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Abstract

This paper studies the unconditional limiting distribution of the maximal deviation of boot-

strap kernel density estimators with re-sample sizes that are di�erent from the sample size, n.

More speci�cally, we study the convergence rates of such statistics when the bootstrap sample

size may be orders of magnitude smaller than n. An application to big-data scenarios is given.

Keywords: Kernel, bootstrap, Brownian bridge, approximation.

1 Introduction

Let X1; � � � ; Xn be n independent and identically distributed (i.i.d.) random variables with the

underlying distribution function F and the probability density function f = F 0. Also, let fn(x) =

(nh)�1
Pn

i=1K((x�Xi)=h) be the popular Parzen-Rosenblatt kernel estimator of f (Parzen (1962),

Rosenblatt (1956)), where K is the kernel used with the smoothing parameter h � h(n). The

asymptotic distribution of the maximal deviation of fn(x) from f(x), which plays a crucial role in

statistical inference (as in goodness-of-�t tests for f or the construction of uniform con�dence bands

for f over compact sets), follows from the classical results of Bickel and Rosenblatt (1973), Konakov

and Piterbarg (1984), Rio (1994), and Muminov (2011, 2012), among others, who studied the limiting

distribution of the properly normalized versions of the statistic sup0�t�1 jfn(t)� f(t)j=
p
f(t); here,

the interval [0; 1] can be replaced by any compact set. Given the slow rate of convergence (logarithmic

only) of this statistic to its limiting distribution (Konakov and Piterbarg (1984), one can always

consider the bootstrap methodology as an alternative approximation; see, for example, Mojirsheibani

(2012) and Al-Sharadqah et al. (2020).

The focus of this paper is to take a closer look at the asymptotic superiority of such bootstrap

approximations when the bootstrap re-sample size is substantially smaller than the original sample

size, n. This approach, which may be viewed as a virtual bootstrap, can be particularly bene�cial

in big-data scenarios where the data size n may be huge. Drawing bootstrap re-samples of smaller

sizes may resemble the m out of n bootstrap (Bickel et al. (1997)), but the latter method is usually

intended to remedy the situations where Efron's (1979) original algorithm fails (e.g., the distribution

of the largest order statistic); the following quote from Bickel and Sakov (2008, p. 967) asserts this:

\The choice of m can be crucial, and two issues are involved. The �rst is that the

user does not know, a-priori, whether the bootstrap works or not, in his case. The

second is the choice of m, in case of n-bootstrap failure."

In contrast, here we already know that the bootstrap works for the statistic of interest, but the

sample size is far too large to draw repeated bootstrap samples of size n. In the next section we

show that even if the bootstrap sample size m is orders of magnitude smaller than n, the bootstrap
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approximation can still have a fast rate of convergence (instead of logarithmic). Our results can also

provide some partial guidance in choosing the bootstrap sample size m. The proofs of our main

results employ tools from strong approximation theory.

2 Main results

2.1 The setup and the background

Once again, let fn(x) = (nh)�1
Pn

i=1K((x � Xi)=h) be the kernel density estimator of f , where

Xi; i = 1; : : : ; n are i.i.d with the unknown density f . We also state a number of assumptions.

Assumption (A). The function f1=2(t), a � t � b, is strictly positive and satis�es the Lipschitz

condition of order 1.

Assumption (B). There exists an integer s � 1 and an " > 0 such that the density f has partial

derivatives of up to order s that are bounded on (a� "; b+ ").

Assumption (C). The kernel K is �nite and satis�es
R
K(u)du = 1, K 0(u) is continuous andR

(K 0(u))2du < 1. Moreover,
R
urK(u)du=0 for all r 2 f1; : : : ; sg, i.e., K is a kernel of order

s+ 1, where s is as in Assumption (B).

Now, for �1 < a � t � b <1, consider the statistics

�n(t) =
p
nh
�
fn(t)� E

�
fn(t)

���p
f(t) ; and ��n(t) =

p
nh
�
fn(t)� f(t)

��p
f(t): (1)

The statistic �n(t) in (1) plays a central role in the papers cited in Section 1. In fact, the limiting

distribution of ��n(t) follows from that of �n(t) because the stated assumptions ensure that the bias

term E
�
fn(t)

��f(t) goes to zero fast enough. The limiting distribution of the properly centered and

normalized versions of these statistics have been studied by Bickel and Rosenblatt (1973), Konakov

and Piterbarg (1984), Rio (1994), and Muminov (2011, 2012), and others, and is shown to be a

double-exponential distribution. In particular, the following is due to Konako and Piterbarg (1984):

Theorem 1 Let �n(t) and ��n(t) be as in (1) and suppose that assumptions (A), (B), and (C) hold.

Let h = n��, for any (1 + 2s)�1 < � < 0:5, where s is as in assumption (C). Then, one has

lim
n!1

P
n
`h �

�1=2 sup
a�t�b

����n(t)��� `2h � x
o

= exp f�2 exp(�x)g ; (2)

lim
n!1

P
n
`h �

�1=2 sup
a�t�b

���n(t)��� `2h � x
o

= exp f�2 exp(�x)g ; (3)

where

� =

Z
K2(u) du and `h =

s
2 log

�b� a

h

�
+ log

� 1
�

Z
(K 0(u))2 du

�
+ 2 log

� 1

2�

�
: (4)

To present our results, let fmn be the bootstrap version of the kernel density estimator fn, i.e.,

fmn(t) = (mh)�1
mX
i=1

K((t�X�
i )=h); (5)
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where (X�
1 ; : : : ; X

�
m) is a sample of size m drawn with replacement from the original sample; thus,

X�
1 ; : : : ; X

�
m are conditionally independent (conditional on X1; � � � ; Xn). Now, consider the following

statistic which is the bootstrap counterpart of �n(t) in (1)

�mn(t) =
p
mh

�
fmn(t)� fn(t)

��p
fn(t) ; a � t � b: (6)

Also, consider the following \studentized" counterpart of (1)b�n(t) = p
nh
�
fn(t)� E

�
fn(t))

��p
fn(t) ; a � t � b (7)

and its bootstrap versionb�mn(t) =
p
mh

�
fmn(t)� fn(t)

��p
fmn(t) ; a � t � b: (8)

De�ne the random variables

Mn = `h �
�1=2 sup

a�t�b

���n(t)��� `2h
cMn = `h �

�1=2 sup
a�t�b

��b�n(t)��� `2h (9)

Mmn = `h �
�1=2 sup

a�t�b

���mn(t)
��� `2h

cMmn = `h �
�1=2 sup

a�t�b

��b�mn(t)
��� `2h (10)

where � and `h are as in (4). It is not di�cult to show that the bootstrap statistics Mmn and cMmn

work in the sense that their unconditional limiting distributions are the same as those in Theorem 1.

In fact, under the conditions of Theorem 2, one hasMmn !d Y and cMmn !d Y; where PfY � yg =
exp f�2 exp(�y)g ; 8y 2 R: The proof of such results rely on the strong approximation of empirical

and bootstrapped empirical processes by sequences of Brownian bridges. Here, we prove a stronger

result showing that even if m is orders of magnitude smaller than n (such as m =
p
n ), the bootstrap

approximation will still enjoy a polynomial rate of convergence (instead of logarithmic). This can

be particularly useful in big-data scenarios since it can alleviate the formidable computational cost

of drawing bootstrap samples of size n, while still retaining the bene�ts of bootstrap methodology.

Theorem 2 Let Mn, cMn, Mmn, and cMmn be as (9) and (10), and suppose that assumptions (A),

(B), and (C) hold. Let h = n�� and m = n� for any (1+ 2s)�1 < � < 1=3 and any � < � < 1, where

s is as in assumption (C). Then, one has

(i) sup�1<x<1
���P ncMmn � x

o
� P

ncMn � x
o ��� = O�n�� (log n)3=2�+O(n��)

and

(ii) sup�1<x<1
���P�Mmn � x

	� P
�
Mn � x

	��� = O�n�� (log n)3=2�+O(n��);
where � and � are positive constants not depending on m or n.

In what follows, we will assume, without loss of generality, that all random variables and precesses

are de�ned on the same probability space; for more on this one may refer to Section A.2 of Cs�org}o

and Horv�ath (1993). To proceed, �rst we state some preliminary results. For t 2 R, let

Fn(t) = n�1
nX
i=1

IfXi � tg; Fmn(t) = m�1
mX
i=1

IfX�
i � tg (11)

�n(t) = n1=2(Fn(t)� F (t)); �mn(t) = m1=2(Fmn(t)� Fn(t)) (12)

First we state a result on the best approximation of bootstrapped empirical processes by a sequence

of Brownian bridges, due to Cs�org}o et al. (1999), (for another closely related important result along

these lines, one may refer to Alvarez-Andrade and Bouzebda (2013)).
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Lemma 1 Let �mn(t) be the bootstrap empirical process de�ned in (12). Then one can de�ne a

sequence of Brownian bridges fBmn(t) ; 0 � t � 1g such that

P

�
sup

�1<t<1

����mn(t)� Bmn(F (t))
��� > p

m
�
c1 logm+ x

�
+
p
n
�
c4 log n+ y

�� � c2e
�c3x + c5e

�c6y;

for all x; y > 0, where c1; : : : ; c6 are positive constants.

Next, we state an inequality which will be useful in the sequel.

Lemma 2 Let X and Y be any random variables. Then for all " > 0 and every real u���P ���X�� � u
	� P

���Y �� � u
	 ��� � P

���X � Y
�� � "

	
+ P

n�����Y ��� u
��� < "

o
:

PROOF OF THEOREM 2

Proof of part (i). Start by de�ning

fMmn = `h �
�1=2h�1=2 sup

a�t�b

����� 1p
f(t)

Z
K((t� s)=h) dBmn(F (s))

������ `2h ; (13)

where Bmn(�) is as in Lemma 1, and observe that for each real x and any constant "mn > 0, (where

"mn can depend on m and n),��P�cMmn � x
	� P

�fMmn � x
	��

=
���Pn`h��1=2 sup

a�t�b

���b�mn(t)
��� � x+ `2h

o
� P

n
`h�

�1=2h�1=2 sup
a�t�b

��� 1p
f(t)

Z
K((t� s)=h) dBmn(F (s))

��� � x+ `2h

o���
� P

�
`h�

�1=2
���� sup
a�t�b

���b�mn(t)
���� h�1=2 sup

a�t�b

��� 1p
f(t)

Z
K((t� s)=h) dBmn(F (s))

������� � "mn

�
+ P

�����`h��1=2h�1=2 sup
a�t�b

���� 1p
f(t)

Z
K((t� s)=h) dBmn(F (s))

����� x� `2h

���� < "mn

�
;�

which follows from Lemma 2, for any constants "mn > 0
�

=: Sn;1 + Sn;2(x): (14)

Now observe that for any constants "0mn > 0 and "00mn > 0 satisfying "0mn + "00mn = "mn, one has

Sn;1 � P

�
`h�

�1=2 sup
a�t�b

����b�mn(t)� h�1=2p
f(t)

Z
K((t� s)=h) dBmn(F (s))

���� � "mn

�
= P

�
sup
a�t�b

���� 1p
fmn(t)

Z
K((t� s)=h) d�mn(s)� 1p

f(t)

Z
K((t� s)=h) dBmn(F (s))

����
� �1=2h1=2"mn

`h

�
� P

�
sup
a�t�b

1p
fmn(t)

���� Z K((t� s)=h) d�mn(s)�
Z

K((t� s)=h) dBmn(F (s))

���� � �1=2h1=2"0mn

`h

�
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+ P

�
sup
a�t�b

����� 1p
fmn(t)

� 1p
f(t)

� Z
K((t� s)=h) dBmn(F (s))

���� � �1=2h1=2"00mn

`h

�
�
where the choices of "0mn and "00mn will be given later

�
:= Sn;1(i) + Sn;1(ii): (15)

However, the term Sn;1(i) in (15) can be bounded as follows. Let �K =
��R dK(u)

��, then
Sn;1(i) = P

�
sup
a�t�b

���� 1p
fmn(t)

Z h
Bmn

�
F (t� uh)

�� �mn(t� uh)
i
dK(u)

���� � �1=2h1=2"0mn

`h

�
� P

�
�K

infa�t�b
p
fmn(t)

� sup
�1<v<1

����mn(v)� Bmn(F (v))
��� � �1=2h1=2"0mn

`h

�
� P

��
�Kp
f0=2

sup
�1<v<1

����mn(v)� Bmn(F (v))
��� � �1=2h1=2"0mn

`h

�
\
h

inf
a�t�b

fmn(t) � f0=2
i�

+ P
n

inf
a�t�b

fmn(t) < f0=2
o
: (16)

It is straightforward to show that

P
n

inf
a�t�b

fmn(t) < f0=2
o

� P

�
sup
a�t�b

��fmn(t)� fn(t)
�� > fmax

2
� f0

4

�
+ P

�
sup
a�t�b

��fn(t)� f(t)
�� > fmax

2
� f0

4

�
; (17)

where fmax := supa�t�b f(t) <1 by Assumption (B). Furthermore, one can show that

sup
a�t�b

��fmn(t)� fn(t)
�� � m�1=2�K �

�
sup

�1<v<1

����mn(v)� Bmn(F (v))
���+ sup

0�s�1
jBmn(s)j

�
; (18)

where Bmn(�) is as in Lemma 1. Thus, in view of (16), (17), and (18), one �nds

Sn;1(i) � P

�
�Kp
f0=2

sup
�1<v<1

����mn(v)� Bmn(F (v))
��� � �1=2h1=2"0mn

`h

�
+ P

n
sup
a�t�b

��fn(t)� f(t)
�� > fmax

2
� f0

4

o
+ P

n
sup

�1<v<1

����mn(v)� Bmn(F (v))
��� � �

fmax � f0
2

�p
m
�
(4�K)

o
+ P

n
sup

0�s�1

���Bmn(s)
��� � (fmax � f0

2
)
p
m
�
(4�K)

o
=: �n(1) + �n(2) + �n(3) + �n(4) (19)

Now, let c1; : : : ; c6 be the positive constants of Lemma 1 and put

"0mn =
`h �K

(f0=2)1=2�1=2h1=2
�
�
(c1 + b1) logmp

m
+

(c4 + b2) log np
n

�
; (20)

where b1 and b2 are any constants satisfying b1 >
1
c3

and b2 >
1
c6
. Then, by Lemma 1, we have

�n(1) � c2 e
�c3b1 logm + c5 e

�c6b2 logn
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= c2m
�c3b1 + c5 n

�c6b2 = o(m�1) + o(n�1);
�
because b1c3 > 1 and b2c6 > 1

�
(21)

As for the term �n(3), since for m large enough
(fmax� f0

2
)
p
m

4�K
> (c1+b1) logmp

m
+ (c4+b2) lognp

n
, where b1

and b2 are as in (20), it immediately follows from Lemma 1 that for m large

�n(3) � P

�
sup

�1<v<1

����mn(v)� Bmn(F (v))
��� � (c1 + b1) logmp

m
+

(c4 + b2) log np
n

�
� c2 e

�c3b1 logm + c5 e
�c6b2 logn = o(m�1) + o(n�1): (22)

To bound the term �n(4), let
�
B(t); 0 � t � 1

	
be a Brownian bridge and observe that�

Bmn(t); 0 � t � 1
	 D
=
�
B(t); 0 � t � 1

	
; for each m = 1; 2; : : : ; and n = 1; 2; : : : (23)

Therefore, in view of the distribution of the maximal modulus of a Brownian bridge, one has

�n(4) = P
n

sup
0�s�1

���B(s)��� � c7
p
m
o
; where c7 =

�
fmax � f0

2

� �
(4�K) > 0

= 2
1X
k=1

(�1)k�1e�2k2(c7
p
m)2 = O �e�c8m� ; where c8 = 2c27: (24)

Putting together (21), (22), (24), and the fact that �n(2) = O(exp(�c9nh2)), 9 c9 > 0, one �nds

Sn;1(i) = o(m�1) + o(n�1): (25)

To deal with the term Sn;1(ii) in (15), we start by writing

Sn;1(ii) � P

�
sup
a�t�b

���� fmn(t)� f(t)p
fmn(t)f(t) + fmn(t)

p
f(t)

���� � sup
0�s�1

���Bmn(s)
��� � �1=2h1=2"00mn

`h �K

\
h

inf
a�t�b

fmn(t) � f0
2

i�
+ P

�
inf

a�t�b
fmn(t) <

f0
2

�
:

=: S0n;1(ii) + S00n;1(ii): (26)

But, in view of (17) and (18), and with �n(2), �n(3), and �n(4) as in (19), one immediately �nds

S00n;1(ii) � �n(2) + �n(3) + �n(4) = o(m�1) + o(n�1): (27)

Furthermore, for any "00mn;1 > 0 and "00mn;2 > 0 satisfying "00mn;1 + "00mn;2 = "00mn, one has

S0n;1(ii) � P

�
sup
a�t�b

jfmn(t)� f(t)j � sup
0�s�1

���Bmn(s)
��� � C11 �

1=2h1=2"00mn

`h �K

�
where C11 > 0 can be taken to be

p
f0=2 f0 + (f0=2)

p
f0

� P

�
sup
a�t�b

jfmn(t)� fn(t)j � sup
0�s�1

���Bmn(s)
��� � C11 �

1=2h1=2"00mn;1

`h �K

�
+ P

�
sup
a�t�b

jfn(t)� f(t)j � sup
0�s�1

���Bmn(s)
��� � C11 �

1=2h1=2"00mn;2

`h �K

�
=: Tmn(i) + Tmn(ii) (28)
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Now, in view of (18), we �nd

Tmn(i) � P

(
sup

a�u�b

����mn(u)� Bmn(F (u))
��� � sup

0�s�1

��Bmn(s)
�� � C11 �

1=2h1=2m1=2 "00mn;1

2 `h �K

)

+ P

(�
sup

0�s�1

���Bmn(s)
����2

� C11 �
1=2h1=2m1=2 "00mn;1

2 `h �K

)
=: T 0mn(i) + T 00mn(i): (29)

Therefore, choosing

"00mn;1 =
2 `h �K logm

C11 �1=2h1=2m1=2
(30)

one �nds

T 0mn(i) � P

(
sup

a�u�b

����mn(u)� Bmn(F (u))
��� �plogm � logm

)
+ P

n
sup

0�s�1

���Bmn(s)
��� �p

logm
o

However,
p
logm > (c1+b1) logmp

m
+ (c4+b2) lognp

n
for largem, where b1 >

1
c3
and b2 >

1
c6
. Thus by Lemma

1, for large m, P
n
supa�u�b

���mn(u) � Bmn(F (u)) � p
logm

o
� c2 e

�c3b1 logm + c5 e
�c6b2 logn =

o(m�1) + o(n�1): Furthermore, in view of (23),

P
�

sup
0�s�1

��Bmn(s)
�� �p

logm
	
= 2

1X
k=1

(�1)k�1e�2k2(
p
logm)2 = O(m�2):

Thus, T 0mn(i) = o(m�1)+o(n�1)+O(m�2). Similarly, T 00mn(i) = P
�
sup0�s�1

��Bmn(s)
�� � p

logm
	
=

O(m�2): Therefore, by (29),

Tmn(i) = o(m�1) + o(n�1) +O(m�2): (31)

To deal with the term Tmn(ii) in (28), �rst observe that supa�t�b jfn(t)� f(t)j � supa�t�b
��E[fn(t)]

�f(t)��+ supa�t�b
��fn(t)�E[fn(t)]

�� = C12 � h+ �K supx2R jFn(x)�F (X)j � h�1, where one may take

C12 = supa�t�b jf 0(t)j
R jxjK(x)dx > 0 (see, for example, Prakasa Rao (1983; page 47)). Therefore,

Tmn(ii) � P

(�
C12 � h+ �K sup

x2R
jFn(x)� F (x)j � h�1� � sup

0�s�1

���Bmn(s)
��� � C11 �

1=2h1=2"00mn;2

`h �K

)

� P

(
sup

0�s�1

���Bmn(s)
��� � C11 �

1=2h1=2"00mn;2

`h �K
� 1

C12 � h+ �K

q
logn
n � h�1

)

+ P

(
sup
x2R

jFn(x)� F (x)j >
r

log n

n

)
(32)

Now, taking

"00mn;2 =

�
C12 � h+ �K

q
logn
n � h�1�`h �K plog n

C11 �1=2h1=2
; (33)

one �nds

Tmn(ii) � P
n

sup
0�s�1

��Bmn(s)
�� >p

log n
o
+ P

n
sup
x2R

jFn(x)� F (x)j >
p
(log n)=n

o
: (34)
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But, as before, P
n
sup0�s�1

��Bmn(s)
�� > p

log n
o
= O(n�2). Furthermore, by the results of Dvoretzky

et al. (1956) and Massart (1990),

P
n
sup
x2R

jFn(x)� F (x)j >
p
(log n)=n

o
� 2n�2:

This together with (34), (31), and (28) gives S0n;1(ii) = o(m�1) + o(n�1) + O(m�2) + O(n�2).
Combining this with (27) and (26), yields

Sn;1(ii) � S0n;1(ii) + S00n;1(ii) = o(m�1) + o(n�1) +O(m�2) +O(n�2) = o(m�1): (35)

Therefore, in view of (35), (25), and (15), one �nds

Sn;1 � o(m�1) + o(n�1) +O(m�2) +O(n�2) = o(m�1); (36)

where Sn;1 is as in (14). Finally, to deal with the term Sn;2(x) in (14), let fB(s); 0 � s � 1g be a

Brownian bridge and note that for each n = 1; 2; : : : and m = 1; 2; : : : ,�
1p
f(t)

Z
K((t� s)=h) dBmn(F (s)); a � t � b

�
D
=

�
1p
f(t)

Z
K((t� s)=h) dB(F (s)); a � t � b

�
: (37)

Konakov and Piterbarg (1984) studied the process (f(t))�1=2
R
K((t � s)=h) dB(F (s)); a � t � b.

Their results show that, under assumptions (A), (B), and (C), for the random variable

fM0
n = `h �

�1=2h�1=2 sup
a�t�b

�����1=pf(t)
� Z

K((t� s)=h) dB(F (s))

����� `2h ; (38)

there exists a constant � > 0 such that P
�fM0

n � x
	
= exp

� � 2 exp
� � x � x2

2`2
h

		
+ O(n��),

uniformly in x. Now, let G(u) = exp
�� 2 exp

�� u� u2

2`2
h

		
and observe that by virtue of (37)

Sn;2(x) = P
���fM0

n � x
�� < "mn

	
= G(x+ "mn)�G(x� "mn) +O(n��);

uniformly in x. Since G is di�erentiable (everywhere), the mean value theorem for integrals yields

G(x+ "mn)�G(x� "mn) =

Z x+"mn

x�"mn
G0(u) du = 2"mn �G0(c) ;

for some c 2 (x� "mn; x+ "mn). Therefore,

Sn;2(x) = O�n��(log n)3=2�+O(n��); uniformly in x, (39)

� > 0, which follows from the fact that G0 is bounded and the fact that "mn = "0mn+ "00mn;1+ "00mn;2 =

O�`h logm=
p
mh

�
+O�`h logm=

p
mh

�
+O�`h log n=pnh3� = O�n�� (log n)3=2�; �> 0, because `h =

O(plog n). Putting (39) together with (14), (36), and (37), we �nd
��P�cMmn � x

	� P
�fMmn � x

	��
= O�n�� (log n)3=2� + O(n��) ; uniformly in x, where fMmn is as in (13). Since P

�fMmn � x
	
=

P
�fM0

n � x
	
for all x, m, and n, this means��P�cMmn � x

	� P
�fM0

n � x
	�� = O�n�� (log n)3=2�+O(n��) ; (40)
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uniformly in x. Similarly, one can show��P�cMn � x
	� P

�fM0
n � x

	�� = O�n�� (log n)3=2�+O(n��) ; (41)

uniformly in x, where cMn is as in (9). The proof of (41) is similar to that of (40); the key steps of

the proof are as follows. Let fBn(t); 0 � t � 1g, n = 1; 2; : : : , be the sequence of Brownian bridges

used by Koml�os, et al. (1975) in the approximation of empirical processes, and put

fMn = `h �
�1=2h�1=2 sup

a�t�b

�����1=pf(t)
� Z

K((t� s)=h) dBn(F (s))

����� `2h :

Now, in view of Lemma 2 and arguments similar to those that led to (14) and (15), for every 
n > 0,


0n > 0, and 
00n > 0, with 
0n + 
00n = 
n, one obtains��P�cMn � x
	� P

�fMn � x
	���

� P

�
sup
a�t�b

1p
fn(t)

����Z K((t� s)=h) d�n(s)�
Z

K((t� s)=h) dBn(F (s))

���� � �1=2h1=2
0n
`h

�
+ P

�
sup
a�t�b

����� 1p
fn(t)

� 1p
f(t)

� Z
K((t� s)=h) dBn(F (s))

���� � �1=2h1=2
00n
`h

�
+ P

�����`h��1=2h�1=2 sup
a�t�b

��� 1p
f(t)

Z
K((t� s)=h) dBn(F (s))

���� x� `2h

���� < 
n

�
=: Un1 + Un2 + Un(x) : (42)

The term Un1 can be bounded based on the arguments similar to those that led to (19), (21), and

(25). More speci�cally, we can �nd a positive constant C16 such that, for the choice


0n = `h �K log n � C16

��
(f0=2)

1=2�1=2h1=2n1=2
�

(43)

one has

Un1 � P

(
�Kp
f0=2

sup
v2R

����n(v)� Bn(F (v))��� � �1=2h1=2
0n
`h

)
+ P

n
sup
a�t�b

��fn(t)� f(t)
�� > fmax � f0

2

o
= o(n�1) + O(exp(�c15nh2)) = o(n�1); (44)

where �n(�) is as in (12). The term Un2 in (42) can be bounded as in (34). More speci�cally, choosing


00n =
�
C12 � h+ �K

p
(log n)=n � h�1

�
`h �K

p
log n

� �
C17 �

1=2h1=2
�
; (45)

where 0 < C12 = supa�t�b jf 0(t)j
R jxjK(x)dx <1 and C17 =

p
f0=2 f0 + (f0=2)

p
f0, one �nds

Un2 � P

(
sup
a�t�b

jfn(t)� f(t)j � sup
0�s�1

���Bn(s)��� � C17 �
1=2h1=2
00n

�
(`h �K)

)

� P

�
sup

0�s�1

���Bn(s)��� >p
log n

�
+ P

�
sup
x2R

jFn(x)� F (x)j >
p
n�1 log n

�
= O(n�2): (46)

Finally, the arguments that led to (39) and the fact that 
n = 
0n + 
00n = O�`h log n=pnh� +
O�`h log n=pnh3� = O�n�� (log n)3=2�, yields Un(x) = O�n�� (log n)3=2�+O(n��); uniformly in x.
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Now, (41) follows because P
�fMn � x

	
= P

�fM0
n � x

	
for all x and n. Part (i) of Theorem 2 now

follows from (40) and (41).

Proof of part (ii)

The proof of part (ii) is similar to (and in fact easier than) that of part (i) and will not be given. 2

3 Numerical examples

3.1 The choice of m in practice

We start by discussing a qualitative approach for the choice of m which is in the spirit of the

method of successive di�erences, proposed by Bickel and Sakov (2008). Let Mmn and cMmn be,

respectively, the non-studentized and studentized bootstrap statistics in (10). Also, for each �xed

m, let Mmn;1; : : : ;Mmn;B be B copies of Mmn based on B bootstrap sample of size m (B is typically

a large number such as 1000). Similarly, let cMmn;1; : : : ;cMmn;B be B copies of Mmn, and de�ne

L�m;n(x) = B�1
BX
b=1

I
�
Mmn;b � x

	
and bL�m;n(x) = B�1

BX
b=1

I
ncMmn;b � x

o
:

Then the method of successive di�erences chooses the smallest mj that approximately minimizes

dj = sup
x

���L�mj ; n(x)� L�mj+1; n(x)
��� ; (47)

where mj , j � 1, is an increasing sequence of positive integers. In the case of the studentized statisticcMmn, mj is chosen to be the smallest value that approximately minimizes

bdj = sup
x

���bL�mj ; n(x)� bL�mj+1; n(x)
��� : (48)

In practice, the supremum is approximated by taking the maximum over a grid. For example, (47)

can be approximated by taking the maximum over a grid of equally-spaced values of Mmn in the

range [min1�b�B Mmn;b ; max1�b�B Mmn;b] for some initial value of m. Similarly, in the case of (48),

mj is chosen to minimize bdj over a grid of values of cMmn in
�
min1�b�B cMmn;b ; max1�b�B cMmn;b

�
.

We illustrate this approach in the next subsection.

3.2 Simulated data and the choice of m

To see how the above method works, here we carry out a simulation study to assess the performance

of the bootstrap approximation when m << n and n is large. We consider a random sample of

size n = 106 drawn from the mixture distribution f(x) = 0:4�1(x) + 0:6�2(x), where �1 is the pdf

of the N(� = �3; � = 1) distribution and �2 is that of N(�=1; �=2). Next, B=1000 copies of

the bootstrap statistic Mmn and its "studentized" counterpart cMmn in (10) were constructed, which

were then used to �nd the successive di�erence in (47) and (48) for di�erent values of m. A plot of

m against the successive di�erences (47) appears in the top panel of Figure 1, whereas that of (48)

is given in the lower panel. Figure 1 shows a value of m around 1400 may be su�cient in the case of

statistic Mmn. This number is lower (around 900) in the case of the studentized statistics cMmn, as

given by (10). In this example, the bandwidth h was estimated using the method of Sheather and

Jones (1991) subject to the conditions of Theorem 2.
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underlying density is the mixture f(x) = 0:4'1(x) + 0:6'2(x), where '1 is the density of a standard

normal and '2 is the density of a Unif (�3; 2) distribution. Once again, we see the superiority of the
bootstrap for re-sample sizes that are substantially smaller than n.

3.3 A real data example and the choice of m

Here we consider a real data example, with more than 500,000 entries, involving the unit prices of

items in a large online retail data set. A full description of this data set is available at the UCI reposi-

tory of machine learning data sets: https://archive.ics.uci.edu/ml/datasets/online+retail.

Chen et al. (2012) have also studied this data set. Here, we consider the application of successive

di�erences in order to be able to approximate the smallest re-sample size m that can be used to

construct the same bootstrap statistics. Since some of the price entries are reported to be zero or

take negative values, it was decided to remove such entries �rst. The remaining number of cases is

still close to 500,000. Figure 3 shows the plot of m versus successive di�erences. Here, a value of m
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Figure 3: Plots of di�erent bootstrap sample sizes m against the successive di�erences.

about 1000 for the non-studentized and 1500 for the studentized statistics might be su�cient.

Concluding Remarks. In this paper, we have studied the bootstrap approximation of the distri-

bution of the maximal deviations of kernel density estimators in big-data contexts. To appreciate

the di�culties involved, we note that when the sample size n is very large and when the computation

of statistics of interest is quite involved, then the computational cost associated with the use of

bootstrap samples of the same size as the original data can be formidable. Of course, large data sizes

can be blessings when invoking asymptotic results, but they can also be hindering in re-sampling

methods such as the bootstrap. The proposed virtual bootstrap provides a solution to reduce this

computational cost while still retaining the bene�ts of bootstrap methodology.
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