

Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements

Irene García^a, Stella Huo^b, Raquel Prado^{c,*}, Lelys Bravo^d

^a*Departamento de Ciencias Matemáticas e Informática, Universitat de les Illes Balears*

^b*Division of Pulmonary and Critical Medical Care, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco*

^c*Department of Statistics, University of California Santa Cruz*

^d*Department of Statistics, University of Illinois Urbana-Champaign*

Abstract

We present a new Bayesian modeling approach for joint analysis of wind components and short-term wind prediction. This approach considers a truncated bivariate matrix Bayesian dynamic linear model (TMDLM) that jointly models the u (zonal) and v (meridional) wind components of observed hourly wind speed and direction data. The TMDLM takes into account calm wind observations and provides joint forecasts of hourly wind speed and direction at a given location. The proposed model is compared to alternative empirically-based time series approaches that are often used for short-term wind prediction including the persistence method (naive predictor), as well as univariate and bivariate ARIMA models. Model performance is measured predictively in terms of mean squared errors associated to 1-hour and 24-hour ahead forecasts. We show that our approach generally leads to more accurate short term predictions than these alternative approaches in the context of analysis and forecasting of hourly wind measurements in 3 locations in Northern California for winter and summer months.

Keywords: Bayesian dynamic linear models, matrix-variate dynamic models, joint wind speed and direction forecasts, short-term wind prediction.

*Corresponding author

1 **1. Introduction**

2 Wind speed forecasting has been studied extensively in recent years as
3 it is an essential element in the management of wind power generation [1].
4 Short-term forecasting of wind speed and other related measurements usually
5 refers to predictions from minutes to days ahead (typically no more than 48
6 hours), while long-term forecasting deals with predictions of several days,
7 weeks and months ahead [see, e.g., 2]. In this paper we focus on short-
8 term wind forecasting. More specifically, we consider joint modeling and
9 forecasting of hourly wind speed and direction.

10 Models for wind speed forecasting can be roughly divided into those based
11 on physical models, those based on statistical models and hybrid approaches
12 that combine physical and statistical models [1]. Generally, physical models
13 are preferable when dealing with large scale data and long-term predictions,
14 while statistical models are preferable for short-term forecasting. Statistical
15 approaches are usually based on tools for time series analysis such as ARIMA
16 (autoregressive integrated moving average) models, neural networks, func-
17 tional regression analysis, state-space models and regime switching models
18 among others [see for example 3 2 4 5]. These approaches can lead to
19 relatively accurate short-term forecasts of wind speed, however, they do not
20 provide forecasts of wind direction. In terms of joint forecast of wind speed
21 and direction, a number of approaches are available. [6] considers methods
22 based on ARMA and VAR (vector autoregressive) models and finds that
23 VAR models can outperform ARMA models on wind lateral and longitudi-
24 nal components in terms of mean absolute error (MAE) when the correlation
25 between speed and direction is modestly significant. However, models in [6]
26 are not appropriate for dealing with non-stationary wind data, which is the
27 type of wind data analyzed here. [7] proposes non-linear methods based on
28 neural networks for wind speed and direction forecasting. Such methods are
29 tested on wind speed and direction data from public records of the Nevada
30 department of transportation's road weather information system. A time
31 interval of 10 min was used to train and test the methods. Analysis and
32 forecasting of speed and direction were done separately, assuming that these
33 two measurements were independent. This approach is shown to compare
34 favorably against other methods such as echo state networks and methods
35 based on adaptive neuro-fuzzy inference in terms of very short term forecast-
36 ing. [8] considers a non-parametric kernel density estimation method, and a
37 non-parametric version of the Johnson and Wehrly model [9] to jointly an-

38 alyze and forecast wind speed and direction. The appeal of non-parametric
39 approaches is that they do not assume any particular distribution form and
40 so, they are usually more flexible for describing the data than parametric
41 models. However, non-parametric methods tend to be much more computa-
42 tionally intensive than parametric methods and often unfeasible in practical
43 settings. [8] shows that their proposed methods lead to a better performance
44 than alternative parametric models when jointly modeling wind speed and
45 direction data, but no assessment of the quality of short-term forecasts is pro-
46 vided. In addition, non-parametric methods assume bandwidths and other
47 tuning parameters to be fixed over time which may not offer enough flexibil-
48 ity for analyzing data with time-varying features. Finally, we note that none
49 of the methods just mentioned explicitly consider modeling calm winds (i.e.,
50 winds with zero speed). This is important as wind data with high tempo-
51 ral resolution (i.e., hourly or more frequent measurements) typically contain
52 a large number of zero observations corresponding to measurements during
53 calm periods of zero wind speed.

54 In this paper we present a Bayesian model for joint analysis and short-
55 term forecasting of non-stationary wind speed and direction data. We pro-
56 pose, implement and test a truncated bivariate matrix Bayesian dynamic
57 linear model that jointly models the u (zonal) and v (meridional) wind com-
58 ponents of observed hourly wind speed and direction data. We note that
59 univariate truncated dynamic linear models have been used to model and
60 forecast rainfall data in [10]. The truncated dynamic linear model presented
61 here is a bivariate generalization of the model in [10]. Our model is able to
62 provide joint forecasts of hourly wind speed and direction. We test our mod-
63 els by analyzing and forecasting median hourly wind speed and direction data
64 from 3 locations in Northern California. These are public data available at
65 the Iowa Environmental Mesonet (IEM) Automated Surface Observing Sys-
66 tem (ASOS) Network. Model performance is measured predictively in terms
67 of mean squared errors associated to 1-hour and 24-hour ahead forecasts.

68 The paper is organized as follows. Section 2 presents a description of
69 the data. Section 3 presents the proposed model and discusses algorithms
70 for posterior inference and forecasting. Section 4 shows the data analysis
71 and forecasting with the proposed models as well as comparisons with other
72 approaches. Finally, Section 5 presents final remarks and discusses possible
73 future extensions.

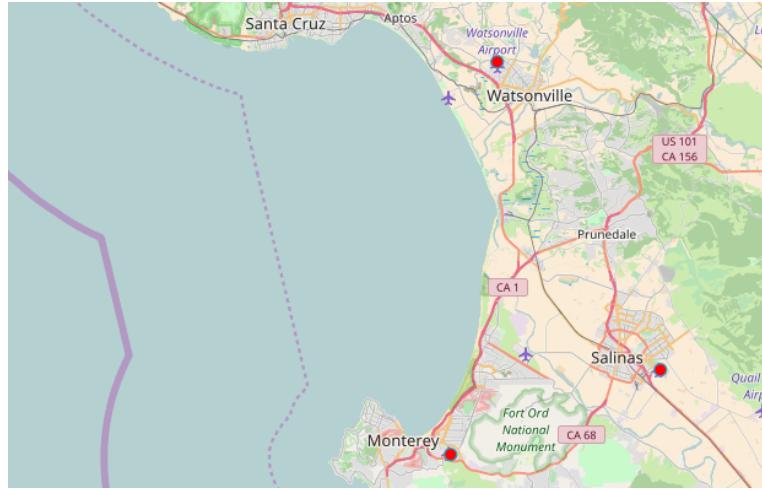


Figure 1: Location of the 3 stations in Northern California.

74 2. Wind data

75 Wind data were obtained from the Iowa Environmental Mesonet (IEM)
 76 Automated Surface Observing System (ASOS) Network, a publicly available
 77 database (<http://mesonet.agron.iastate.edu/ASOS>). ASOS stations are
 78 located at airports and take minute-by-minute observations and general basic
 79 weather reports for the National Weather Service (NWS), the Federal Avia-
 80 tion Administration (FAA), and the Department of Defense (DOD). These
 81 observations are nationally monitored for quality 24 hours per day. For ad-
 82 ditional detailed information about the ASOS measurements see [11].

83 For this paper we consider wind direction (in degrees relative to the north)
 84 and speed (in knots) from 3 ASOS stations in Northern California near the
 85 Monterey Bay Area, specifically, stations located in airports in Watsonville
 86 (WVI), Salinas (SNS) and Monterey (MRY) (see Figure 1). Wind direction
 87 is reported to the nearest 10 degree increment (e.g., 274 degrees is reported
 88 as 270 degrees). The ASOS wind sensors' starting threshold for response
 89 to wind direction and speed is 2 knots and so, winds measured at 2 knots
 90 or less are reported as calm (i.e., 0 speed magnitude). We consider hourly
 91 median wind speed magnitude and corresponding direction for the months of
 92 February and August. For illustration purposes we present analyses for these
 93 two months for two years –namely, 2010 and 2013– at the three locations
 94 listed above. Similar results in terms of the performance of our proposed

model were obtained from analyzing data from a 10 year period from 2008 to 2017. We chose the months of February and August for a number of reasons. February is, on average, one of the months with the largest average rainfall and the largest average wind speed magnitude for the three selected locations in Northern California, while August is, on average, one of the months with the lowest average rainfall (essentially none) and the lowest average wind speed magnitude. Also, the wind directions are, on average, very different for these two months. In this paper we evaluate the goodness of fit and forecasting capabilities of our proposed models for these two different months. Figure 2 shows the windrose plots of median hourly wind speed and direction data for the months of January and August from 2008 to 2017 in Monterey, Salinas and Watsonville. Clearly, there are differences across the 3 locations and also seasonal differences. All the locations, specially Salinas, register a larger count of stronger winds (above 17 knots) in the month of February. These winds are from the South-East and some come from the West in Monterey and Salinas, and from the South in Watsonville. In August the winds come mostly from the West, including readings from the South-West and the North-West in Monterey and Salinas, and mostly from the South in Watsonville. Finally, we also considered median hourly air temperature (in $^{\circ}$ Farenheit) and sea-level pressure (in mb) as possible covariates in our model.

3. Bayesian dynamic modeling

We propose a Bayesian dynamic model for analysis and forecasting of hourly median wind data for each month, year and location. Our model takes into account wind speed magnitude and direction by jointly modeling the zonal and the meridional components, denoted as u and v components, respectively. The u component is the component towards the East, while the v component is the component towards the North. More specifically, let $\mathbf{y}_t = (y_{t,1}, y_{t,2})'$ for $t = 1 : T$ be a 2-dimensional time series comprising the u (zonal) component and the v (meridional) component of the wind measurement at time t (with t indexing hourly data) for a given location and month, i.e., $y_{t,1} = -s_t \sin(\pi d_t/180)$, and $y_{t,2} = -s_t \cos(\pi d_t/180)$, where s_t is the wind speed in knots and d_t is the meteorological wind direction in degrees clockwise from the north at time t .

We consider the following bivariate truncated dynamic linear model for

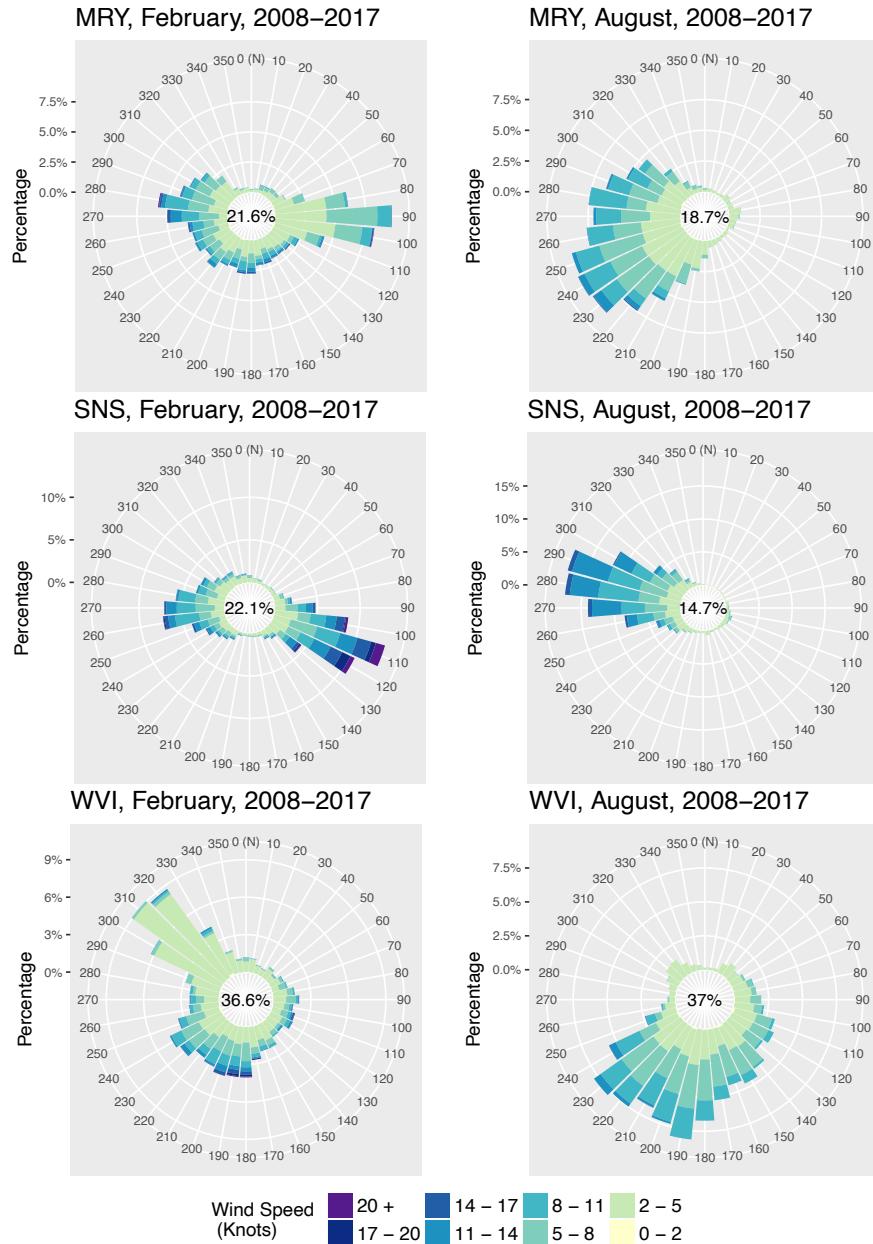


Figure 2: Windrose plots of median hourly wind data for January and August from 2008 to 2017 in Monterey (MRY), Salinas (SNS) and Watsonville (WVI). Numbers in the center correspond to percentages of calm wind (i.e., winds with 0 speed magnitude).

130 $t = 1 : T$,

$$\mathbf{y}_t = \begin{cases} (0, 0)' & \text{if } -a \leq h_{t,1} \leq a, \text{ and } -b \leq h_{t,2} \leq b, \\ \mathbf{h}_t & \text{otherwise,} \end{cases}$$

131 with a and b fixed values that capture the approximate censoring of the wind
 132 measuring devices, and

$$\mathbf{h}'_t = \mathbf{F}'_t \Theta_t + \boldsymbol{\epsilon}'_t, \quad \boldsymbol{\epsilon}_t \sim N_2(\mathbf{0}, v\Sigma), \quad (1)$$

$$\Theta_t = \mathbf{G}\Theta_{t-1} + \Omega_t, \quad \Omega_t \sim MN_{p \times 2}(\mathbf{0}, \mathbf{W}_t, \Sigma), \quad (2)$$

133 with initial distributions $(\Theta_0, \Sigma | \mathcal{D}_0) \sim MNW_{p \times 2}^{-1}(\mathbf{m}_0, \mathbf{C}_0, n_{0,\Sigma}, \Sigma_0)$, and
 134 $(v | \mathcal{D}_0) \sim IG(n_{0,v}, d_{0,v})$, where MN denotes the matrix normal distribution,
 135 W^{-1} denotes the inverse-Wishart distribution, MNW^{-1} denotes the matrix
 136 normal inverse-Wishart distribution, and IG denotes the inverse-gamma dis-
 137 tribution. Here we have that

- 138 • $\mathbf{h}_t = (h_{t,1}, h_{t,2})'$ is a latent process describing the underlying behavior
 139 of the 2 hourly wind components over time,
- 140 • Θ_t a $p \times 2$ is matrix of state parameters; p denotes the dimension of
 141 the parameter space, which depends on the structure of the model and
 142 the number of covariates included in the analysis as explained below,
- 143 • \mathbf{F}_t is a p -dimensional vector of constants, and \mathbf{G} is a $p \times p$ known state
 144 evolution matrix,
- 145 • $\boldsymbol{\epsilon}_t$ is a 2-dimensional vector of observational errors, Ω_t is a $p \times 2$ evo-
 146 lution error matrix, assumed to be zero mean matrix-normally dis-
 147 tributed, with left $p \times p$ variance matrix \mathbf{W}_t and right 2×2 variance
 148 matrix Σ ; note that the matrix-normal inverse Wishart prior implies
 149 that $(\Sigma | \mathcal{D}_0) \sim W^{-1}(n_{0,\Sigma}, \mathbf{S}_0)$.

150 Equations (1) and (2) above define a matrix dynamic linear model [see, 12
 151 13]. Therefore, our bivariate model is a truncated model with an underlying
 152 multivariate dynamic linear structure. Truncated univariate dynamic linear
 153 models have been used before for analyzing rainfall data in 10. The model
 154 proposed here is in this sense a generalization of 10 to the bivariate case,
 155 and we use it for joint modeling and forecasting of short term wind speed
 156 magnitude and direction. The value of p and specific structure of \mathbf{F}_t and \mathbf{G}

157 in the context of our models for hourly wind components is detailed below
 158 in Section 3.1.

159 In addition, \mathbf{W}_t is specified sequentially using discount factors as de-
 160 scribed in [12], i.e., we assume

$$\mathbf{W}_t = \Delta^{-1/2} \mathbf{G} \mathbf{C}_{t-1} \mathbf{G}' \Delta^{-1/2} - \mathbf{G} \mathbf{C}_{t-1} \mathbf{G}', \quad (3)$$

161 with $\Delta = \text{diag}(\delta_1, \dots, \delta_p)$ and discount factors $\delta_i \in (0, 1]$ for all $i = 1 : p$.
 162 Optimal values of δ_i will be chosen to maximize likelihood-based criteria or
 163 to minimize mean squared errors for one-step ahead forecasts.

164 Posterior inference is achieved via Markov chain Monte Carlo (MCMC)
 165 by iteratively sampling from the conditional distributions described below.
 166 Given initial values for $n_{0,v}, d_{0,v}, n_{0,\Sigma}, \mathbf{S}_0, \mathbf{m}_0, \mathbf{C}_0, \Theta_{1:T}^0, \Sigma^0$ and setting $h_{1,t}^0 =$
 167 $y_{t,1}$ and $h_{2,t}^0 = y_{t,2}$ for all t , at iteration i we proceed as follows:

- Draw $v^{(i)}$ from $IG(n_{T,v}/2, d_{T,v}/2)$, with $n_{T,v} = n_{0,v} + 2T$ and

$$d_{T,v} = d_{0,v} + \sum_{t=1}^T [(\mathbf{h}_t^{(i-1)})' - \mathbf{F}' \Theta_t^{(i-1)}] (\Sigma^{(i-1)})^{-1} [(\mathbf{h}_t^{(i-1)})' - \mathbf{F}' \Theta_t^{(i-1)}]'.$$

- 168 • Draw $(\Theta_{1:T}^{(i)}, \Sigma^{(i)})$ using the algorithm of [14], which combines the forward-
 169 filter-backward-sampling (FFBS) of [15] and [16] with the algorithm of
 170 [17]. This is done as follows:
- 171 – (Forward Filtering) for $t = 1 : T$, compute $\mathbf{a}_t, \mathbf{R}_t, \mathbf{f}_t, Q_t, \mathbf{m}_t, \mathbf{C}_t,$
 172 $n_{t,\Sigma}$, and \mathbf{S}_t , as

$$\begin{aligned} \mathbf{a}_t &= \mathbf{G} \mathbf{m}_{t-1}, & \mathbf{R}_t &= \mathbf{G} \mathbf{C}_{t-1} \mathbf{G}' + \mathbf{W}_t, \\ \mathbf{f}_t' &= \mathbf{F}' \mathbf{a}_t, & Q_t &= \mathbf{F}' \mathbf{R}_t \mathbf{F} + v, \\ \mathbf{m}_t &= \mathbf{a}_t + \mathbf{A}_t \mathbf{e}_t', & \mathbf{C}_t &= \mathbf{R}_t - \mathbf{A}_t Q_t \mathbf{A}_t', \end{aligned}$$

171 with $\mathbf{e}_t = \mathbf{h}_t^{(i-1)} - \mathbf{f}_t$, $\mathbf{A}_t = \mathbf{R}_t \mathbf{F}_t / Q_t$, $n_{t,\Sigma} = n_{t-1,\Sigma} + 1$, and

$$\mathbf{S}_t = \frac{1}{n_{t,\Sigma}} (n_{t-1,\Sigma} \mathbf{S}_{t-1} + \mathbf{e}_t \mathbf{e}_t' / Q_t).$$

173 Again, note that \mathbf{W}_t is specified via (3).

- 174 – Sample $\Sigma^{(i)}$ from the distribution $W^{-1}(n_{T,\Sigma}, \mathbf{S}_T)$.

- 175 – (Backward Sampling) Sample $\Theta_T^{(i)}$ from $MN_{p \times 2}(\mathbf{m}_T, \mathbf{C}_T, \Sigma^{(i)})$, and
 176 then, for $t = (T-1) : 0$, sample $\Theta_t^{(i)}$ from $MN_{p \times 2}(\mathbf{m}_t^*, \mathbf{C}_t^*, \Sigma^{(i)})$,
 177 with

$$\begin{aligned}\mathbf{m}_t^* &= \{\mathbf{I}_p - \mathbf{C}_t \mathbf{G}' \mathbf{R}_{t+1}^{-1} \mathbf{G}\} \mathbf{m}_t + \mathbf{C}_t \mathbf{G}' \mathbf{R}_{t+1}^{-1} \Theta_{t+1}^{(i)}, \\ \mathbf{C}_t^* &= \{\mathbf{I}_p - \mathbf{C}_t \mathbf{G}' \mathbf{R}_{t+1}^{-1} \mathbf{G}\} \mathbf{C}_t,\end{aligned}$$

178 where \mathbf{I}_p denotes the identity matrix of dimension p .

- 179 • For $t = 1 : T$ sample $\mathbf{h}_t^{(i)}$ as follows. For each t , if $\mathbf{y}_t \neq \mathbf{0}$, set
 180 $\mathbf{h}_t^{(i)} = \mathbf{y}_t$, otherwise sample $\mathbf{h}_t^{(i)}$ from a bivariate truncated normal
 181 $TN_{(-a,a) \times (-b,b)}(\mathbf{F}_t' \Theta_t^{(i)}, v^{(i)} \Sigma^{(i)})$.

182 *3.1. Specific model structure*

183 The model proposed above is very general in the sense that \mathbf{F}_t , \mathbf{G} can
 184 be specified by the modeler to include trend, seasonal components, and any
 185 additional covariates. We now describe the structure used in our analyses
 186 of the wind component data for the 3 locations and each of the months.
 187 As mentioned above, we consider two covariates, namely, $x_{1,t} :=$ the air
 188 temperature in $^{\circ}$ Farenheit and $x_{2,t} :=$ the mean sea level pressure (in mb).
 189 We also consider seasonal components by using a Fourier DLM representation
 190 [12] with fundamental period 24 for the hourly data. Then, the complete
 191 Fourier model with a fundamental period of 24, all the harmonics, and the
 192 two covariates listed above, is a model with $p = 25$, a 25×2 matrix of state
 193 parameters, and \mathbf{F}_t and \mathbf{G} given by:

$$\begin{aligned}\mathbf{F}_t &= (x_{1,t}, x_{2,t}, \mathbf{E}'_2, \dots, \mathbf{E}'_2, 1)', \\ \mathbf{G} &= \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ \mathbf{0} & \mathbf{0} & J_2(1, \omega) & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & J_2(1, 2\omega) & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & J_2(1, (h-1)\omega) & \mathbf{0} \\ 0 & 0 & 0 & 0 & \cdots & 0 & -1 \end{pmatrix},\end{aligned}$$

with $\omega = 2\pi/24$, $h = 12$, $\mathbf{E}_2 = (1, 0)'$, and

$$J_2(1, r\omega) = \begin{pmatrix} \cos(r\omega) & \sin(r\omega) \\ -\sin(r\omega) & \cos(r\omega) \end{pmatrix},$$

194 for $r = 1, \dots, 11$. Therefore, \mathbf{F}_t in this case is a 25-dimensional vector and
195 \mathbf{G} is a 25×25 matrix. In general, only a few harmonics of the fundamental
196 period are needed, leading to more parsimonious representations with smaller
197 p . In other words, we can consider smaller models that include only a subset of
198 the entire set of harmonics of the fundamental period. For instance, a model
199 with 5 harmonic components and 2 covariates has $p = 12$. We assess the
200 importance of the harmonics by computing highest posterior density regions
201 (HPDs) and corresponding probabilities of retention at time T for individual
202 harmonics as proposed in [12].

203 Regarding the specification of \mathbf{W}_t , we use discount factors as mentioned
204 above. We consider 3 different discount factors: one discount factor for each
205 of the 2 covariates, namely, δ_1 and δ_2 , and an additional discount factor for
206 the seasonal components, denoted as δ_S . Then, in the full seasonal model for
207 hourly data, Δ is a 25×25 matrix with $\Delta = \text{diag}(\delta_1, \delta_2, \delta_S, \dots, \delta_S)$.

208 4. Data analysis and results

209 We fit the truncated bivariate model described above to the wind com-
210 ponents for each of the 3 locations and each of the months considered in this
211 analysis, namely, February and August of 2010 and February and August
212 of 2013. We began by selecting the number of significant harmonics and
213 the optimal discount factors in each case. The number of harmonics was
214 determined as explained in [12] by computing the probabilities of retention
215 at the last observed point T for each individual component. Based on these
216 results we determined that, for most locations, months, and years, at most
217 the first 5 harmonics were significant. We also looked at the predictions from
218 models that used a number of harmonics larger than 5, however, we found
219 no substantial improvements in terms of the 24-hours ahead predictions and
220 goodness of fit measurements. Therefore, and specially in order to provide
221 comparisons across different years and locations, we used models that used
222 only the first 5 harmonics in all cases. Note that this results in a dimension
223 reduction of the truncated bivariate DLM from a 25-dimensional state pa-
224 rameter vector in the case of the complete Fourier seasonal model with the
225 2 additional covariates (temperature and pressure), to a reduced model with
226 a 12-dimensional state parameter vector ($p = 12$) that also includes the 2
227 covariates.

228 Regarding the discount factors, we considered a grid of values for δ_1, δ_2
229 and δ_S in $(0.9, 1] \times (0.9, 1] \times (0.9, 1]$, and chose the optimal values that mim-

230 imized the mean squared errors (MSEs) of the one-hour ahead predictions in
231 each case.

232 We also considered 4 versions of our proposed model: (a) the original
233 version that includes both, temperature and pressure as covariates; (b) a
234 version that includes only temperature; (c) a version that includes only pres-
235 sure and (d) a version with no covariates. Table 1 compares the 3 versions of
236 the truncated bivariate matrix DLM model in terms of the MSE for the 1-
237 hour ahead and 24-hours ahead forecasts for these models. For both months
238 in 2013 we see that, among our truncated bivariate matrix DLM models,
239 the model that includes only pressure as covariate is either the one with
240 the smallest 24-hour ahead MSE values for all the locations, or it leads to
241 MSE values that are similar to those obtained with other models. The only
242 exception being February 2013 in Salinas for which the model with all the
243 covariates produces a much smaller MSE for the 24-hours ahead prediction.
244 We also see that Watsonville has smaller MSEs than the rest of the locations
245 across all the models, indicating that our model does best at predicting wind
246 components in this location. Finally, we note that the model with no covari-
247 ates does substantially worse in terms of the MSEs for most locations and
248 months. Similar results were obtained from the analysis with the months of
249 February and August of 2010, however, due to space limitations we are not
250 including these results here.

251 In order to show the performance of our models in terms of goodness of
252 fit and prediction, we computed the estimated posterior means as well as the
253 24-hours ahead forecasts for the wind components, along with corresponding
254 95% posterior intervals, for the months of February and August of 2010 and
255 2013 in Monterey, Salinas and Watsonville. Figure 3 shows this posterior fit
256 and short-term forecasts for the Salinas location. We see that our proposed
257 bivariate model adequately captures the 24-hour observed seasonality in the
258 wind data and leads to reasonable estimates and forecasts. Similar results
259 were obtained for the other two locations and years.

260 Figure 4 shows windrose plots of posterior estimates of wind speed magni-
261 tude and direction obtained from transforming the estimated values for wind
262 components obtained from our bivariate truncated dynamic linear model for
263 February and August 2013 in Salinas. Overall we can see that the estimates
264 from the model adequately capture the behavior of the observed wind speed
265 magnitude and direction in these two months at this location. Similar results
266 in terms of the goodness of fit were obtained for the other two locations.

267 Figures 5 and 6 provide a more detailed assessment of the quality of the

		MSE (1-hour ahead)			MSE (24-hours ahead)		
		MRY	SNS	WVI	MRY	SNS	WVI
FEB 2013	(a)	2.56	2.83	1.90	6.51	14.14	5.03
	(b)	2.75	2.99	2.00	6.02	18.65	4.08
	(c)	2.80	3.02	1.98	5.87	18.05	4.74
	(d)	6.45	6.95	2.87	6.17	18.70	6.51
		MSE (1-hour ahead)			MSE (24-hours ahead)		
		MRY	SNS	WVI	MRY	SNS	WVI
AUG 2013	(a)	1.85	2.20	1.52	8.31	10.11	3.13
	(b)	1.83	2.16	1.51	8.42	9.27	2.88
	(c)	1.85	2.18	1.53	8.23	9.39	3.11
	(d)	8.50	17.09	4.91	16.70	72.16	9.21

Table 1: MSE values for 1-hour ahead and 24-hours ahead forecasts of the u and v components in February and August 2013 from truncated bivariate dynamic models with (a) both, temperature and pressure as covariates; (b) only temperature; (c) only pressure and (d) no covariates.

268 short-term forecasts produced by our models. Figure 5 shows the traces
 269 of the 24 hour ahead forecasts and corresponding 95% uncertainty bands
 270 obtained from our bivariate matrix DLMs for the months of February and
 271 August of 2013 for all 3 locations. Figure 6 shows windrose plots of the
 272 actual observations and the predictions obtained from our models for all the
 273 locations on February 28 2013 and on August 31 2013. We see that in general,
 274 the predicted values from our model adequately capture the magnitude of the
 275 speed and the direction of the winds for the two periods of 24 hours considered
 276 in all the locations.

277 Finally, it is also possible to obtain posterior inference on the variance-
 278 covariance matrix of the error term of the bivariate latent structure of the
 279 non-zero wind components Σ in equation (1). The posterior samples of Σ
 280 obtained from the MCMC allow us to make inference on the correlation
 281 between the u and v components for different months and locations. Table
 282 2 shows the posterior mean and 95% posterior interval for the correlation
 283 between the two wind components for each of the months (February and
 284 August 2013) at each of the three locations. From this table we see that
 285 there is a significant negative correlation between the two wind components
 286 for the Salinas location in February 2013, and significant positive correlation
 287 between the two wind components in August 2013 for the Monterey and

		Posterior Mean	95% Posterior Interval
FEB 2013	MRY	0.076	(-0.032, 0.133)
	SNS	-0.162	(-0.209, -0.038)
	WVI	0.004	(-0.097, 0.069)
AUGUST 2013	MRY	0.192	(0.070, 0.241)
	SNS	0.085	(-0.009, 0.130)
	WVI	0.108	(0.000, 0.158)

Table 2: Posterior estimates of the correlation between the u and v components obtained from the bivariate TMDLM for February and August 2013 in Monterey (MRY), Salinas (SNS) and Watsonville (WVI).

Watsonville locations. The proposed TMDLM model not only provides a way to estimate the correlation between the two wind components, but also takes this correlation into account to produce more accurate short-term forecasts.

4.1. Comparison to other modeling approaches

In this section we compare the performance of our proposed truncated bivariate matrix normal DLM (bivariate TMDLM) to alternative statistical approaches. We compare the following models: (i) our proposed bivariate TMDLM; (ii) a univariate version of the truncated dynamic linear model (TDLM); (iii) bivariate ARIMA models (iv) univariate ARIMA models and (v) the so called persistence method or naive predictor which consists on using the actual observed value at time t as the predicted value at times $t + h$ for $h = 1, \dots, 24$ [7]. For the bivariate TMDLM, the univariate TDLM, and also for the bivariate and univariate ARIMA we considered models that include 5 harmonics of the fundamental period and either no covariates, only temperature, only pressure and both, pressure and temperature included as covariates. The proposed bivariate ARIMA had order $p = 3$ for the autoregressive component and order $q = 3$ for the moving average component, while the univariate ARIMA had order $p = 2$ and $q = 3$. These model orders were the optimal model orders obtained using AIC. For the TMDLM and the TDLM optimal discount factors were chosen over a grid of values in $(0.9, 1] \times (0.9, 1] \times (0.9, 1]$.

Table 3 shows the mean squared error (MSE) values obtained from the different approaches taking into account both wind components. In the case of the TMDLM, TDLM, and the ARIMA models we are reporting the results only for the type of model that produced the smallest 24-hour ahead MSEs for

	MRY, FEB 2013	MRY, AUG 2013
Bivariate TMDLM	5.87	8.23
Univariate TDLM	6.08	8.24
Bivariate ARIMA	8.74	9.72
Univariate ARIMA	6.65	9.66
Persistence	60.81	33.90

Table 3: MSE values of the 24-hour ahead prediction errors for the months of February and August 2013 at the Monterey station obtained from the different models.

313 the TMDLM among the 4 types of models we considered (again, no covariate,
 314 only temperature, only pressure, or both temperature and pressure). Note
 315 that due to space restrictions we only report the results of the comparison
 316 for the Monterey location, however, similar results were obtained for the
 317 other two locations. Therefore, based on the results reported in Table 1
 318 we show the results obtained from TMDLM, TDLM, and ARIMA models
 319 with 5 harmonics and only pressure as a covariate for February 2013 and
 320 August 2013 in Monterey. Overall we see that the bivariate TMDLM, the
 321 univariate TDLM and the ARIMA models do a much better job than the
 322 naive/persistance predictor method. We also see that the univariate and
 323 bivariate truncated dynamic linear models lead to smaller MSEs than the
 324 bivariate and univariate ARIMA models, and that bivariate models generally
 325 dominate the univariate models. Our proposed bivariate TMDLM leads to
 326 the smallest MSE values in terms of short-term (24-hour) forecasts of the
 327 wind components for the Monterey location for the two months considered
 328 in 2013.

329 Similarly, Figure 7 provides a comparative assessment of the predictive
 330 performance of the proposed bivariate TMDLM model and the bivariate
 331 ARIMA model for February 2013 in the MRY location. The plots display
 332 the mean squared error (MSE) and the mean absolute error (MAE) obtained
 333 for the 6H, 12H, 18H and 24H ahead predictions from these two models.
 334 Again, both models use 5 harmonics and pressure as a predictor. The bi-
 335 variate ARIMA has AR model order 3 and MA model order 3. No ARMA
 336 components are used in the TMDLM. The TMDLM has the lowest MSE and
 337 also the lowest MAE values for all the predictions, leading to an improved
 338 performance with respect to the bivariate ARIMA model. Similar results are
 339 obtained for other months and locations.

340 **5. Conclusion**

341 A Bayesian bivariate truncated matrix dynamic linear model (TMDLM)
342 is proposed for joint analysis and forecasting of wind speed magnitude and
343 direction data that also takes into account calm wind observations. Hourly
344 wind data from 3 locations near the Monterey Bay Area in California were
345 analyzed with the proposed model. The results show that the proposed bi-
346 variate TMDLM provides good 24-hour ahead forecasts of wind speed and
347 direction for these locations in months with very different wind and environ-
348 mental patterns. Furthermore, the TMDLM compares very favorably with
349 alternative statistical models that are commonly used in practice for short-
350 term wind prediction, generally producing more accurate short term fore-
351 casts. In addition, the proposed truncated bivariate dynamic linear models
352 also allow us to make inferences on quantities that univariate models are not
353 able to estimate and consider for obtaining more accurate prediction, such
354 as the correlation structure between wind components.

355 **Acknowledgments**

356 Irene García's work on this project was supported by the Schlumberger
357 Foundation through its Faculty For the Future Program. Raquel Prado was
358 partially funded by the National Science Foundation grant SES-1853210.

359 **References**

- 360 [1] M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, Z. Yan, A review on the
361 forecasting of wind speed and generated power, *Renewable and Sustainable
362 Energy Reviews* 13 (2009) 915–920.
- 363 [2] Y. Jiang, Z. Song, A. Kusiak, Very short-term wind speed forecasting
364 with Bayesian structural break model, *Renewable Energy* 50 (2013) 637–
365 647.
- 366 [3] O. Shukur, M. Lee, Daily wind speed forecasting through hybrid KF-
367 ANN model based ARIMA, *Renewable Energy* 76 (2015) 637–647.
- 368 [4] B. Doucoure, K. Agbossou, A. Cardenas, Time series prediction using
369 artificial wavelet neural network and multi-resolution analysis: Applica-
370 tion to wind speed data, *Renewable Energy* 92 (2016) 637–647.

- 371 [5] K. Chen, J. Yu, Short-term wind speed prediction using an unscented
372 Kalman filter based state-space support vector regression approach, *Applied Energy* 114 (2014) 690–705.
- 374 [6] E. Erdem, J. Shi, ARMA based approaches for forecasting the tuple of
375 wind speed and direction, *Applied Energy* 88 (2010) 1405–1414.
- 376 [7] M. Chitsazan, M. Fadali, A. Trzynadlowski, Wind speed and wind di-
377 rection forecasting using echo state network with nonlinear functions,
378 *Renewable Energy* 131 (2019) 879–889.
- 379 [8] Q. Han, Z. Hao, T. Hu, F. Chu, Non-parametric models for joint prob-
380 abilistic distributions of wind speed and direction data, *Renewable Energy* 126 (2018) 1032–1042.
- 382 [9] R. Johnson, T. Wehrly, Some angular-linear distributions and related
383 regression models, *Journal of the American Statistical Association* 73
384 (1978) 602–606.
- 385 [10] B. Sanso, L. Guenni, A non-stationary multisite model for rainfall, *Jour-
386 nal of the American Statistical Association* 95 (2000) 1089–1100.
- 387 [11] NOAA, DoD, FAA, USNavy, Automated Surface Observing System
388 (ASOS) User’s Guide (1998).
- 389 [12] M. West, P. J. Harrison, *Bayesian Forecasting and Dynamic Models*,
390 2nd Edition, Springer-Verlag, New York, 1997.
- 391 [13] R. Prado, M. West, *Time Series: Modeling, Computation and Inference*,
392 CRC Press, Boca Raton, FL, 2010.
- 393 [14] M. Salvador, J. Gallizo, P. Gargallo, A dynamic principal components
394 analysis based on multivariate normal dynamic linear models, *Journal
395 of Forecasting* 22 (2003) 457–478.
- 396 [15] C. K. Carter, R. Kohn, Gibbs sampling for state space models,
397 *Biometrika* 81 (1994) 541–553.
- 398 [16] S. Frühwirth-Schnatter, Data augmentation and dynamic linear models,
399 *Journal of Time Series Analysis* 15 (1994) 183–202.

- 400 [17] S. Chib, E. Greenberg, Hierarchical analysis of SUR models with ex-
401 tensions to correlated serial errors and time-varying parameter models,
402 Journal of Econometrics 68 (1995) 339–360.

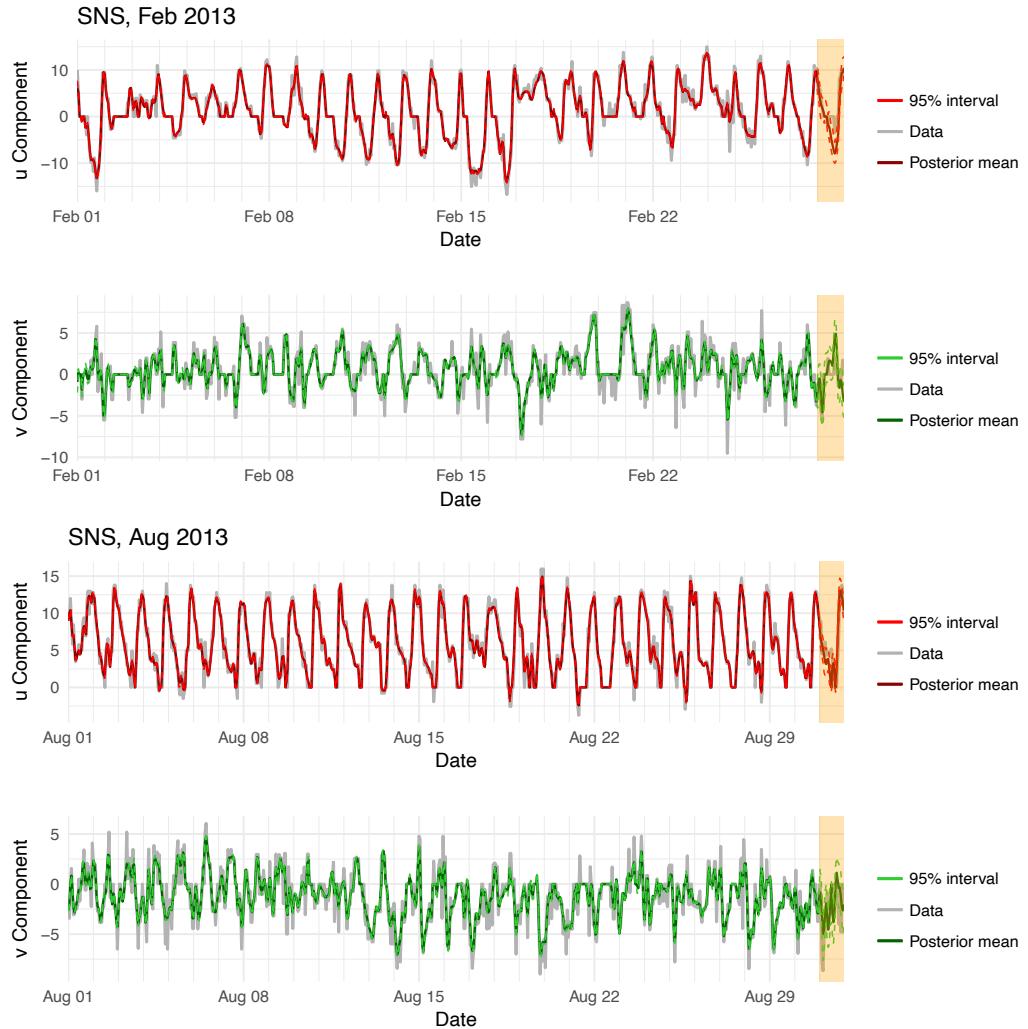


Figure 3: Posterior mean levels, 24 hours ahead forecasts, and corresponding 95% posterior intervals, for the u and v components in February 2013 and August 2013 in Salinas (SNS) obtained from the bivariate matrix DLM with 5 harmonics and temperature and pressure as covariates.

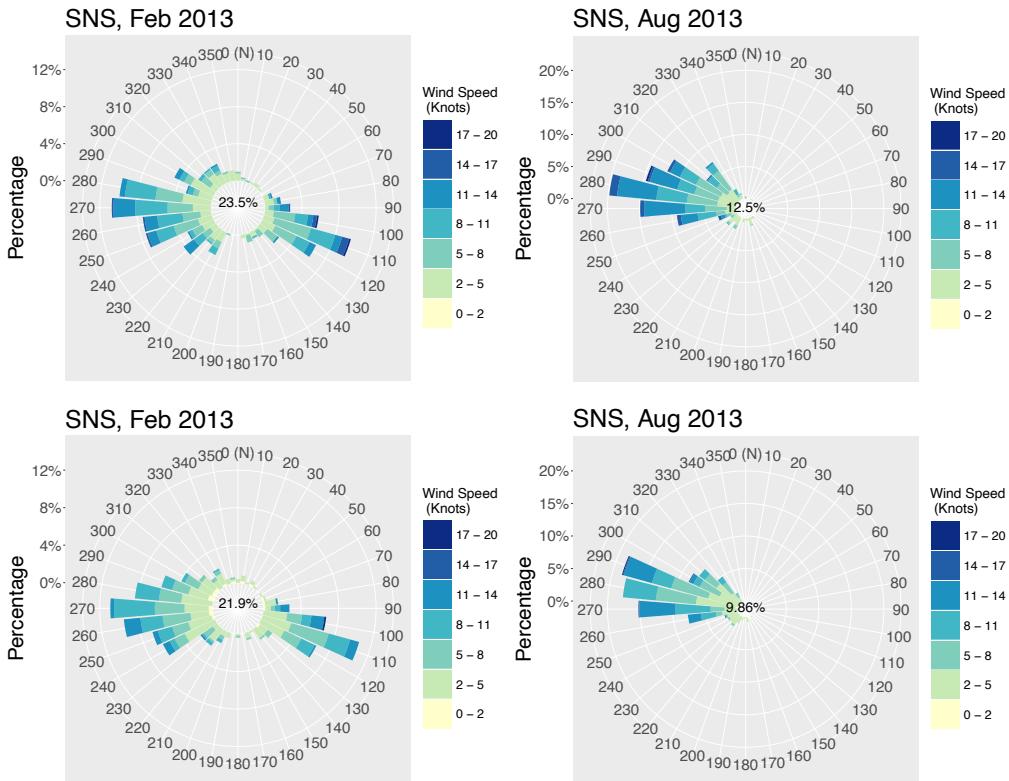
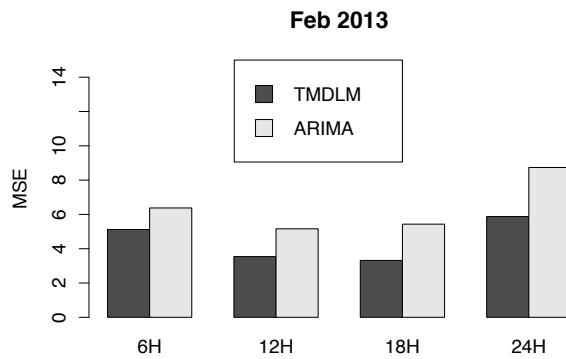


Figure 4: Top: Windrose plots of observed wind speed magnitude and direction in February 2013 (left) and August 2013 (right) in Watsonville. Bottom: Windrose plots of the posterior estimates of wind speed magnitude and direction from the bivariate matrix DLM on the same months and location. The number at the center shows the percentage of calm wind observations.

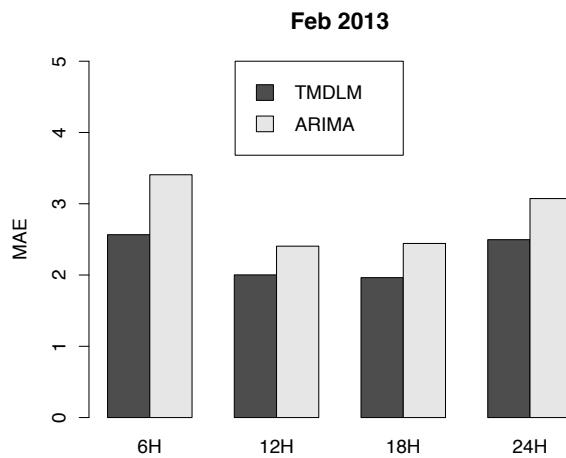


Figure 5: Plots of 24 hours ahead forecast for the u and v components in the last day of February 2013 and August 2013 at Monterey (MRY), Salinas (SNS), and Watsonville (WVI).

Figure 6: 24-hour ahead forecasts of the speed magnitude and direction (green) along with the actual observations (gray) on February 28 2013 and August 31 2013 in Monterey (MRY), Salinas (SNS), or Watsonville (WVI).



(a)



(b)

Figure 7: MSE (plot (a)) and MAE (plot (b)) from the bivariate TMDLM and ARIMA models for the month of February 2013 in MRY.