
C2 0.1123 (0.0024) 0.1266 (0.0022) 0.3149 (0.0019) 0.1362 (0.0021)
C3 0.1914 (0.0028) 0.1918 (0.0023) 0.3562 (0.0010) 0.1952 (0.0023)
C4 0.1927 (0.0023) 0.1930 (0.0021) 0.3568 (0.0008) 0.2012 (0.0022)

400 C1 0.1124 (0.0024) 0.1305 (0.0023) 0.3182 (0.0014) 0.1351 (0.0024)
C2 0.1087 (0.0017) 0.1196 (0.0016) 0.3125 (0.0012) 0.1267 (0.0016)
C3 0.1828 (0.0018) 0.1830 (0.0017) 0.3517 (0.0007) 0.1912 (0.0017)
C4 0.1845 (0.0016) 0.1839 (0.0016) 0.3524 (0.0006) 0.1987 (0.0015)

D 200 D1 0.1433 (0.0037) 0.1569 (0.0034) 0.3482 (0.0013) 0.1697 (0.0035)
D2 0.1683 (0.0051) 0.1691 (0.0049) 0.3437 (0.0024) 0.1817 (0.0049)

400 D1 0.1282 (0.0032) 0.1344 (0.0029) 0.3402 (0.0010) 0.1487 (0.0030)
D2 0.1455 (0.0041) 0.1594 (0.0038) 0.3431 (0.0014) 0.1731 (0.0037)

compared to the existing methods and it does so without requiring additional external data.

EXAMPLE 2. [The German Credit Data].

This real data set consisting of 1000 individuals, 700 of whom have been identi�ed as having \good

credit", i.e., class 1, and the remaining 300 have \bad credit", which is class 0. A total of 24 numeri-

cal covariates are associated with each person. A full description of this data set can be found in the

UCI repository of machine learning data sets at https://archive.ics.uci.edu/ml/index.php.

To perform the analysis, we randomly selected 300 of the 1000 observations to be set aside as a

test sequence to estimate the misclassi�cation error of each classi�er.

To compare the e�ectiveness of various methods, we deliberately deleted some of the y val-

ues according to the four response models discussed in Example 1. More speci�cally, for j =

1; : : : ; 24, we took (
; �0; �j) to be (0:5; 2:4;�0:023) for Model A1, (1:5; 1:2;�0:020) for Model

A2, (2:5; 0:7;�0:022) for Model A3, and (5;�1:54;�0:021) for Model A4. Similarly, we took

(
; �0; �1; �2; �3; �4) to be (0:5;�0:15;�0:019;�0:019;�0:019; 0:14) for Model B1, (1:5; 0:13;�0:08;

�0:08;�0:08; 0:33) for Model B2, (2:5; 2:1;�0:22;�0:22;�0:22; 0:67) for Model B3, (5; 1:7;�0:28;
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�0:28;�0:28; 0:56) for Model B4. For the response models under C we took (
; �0; �1; �2; �3)

to be (0:5; 2:4;�0:11;�0:11;�0:11) for Model C1, (1:5; 1:85;�0:12;�0:12; �0:12) for Model C2,

(2:5; 1:53;�0:14;�0:14;�0:14) for Model C3, and (5; 1:9;�0:23;�0:23;�0:23) for Model C4. Fi-

nally, for 1 � j � 24, we took (
; �0; �j) to be (0:2;�2:6; 0:03) for Model D1 and (0:4;�2:95;�0:03)

for Model D2. In each case, these values produced approximately 50% missing rates. Next, each

Table 3: Misclassi�cation errors for the German Credit data of Example 2.

Missing
Response Model b n;b' b KY b MR

b cc
A A1 0.2746 (0.0024) 0.2798 (0.0023) 0.3810 (0.0014) 0.3015 (0.0024)

A2 0.2842 (0.0026) 0.2881 (0.0026) 0.3918 (0.0015) 0.3113 (0.0025)
A3 0.2984 (0.0030) 0.2998 (0.0031) 0.4152 (0.0014) 0.3275 (0.0030)
A4 0.3261 (0.0038) 0.3293 (0.0037) 0.4325 (0.0016) 0.3718 (0.0037)

B B1 0.2980 (0.0025) 0.2990 (0.0024) 0.3823 (0.0016) 0.3124 (0.0025)
B2 0.2988 (0.0028) 0.2997 (0.0028) 0.3983 (0.0017) 0.3195 (0.0027)
B3 0.3521 (0.0030) 0.3574 (0.0031) 0.4195 (0.0015) 0.3755 (0.0031)
B4 0.3752 (0.0031) 0.3811 (0.0032) 0.4410 (0.0015) 0.4072 (0.0032)

C C1 0.3185 (0.0019) 0.3214 (0.0017) 0.3945 (0.0008) 0.3450 (0.0018)
C2 0.3261 (0.0016) 0.3288 (0.0016) 0.3998 (0.0007) 0.3375 (0.0017)
C3 0.3718 (0.0015) 0.3807 (0.0014) 0.4153 (0.0007) 0.3989 (0.0014)
C4 0.3850 (0.0017) 0.3895 (0.0017) 0.4340 (0.0008) 0.4160 (0.0018)

D D1 0.3449 (0.0027) 0.3580 (0.0026) 0.3978 (0.0015) 0.3746 (0.0027)
D2 0.3618 (0.0035) 0.3712 (0.0029) 0.4109 (0.0016) 0.3955 (0.0031)

classi�er was constructed based on the sample of size 700 (using the same approach as in Example

1) and tested on the remaining sequence of 300 data values. Repeating this process 500 times, the

average errors (over 500) and their standard errors were computed; these are reported in Table 3.

The empirical e�ectiveness of the proposed classi�er follows from the numerical results under b n;b'
and b KY of Table 3. Furthermore, unlike b KY, the classi�er b n;b' does not require any external data

in terms of access to some of the missing y values.

Remark 4 In the case of high-dimensional x, one may face the curse of dimensionality in es-

timating �(x) that often occurs in multivariate kernel estimation. It is well-understood that the

curse of dimensionality manifests itself in the error of estimation, as seen in the expected L2 error

of kernel estimators, which is of order O(n�2=(d+2)) where d is the dimension (Gy�or� et al. (2002;

Theorem5.2)). To overcome this issue, lately substantial e�orts have been made to develop ways

for evading the curse of dimensionality. One main approach is through the use of vine copulas as

proposed by Nagler and Czado (2016), Kraus and Czado (2017), and Noh et al. (2013).

4 Proofs

To prove our main results, we start by stating a number of lemmas.

Lemma 1 Let � be any probability measure on the Borel sets of Rd. If K is a regular kernel then
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there is a positive constant �(K), depending on the kernel K but not n, such that for every h > 0

sup
u2Rd

Z
K((x� u)=h)

E[K((x�X)=h)]
�(dx) � �(K) :

PROOF OF LEMMA 1

The proof can be found in, for example, Devroye and Krzy�zak (1989; Lemma 1).

�

Lemma 2 Let (X; V ); (X1; V1); : : : ; (Xn; Vn) be iid R
d � [�L;L]-valued random vectors, 0 < L <

1, and de�ne �mn(x) =
Pn

i=1 ViK
�
(x�Xi)=h

���
nE[K((x�X)=h)]

	
, where K is a regular kernel.

If h! 0 and nhd !1, as n!1, then for every " > 0 and large enough n,

P

�Z ��� �mn(x)� E[V jX = x]
����(dx) > "

�
� exp

�
�n"2=

�
64L2�2(K)

�	
where � is the probability measure of X and �(K) is as in Lemma 1.

PROOF OF LEMMA 2

The proof of this lemma appears in Gy�or� et al. (2002; Lemma 23.9).

Lemma 3 Consider the random pair (X; Y ) 2 R
d � R where Y could be nonignorably missing

according to (1). Let ' be any map of the form ' : R! (0;1). Then, when the expectations exist,

we have

E[Y jX = x] = E[�Y jX = x] +
E[�Y '(Y )jX = x]

E[� '(Y )jX = x]
� E[1� �jX = x]; (24)

PROOF OF LEMMA 3

The proof is straightforward and will not be given. 2

Lemma 4 Let R(x;'1) and R(x;'2) be as in (11), where '1; '2 : [0; 1]! (0; B] for some positive

number B. Then, under assumption A5, one has

E
���R(X;'1)�R(X;'2)

��� � c7 � sup
0�y�1

��'1(y)� '2(y)
��;

where c7 is a positive constant.

PROOF OF LEMMA 4

De�ne the quantities Sj(X) = E[� Y 'j(Y )jX] and Tj(X) = E[� 'j(Y )jX]; j = 1; 2: Then it is

straightforward to see that���R(X;'1)�R(X;'2)
��� = E[1� �jX] �

����S1(X)

T1(X)
�
S2(X)

T2(X)

����
=

�����S1(X)

T1(X)
�
T1(X)� T2(X)

T2(X)
+
S1(X)� S2(X)

T2(X)

���� � E�1� �jX
�

�
1

T2(X)

����T1(X)� T2(X)
���+ ���S1(X)� S2(X)

���� : (25)
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However, T2(X) � '00 > 0, almost surely, by assumption A5. Furthermore,

jS1(X)� S2(X)j � E
�
j� Y j �

��'1(Y )� '2(Y )
�� ��X�

� sup
0�y�1

��'1(y)� '2(y)
��

Similarly, jT1(X)� T2(X)j � sup0�y�1
��'1(y)� '2(y)��. Lemma 4 now follows from these bounds

together with (25).

2

Lemma 5 Let (X; Y ); (X1; Y1); : : : ; (Xn; Yn) be iid R
d � [�L;L]-valued random vectors, where Y

could be nonignorably missing according to (1). De�ne the indicator variable �i = 0 if Yi is missing

(otherwise �i = 1). Also, let b
 be any estimator of 
 in (1) and put

bm(x) =

Pn
i=1 �iYiK((x�Xi)=h)Pn
i=1K((x�Xi)=h)

+

Pn
i=1 �iYi expfb
YigK((x�Xi)=h)Pn
i=1 �i expfb
YigK((x�Xi)=h)

�

Pn
i=1(1� �i)K((x�Xi)=h)Pn

i=1K((x�Xi)=h)
;

where K is a regular kernel. Suppose that assumption A1 holds. If h! 0 and nhd !1, as n!1,

then for every " > 0, every 1 � p <1, and any distribution of (X; Y ) satisfying jY j � L <1,

P

�Z ��� bm(x)� E[Y jX = x]
���p�(dx) > "

�
� 4 e�c8n + 2 e�c9 n"

2
+ 4P

���b
 � 

�� > c10

	
(26)

for n large enough, where � is the probability measure of X, and c8, c9, and c10 are positive

constants not depending on n.

PROOF OF LEMMA 5.

Since, for every p � 1,
�� bm(x) � E[Y jX=x]

��p � ��� bm(x)
�� + ��E[Y jX = x]

���p�1�� bm(x) � E[Y jX =

x]
�� � (3L)p�1 �

�� bm(x) � E[Y jX = x]
��, it is su�cient to prove the lemma for the case of p = 1.

The proof is along standard arguments and goes as follows. First observe that in view of Lemma

3, with '(y) = expf
yg, we have�� bm(x)� E[Y jX = x]
��

�

����Pn
i=1 �iYiK((x�Xi)=h)Pn
i=1K((x�Xi)=h)

� E[�Y jX = x]

����
+

�����
Pn

i=1 �iYi expfb
YigK((x�Xi)=h)Pn
i=1 �i expfb
YigK((x�Xi)=h)

�

Pn
i=1(1� �i)K((x�Xi)=h)Pn

i=1K((x�Xi)=h)

�
E[�Y expf
Y gjX = x]

E[� expf
Y gjX = x]
� E[1� �jX = x]

�����
=: jIn(x)j+ jIIn(x)j (27)

By the results of Devroye and Krzy�zak (1989), for every distribution of (X; �Y ) with j�Y j � L <1

and every " > 0, there is a positive constant b1 depending on " (but not n) such that for large

enough n,

P
nZ

jIn(x)j�(dx) >
"

2

o
� e�b1n: (28)
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Next, to deal with the term jIIn(x)j in (27), we note that since
���Pn

i=1 �iYi expfb
YigK((x�Xi)=h)Pn
i=1 �i expfb
YigK((x�Xi)=h)

��� �
_ni=1jYij � L, one �nds

jIIn(x)j =

�����
Pn

i=1 �iYi expfb
YigK((x�Xi)=h)Pn
i=1 �i expfb
YigK((x�Xi)=h)

�

(Pn
i=1(1� �i)K((x�Xi)=h)Pn

i=1K((x�Xi)=h)

� E[1� �jX = x]

)
�
E[�Y expf
Y gjX = x]

E[� expf
Y gjX = x]
� E[1� �jX = x]

�����
�

�����
Pn

i=1 �iYi expfb
YigK((x�Xi)=h)Pn
i=1 �i expfb
YigK((x�Xi)=h)

�
E[�Y expf
Y gjX = x]

E[� expf
Y gjX = x]

�����
+ L �

�����
Pn

i=1(1� �i)K((x�Xi)=h)Pn
i=1K((x�Xi)=h)

� E[1� �jX = x]

�����
:= jIIn;1(x)j+ jIIn;2(x)j: (29)

But, again by the results of Devroye and Krzy�zak (1989), for every distribution of (X; �) and every

" > 0, there is a positive constant b2 depending on " such that for n large enough,

P
nZ

jIIn;2(x)j�(dx) >
"

4

o
� e�b2n: (30)

As for the term jIIn;1(x)j in (29), start by de�ning the quantities

b�1(x) =
nX
i=1

�iYi expfb
YigK((x�Xi)=h)�
nX
i=1

K((x�Xi)=h) (31)

b�2(x) =
nX
i=1

�i expfb
YigK((x�Xi)=h)�
nX
i=1

K((x�Xi)=h) (32)

e�1(x) =
nX
i=1

�iYi expf
YigK((x�Xi)=h)�
nX
i=1

K((x�Xi)=h) (33)

e�2(x) =
nX
i=1

�i expf
YigK((x�Xi)=h)�
nX
i=1

K((x�Xi)=h) (34)

�1(x) = E
�
�Y expf
Y g

��X = x
�

(35)

�2(x) = E
�
� expf
Y g

��X = x
�
: (36)

Then it is straightforward to see that

jIIn;1(x)j =

������ b�1(x)b�2(x) �
b�2(x)� �2(x)

�2(x)
+

b�1(x)� �1(x)

�2(x)

�����
� (j�2(x)j)

�1
�
L
���b�2(x)� �2(x)

���+ ���b�1(x)� �1(x)
����

(where we have used the fact that b�1(x)=b�2(x) � L)

� ��1min expfj
jLg �
�
L
���b�2(x)� �2(x)

���+ ���b�1(x)� �1(x)
���� ;

where the last line follows since, by assumption A1, �2(X) = E
�
E
�
� expf
Y g

��X; Y
���X�

=

E
�
expf
Y g � �(X; Y )

��X�
� �min � expf�j
jLg. Therefore, for every " > 0, one has

P
nZ

jIIn;1(x)j�(dx) >
"

4

o
� P

nZ ���b�1(x)� e�1(x)��� �(dx) > �min "

16
e�j
jL

o
17



+P
nZ ���e�1(x)� �1(x)

��� �(dx) > �min "

16
e�j
jL

o
+P

nZ ���b�2(x)� e�2(x)��� �(dx) > �min "

16L
e�j
jL

o
+P

nZ ���e�2(x)� �2(x)
��� �(dx) > �min "

16L
e�j
jL

o
:= �n(1) + �n(2) + �n(3) + �n(4): (37)

Now, once again, by the results of Devroye and Krzy�zak (1989), for n large enough,

�n(2) � e�b3n and �n(4) � e�b4n (38)

where b3 and b4 are positive constants depending on " but not n. Next, to deal with the term

�n(1) in (37), observe that���b�1(x)� e�1(x)��� �

�����
Pn

i=1 �iYi
�
eb
Yi � e
Yi

�
K((x�Xi)=h)

nE
�
K((x�X)=h)

� �����
+

�����
� nX
i=1

�iYi

�
eb
Yi � e
Yi

�
K((x�Xi)=h)

�

�
� 1

nE
�
K((x�X)=h)

� � 1Pn
i=1K((x�Xi)=h)

������
=:

��Un;1(x)��+ ��Un;2(x)��: (39)

On the other hand,Z ��Un;1(x)���(dx) � n�1
nX
i=1

����iYi �eb
Yi � e
Yi
� ��� � sup

u

Z
K((x� u)=h)

nE
�
K((x�X)=h)

� �(dx)
� n�1L�(K)

nX
i=1

����i �eb
Yi � e
Yi
� ���; by Lemma 1. (40)

However, a one-term Taylor expansion gives
��eb
Yi � e
Yi

�� = ��Yi expfe
Yig � (b
 � 
)
�� � L exp

�
je
 �


jL+
Yi
	
�
��b
�
��; where e
 is a point on the interior of the line segment joining b
 and 
. Therefore,

for any constants " > 0 and C > 0

P

�Z ��Un;1(x)���(dx) > �min "

32 ej
jL

�
� P

(�
L

n

��b
 � 

�� exp�je
 � 
jL

	 nX
i=1

�ie

Yi >

�min "

32Lej
jL�(K)

�
\
h
jb
 � 
j � C

i)
+ P

n
jb
 � 
j > C

o
� nP

�
�1e


Y1 >
�min "

32CL2e(C+j
j)L�(K)

�
+ P

n
jb
 � 
j > C

o
; (41)

where, in arriving at (41), we have used the fact that je
 � 
j < jb
 � 
j � C holds on the set�
jb
 � 
j � C

	
. Now, since �1 e


Y1 � ej
jL, the �rst term on the right side of (41) becomes zero

upon choosing C > 0 to satisfy (32CL2eCL�(K))�1e�j
jL �min " � ej
jL. This choice of C yields

P

�Z ��Un;1(x)���(dx) > �min "

32 ej
jL

�
� P

n
jb
 � 
j > C

o
: (42)
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Next, we can handle the term
��Un;2(x)�� in (39) as follows. First note that

��Un;2(x)�� � L � max
1�i�n

�
�i

���eb
Yi � e
Yi
��� � � �����

Pn
j=1K((x�Xj)=h)

nE
�
K((x�X)=h)

� � 1

����� :
Therefore, using the arguments that led to (41), one �nds for every " > 0

P

�Z ��Un;2(x)���(dx) > �min "

32 ej
jL

�
� P

(
CLeCL max

1�i�n

�
�ie


Yi
�
�

Z �����
Pn

j=1K((x�Xj)=h)

nE
�
K((x�X)=h)

� � 1

����� �(dx) > �min "

32Lej
jL

)
+ P

n
jb
 � 
j > C

o
; where C is as in (42)

� exp

(
�n�2min "

2

(32)2(64)C2L4�(K) � exp
�
2L
�
C + 2j
j

�	)+ P
n
jb
 � 
j > C

o
; (43)

for n large enough, by Lemma 2; it is the special case of Lemma 2 where Vi
a:s:
= 1 for all i = 1; : : : ; n,

and E[V jX = x] = 1. Putting together (43), (42), and (39), one arrives at

�n(1) � exp

(
�n�2min"

2

(32)2(64)C2L4�(K) � exp
�
2L
�
C + 2j
j

�	)+ 2P
n
jb
 � 
j > C

o
; (44)

where C is as in (42). Similarly, it is straightforward to show that the term �n(3) in (37) can also

be bounded by (44). Now, Lemma 5 follows from this together with (44), (28), (29), (30), (37),

and (38), where the constants c8 and c9 in Lemma 5 can be taken to be c8 = minfb1; b2; b3; b4g and

c9 =
�
(32)2(64)C2L4�(K) � exp

�
2L
�
C + 2j
j

�	��1
�2min.

2

Lemma 6 Let R(x;') be as in (11) for a known function ' : [0; 1] ! (0; B] for some B < 1.

Also, let bRm(x;') be the kernel estimator de�ned by (14), where the kernel K in (14) is regular.

Suppose that assumption A1 holds. If h ! 0 and mhd ! 1, as n ! 1 (and thus m ! 1), then

for every � > 0, every 1 � p <1, and n large enough

P

�Z ��� bRm(x;')�R(x;')
���p�(x) > �

�
� 4 e�a0m;

where a0 is a positive constant depending on � but not m or `.

PROOF OF LEMMA 6

The proof of this lemma is similar to (and, in fact, much easier than) that of Lemma 5 and will

not be given; it is easier because the function ' appearing in bRm(x;') is �xed instead of being an

estimator.

PROOF OF THEOREM 1

Let �(x) and b�(x) be as in (4) and (5), respectively. Then (see Devroye et al. (1996, Corollary

6.1))

Ln( b n)� L( B) � 2

Z ���b�(x)� �(x)
����(dx):
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Thus, for every " > 0,

P
n
Ln( b n)� L( B) > "

o
� P

�Z ���b�(x)� �(x)
����(dx) > "

2

�
:

Theorem 1 now follows from Lemma 5 with p = 1.

2

PROOF OF THEOREM 2

Let Ln( b n;b') and L� be as given in (20). Furthermore, for any ' 2 F de�ne

Lm( b m;') = P
� b m;'(X) 6= Y

��Dm	 and L( ') = Pf '(X) 6= Y g; (45)

where  ' is as in (10). Now let bL`( b n;b') be the weighted empirical error of the proposed classi�erb n;b' (see (15)) and observe that

Ln( b n;b')� inf
'2F"

L( ') =
h
Ln( b n;b')� bL`( b n;b')i+ hbL`( b n;b')� inf

'2F"
Lm( b m;')i

+
h
inf
'2F"

Lm( b m;')� inf
'2F"

L( ')
i

=: R(1) +R(2) +R(3): (46)

But

R(1) � sup
'2F"

���Lm( b m;')� bL`( b m;')��� (47)

where we have taken into account the fact that upon replacing b' (which depends on both Dm

and D` as shown in (18)) by ', the error term Ln( b n;b') reduces to Lm( b m;'). Next, let �' =

argmin'2F" Lm(
b m;'); here, �' depends on Dm because b m;' does. Then

R(2) = bL`( b n;b')� Lm( b m; �')
� bL`( b m; �')� Lm( b m; �')

(since by (18); bL`( b n;b') � bL`( b m; �'); 8 �' 2 F" ; furthermore b n; �' = b m; �')
� sup

'2F"

���bL`( b m;')� Lm( b m;')���: (48)

Therefore, in view of (47) and (48),���R(1) +R(2)
��� � 2 sup

'2F"

���bL`( b m;')� Lm( b m;')���: (49)

As for the term R(3) in (46), we note that with R(x;') and bRm(x;') as in (11) and (14), respec-

tively, one has

R(3) = inf
'2F"

Lm( b m;')� L( '0); where '0 = argmin
'2F"

L( ')

� Lm( b m;'0)� L( '0)

� 2

Z ��� bRm(x;'
0)�R(x;'0)

����(dx); (50)
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where (50) follows from the results in Devroye et al. (1996, Corollary 6.1). Here, � is the probability

measure of X. Therefore, by (46), (49), and (50), for every � > 0,

P

�
Ln( b n;b')� inf

'2F"
L( ') > �

�
� P

(
2 sup
'2F"

���bL`( b m;')� Lm( b m;')��� > �

2

)

+P

�Z ��� bRm(x;'
0)�R(x;'0)

����(x) > �

4

�
:= Sn;1 + Sn;2: (51)

But, taking p = 1 in Lemma 6, one has, for n large enough

Sn;2 � 4 e�am; (52)

where a is a positive constant depending on � but not on m or `. To deal with the term Sn;1, �rst

observe that with �' and b�' given by (8) and (16), the fact that

�i I
� b m;'(Xi) 6= Yi

	
b�(Xi; Yi)

=
�iI
� b m;'(Xi) 6= Yi

	
�(Xi; Yi)

� �iI
� b m;'(Xi) 6= Yi

	� 1

�'(Xi; Yi)
�

1b�'(Xi; Yi)

�
implies that

Sn;1 � P

8<: sup
'2F"

������`�1
X

i: (Xi;Yi;�i)2D`

�iI
� b m;'(Xi) 6= Yi

	
�'(Xi; Yi)

� P
nb m;'(X) 6= Y

���Dmo
������ > �

8

9=;
+ P

8<: sup
'2F"

������`�1
X

i:Xi;Yi;�i 2D`

I
� b m;'(Xi) 6= Yi

	� 1

�'(Xi; Yi)
�

1b�'(Xi; Yi)

������� > �

8

9=;
:= Pn(1) + Pn(2): (53)

But, for each (Xi; Yi; �i) 2 D`, one has

E

�
�iI
� b m;'(Xi) 6= Yi

	
�'(Xi; Yi)

����Dm� = E

�
E

�
�iI
� b m;'(Xi) 6= Yi

	
�'(Xi; Yi)

����Dm;Xi; Yi

�����Dm�
= E

�
I
� b m;'(Xi) 6= Yi

	
�'(Xi; Yi)

E
�
�i
��Dm;Xi; Yi

�����Dm�
= P

� b m;'(X) 6= Y
��Dm	 =: Lm( b m;')

where the last line follows from the de�nition of �'(Xi; Yi) and the independence of Dm and �i 2 D`.

Therefore, if we de�ne the quantity

eL`( b m;') := `�1
X

i: (Xi;Yi;�i)2D`

�i
�'(Xi; Yi)

I
� b m;'(Xi) 6= Yi

	
; ' 2 F" ; (54)

where �'(x; y) is as in (8), then the term Pn(1) in (53) can be written as

Pn(1) = E

"
P

(
sup
'2F"

���eL`( b m;')� Lm( b m;')��� > �

8

����Dm
)#

; (where eL`( b m;') is as in (54))
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� E

" ��F"�� � sup
'2F"

P

����eL`( b m;')� Lm( b m;')��� > �

8

����Dm�
#

� 2
��F"�� e�` �2=32; (by Hoe�ding's (1963) inequality): (55)

Next, to deal with the term Pn(2) in (53), observe that

Pn(2)

�
��F"�� � sup

'2F"

P

8<:`�1
������

X
i: (Xi;Yi;�i)2D`

I
� b m;'(Xi) 6= Yi

	 � 1b�'(Xi; Yi)
�

1

�'(Xi; Yi)

������� > �

8

9=;�
where b�'(Xi; Yi) and �'(Xi; Yi) are as in (16) and (8)

�
�

��F"�� � sup
'2F"

X
i: (Xi;Yi;�i)2D`

E

"
P

(�����
P

j: (Xj ;Yj ;�j)2Dm
(1� �j)K((Xi �Xj)=h)P

j: (Xj ;Yj ;�j)2Dm
�j '(Yj)K((Xi �Xj)=h)

�
E[1� �ijXi]

E[�i'(Yi)jXi]

�����'(Yi) > �

8

����Xi; Yi

)#
; (56)

where we have replaced the term expfg(x)g by (17) in the de�nition of �'(x; y) in (8). Now, de�ne

the quantities

Q1(Xi) := E
�
1� �i

��Xi

�
and Q2(Xi) := E

�
�i'(Yi)

��Xi

�
bQ1(Xi) =

P
j: (Xj ;Yj ;�j)2Dm

(1� �j)K((Xi �Xj)=h)P
j: (Xj ;Yj ;�j)2Dm

K((Xi �Xj)=h)

bQ2(Xi) =

P
j: (Xj ;Yj ;�j)2Dm

�j '(Yj)K((Xi �Xj)=h)P
j: (Xj ;Yj ;�j)2Dm

K((Xi �Xj)=h)

and observe that since
�� bQ1(Xi)
bQ2(Xi)

� Q1(Xi)
Q2(Xi)

�� � �� bQ1(Xi)
bQ2(Xi)

�� � �� bQ2(Xi)�Q2(Xi)
Q2(Xi)

�� + �� bQ1(Xi)�Q1(Xi)
Q2(Xi)

��, one can
bound the inner conditional probability in (56) as follows

P

(�����
P

j: (Xj ;Yj ;�j)2Dm
(1� �j)K((Xi �Xj)=h)P

j: (Xj ;Yj ;�j)2Dm
�j '(Yj)K((Xi �Xj)=h)

�
E[1� �ijXi]

E[�i'(Yi)jXi]

�����'(Yi) > �

8

�����Xi; Yi

)

� P

(����� bQ1(Xi)bQ2(Xi)

����� � ��� bQ2(Xi)�Q2(Xi)
��� > '00 �

16B

�����Xi; Yi

)

+ P

���� bQ1(Xi)�Q1(Xi)
��� > '00 �

16B

����Xi; Yi

�
:= �ni(1) + �ni(2) (57)

where '00 is as in assumption A5. Using standard arguments, it can be shown that under assump-

tions A1 { A5, for n (and thus m) large enough, one has

�ni(2) � C10 exp
�
� C11mh

d�2
	
; (58)

where C10 and C11 are positive constants not depending on m or `. To deal with �ni(1) in (57),

�rst observe that

�ni(1) � P

(
2(1� �min)

'00=2
�
��� bQ2(Xi)�Q2(Xi)

��� > '00 �

16B

�����Xi; Yi

)

22



+P
n bQ1(Xi) > 2(1� �min)

���Xi; Yi

o
+ P

n bQ2(Xi) < '00=2
���Xi; Yi

o
=: qn(1) + qn(2) + qn(3) (59)

Once again, as in (58), one obtains qn(1) = P
��� bQ2(Xi) � Q2(Xi)

�� > B '200 �
64(1��min)

���Xi; Yi
	
�

C12 exp
�
�C13mh

d�2
	
; for n large enough, where C12 and C13 are positive constants not depending

on m. Furthermore, qn(2) = P
� bQ1(Xi)�Q1(Xi) > 2(1��min)�Q1(Xi)

��Xi; Yi
	
� P

��� bQ1(Xi)�

Q1(Xi)
�� > 1� �min

��Xi; Yi
	
� C14 exp

�
� C15mh

d
	
, for n large enough, where we used the fact

that Q1(Xi) � 1��min. Similarly, one �nds qn(3) � C16 exp
�
� C17mh

d
	
, for n large enough.

Here C14 { C17 are positive constants not depending on n. Putting all the above together with

(59), one arrives at

�ni(1) � C12 exp
�
� C13mh

d�2
	
+ C18 exp

�
� C19mh

d
	
;

for n large enough, where one can take C18 = C14 + C16 and C19 = C15 ^ C17. This last bound in

conjunction with (58), (57), (56), (55), and (53) implies that Sn;1 (in (51)) satis�es

Sn;1 � 2 jF"j e
�`�2=32 + ` jF"j

�
c20 e

�c21mh2�2 + c17 e
�c18mh2

�
(60)

where one can take c20 = C10 + C12, c21 = C11 ^ C13, c17 = C16, and c18 = C17. Finally, the

theorem follows from (60) and (52).

2

PROOF OF THEOREM 3

First note that for every � > 0, one can write

P
n
Ln( b n;b')� L� > �

o
= P

�
Ln( b n;b')� inf

'2F"m
L( ') > � �

�
inf

'2F"m
L( ')� L�

��
� P

�
Ln( b n;b')� inf

'2F"m
L( ') > � � �0 "m

�
;

for some constant �0 > 0, where the last line follows by virtue of (22). Now, observe that we can

choose m large enough so that � � �0 "m > 0. Therefore, for n (and thus m) large enough, the

result follows from Theorem 2.

2

PROOF OF COROLLARY 1

The proof follows from an application of the Borel-Cantelli lemma in conjunction with the bound

in Theorem 3.

2
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