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Abstract

This paper studies the unconditional limiting distribution of the maximal deviation of boot-
strap kernel density estimators with re-sample sizes that are different from the sample size, n.
More specifically, we study the convergence rates of such statistics when the bootstrap sample
size may be orders of magnitude smaller than n. An application to big-data scenarios is given.
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1 Introduction

Let X1, -, X, be n independent and identically distributed (i.i.d.) random variables with the
underlying distribution function F and the probability density function f = F'. Also, let f,(z) =
(nh)='>°% | K((z — X;)/h) be the popular Parzen-Rosenblatt kernel estimator of f (Parzen (1962),
Rosenblatt (1956)), where K is the kernel used with the smoothing parameter h = h(n). The
asymptotic distribution of the maximal deviation of f,(z) from f(x), which plays a crucial role in
statistical inference (as in goodness-of-fit tests for f or the construction of uniform confidence bands
for f over compact sets), follows from the classical results of Bickel and Rosenblatt (1973), Konakov
and Piterbarg (1984), Rio (1994), and Muminov (2011, 2012), among others, who studied the limiting
distribution of the properly normalized versions of the statistic supg<,< |fn(t) — f(¢)|/\/ f(t); here,
the interval [0, 1] can be replaced by any compact set. Given the slow rate of convergence (logarithmic
only) of this statistic to its limiting distribution (Konakov and Piterbarg (1984), one can always
consider the bootstrap methodology as an alternative approximation; see, for example, Mojirsheibani
(2012) and Al-Sharadgah et al. (2020).

The focus of this paper is to take a closer look at the asymptotic superiority of such bootstrap
approximations when the bootstrap re-sample size is substantially smaller than the original sample
size, n. This approach, which may be viewed as a wvirtual bootstrap, can be particularly beneficial
in big-data scenarios where the data size n may be huge. Drawing bootstrap re-samples of smaller
sizes may resemble the m out of n bootstrap (Bickel et al. (1997)), but the latter method is usually
intended to remedy the situations where Efron’s (1979) original algorithm fails (e.g., the distribution
of the largest order statistic); the following quote from Bickel and Sakov (2008, p.967) asserts this:

“The choice of m can be crucial, and two issues are involved. The first is that the
user does not know, a-priori, whether the bootstrap works or not, in his case. The
second is the choice of m, in case of n-bootstrap failure.”

In contrast, here we already know that the bootstrap works for the statistic of interest, but the
sample size is far too large to draw repeated bootstrap samples of size n. In the next section we
show that even if the bootstrap sample size m is orders of magnitude smaller than n, the bootstrap
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approximation can still have a fast rate of convergence (instead of logarithmic). Our results can also
provide some partial guidance in choosing the bootstrap sample size m. The proofs of our main
results employ tools from strong approximation theory.

2 Main results

2.1 The setup and the background

Once again, let f,(z) = (nh) 13" K((z — X;)/h) be the kernel density estimator of f, where
X;,1=1,...,n are i.i.d with the unknown density f. We also state a number of assumptions.

Assumption (A). The function f'/2(t), a < t < b, is strictly positive and satisfies the Lipschitz
condition of order 1.

Assumption (B). There exists an integer s > 1 and an £ > 0 such that the density f has partial
derivatives of up to order s that are bounded on (a — ¢, b+ ¢€).

Assumption (C). The kernel K is finite and satisfies [ K(u)du = 1, K'(u) is continuous and
J(K'(u))?du < oo. Moreover, [u"K(u)du=0 for all r € {1,...,s}, i.e., K is a kernel of order
s+ 1, where s is as in Assumption (B).

Now, for —oo < a <t < b < 00, consider the statistics

Tn(t) = Vah [fa(t) = E(fa(8)]/VF( and  T;(t) = Vnh [fa(t) = f()]/VF (D). (1)

The statistic T',(¢) in (1) plays a central role in the papers cited in Section 1. In fact, the limiting
distribution of T} (¢) follows from that of I';,(¢) because the stated assumptions ensure that the bias
term E( fn(t)) — f(t) goes to zero fast enough. The limiting distribution of the properly centered and
normalized versions of these statistics have been studied by Bickel and Rosenblatt (1973), Konakov
and Piterbarg (1984), Rio (1994), and Muminov (2011, 2012), and others, and is shown to be a
double-exponential distribution. In particular, the following is due to Konako and Piterbarg (1984):

Theorem 1 Let I'y(t) and '} (t) be as in (1) and suppose that assumptions (A), (B), and (C) hold.
Let h =n"0, for any (1 +2s)"! < § < 0.5, where s is as in assumption (C). Then, one has

tim P{e, 272 sup [Th(0)| =6 < o} = exp{-2 exp(-a)}, (2)
n—oo a<t<b
lim P{Eh)\ 1/2 sup ‘I‘ )‘—E% < LE} = exp{—2exp(—z)}, (3)
n—oo a<t<b

where

:/K2(u)du and Ly = \/2log<b . )-i—log(i/(K’(u))?du) + 2log (%) (4)

To present our results, let f,,,, be the bootstrap version of the kernel density estimator f,, i.e.,

m

Fn(t) = (mh) ™'Y " K((¢ = X])/h), (5)

1=1



where (X7,...,X})) is a sample of size m drawn with replacement from the original sample; thus,
X7{,..., X}, are conditionally independent (conditional on Xj,---,X,). Now, consider the following
statistic which is the bootstrap counterpart of I'y,(¢) in (1)

Lo (8) = Vmh [frn (8) — ()] /V/Fat), a<t<b. (6)

Also, consider the following “studentized” counterpart of (1)

Tn(t) = Vnh [fo(t) = E(fa(t)] /V/Fa(t), a<t<b (7)

and its bootstrap version

Conn(t) = Vmh [frn(t) — fa(0]/V/ Ffrn(t), a <t <b. (8)

Define the random variables

M, = X V% sup |Du(t)] - 62 M, = 4,27V sup |Ta(t)| - £ (9)
a<t<b a<t<b

My, = A Y2 sup ‘an(t)‘ — 0 Mpn = o X 12 sup ‘fmn(t)‘ — 0 (10)
a<t<b a<t<b

where X and ¢;, are as in (4). It is not difficult to show that the bootstrap statistics M,,, and M\mn
work in the sense that their unconditional limiting distributions are the same as those in Theorem 1.
In fact, under the conditions of Theorem 2, one has M,,,, —¢ Y and ]/\/[\mn —4Y, where P{Y <y} =
exp{—2 exp(—y)} , Yy € R. The proof of such results rely on the strong approximation of empirical
and bootstrapped empirical processes by sequences of Brownian bridges. Here, we prove a stronger
result showing that even if m is orders of magnitude smaller than n (such as m = /n ), the bootstrap
approximation will still enjoy a polynomial rate of convergence (instead of logarithmic). This can
be particularly useful in big-data scenarios since it can alleviate the formidable computational cost
of drawing bootstrap samples of size n, while still retaining the benefits of bootstrap methodology.

Theorem 2 Let M, ]T/I\n, My, and ]\/Zmn be as (9) and (10), and suppose that assumptions (A),
(B), and (C) hold. Let h =n"° and m = n” for any (1+2s)"' <6 < 1/3 and any é < v < 1, where
s is as in assumption (C). Then, one has

6} SUP_ o6 << o0 ‘P {]T/I\mn < x} —-P {]\/Zn < :E} ‘ = O(n=* (logn)®?) + O(n?)
and
(ii) SUP_soczcoo | P{Mmn <z} — P{M, < x}‘ = O(n=A (logn)3/2) +0(n=h),

where X\ and B are positive constants not depending on m or n.

In what follows, we will assume, without loss of generality, that all random variables and precesses
are defined on the same probability space; for more on this one may refer to Section A.2 of Csorg6
and Horvath (1993). To proceed, first we state some preliminary results. For ¢t € R, let

F,(t) = nt zn:I{Xi <t}, Fuu(t) = m! zm:I{X;“ <t} (11)
=1 =1
Bn (t) = nl/Q(Fn (t) - F(t))a 5mn(t) = ml/Q(an(t) - F, (t)) (12)

First we state a result on the best approximation of bootstrapped empirical processes by a sequence
of Brownian bridges, due to Csoérgd et al. (1999), (for another closely related important result along
these lines, one may refer to Alvarez-Andrade and Bouzebda (2013)).



Lemma 1 Let f,,(t) be the bootstrap empirical process defined in (12). Then one can define a
sequence of Brownian bridges {Bpmn(t), 0 <t < 1} such that

P{ sup ‘an mn(F(t))‘ > Jr?z(cl log m + :E) + \/ﬁ(a; logn + y)} < cpe BT 4 e oY,
—oo<t<00
for all x,y > 0, where c1,...,cs are positive constants.

Next, we state an inequality which will be useful in the sequel.

Lemma 2 Let X and Y be any random wvariables. Then for all € > 0 and every real u

P{x|<u}-P{Y|<u}| < PYX-Y]|2e}+P{||Y]-u|<e}.

PROOF OF THEOREM 2
Proof of part (i). Start by defining

My = €A V20712 qup
a<t<b

— g )| — g2
W/K((t )/h) d By (F( ))‘ 4, (13)

where B, () is as in Lemma 1, and observe that for each real x and any constant ,,, > 0, (where
Emn can depend on m and n),

P (Tl < 5} — P{En < o]
= ‘P{EhAfl/Q sup ‘fmn(t)‘ §x—|—£i}

a<t<b
— ply\"12p712 oy ‘ /K ((t—s)/h)dB ‘<$+€2 ‘
{ h 2w | )/h) d By (F(s))| < h}
< P [F t“’flﬂ s | [ K= sy/mam ”>g }
B {h agtlg)b mn(t) a<tI<)b NZIO) s)/h) dBn(F(s))|| = €mn

A2 12 sup
a<t<b

/K (t = $)/h) By (F ())‘—x—@%

+pf F

< 5mn} s
(Which follows from Lemma 2, for any constants ey,, > 0)
=: Sml + Sn72($). (14)
Now observe that for any constants ¢/, > 0 and €/}, > 0 satisfying €],,,, + €/, = Emn, One has

—-1/2
Con(t) —

Sn71 < P{Eh/\_l/Q sup
a<t<b

/K (t — 5)/B) d Byun (F ())‘ zemn}

_ p{ sup $)/h) dBuun(s)

a<t<b

[ (=531 a8 (F0)

- )\1/2h1/2€mn
= n

\/K (6= /1) ) ~ [ K (6= /1) 4B (P51 2

ﬁ/K Vi0

< P{ sup

1
a<t<b \/ fmn(t)

y

)\1/2h1/26;n



+ P{ sup
a<t<b

[\/fin() T ]/K /B d By (F ())‘ . >\1/2h€1h/2s’,§]n}

(where the choices of €/, and €/ = will be given later)
= Sn,l (’L) + Sn,l(zz)

However, the term S, ;(7) in (15) can be bounded as follows. Let pux = U dK (u ‘ then

F(t = uh)) = Ba(t — uh)| dK (u)| >

Spa(i) = P{ sup ;
h

a<t<b

)\1/2h1/2€/ }

1
Frnn () / B

1/271/2 1
< P{ B s [Bn(0) BP0 > 2 ]

infagtgb fmn(t) —00< V<00 gh
L )\1/2h1/261 :|
< P su ‘ F(v ‘>7mn
< [ s ) =Bt 2 2=

. [lnf o) = fo/2) |+ P{ int fun(®) < fof2}. (16)

<t<b

It is straightforward to show that

P{ inf fun(t) < fo/2}

a<t<

sp{mwmmwmmbﬁy Plerl s (- so) > B - 20 an

a<t<b a<t<b 2

where fiax :=sup,<;<; f(t) < oo by Assumption (B). Furthermore, one can show that

sup ‘fmn(t) - fn(t)‘ < mil/Z,UK' ( sup ‘,an mn(F(U))‘ + sup |an(8)|)7 (18)
a<t<b —oo<v<00 0<s<1

where B,,,,(-) is as in Lemma 1. Thus, in view of (16), (17), and (18), one finds

)\1/2h1/28,
e

Sul) < p{ () ~ Bn(F(0))] >

f()/ oo<v<oo

+ P{ sup ‘fn —f(t)‘ > fmax—@}

a<t<b 2 4

4+ 2L s (B (@)~ B ()| 2 (s~ 2) v 1)}

—oo<v<0

+ P{ sup an(s)‘ > (fax — %)\/E/(ZIMK)}

0<s<1
=i An(1) + An(2) + An(3) + An(4) (19)
Now, let ¢q,...,cs be the positive constants of Lemma 1 and put
o= Eh,u;( . (01 +b1) logm " (C4+bg) logn (20)
T (fo/2)Y2A\L/2R1/2 vm Vn ’

where b; and bs are any constants satisfying b; > é and by > é Then, by Lemma 1, we have

An(l) S cs 6—03b1 10gm+ cs 6—06b210gn



= com™ 452 = o(m™!) +o(n7"), (because bicz > 1 and bocg > 1) (21)

_fo
As for the term A, (3), since for m large enough (fmax4 T Wm (Clﬂz}%ogm + (Cﬁ%logn, where by

and by are as in (20), it immediately follows from Lemma 1 that for m large

(c1 4+ b1)logm (C4+bg)logn}
A,(3) < P su ‘ mn B (F'(v ‘2 +
® < r{ sw o (F@)) U .
< ¢ e—C3b1 logm + 5 e—csbz logn _ O(m—l) +0(n—1)‘ (22)

To bound the term A, (4), let {IBB , 0<t< 1} be a Brownian bridge and observe that
{Bun(t), 0<t <1} 2{B(t), 0<t <1}, foreachm=1,2,...,andn=1,2,...  (23)
Therefore, in view of the distribution of the maximal modulus of a Brownian bridge, one has

Ap(4) = P{ Oiggl ‘B(s)‘ > c7 \/ﬁ}, where ¢7 = (fmax — %) [(4px) >0

_ 22 k 1o—2k*(cr ym)®  _ (’)(e*CSm), where cg :203. (24)
k=1

Putting together (21), (22), (24), and the fact that A,(2) = O(exp(—cgnh?)), Icg > 0, one finds
Spi(i) = o(m ) +o(nh). (25)

To deal with the term S, ;(4¢) in (15), we start by writing

) funl) = 1) | g2
Snalil) < P{filgb IO () + fmn(t)\/m‘ oiggl‘Bm"(s)‘Z On in

a<t<b - 2 a<t<

A [ ot fun®) 2 f“]} +P{ inf fun(t) < J;“}

But, in view of (17) and (18), and with A, (2), Ap(3), and Ay (4) as in (19), one immediately finds
ma(i) < A(2) + A(3) + Ag(4) = o(m™h) +o(n7"). (27)

Furthermore, for any e, ; > 0 and ey, » > 0 satisfying e, | + €},, o = €1,5p, One has

C )\1/2h1/2 "
Soai) < P{ sup nlt) = O] sup [Bn(s)] > 2,0 |
a<t<b 0<s<1 h MK
where C7; > 0 can be taken to be \/Mfo + (fo/2)V/fo
Ci1 )\1/2h1/26”
< P s fnn) = (0] sup [Bo(s)] > S
a<t<b 0<s<1 h MK
Ci1 )\1/2h1/26ll
# 2] sup 110 = 101 sup [Bn(s)] > ZE
a<t<b 0<s<1 h WK
= Ton(1) + Tron (1) (28)



Now, in view of (18), we find

Ci1 )\1/2h1/2m1/2 e .
Tonli) < SUD. | B () = By (F ()] - 5up [Brn(s)] = mn.
a<u<b 0<s<1 205
2 Oy AV2RY 21 2 o .
+ P sup (B (s > Udl
<0§s21 ) ) 2 b i
= T (i) + Tl (). (29)
Therefore, choosing
20y iy logm
" o
Emn,1 = Ch1 AL/2R1/2m1/2 (30)

one finds

T (i) < P{ sup ‘ﬁmn(u)—an(F(u))‘-\/logm > logm}+P{ sup [Bun(s)| >

a<u<b 0<s<1

log m}

However, v/logm > (CH_%Ogm + (c4+%logn for large m, where by > é and by > é Thus by Lemma

1, for large m, P{ SUPg<u<b ‘ﬁmn(u) — Bpn(F(u)) > «/logm} < cpeCsbilogm o o o—cobalogn
o(m™') + o(n~1). Furthermore, in view of (23),

ox
P{ sup Brn(s)| > logm} = 2 Z et e 2K (Viogm)? O(m™2).
k=1

0<s<

Thus, T},,,(i) = o(m™") +o(n™") + O(m~?). Similarly, Ty, (i) = P{supg<,<; Brn(s)| > Viogm} =
O(m~?). Therefore, by (29),
Ton(i) = o(m™) +o(n™') +O(m™2). (31)

To deal with the term T (i4) in (28), first observe that sup,<;<, [fn(t) — f(#)| < sup,<i<p ‘E[fn(t)]
t)‘ + Supg<i<p ‘fn(t) - E[fn(t)]‘ = C12- h+ px sup,eg |[Fo(z) — F(X)|- h~!, where one may take
Crz2 = sup,<;<p | f'(t)] [ |2| K (z)dz > 0 (see, for example, Prakasa Rao (1983; page 47)). Therefore,

Cll )\1/2}11/26” )
Tmn(“) S P [012 ~h+ M SUup |Fn($) - F($)| : h_l] © sup an(s) Z Ui
z€R 0<s<1 Uy ik
C )\1/2h1/2€/l 1
< P{ sup ‘]B%mn(s) > H mn2
0<5<1 Ch Cia - h+ px 1ngLn L
|
P {sup |Fy () — F(z)| > Og”} (32)
zER n
Now, taking
[012 h+NK\/ logn hil]ehﬂkvbgn
6” 9 = (33)
mn, Cll )\1/2h1/2 ’
one finds
Tyun (i) < P{ Sup |Bn(s)] > 1ogn} +P{sup|F (z) — F(z)| > /(logn) /n} (34)
0<s<1



But, as before, P{ SUP<s<1 ‘an(s)‘ > +/log n} = O(n~2). Furthermore, by the results of Dvoretzky
et al. (1956) and Massart (1990),

P{ sup | Fy, () z)| > +/(logn) /n} < 2p72

rER

This together with (34), (31), and (28) gives S}, ,(i7) = o(m™') + o(n™') + O(m~?) + O(n"?).
Combining this with (27) and (26), yields

Snalit) < Sp1(i6) + Sp1 (i) = o(m™") +o(n™") + O(m™>) + O(n™?) = o(m™").  (35)

Therefore, in view of (35), (25), and (15), one finds

Sp1 < om Y +on ) +0(m ) +0Mn?) =o(m), (36)
where Sy, 1 is as in (14). Finally, to deal with the term S, o(z) in (14), let {B(s), 0 < s < 1} be a
Brownian bridge and note that for eachn =1,2,... and m=1,2,...,
{F/K s)/h) d By (F ()),aStSb}
{F/K (t — ) /h) dB(F ()),agtgb}. (37)

Konakov and Piterbarg (1984) studied the process (f(t))~/2 [ K((t — s)/h) dB(F(s)), a <t <b.
Their results show that, under assumptions (A), (B), and (C), for the random variable

(VD) [ K= m dB(F(s))\ 8, (38)

MO = e, \"V2R 12 gyp
a<t<b

there exists a constant S > 0 such that P{Mg < x} = exp{ — Zexp{ - — %}} + O(n="),
h

uniformly in z. Now, let G(u) = exp { — 2exp { —u — %}} and observe that by virtue of (37)
h

Sua(@) = P{MS—z| <emn} = G(a+emn) — G(& — emn) + O(nP),

uniformly in z. Since G is differentiable (everywhere), the mean value theorem for integrals yields

TH+eEmn
Gz +emn) — Gx—emn) = / G'(u)du = 2emn - G'(c),
T—Emn
for some ¢ € (£ — emn, T+ €mpn). Therefore,
Spa(z) = O(n*(log n)3/2) + O(n~?), uniformly in z, (39)

A > 0, which follows from the fact that G' is bounded and the fact that emn = €1, + €1 + Empno =

O (¢ logm/v'mh) +O (£, logm/v'mh) + O (¢ logn/vnh3) = O(n~ (10gn)3/2) A >0, because ¢;, =
O(Vlogn). Putting (39) together with (14), (36), and (37), we find \P{an <z}- P{an <z}
=0(n* (logn)3/2) + O(n~#), uniformly in z, where M, is as in (13). Since P{an <z} =
P{]T/fg < m} for all z, m, and n, this means

|P{ My <z} — P{MO < z}| = O(n~* (logn)*?) + O(n=?), (40)
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uniformly in z. Similarly, one can show
|P{M, <z} — P{M <z}| =O(n* (logn)*?) + O(n"?), (41)

uniformly in z, where M, is as in (9). The proof of (41) is similar to that of (40); the key steps of
the proof are as follows. Let {B,(¢), 0 <t <1}, n=1,2,..., be the sequence of Brownian bridges
used by Komlds, et al. (1975) in the approximation of empirical processes, and put

(a/vi®) | K((t—s)/h)dﬁn(ﬂs))\ g

M, = b\ 212 qup
a<t<b

Now, in view of Lemma 2 and arguments similar to those that led to (14) and (15), for every =, > 0,
v, >0, and /) > 0, with 4}, + v/ = 7,,, one obtains

|P{M, <z} - p{Mn < x}‘

)\1/2]711/2,%/1 }

SP{ sup fn ‘/K $)/h) dBn(s /K (b= 5)/h) dBn(F(5))] 2 —-

a<t<b

1/2p1/2 01
N P{ sup S m}

a<t<h [\/fT \ﬁ]/K s)/h) dBn (F ())‘_ ”
—i—P{ <%}

G Y2112 ‘F /K $)/h) dBy( (s))‘ 2
=:Up1 + Up2 + Up(z). (42)

a<t<b

The term U, can be bounded based on the arguments similar to those that led to (19), (21), and
(25). More specifically, we can find a positive constant Cg such that, for the choice

vl =L py logn - 016/[(f0/2)1/2)\1/2h1/2n1/2] (43)
one has
AR/, fo
Unp < {\/71811615 B ( )_Bn(F(U))‘Zeh}"i‘P{aS;;Eb‘fn _f(t)‘>fmax_5}
= o(n ') 4+ O(exp(—ci5nh?)) = o(n '), (44)

where f3,,(-) is as in (12). The term U,z in (42) can be bounded as in (34). More specifically, choosing

= (012 ~h+ p/(logn) /n - h*l) Ch i /logn [ (Crz NV/2RY2) (45)

where 0 < C1a = sup,<;<p | f' ()| [ 2| K (z)dz < 00 and C17 = \/fo/2 fo + (fo/2)V/ fo, one finds

U2 < P{ sup |fu(t) — f(#)| - sup Bn(s)\ > Cir N2RY24) /(0 uK)}
a<t<b 0<s<1
< P{ sup (Bp(s)| > v/log n} +P {sup |Fp(z) — F(z)| > V/n~t logn} =0(n?). (46)
0<s<1 z€R

Finally, the arguments that led to (39) and the fact that v, = v, + ), = O(f;logn/vnh) +
O(¢nlogn/Vnh3) = O(n=> (log n)>/?), yields Uy (z) = O(n=* (logn)3/2) + O(n=F), uniformly in z.
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Now, (41) follows because P{]T/fn <z} = P{Mg < z} for all z and n. Part (i) of Theorem 2 now
follows from (40) and (41).

Proof of part (ii)
The proof of part (ii) is similar to (and in fact easier than) that of part (i) and will not be given. O

3 Numerical examples

3.1 The choice of m in practice

We start by discussing a qualitative approach for the choice of m which is in the spirit of the
method of successive differences, proposed by Bickel and Sakov (2008). Let M,,, and ]/W\mn be,
respectively, the non-studentized and studentized bootstrap statistics in (10). Also, for each fixed
m, let Mypp1,..., My, 5 be B copies of M,,, based on B bootstrap sample of size m (B is typically
a large number such as 1000). Similarly, let M\mn,l, e M\mmB be B copies of M,,,, and define

Li (@) = 1ZI{anb<x} and L7, . (z) = 12 { My < 2}
Then the method of successive differences chooses the smallest m; that approximately minimizes

dj = sup Ly, o) = Ly, ()
x

mjij+1,n

; (47)

where m;, 7 > 1, is an increasing sequence of positive integers. In the case of the studentized statistic
My, mj is chosen to be the smallest value that approximately minimizes

dj = sup | Ly, (@) = Ly ()] (48)
In practice, the supremum is approximated by taking the maximum over a grid. For example, (47)
can be approximated by taking the maximum over a grid of equally-spaced values of M,,, in the
range [m1n1<b< BMpnp, max;<p<p M ) for some initial value of m. Slmllarly, in the case of (48),

m; is chosen to minimize d over a grid of values of an in [m1n1<b<B an b, MaX1<p<B an b]

We illustrate this approach in the next subsection.

3.2 Simulated data and the choice of m

To see how the above method works, here we carry out a simulation study to assess the performance
of the bootstrap approximation when m << n and n is large. We consider a random sample of
size n = 10% drawn from the mixture distribution f(z) = 0.4¢(x) + 0.6¢2(z), where ¢; is the pdf
of the N(p = —3, 0 = 1) distribution and ¢9 is that of N(u=1, 0=2). Next, B=1000 copies of
the bootstrap statistic M,,,, and its ”studentized” counterpart J/\l\mn in (10) were constructed, which
were then used to find the successive difference in (47) and (48) for different values of m. A plot of
m against the successive differences (47) appears in the top panel of Figure 1, whereas that of (48)
is given in the lower panel. Figure 1 shows a value of m around 1400 may be sufficient in the case of
statistic M,,,,. This number is lower (around 900) in the case of the studentized statistics J\/J\mn, as
given by (10). In this example, the bandwidth h was estimated using the method of Sheather and
Jones (1991) subject to the conditions of Theorem 2.
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Figure 1: Plots of different bootstrap samplemsizes m against the successive differences.

Next, let U = exp(—2exp{M,}) and U = exp (—2exp {Z\//Tn}), where M, and M, are as in (9),
and observe that when n is large, then by Theorem 1 the random variables U and U should

be approximately Unif(0,1) random variables.

Similarly, by Theorem 2, the random variables

T = B! Z{i] I{Mpnp < My} and T = B! 25:1 I{an,b < M\n} should be approximately
Unif(0,1). Now, drawing 300 independent random samples, each of size n = 10% from f(z), we
obtain (U] yeeey Ugoo), (ﬁ] sy ﬁgoo), (T], cee ,Tgoo), and (j—\'], cee ,’1/—\’300). The top panel of Figure 2
illustrates the plot of the empirical CDF of the U;’s in (a), that of 7j’s in (b), Ui’s in (c), and 7}’s in
(d). We have also included the 45-degree line which is the theoretical CDF of the Unif(0,1) distribu-
tion. The fact that plots (b) and (d) are much closer to the 45-degree line (as compared to plots (a)
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(e) Non-studentized

Bootstrap Asymptotic
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(f) Non-studentized (g) Studentized

Bootstrap

(d) Studentized
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(h) Studentized

Figure 2: Plots of the empirical cdf’s. Top panel corresponds to the density of a mixture of two normals:
plot (a) is for Uy,--- ,Useo, plot (b) for T4, ,T300, plot (c) for Uy, ...,Usqo, and plot (d) corresponds to
Ty,...,T300. Plots (e)—(h) correspond to the density of the mixture of a normal and a uniform distributions.

and (c)) shows the superiority of the bootstrap. Plots (e)—(h) produce the same results when the
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underlying density is the mixture f(x) = 0.4¢1(x) + 0.6p2(z), where 1 is the density of a standard
normal and s is the density of a Unif (—3, 2) distribution. Once again, we see the superiority of the
bootstrap for re-sample sizes that are substantially smaller than n.

3.3 A real data example and the choice of m

Here we consider a real data example, with more than 500,000 entries, involving the unit prices of
items in a large online retail data set. A full description of this data set is available at the UCI reposi-
tory of machine learning data sets: https://archive.ics.uci.edu/ml/datasets/online+retail.
Chen et al. (2012) have also studied this data set. Here, we consider the application of successive
differences in order to be able to approximate the smallest re-sample size m that can be used to
construct the same bootstrap statistics. Since some of the price entries are reported to be zero or
take negative values, it was decided to remove such entries first. The remaining number of cases is
still close to 500,000. Figure 3 shows the plot of m versus successive differences. Here, a value of m

Non—-studentized

Successive diff
0.00 006 0.12
[

o 500 1000 1500 2000

Studentized

Successive diff
0.00 010 0.20

T T T T T
o 500 1000 1500 2000

Figure 3: Plots of different bootstrap samplesizes m against the successive differences.
about 1000 for the non-studentized and 1500 for the studentized statistics might be sufficient.

Concluding Remarks. In this paper, we have studied the bootstrap approximation of the distri-
bution of the maximal deviations of kernel density estimators in big-data contexts. To appreciate
the difficulties involved, we note that when the sample size n is very large and when the computation
of statistics of interest is quite involved, then the computational cost associated with the use of
bootstrap samples of the same size as the original data can be formidable. Of course, large data sizes
can be blessings when invoking asymptotic results, but they can also be hindering in re-sampling
methods such as the bootstrap. The proposed wvirtual bootstrap provides a solution to reduce this
computational cost while still retaining the benefits of bootstrap methodology.
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