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Abstract

We present a new Bayesian modeling approach for joint analysis of wind
components and short-term wind prediction. This approach considers a trun-
cated bivariate matrix Bayesian dynamic linear model (TMDLM) that jointly
models the u (zonal) and v (meridional) wind components of observed hourly
wind speed and direction data. The TMDLM takes into account calm wind
observations and provides joint forecasts of hourly wind speed and direc-
tion at a given location. The proposed model is compared to alternative
empirically-based time series approaches that are often used for short-term
wind prediction including the persistence method (naive predictor), as well
as univariate and bivariate ARIMA models. Model performance is measured
predictively in terms of mean squared errors associated to 1-hour and 24-hour
ahead forecasts. We show that our approach generally leads to more accu-
rate short term predictions than these alternative approaches in the context
of analysis and forecasting of hourly wind measurements in 3 locations in
Northern California for winter and summer months.

Keywords: Bayesian dynamic linear models, matrix-variate dynamic
models, joint wind speed and direction forecasts, short-term wind
prediction.
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1. Introduction

Wind speed forecasting has been studied extensively in recent years as
it is an essential element in the management of wind power generation [1].
Short-term forecasting of wind speed and other related measurements usually
refers to predictions from minutes to days ahead (typically no more than 48
hours), while long-term forecasting deals with predictions of several days,
weeks and months ahead [see, e.g.,[2]. In this paper we focus on short-
term wind forecasting. More specifically, we consider joint modeling and
forecasting of hourly wind speed and direction.

Models for wind speed forecasting can be roughly divided into those based
on physical models, those based on statistical models and hybrid approaches
that combine physical and statistical models [1]. Generally, physical models
are preferable when dealing with large scale data and long-term predictions,
while statistical models are preferable for short-term forecasting. Statistical
approaches are usually based on tools for time series analysis such as ARIMA
(autoregressive integrated moving average) models, neural networks, func-
tional regression analysis, state-space models and regime switching models
among others [see for example 3] 2] 4] [5]. These approaches can lead to
relatively accurate short-term forecasts of wind speed, however, they do not
provide forecasts of wind direction. In terms of joint forecast of wind speed
and direction, a number of approaches are available. [6] considers methods
based on ARMA and VAR (vector autoregressive) models and finds that
VAR models can outperform ARMA models on wind lateral and longitudi-
nal components in terms of mean absolute error (MAE) when the correlation
between speed and direction is modestly significant. However, models in [6]
are not appropriate for dealing with non-stationary wind data, which is the
type of wind data analyzed here. [7] proposes non-linear methods based on
neural networks for wind speed and direction forecasting. Such methods are
tested on wind speed and direction data from public records of the Nevada
department of transportation’s road weather information system. A time
interval of 10 min was used to train and test the methods. Analysis and
forecasting of speed and direction were done separately, assuming that these
two measurements were independent. This approach is shown to compare
favorably against other methods such as echo state networks and methods
based on adaptive neuro-fuzzy inference in terms of very short term forecast-
ing. [8] considers a non-parametric kernel density estimation method, and a
non-parametric version of the Johnson and Wehrly model [9] to jointly an-
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alyze and forecast wind speed and direction. The appeal of non-parametric
approaches is that they do not assume any particular distribution form and
so, they are usually more flexible for describing the data than parametric
models. However, non-parametric methods tend to be much more computa-
tionally intensive than parametric methods and often unfeasible in pratical
settings. [8] shows that their proposed methods lead to a better performance
than alternative parametric models when jointly modeling wind speed and
direction data, but no assessment of the quality of short-term forecasts is pro-
vided. In addition, non-parametric methods assume bandwidths and other
tuning parameters to be fixed over time which may not offer enough flexibil-
ity for analyzing data with time-varying features. Finally, we note that none
of the methods just mentioned explicitely consider modeling calm winds (i.e.,
winds with zero speed). This is important as wind data with high tempo-
ral resolution (i.e., hourly or more frequent measurements) typically contain
a large number of zero observations corresponding to measurements during
calm periods of zero wind speed.

In this paper we present a Bayesian model for joint analysis and short-
term forecasting of non-stationary wind speed and direction data. We pro-
pose, implement and test a truncated bivariate matrix Bayesian dynamic
linear model that jointly models the u (zonal) and v (meridional) wind com-
ponents of observed hourly wind speed and direction data. We note that
univariate truncated dynamic linear models have been used to model and
forecast rainfall data in [10]. The truncated dynamic linear model presented
here is a bivariate generalization of the model in [10]. Our model is able to
provide joint forecasts of hourly wind speed and direction. We test our mod-
els by analyzing and forecasting median hourly wind speed and direction data
from 3 locations in Northern California. These are public data available at
the Towa Environmental Mesonet (IEM) Automated Surface Observing Sys-
tem (ASOS) Network. Model performance is measured predictively in terms
of mean squared errors associated to 1-hour and 24-hour ahead forecasts.

The paper is organized as follows. Section 2 presents a description of
the data. Section 3 presents the proposed model and discusses algorithms
for posterior inference and forecasting. Section 4 shows the data analysis
and forecasting with the proposed models as well as comparisons with other
approaches. Finally, Section 5 presents final remarks and discusses possible
future extensions.
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Figure 1: Location of the 3 stations in Northern California.

2. Wind data

Wind data were obtained from the Iowa Environmental Mesonet (IEM)
Automated Surface Observing System (ASOS) Network, a publicly available
database (http://mesonet.agron.iastate.edu/AS0S). ASOS stations are
located at airports and take minute-by-minute observations and general basic
weather reports for the National Weather Service (NWS), the Federal Avia-
tion Administration (FAA), and the Department of Defense (DOD). These
observations are nationally monitored for quality 24 hours per day. For ad-
ditional detailed information about the ASOS measurements see [11].

For this paper we consider wind direction (in degrees relative to the north)
and speed (in knots) from 3 ASOS stations in Northern California near the
Monterey Bay Area, specifically, stations located in airports in Watsonville
(WVI), Salinas (SNS) and Monterey (MRY) (see Figure [1). Wind direction
is reported to the nearest 10 degree increment (e.g., 274 degrees is reported
as 270 degrees). The ASOS wind sensors’ starting threshold for response
to wind direction and speed is 2 knots and so, winds measured at 2 knots
or less are reported as calm (i.e., 0 speed magnitude). We consider hourly
median wind speed magnitude and corresponding direction for the months of
February and August. For illustration purposes we present analyses for these
two months for two years —namely, 2010 and 2013— at the three locations
listed above. Similar results in terms of the performance of our proposed

4
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model were obtained from analyzing data from a 10 year period from 2008
to 2017. We chose the months of February and August for a number of
reasons. February is, on average, one of the months with the largest average
rainfall and the largest average wind speed magnitude for the three selected
locations in Northern California, while August is, on average, one of the
months with the lowest average rainfall (essentially none) and the lowest
average wind speed magnitude. Also, the wind directions are, on average,
very different for these two months. In this paper we evaluate the goodness of
fit and forecasting capabilities of our proposed models for these two different
months. Figure |2| shows the windrose plots of median hourly wind speed
and direction data for the months of January and August from 2008 to 2017
in Monterey, Salinas and Watsonville. Clearly, there are differences across
the 3 locations and also seasonal differences. All the locations, specially
Salinas, register a larger count of stronger winds (above 17 knots) in the
month of February. These winds are from the South-East and some come
from the West in Monterey and Salinas, and from the South in Watsonville.
In August the winds come mostly from the West, including readings from
the South-West and the North-West in Monterey and Salinas, and mostly
from the South in Watsonville. Finally, we also considered median hourly
air temperature (in ° Farenheit) and sea-level pressure (in mb) as possible
covariates in our model.

3. Bayesian dynamic modeling

We propose a Bayesian dynamic model for analysis and forecasting of
hourly median wind data for each month, year and location. Our model
takes into account wind speed magnitude and direction by jointly modeling
the zonal and the meridional components, denoted as v and v components,
respectively. The u component is the component towards the East, while
the v component is the component towards the North. More specifically,
let y, = (yt1,y2) for t =1 : T be a 2-dimensional time series comprising
the u (zonal) component and the v (meridional) component of the wind
measurement at time ¢ (with ¢ indexing hourly data) for a given location
and month, ie., y,; = —s;sin(nd;/180), and y;» = —s; cos(wd,/180), where
s; is the wind speed in knots and d; is the meteorological wind direction in
degrees clockwise from the north at time ¢.

We consider the following bivariate truncated dynamic linear model for
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Figure 2: Windrose plots of median hourly wind data for January and August from 2008
to 2017 in Monterey (MRY), Salinas(SNS) and Watsonville (WVI). Numbers in the center
correspond to percentages of calm wind (i.e., winds with 0 speed magnitude).
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B (0,0) if —a<hi<a, and —b<his <),
Yo = h, otherwise,

with a and b fixed values that capture the approximate censoring of the wind
measuring devices, and

h, = F,0;+¢€, € ~ Ny0,0%), (1)
O, = GO+, U~ MNy(0, W, X), (2)

with initial distributions (Gg, ¥|Dy) ~ MNWP’XlQ(mO, Co, nox, Xo), and
(v|Dy) ~ IG(ngy,doy), where MN denotes the matrix normal distribution,
W=1 denotes the inverse-Wishart distribution, M NW ! denotes the matrix
normal inverse-Wishart distribution, and /G denotes the inverse-gamma dis-
tribution. Here we have that

e hy = (hy1, ) is a latent process describing the underlying behavior
of the 2 hourly wind components over time,

e O; a p x 2 is matrix of state parameters; p denotes the dimension of
the parameter space, which depends on the structure of the model and
the number of covariates included in the analysis as explained below,

e F, is a p-dimensional vector of constants, and G is a p X p known state
evolution matrix,

® ¢; is a 2-dimensional vector of observational errors, €2; is a p X 2 evo-
lution error matrix, assumed to be zero mean matrix-normally dis-
tributed, with left p x p variance matrix W, and right 2 x 2 variance
matrix Y; note that the matrix-normal inverse Wishart prior implies
that (E|D0) ~ W_l(n(LE, SO)

Equations and above define a matrix dynamic linear model [see, [12]
13]. Therefore, our bivariate model is a truncated model with an underlying
multivariate dynamic linear structure. Truncated univariate dynamic linear
models have been used before for analyzing rainfall data in [10]. The model
proposed here is in this sense a generalization of [10] to the bivariate case,
and we use it for joint modeling and forecasting of short term wind speed
magnitude and direction. The value of p and specific structure of F; and G
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in the context of our models for hourly wind components is detailed below
in Section 3.1.

In addition, W, is specified sequentially using discount factors as de-
scribed in [12], i.e., we assume

W, = A"V2GC,_,G'A? -~ GC,_, G/, (3)

with A = diag(dy,...,d,) and discount factors ¢; € (0,1] for all i = 1 : p.
Optimal values of ; will be chosen to maximize likelihood-based criteria or
to minimize mean squared errors for one-step ahead forecasts.

Posterior inference is achieved via Markov chain Monte Carlo (MCMC)
by iteratively sampling from the conditional distributions described below.
Given initial values for ng ., do.v, no,s, So, mg, Co, ©F,7, X0 and setting h}, =
yr1 and hg’t = ;0 for all ¢, at iteration ¢ we proceed as follows:

e Draw v from IG(nr,/2,dr./2), With ny,, = ng, + 2T and

dry = doy + Y [(B{) — FOLV)(S00) 0y — el
t=1

e Draw (@?)T, (@) using the algorithm of [14], which combines the forward-
filter-backward-sampling (FFBS) of [15] and [16] with the algorithm of
[17]. This is done as follows:

— (Forward Filtering) for ¢ = 1 : T, compute a;, Ry, f;, Q;, my, Cy,
nyys, and Sy, as

a, = Gmy_y, R, = GC,_,G' + W,,
f; - F/at7 Qt = F/RtF + 0,
m; = a; + A€, C, =R, — AQ.A],

with e, = hﬁH) —f, A= RtFt/Qt7 Ney = My—15 + 1, and

1
St = — (M—1xSi1 + ee;/Qy) .

Ny

Again, note that W, is specified via .
— Sample X from the distribution W= (nr sy, St).

8



175 — (Backward Sampling) Sample ©% from M N, .»(mz, Cr, ©®), and

176 then, for t = (T"— 1) : 0, sample @ﬁ” from M N,y (mj, Cy, »@),
177 with

m; = {I, - C,G'R;},G}m, + C,G'R; 0,

C = {I,- CGRLGIC,
178 where I, denotes the identity matrix of dimension p.

179 e Fort =1 :

181 TN(—a,a)X(—b,

T sample h,@ as follows. For each t, if y, # 0, set
180 htl) = y,, otherwise sample hE“) from a bivariate truncated normal

o (F,080 p(Ox0),

w2 3.1. Specific model structure

183 The model proposed above is very general in the sense that F,, G can
18« be specified by the modeler to include trend, seasonal components, and any
15 additional covariates. We now describe the structure used in our analyses
186 of the wind component data for the 3 locations and each of the months.
17 As mentioned above, we consider two covariates, namely, x;; := the air
188 temperature in ° Farenheit and xo, := the mean sea level pressure (in mb).
189 We also consider seasonal components by using a Fourier DLM representation
o [12] with fundamental period 24 for the hourly data. Then, the complete
11 Fourier model with a fundamental period of 24, all the harmonics, and the
12 two covariates listed above, is a model with p = 25, a 25 x 2 matrix of state
13 parameters, and F; and G given by:

Ft = (a:l,t,xQ,t,E'Q,...,E'Z,l)’,
1 0 0 0
0 1 0 0
00 JLlw 0
G = 00 0 Jo(1, 2w)
00 0 0
0 0 0 0

with w = 27 /24, h = 12, E; = (1,0)’, and

Jo(1l,rw) = <

cos(wr)

O OO

o o oo
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for r = 1,...,11. Therefore, F; in this case is a 25-dimensional vector and
G is a 25 x 25 matrix. In general, only a few harmonics of the fundamental
period are needed, leading to more parsimonious representations with smaller
p.In other words, we can consider smaller models that include only a subset of
the entire set of harmonics of the fundamental period. For instance, a model
with 5 harmonic components and 2 covariates has p = 12. We assess the
importance of the harmonics by computing highest posterior density regions
(HPDs) and corresponding probabilities of retention at time 7" for individual
harmonics as proposed in [12].

Regarding the specification of W,, we use discount factors as mentioned
above. We consider 3 different discount factors: one discount factor for each
of the 2 covariates, namely, d; and d,, and an additional discount factor for
the seasonal components, denoted as dg. Then, in the full seasonal model for
hourly data, A is a 25 x 25 matrix with A = diag(d, 09, ds, . .., ds).

4. Data analysis and results

We fit the truncated bivariate model described above to the wind com-
ponents for each of the 3 locations and each of the months considered in this
analysis, namely, February and August of 2010 and February and August
of 2013. We began by selecting the number of significant harmonics and
the optimal discount factors in each case. The number of harmonics was
determined as explained in [12| by computing the probabilities of retention
at the last observed point T for each individual component. Based on these
results we determined that, for most locations, months, and years, at most
the first 5 harmonics were significant. We also looked at the predictions from
models that used a number of harmonics larger than 5, however, we found
no substantial improvements in terms of the 24-hours ahead predictions and
goodness of fit measurements. Therefore, and specially in order to provide
comparisons across different years and locations, we used models that used
only the first 5 harmonics in all cases. Note that this results in a dimension
reduction of the truncated bivariate DLM from a 25-dimensional state pa-
rameter vector in the case of the complete Fourier seasonal model with the
2 additional covariates (temperature and pressure), to a reduced model with
a 12-dimensional state parameter vector (p = 12) that also includes the 2
covariates.

Regarding the discount factors, we considered a grid of values for ¢y, 0o
and dg in (0.9, 1] x (0.9,1] x (0.9, 1], and chose the optimal values that mim-

10
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imized the mean squared errors (MSEs) of the one-hour ahead predictions in
each case.

We also considered 4 versions of our proposed model: (a) the original
version that includes both, temperature and pressure as covariates; (b) a
version that includes only temperature; (c¢) a version that includes only pres-
sure and (d) a version with no covariates. Table compares the 3 versions of
the truncated bivariate matrix DLM model in terms of the MSE for the 1-
hour ahead and 24-hours ahead forecasts for these models. For both months
in 2013 we see that, among our truncated bivariate matrix DLM models,
the model that includes only pressure as covariate is either the one with
the smallest 24-hour ahead MSE values for all the locations, or it leads to
MSE values that are similar to those obtained with other models. The only
exception being February 2013 in Salinas for which the model with all the
covariates produces a much smaller MSE for the 24-hours ahead prediction.
We also see that Watsonville has smaller MSEs than the rest of the locations
across all the models, indicating that our model does best at predicting wind
components in this location. Finally, we note that the model with no covari-
ates does substantially worse in terms of the MSEs for most locations and
months. Similar results were obtained from the analysis with the months of
February and August of 2010, however, due to space limitations we are not
including these results here.

In order to show the performance of our models in terms of goodness of
fit and prediction, we computed the estimated posterior means as well as the
24-hours ahead forecasts for the wind components, along with corresponding
95% posterior intervals, for the months of February and August of 2010 and
2013 in Monterey, Salinas and Watsonville. Figure shows this posterior fit
and short-term forecasts for the Salinas location. We see that our proposed
bivariate model adequately captures the 24-hour observed seasonality in the
wind data and leads to reasonable estimates and forecasts. Similar results
were obtained for the other two locations and years.

Figureshows windrose plots of posterior estimates of wind speed magni-
tude and direction obtained from transforming the estimated values for wind
components obtained from our bivariate truncated dynamic linear model for
February and August 2013 in Salinas. Overall we can see that the estimates
from the model adequately capture the behavior of the observed wind speed
magnitude and direction in these two months at this location. Similar results
in terms of the goodness of fit were obtained for the other two locations.

Figures and @ provide a more detailed assessment of the quality of the

11
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MSE (1-hour ahead) MSE (24-hours ahead)

MRY SNS WVI | MRY  SNS WVI

(a) 2.56 2.83 1.90 | 6.51 14.14 5.03

FEB (b) 275 299 2.00 | 6.02 18.65 4.08
2013 (c) 2.80 3.02 1.98 | 5.87 18.05 4.74
(d) 645 6.95 287 | 6.17 18.70 6.51

MSE (1-hour ahead) MSE (24-hours ahead)

MRY  SNS WVI | MRY  SNS WVI

(a) 1.85  2.20 1.52 | 831 10.11 3.13

AUG (b) 1.83 2.16 1.51 8.42 9.27 2.88
2013 (c) 1.85 2.18 1.53 | 8.23 9.39 3.11
(d) 850 17.09 491 | 1670 72.16 9.21

Table 1: MSE values for 1-hour ahead and 24-hours ahead forecasts of the v and v com-
ponents in February and August 2013 from truncated bivariate dynamic models with (a)
both, temperature and pressure as covariates; (b) only temperature; (c) only pressure and
(d) no covariates.

short-term forecasts produced by our models. Figure |5 shows the traces
of the 24 hour ahead forecasts and corresponding 95% uncertainty bands
obtained from our bivariate matrix DLMs for the months of February and
August of 2013 for all 3 locations. Figure @ shows windrose plots of the
actual observations and the predictions obtained from our models for all the
locations on February 28 2013 and on August 31 2013. We see that in general,
the predicted values from our model adequately capture the magnitude of the
speed and the direction of the winds for the two periods of 24 hours considered
in all the locations.

Finally, it is also possible to obtain posterior inference on the variance-
covariance matrix of the error term of the bivariate latent structure of the
non-zero wind components ¥ in equation (1). The posterior samples of ¥
obtained from the MCMC allow us to make inference on the correlation
between the v and v components for different months and locations. Table
shows the posterior mean and 95% posterior interval for the correlation
between the two wind components for each of the months (February and
August 2013) at each of the three locations. From this table we see that
there is a significant negative correlation between the two wind components
for the Salinas location in February 2013, and significant positive correlation
between the two wind components in August 2013 for the Monterey and

12
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309

310

311

312

‘ ‘ Posterior Mean 95% Posterior Interval

FEB 2013 MRY 0.076 (—0.032,0.133)
SNS ~0.162  (—0.209,—0.038)
WVI 0.004 (—0.097, 0.069)

AUGUST 2013 | MRY 0.192 (0.070,0.241)
SNS 0.085 (—0.009, 0.130)
WVI 0.108 (0.000, 0.158)

Table 2: Posterior estimates of the correlation between the u and v components obtained
from the bivariate TMDLM for February and August 2013 in Monterey (MRY), Salinas
(SNS) and Watsonville (WVI).

Watsonville locations. The proposed TMDLM model not only provides a way
to estimate the correlation between the two wind components, but also takes
this correlation into account to produce more accurate short-term forecasts.

4.1. Comparison to other modeling approaches

In this section we compare the performance of our proposed truncated
bivariate matrix normal DLM (bivariate TMDLM) to alternative statistical
approaches. We compare the following models: (i) our proposed bivariate
TMDLM; (ii) a univariate version of the truncated dynamic linear model
(TDLM); (iii) bivariate ARIMA models (iv) univariate ARIMA models and
(v) the so called persistence method or naive predictor which consists on
using the actual observed value at time ¢ as the predicted value at times
t+hfor h=1,...,24 [7]. For the bivariate TMDLM, the univariate TDLM,
and also for the bivariate and univariate ARIMA we considered models that
include 5 harmonics of the fundamental period and either no covariates, only
temperature, only pressure and both, pressure and temperature included
as covariates. The proposed bivariate ARIMA had order p = 3 for the
autoregressive component and order ¢ = 3 for the moving average component,
while the univariate ARIMA had order p = 2 and ¢ = 3. These model orders
were the optimal model orders obtained using AIC. For the TMDLM and
the TDLM optimal discount factors were chosen over a grid of values in
(0.9,1] x (0.9,1] x (0.9, 1].

Table shows the mean squared error (MSE) values obtained from the
different approaches taking into account both wind components. In the case
of the TMDLM, TDLM, and the ARIMA models we are reporting the results
only for the type of model that produced the smallest 24-hour ahead MSEs for
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339

MRY, FEB 2013 MRY, AUG 2013

Bivariate TMDLM 5.87 8.23
Univariate TDLM 6.08 8.24
Bivariate ARIMA 8.74 9.72
Univariate ARIMA 6.65 9.66
Persistence 60.81 33.90

Table 3: MSE values of the 24-hour ahead prediction errors for the months of February
and August 2013 at the Monterey station obtained from the different models.

the TMDLM among the 4 types of models we considered (again, no covariate,
only temperature, only pressure, or both temperature and pressure). Note
that due to space restrictions we only report the results of the comparison
for the Monterey location, however, similar results were obtained for the
other two locations. Therefore, based on the results reported in Table
we show the results obtained from TMDLM, TDLM, and ARIMA models
with 5 harmonics and only pressure as a covariate for February 2013 and
August 2013 in Monterey. Overall we see that the bivariate TMDLM, the
univariate TDLM and the ARIMA models do a much better job than the
naive/persistance predictor method. We also see that the univariate and
bivariate truncated dynamic linear models lead to smaller MSEs that the
bivariate and univariate ARIMA models, and that bivariate models generally
dominate the univariate models. Our proposed bivariate TMDLM leads to
the smallest MSE values in terms of short-term (24-hour) forecasts of the
wind components for the Monterey location for the two months considered
in 2013.

Similarly, Figure [7| provides a comparative assessment of the predictive
performance of the proposed bivariate TMDLM model and the bivariate
ARIMA model for February 2013 in the MRY location. The plots display
the mean squared error (MSE) and the mean absolute error (MAE) obtained
for the 6H, 12H, 18H and 24H ahead predictions from these two models.
Again, both models use 5 harmonics and pressure as a predictor. The bi-
variate ARIMA has AR model order 3 and MA model order 3. No ARMA
components are used in the TMDLM. The TMDLM has the lowest MSE and
also the lowest MAE values for all the predictions, leading to an improved
performance with respect to the bivariate ARIMA model. Similar results are
obtained for other months and locations.
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5. Conclusion

A Bayesian bivariate truncated matrix dynamic linear model (TMDLM)
is proposed for joint analysis and forecasting of wind speed magnitude and
direction data that also takes into account calm wind observations. Hourly
wind data from 3 locations near the Monterey Bay Area in California were
analyzed with the proposed model. The results show that the proposed bi-
variate TMDLM provides good 24-hour ahead forecasts of wind speed and
direction for these locations in months with very different wind and environ-
mental patterns. Furthermore, the TMDLM compares very favorably with
alternative statistical models that are commonly used in practice for short-
term wind prediction, generally producing more accurate short term fore-
casts. In addition, the proposed truncated bivariate dynamic linear models
also allow us to make inferences on quantities that univariate models are not
able to estimate and consider for obtaining more accurate prediction, such
as the correlation structure between wind components.
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Figure 3: Posterior mean levels, 24 hours ahead forecasts, and corresponding 95% posterior
intervals, for the u and v components in February 2013 and August 2013 in Salinas (SNS)
obtained from the bivariate matrix DLM with 5 harmonics and temperature and pressure
as covariates.
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Figure 4: Top: Windrose plots of observed wind speed magnitude and direction in Febru-
ary 2013 (left) and August 2013 (right) in Watsonville. Bottom: Windrose plots of the
posterior estimates of wind speed magnitude and direction from the bivariate matrix DLM
on the same months and location. The number at the center shows the percentage of calm

wind observations.
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Figure 5: Plots of 24 hours ahead forecast for the v and v components in the last day
of February 2013 and August 2013 at Monterey (MRY), Salinas (SNS), and Watsonville
(WVTI).
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Figure 6: 24-hour ahead forecasts of the speed magnitude and direction (green) along
with the actual observations (gray) on February 28 2013 and August 31 2013 in Monterey

(MRY), Salinas (SNS), or Watsonville (WVT).
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Figure 7: MSE (plot (a)) and MAE (plot (b)) from the bivariate TMDLM and ARIMA
models for the month of February 2013 in MRY.
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