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EFFICIENT BAYESIAN PARCOR APPROACHES FOR DYNAMIC
MODELING OF MULTIVARIATE TIME SERIES

WENJIE ZHAOa AND RAQUEL PRADOa*

a Department of Statistics, University of California at Santa Cruz, Santa Cruz, CA, USA

A Bayesian lattice !ltering and smoothing approach is proposed for fast and accurate modeling and inference in multivariate
non-stationary time series. This approach offers computational feasibility and interpretable time-frequency analysis in the
multivariate context. The proposed framework allows us to obtain posterior estimates of the time-varying spectral densities
of individual time series components, as well as posterior measurements of the time-frequency relationships across multiple
components, such as time-varying coherence and partial coherence. The proposed formulation considers multivariate dynamic
linear models (MDLMs) on the forward and backward time-varying partial autocorrelation coef!cients (TV-VPARCOR).
Computationally expensive schemes for posterior inference on the multivariate dynamic PARCOR model are avoided using
approximations in the MDLM context. Approximate inference on the corresponding time-varying vector autoregressive
(TV-VAR) coef!cients is obtained via Whittle’s algorithm. A key aspect of the proposed TV-VPARCOR representations
is that they are of lower dimension, and therefore more ef!cient, than TV-VAR representations. The performance of the
TV-VPARCOR models is illustrated in simulation studies and in the analysis of multivariate non-stationary temporal data aris-
ing in neuroscience and environmental applications. Model performance is evaluated using goodness-of-!t measurements in
the time-frequency domain and also by assessing the quality of short-term forecasting.
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1. INTRODUCTION

Recent technological advances in scienti!c areas have led to multi-dimensional datasets with a complex tem-
poral structure, often consisting of several time series components that are related over time. Inferring changes
in the spectral content of each component, as well as time-varying relationships across components, is often
relevant in applied areas. For example, understanding the interplay across temporal components derived from
multi-channel/multi-location brain signals and brain imaging data is a key feature in brain connectivity studies
(e.g., Astol! et al., 2008; Milde et al., 2009; Cheung et al., 2010; Omidvarnia et al., 2014; Schmidt et al., 2016;
Yu et al., 2016; Chiang et al., 2017; Ting et al., 2017, among others). Multivariate time series analysis is also
important for !ltering, smoothing, and prediction in environmental studies and !nance where many variables are
simultaneously measured over time (e.g., Tsay, 2013; Zhang, 2017).

Several time-domain, frequency-domain, and time-frequency approaches are available for modeling and infer-
ring spectral characteristics of univariate non-stationary time series. However, a much more limited number of
approaches are available for computationally ef!cient and scienti!cally interpretable analysis of multivariate
non-stationary time series. Furthermore, currently available statistical tools have important practical limitations.
For instance, vector autoregressions (VARs) are often used in the analysis of multi-channel electroencephalogram
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(EEG) data and estimation of cortical connectivity (see e.g., Cheung et al., 2010; Chiang et al., 2017); however,
these models cannot capture the time-varying characteristics of these data.

Other approaches based on time-varying VARs are able to adapt to the non-stationary features of multi-channel
EEG data, but to allow scalability only lead to point estimates of the spectral characteristics of the data and are
highly dependent on a set of tuning parameters that are hard to elicit in practice. Alternative modeling frameworks
that allow for full posterior inference while incorporating "exible and realistic dynamic structures (e.g., West et al.,
1999; Prado et al., 2001; Nakajima and West, 2017), are either not available for multivariate time series, or they are
highly computationally intensive, requiring Markov chain Monte Carlo (MCMC) sampling for posterior inference.
Frequency-domain and time-frequency approaches have also been developed, but typically these methods are only
able to handle multiple (not multivariate) stationary time series (e.g., Cadonna et al., 2019), or are methodologically
adequate and "exible (e.g., Bruce et al., 2018; Li and Krafty, 2018), but computationally unfeasible to jointly
analyze more than a relatively small number of multivariate time series components.

In the univariate context Yang et al. (2016) consider a Bayesian lattice !lter approach for analyzing a single
time series which uses univariate dynamic linear models (DLMs) to describe the evolution of the forward and
backward partial autocorrelation coef!cients of such series. A key feature of this approach is its computational
appeal. A DLM representation of a univariate time-varying autoregression requires a model with a state-parameter
vector of dimension P, where P is the order of the autoregression (see e.g., West et al., 1999; Prado and West,
2010). Therefore, !ltering and smoothing in this setting requires the inversion of P × P matrices at each time
t. Alternatively, the DLM formulation in the PARCOR domain requires !tting 2 × P DLMs, P for the forward
coef!cients and P for the backward coef!cients, where each DLM has a univariate state-space parameter, fully
avoiding matrix inversions and resulting in computational savings for cases in which P ≥ 2.

In this article, we extend the Bayesian lattice !lter approach of Yang et al. (2016) to the multivariate case.
Our proposed models offer several advantages over currently available multivariate approaches for non-stationary
time series including computational feasibility for joint analysis of relatively large-dimensional multivariate time
series, and interpretable time-frequency analysis in the multivariate context. In particular, the proposed framework
leads to posterior estimates of the time-varying spectral densities of each individual time series, as well as poste-
rior measurements of the time-frequency relationships across multiple time series over time, such as time-varying
coherence and partial coherence. We note that extending the approach Yang et al. (2016) to the multivariate case is
non-trivial, as the closed-form inference used in the univariate DLM formulation of the lattice !lter is not available
for the multivariate case considered here. Multivariate DLM theory (West and Harrison; Prado and West, 2010)
allows for full posterior inference in closed-form only when the covariance matrices of the innovations at the obser-
vation level and those at the system level are known, which is rarely the case in practice. Full posterior inference
via MCMC can be obtained for more general multivariate DLM settings, but such posterior sampling schemes are
very computationally expensive, making them only feasible when dealing with a small number of time series of
small/moderate time lengths, and low-order TV-VAR models. We address these challenges by approximating the
covariance matrices of the innovations at the observational level for the multivariate dynamic forward and back-
ward PARCOR models using the approach of Triantafyllopoulos (2007). In addition, we use discount factors to
specify the structure of the covariance matrices at the system levels. Our framework casts the time-varying multi-
variate representation of the input–output relations between the vectorial forward and backward predictions of a
multivariate time series process – and their corresponding forward and backward matrices of PARCOR coef!cients
– as a Bayesian multivariate state-space model. Once approximate posterior inference is obtained for the multi-
variate time-varying PARCOR coef!cients, posterior estimates for the implied time-varying vector autoregressive
(TV-VAR) coef!cient matrices and innovations covariance matrices can be obtained via Whittle’s algorithm (Zhou,
1992). Similarly, posterior estimates for any function of such matrices, such as the multivariate spectra and func-
tions of the spectra, can also be obtained. A key feature of the proposed TV-VPARCOR representation is that it
is more parsimonious and "exible than directly working with the TV-VAR state-space representation. We illus-
trate this in the analyses of simulated and real data presented in Sections 3 and 4. We also propose a method for
selecting the number of stages in the TV-VPARCOR setting based on an approximate calculation of the deviance
information criterion (DIC).
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The article is organized as follows. Section 2 presents the models and discusses approximate posterior inference.
Section 3 illustrates the performance of the proposed TV-VPARCOR models in simulation studies. Comparisons
with results obtained from DLM representations of TV-VAR models are also provided. Section 4 presents analyses
of two real multivariate temporal datasets. The !rst application considers joint analysis of multi-channel EEG data
and the second one illustrates the analysis and forecasting of multi-location bivariate wind components. Finally,
Section 5 presents a discussion and brie"y describes potential future developments.

2. MODELS AND METHODS FOR POSTERIOR INFERENCE

2.1. TV-VAR Models and Lattice Filters

Let xt be a K×1 vector time series for t = 1,… ,T . A time-varying vector autoregressive model of order P, referred
to as TV-VAR(P), is given by

xt = A(P)
t,1 xt−1 + · · · + A(P)

t,P xt−P + !t, !t ∼  (0,!t),

where A(P)
t,j is the K × K matrix of time-varying coef!cients at lag j, j = 1,… ,P, and !t is the K × K innovations

variance–covariance matrix at time t. The !ts are assumed to be independent over time.
Yang et al. (2016) consider a Bayesian lattice !lter dynamic linear modeling approach for the case of univariate

time-varying autoregressions (TVAR), that is, when K = 1 above. Such approach is based on a lattice structure
formulation of the univariate Durbin–Levinson algorithm (see, e.g., Brockwell and Davis, 1991; Shumway and
Stoffer, 2017) used in Kitagawa (2010). The idea is to obtain posterior estimation on the forward and backward
time-varying PARCOR coef!cients using a computationally ef!cient lattice !lter representation. Once dynamic
PARCOR estimation is obtained, estimates of the TVAR coef!cients can be derived using the Durbin–Levinson
recursion. The main advantage of using the dynamic PARCOR lattice !lter representation instead of a dynamic
linear model TVAR representation such as that used in West et al. (1999), is that the former avoids the inversion of
P×P matrices required in the TVAR DLM !ltering and smoothing equations. Instead, the PARCOR approach con-
siders 2P dynamic linear models with univariate state parameters (e.g., P DLMs with univariate state parameters
for the forward coef!cients and P DLMs with univariate state parameters for the backward coef!cients), com-
pletely avoiding matrix inversions. This is important for computational ef!ciency when considering models with
P > 2 and large T . The PARCOR approach also offers additional modeling advantages due to the fact that con-
sidering 2P DLMs with univariate state parameters generally provides more "exibility than using a single DLM
TVAR with P-dimensional state parameters.

We extend the approach of Yang et al. (2016) to consider multivariate non-stationary time series. More specif-
ically, we consider Bayesian multivariate DLMs that use the multivariate Whittle algorithm (Zhou, 1992), also
known as the multivariate Durbin–Levinson algorithm (Brockwell and Davis, 1991), to obtain a representation of
the TV-VAR coef!cient matrices in terms of time-varying PARCOR matrices as follows. Let f (P)t and b(P)

t be the
K-dimensional prediction error vectors at time t for the forward and backward TV-VAR(P) model respectively,
where,

f (P)t = xt −
P∑

j=1

A(P)
t,j xt−j, and b(P)

t = xt −
P∑

j=1

D(P)
t,j xt+j.

A(P)
t,j and D(P)

t,j denote, respectively, the K × K time-varying matrices of forward and backward TV-VAR(P) coef-

!cients for j = 1,… ,P. Similarly, A(m)
t,j and D(m)

t,j denote the time-varying matrices of forward and backward
TV-VAR(m) coef!cients for j = 1,… ,m. Then, we write the m-stage of the lattice !lter in terms of the pair of
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input–output relations between the forward and backward K-dimensional vector predictions, as follows,

f (m−1)
t = "(m)

t,m b(m−1)
t−m + f (m)

t , f (m)
t ∼  (0,!t,f ,m), (1)

b(m−1)
t = #(m)

t,m f (m−1)
t+m + b(m)

t , b(m)
t ∼  (0,!t,b,m), (2)

where "(m)
t,m and #(m)

t,m are, respectively, the K × K matrices of time-varying forward and backward PARCOR coef-
!cients for m = 1,… ,P. Note that for stationary AR(P), that is, models with K = 1 and static AR coef!cients in
the stationary region, the forward and backward PARCOR coef!cients are equal, that is, !(m)

m = "(m)
m for all m. For

general K and non-stationary processes the forward and backward PARCOR coef!cients are not the same.
For each stage m of the lattice structure above, we obtain the forward and backward TV-VAR coef!cient matri-

ces, A(P)
t,m and D(P)

t,m, from the time-varying forward and backward PARCOR coef!cient matrices, "(m)
t,m and #(m)

t,m ,
using Whittle’s algorithm (see, e.g., Zhou, 1992), that is,

A(m)
t,j = A(m−1)

t,j − A(m)
t,m D(m−1)

t,m−j , (3)

D(m)
t,j = D(m−1)

t,j − D(m)
t,m A(m−1)

t,m−j , j = 1,… ,m − 1, (4)

with A(m)
t,m = "(m)

t,m and D(m)
t,m = #(m)

t,m , for m = 1,… ,P.

2.2. Model Speci!cation and Inference

Our proposed model speci!cation uses Equations (1) and (2) as observational level equations of multivariate DLMs
(West and Harrison; Prado and West, 2010) on the forward and backward PARCOR time-varying coef!cients.
These multivariate DLMs are speci!ed as follows. For each t, let vec("(m)

t,m ) and vec(#(m)
t,m ) be the vectorized forward

and backward PARCOR coef!cients, that is, these are K2 vectors obtained by stacking the forward and backward
PARCOR coef!cient matrices at time t, "(m)

t,m and #(m)
t,m , by columns respectively. In addition, de!ne the forward

and backward K × K2 matrices F(m−1)
t+m = (f (m−1)

t+m ) ⊗ IK×K and B(m−1)
t−m = (b(m−1)

t−m ) ⊗ IK×K , where IK×K denotes the
K × K identity matrix and ⊗ denotes the Kronecker product. Then, Equations (1) and (2) can be rewritten as

f (m−1)
t = B(m−1)

t−m vec("(m)
t,m ) + f (m)

t , f (m)
t ∼  (0,!t,f ,m), (5)

b(m−1)
t = F(m−1)

t+m vec(#(m)
t,m ) + b(m)

t , b(m)
t ∼  (0,!t,b,m), (6)

which correspond to the observational equations of two multivariate dynamic linear regressions on f (m−1)
t and b(m−1)

t ,
with dynamic coef!cients vec("(m)

t,m ) and vec(#(m)
t,m ) respectively. To complete the MDLM structure we specify

random walk evolution equations for vec("(m)
t,m ) and vec(#(m)

t,m ) as follows,

vec("(m)
t,m ) = vec("(m)

t−1,m) + !t,f ,m, !t,f ,m ∼  (0,Wt,f ,m), (7)

vec(#(m)
t,m ) = vec(#(m)

t−1,m) + !t,b,m, !t,b,m ∼  (0,Wt,b,m), (8)

where Wt,f ,m and Wt,b,m are time dependent system covariance matrices. Finally, we specify prior distributions for
vec("(m)

0,m) and vec(#(m)
0,m) and all m. We use conjugate normal priors for these parameters, that is, we assume

vec("(m)
0,m)|0,f ,m ∼  (m0,f ,m,C0,f ,m), (9)

vec(#(m)
0,m)|0,b,m ∼  (m0,b,m,C0,b,m), (10)
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where 0,f ,m and0,b,m denote the information available at time t = 0 for the forward and backward state parameter
vectors respectively.

Given !t,f ,m, and Wt,f ,m for all t = 1,… ,T , and all m = 1,… ,P, Equations (5), (7), and (9) de!ne a normal
MDLM (see, e.g., Prado and West, 2010, Chapter 10) for the forward time-varying PARCOR. Similarly, given!t,b,m
and Wt,b,m for all t and all m, (6), (8), and (10) de!ne a normal MDLM for the backward time-varying PARCOR.

Note that posterior inference in the case of univariate models with K = 1 is available in closed form via the
DLM !ltering and smoothing equations. This is used in Yang et al. (2016) to obtain posterior inference in this
univariate case. However, posterior inference in the general multivariate setting proposed here is not available in
closed form when the observational and system covariance matrices are unknown, which is typically the case in
practical settings. Therefore, as explained below, we use discount factors to specify Wt,f ,m, and Wt,b,m. We also
assume !t,f ,m = !f ,m and !t,b,m = !b,m for all t, and use the approach of Triantafyllopoulos (2007) to obtain
estimates of !f ,m and !b,m, which allows us to get approximate posterior inference in the multivariate case.

We follow Ameen and Harrison (1985), and !rst de!ne the K2 ×K2 system covariance matrices using discount
factors by setting

$f ,m = diag("−1∕2
f ,m,1 ,… , "−1∕2

f ,m,K), and $b,m = diag("−1∕2
b,m,1,… , "−1∕2

b,m,K),

where each component, ".,m,i, is a K-dimensional vector that contains the discount factors for each of the K compo-
nents at stage m. Although we can assume different discount factors for different elements of "⋅,m,k and also across
different ks, in practice we usually set all the elements of "f ,m,k equal to $f ,m and all the elements of "b,m,k equal to
$b,m for all k = 1,… ,K, and then choose $f ,m and $b,m optimally according to some criterion for each stage m (this
is discussed in Section 2.3). This structure for $f ,m and $b,m allows us to obtain closed form expressions for Wt,f ,m
and Wt,b,m sequentially over time.

We now describe the full algorithm for approximate posterior inference in the forward TV-VPARCOR model.
The algorithm for the backward model is similar. Let t,f ,m denote all the information available up to time t at
stage m for the forward model, with t,f ,m = {t−1,f ,m, f

(m−1)
t }. Consider the posterior expectation of !f ,m up to

time t, that is, E(!f ,m|t,f ,m), and assume that limt→∞ E(!f ,m|t,f ,m) = !f ,m. Let n0,f ,m be a positive scalar and S0,f ,m

be the prior expectation of !f ,m. Assume that at time t − 1, we have that vec("(m)
t−1,m)|t−1,f ,m is approximately

distributed as N(mt−1,f ,m,Ct−1,f ,m), and so, E(f (m−1)
t |t−1,f ,m) is approximated by B(m−1)

t−m mt−1,f ,m and V(f (m−1)
t |t−1,f ,m)

is approximated by Qt−1,f ,m = B(m−1)
t−m Rt,f ,m(B

(m−1)
t−1 )′ + St−1,f ,m, with Rt,f ,m = Ct−1,f ,m +Wt,f ,m, for some St−1,f ,m. Then,

following Theorem 1 of Triantafyllopoulos (2007) we have that, if !f ,m is bounded, St,f ,m will approximate !f ,m
for t large, with

St,f ,m = 1
(n0,f ,m + t)

(
n0,f ,mS0,f ,m +

t∑
i=1

S1∕2
i−1,f ,mQ−1∕2

i,f ,m ei,f ,me′i,f ,mQ−1∕2
i,f ,m S1∕2

i−1,f ,m

)
, (11)

where in our case et,f ,m = f (m−1)
t − B(m−1)

t−m mt−1,f ,m, and S1∕2
i−1,f ,m,Q

−1∕2
i,f ,m are symmetric square roots of the matrices

Si−1,f ,m and Q−1
i,f ,m respectively, based on the spectral decomposition factorization of symmetric positive de!nite

matrices for all i = 1,… , t.
Using the approximation above we obtain the !ltering equations below for approximate inference in the forward

TV-VPARCOR model.

• The one-step ahead forecast mean and covariance at time t are given by:

E(f (m−1)
t |t−1,f ,m) ≈ B(m−1)

t−m mt−1,f ,m.

and

V(f (m−1)
t |t−1,f ,m) ≈ Qt,f ,m = B(m−1)

t−m Rt,f ,m(B(m−1)
t−m )′ + St−1,f ,m,
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where Rt,f ,m = Ct−1,f ,m + Wt,f ,m and Wt,f ,m = Δf ,mCt−1,f ,mΔf ,m − Ct−1,f ,m.
• The one-step forecast error vector is given by et,f ,m = f (m−1)

t − B(m−1)
t−m mt−1,f ,m.

• Using Bayes’ theorem and the equations above we can obtain the approximate posterior distribution at time t
as vec("(m)

t,m )|t,f ,m ≈  (mt,f ,m,Ct,f ,m), where

mt,f ,m = mt−1,f ,m + Ut,f ,met,f ,m, (12)

Ct,f ,m = $f ,mCt−1,f ,m$f ,m + Ut,f ,mQt,f ,mU′
t,f ,m, (13)

Ut,f ,m = $f ,mCt−1,f ,m$f ,mB(m−1)
t−m Q−1

t,f ,m. (14)

Approximate !ltering and predictive distributions for vec("m
t,m)|t,f ,m, f (m−1)

t |t,f ,m and f (m−1)
t+h |t,f ,m for a positive

integer h > 0 can also be obtained by taking !f ,m = St,f ,m.
After applying the !ltering equations up to time T , it is possible to compute approximate smoothing distributions

for the forward PARCOR model by setting !f ,m = ST ,f ,m. This leads to approximate smoothing distributions

vec("(m)
t,m )|T ≈  (aT ,f ,m(t − T),RT ,f ,m(t − T)),

where the mean and covariance are computed recursively via

aT ,f ,m(t − T) = mt,f ,m − Jt,f ,m(at+1,f ,m − aT ,f ,m(t − T + 1)), (15)

RT ,f ,m(t − T) = Ct,f ,m − Jt,f ,m(Rt+1,f ,m − RT ,f ,m(t − T + 1)), (16)

for t = (T − 1),… , 1, with Jt,f ,m = Ct,f ,mR−1
t+1,f ,m, and starting values aT (0) = mT ,f ,m and RT ,f ,m(0) = CT ,f ,m. Filtering

and smoothing equations can be obtained for the backward PARCOR model in a similar manner. Finally, the
algorithm for approximate posterior estimation is as follows.

Algorithm

1. Given hyperparameters {P,$f ,m,$b,m;m = 1,… ,P}, set f (0)t = b(0)
t = xt, for t = 1,… ,T .

2. Use {f (0)t } and {b(0)
t } as vectors of responses in the observational level Equations (1) and (2) respectively,

which, combined with the random walk evolution Equations (7) and (8), and the priors (9) and (10), de!ne the
multivariate PARCOR forward and backward models. Then, use the sequential !ltering Equations (12)–(14)
to obtain the estimated {ST ,f ,1} and {ST ,b,1}. Use the sequential !ltering Equations (12)–(14) along with the

smoothing Equations (15) and (16) to obtain a series of estimated parameters {vec("̂(1)
t,1 )}, {vec(#̂(1)

t,1 )} for
t = 1 ∶ T . These estimated parameters are set at the posterior means of the smoothing distributions, that is,
the values in (16) for the forward case and a similar equation in the backward case.

3. Use the observational Equations (1) and (2) to obtain the new series of forward and backward prediction errors,
{f (1)t } and {b(1)

t }, for t = 1,… ,T .
4. Repeat steps 2 and 3 above until {vec("̂(m)

t,m )}, {vec(#̂(m)
t,m )}, {ST ,f ,m} and {ST ,b,m} have been obtained for all

m = 1,… ,P.
5. Finally, use {vec("̂(m)

t,m )} and {vec(#̂(m)
t,m )}, for m = 1,… ,P, and Equations (3) and (4) to obtain the forward

and backward TV-VAR coef!cient matrices via Whittle’s algorithm.

2.3. Model Selection and Time-Frequency Representation

To select the optimal model order and discount factors, we begin by specifying a potential maximum value of P,
say Pmax, for the model order. At level m we search for the optimal values of $f ,m and $b,m. In other words, at level
m = 1 we search for the combination of values of $f ,1 and $b,1 maximizing the log-likelihood resulting from (1)

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. 41: 759–784 (2020)
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with m = 1. Using the selected optimal $f ,1 and $b,1, we can obtain the corresponding series {f (2)t } and {b(2)
t },

for t = 1,… ,T , as well as the maximum log-likelihood value f ,1. Then, we repeat the above search procedure
for stage two, that is, m = 2, using the output {f (2)t } and {b(2)

t } obtained from implementing the !ltering and
smoothing equations with the previously selected hyperparameters $f ,1 and $b,1. We obtain optimal $f ,2, $b,2 as
well as {f (3)t } and {b(3)

t }, for t = 1,… ,T . We also obtain the value of the corresponding maximum log-likelihoodf ,2. We repeat the procedure until the set {$f ,m,$b,m,f ,m},m = 1,…Pmax, has been selected. We then consider
two different methods for selecting the optimal model order as described below. Note that one can also obtain
the optimal likelihood values from the backward model, b,m, for m = 1,…Pmax. For all the examples and real
data analyses presented below we choose the optimal model orders based on the optimal likelihood values for the
forward model. Similar results were obtained based on the optimal likelihood values for the backward models.

Method 1: Scree plots. This method was used by Yang et al. (2016) to select the model order visually by plottingf ,m against the order m. The idea is that, when the observed vector of time series truly follows a TV-VAR model,
the values of f ,m will stop increasing after a speci!c lag and this lag is then chosen to be the model order. A
numerical version of this method can also be implemented by computing the percent of change in the likelihood
going from f ,m−1 to f ,m, however, here we use scree plots as a visualization tool and use the model selection
criterion below to numerically !nd an optimal model order.

Method 2: DIC model selection criterion. We consider an approach based on the DIC to choose the model order
(see Gelman et al., 2014, and references therein). In general, for a model with parameters denoted as #, the DIC
is de!ned as

DIC = −2 log p(y|#̂Bayes) + 2pDIC,

where y denotes the data, #̂Bayes is the Bayes estimator of # and pDIC is the effective number of parameters. The
effective number of parameters is given by

pDIC = 2
[
log p(y|#̂Bayes) − Epost (log p(y|#))] ,

where the expectation in the second term is an average of # over its posterior distribution. The expression above
is typically estimated using samples #s, s = 1,… , S, from the posterior distribution as

p̂DIC = 2

[
log p(y|#̂Bayes) −

1
S

S∑
s=1

log p(y|#s)
]
.

Note, however, that in our case we do not have samples from the exact posterior distribution of the parameters
since we are using approximate inference to avoid computationally costly exact inference via MCMC. Therefore,
for a given model order m we compute the likelihood term in the DIC calculation approximately using the forward
!ltering distributions as explained below. Also, note that, !tting a PARCOR model at stage m requires !tting all
the models of the previous m − 1 stages. Therefore, the effective number of parameters at stage m is computed by
adding the estimated effective number of parameters of stage m plus the estimated effective number of parameters
for the previous m − 1 stages. In other words, for each stage m ∶

• Compute the estimated implied log-likelihood from Equation (5) for t = 1,… ,T , using vec("̂(m)
t,m ) and ST ,m,f .

In this way we obtain the !rst term in the calculation of the DIC for model order m.
• Obtain samples, vec("(m)

t,m,s), for s = 1,… , S, from the approximate sequential !ltering equations with distri-
butions  (mt,f ,m,Ct,f ,m), and use these samples to compute the estimated number of parameters related only
to stage m which we denote as p̂m

DIC,m. Note that, as mentioned above, stage m requires !tting all the PAR-
COR models for the previous (m − 1) stages and so, in the !nal DIC calculation at stage m the total estimated
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effective number of parameters is computed as

p̂m
DIC =

m∑
l=1

p̂l
DIC,l.

We denote the !nal estimated DIC for model order m as D̂ICm.

2.4. Posterior Summaries

Once an optimal TV-VPARCOR model is chosen we can obtain posterior summaries of any quantities associated
to such model. For instance, we can obtain posterior summaries of the TV-VPARCOR coef!cients over time at
each stage, and consequently summaries of the corresponding TV-VAR coef!cients over time.

Time-frequency representations are generally more useful in practice, and these can be obtained by computing
the spectral density matrix, g(t,'), for any time t and frequency ' ∈ (0, 1∕2), as well as measurements derived
from this matrix such as coherence, partial coherence, or partial directed coherence (PDC). The spectral density
matrix is estimated as

ĝ(t,') = %̂−1(t,') × !̂ × %̂∗(t,')−1, (17)

where %̂(t,') = I −∑P
m=1 Â

(P)
t,m exp{−2(im'}, with i =

√
−1 (see e.g., Shumway and Stoffer, 2017, Chapter 4).

!̂ can be set at ST ,f ,P. Note that the spectral density matrix g(t,') consists of individual spectra gj,j(t,') for each
component j = 1,… ,K of xt, and the cross-spectra gi,j(t,') between components i and j. From these we can
compute the estimated squared coherence between components i and j as

)̂2
i,j(t,') =

|ĝi,j(t,')|2
{ĝi,i(t,')ĝj,j(t,')}

,

for all i ≠ j. This measure is used to estimate the power transfer between two components of the time series.
Similarly, the partial squared coherence between components i and j can be estimated as follows. Let c(t,') =
g−1(t,') be the inverse of the spectral density matrix with elements ci,j(t,') for i, j = 1,… ,K. Then, the estimated
squared partial coherence between components i and j is given by

*̂2
i,j(t,') =

|ĉi,j(t,')|2
{ĉi,i(t,')ĉj,j(t,')}

.

The squared partial coherence is essentially the frequency domain squared correlation coef!cient between com-
ponents i and j after the removal of the linear effects of all the remaining components of xt. Directional measures
such as the PDC and the direct transfer function (DTF) can also be computed (see e.g., Baccala and Sameshima,
2001; Kuś et al., 2004; Astol! et al., 2008; Blinowska, 2011; Milde et al., 2009; Omidvarnia et al., 2014). Such
measures provide information of directionality in the interactions between signals in a Granger causality sense.
The estimated PDC from signal j to signal i at time t and frequency ' is given by

P̂DCi,j(t,') =
%̂i,j(t,')√

%̂∗
⋅,j(t,')%̂⋅,j(t,')

,

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. 41: 759–784 (2020)
DOI: 10.1111/jtsa.12534



MULTIVARIATE DYNAMIC PARCOR MODELS 767

with %̂⋅,j the jth column of the matrix %̂(t,'). Similarly, the estimated DTF from signal j to signal i at time t and
frequency ' is given by

D̂TFi,j(t,') =
%̂−1

i,j (t,')√
[%̂−1

i,⋅ (t,')]∗%̂
−1

i,⋅ (t,')
,

where %̂−1

i,j (t,') is the (i, j)th element of the matrix %̂−1(t,') and %̂−1

i,⋅ (t,') is the ith row of %−1(t,'), with A∗

denoting the Hermitian matrix of A. The DTF shows all direct and so called ‘cascade "ows’, for example, in the
case of 3 signals, all propagations of the form 1 → 2 → 3 and 1 → 3 would be re"ected in the DTF between
signals 1 and 3. On the other hand, PDC shows only direct "ows between signals, that is, indirect propagations
like 1 → 2 → 3 are not included.

Finally, uncertainty measures for the spectral density matrix, and any functions of this matrix, can be obtained
from the approximate !ltering and smoothing posterior distributions of the forward and backward TV-VPARCOR
models. This is done by sampling from the approximate posterior distributions of the TV-VPARCOR parameters
described in Section 2.2. Then, each posterior sample of the model parameters is transformed into the corre-
sponding spectral density matrix, or any other function of this matrix, allowing us to obtain a posterior sample of
such function. Uncertainty measures for these functions are computed based on the samples. This is illustrated in
Section 4.2.

2.5. Forecasting

We show how to obtain h-steps ahead forecasts. To have a non-explosive behavior in the forecasts, we assume
the series is locally stationary in the future, that is, "(m)

t,m = #(m)
t,m at time t = T + 1,… ,T + h. Then, the approx-

imate h-steps ahead forecast posterior distribution of the PARCOR coef!cients, with h > 0, is approximated as
("(m)

T+h,m|T ,f ,m) ≈  (mT ,f ,m(h),CT ,f ,m(h)), where

mT ,f ,m(h) = mT ,f ,m; CT ,f ,m(h) = CT ,f ,m + h ⋅ WT+1,f ,m,

with WT+1,f ,m = Δf ,mCT ,f ,mΔf ,m − CT ,f ,m, for m = 1,… ,P. Then, we apply Whittle’s algorithm to transform the
PARCOR coef!cients, "(P)

T+h,P, into TV-VAR coef!cients A(P)
T+h,j and D(P)

T+h,j, for j = 1,… ,P. Finally, we obtain the
h-steps ahead forecasts using

x̂T+h =
P∑

i=1

Â
(P)
T+h,ix̂T+h−i + !̂(P)T+h, !̂(P)T+h ∼  (0,ST ,f ,P).

3. SIMULATION STUDIES

We illustrate our proposed approach in the analysis of simulated data. The relative performances of the models
considered here, including that of the proposed TV-VPARCOR, were assessed by computing the average squared
error (ASE) between the estimated spectral density matrix and the true spectral density matrix.

3.1. Bivariate TV-VAR(2) Processes

We simulated 50 bivariate time series of length T = 1034 from the following TV-VAR(2) model:

xt = %1,txt−1 +%2,txt−2 + !t, !t ∼  (0, I2),
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Figure 1. Case ,1,1,2 = 0. Left: True log spectral density g11(t,'). Right: True log spectral density g22(t,') [Color !gure can
be viewed at wileyonlinelibrary.com]

with

%1,t =
(

r1,t cos( 2(
!1,t

) ,1,1,2,t

0 r2,t cos( 2(
!2,t

)

)
and %2,t =

(−r2
1,t ,2,1,2,t

0 −r2
2,t

)
,

where r1,t =
0.1
T

t + 0.85, r2,t = − 0.1
T

t + 0.95, r3,t =
0.2
T
− 0.9, r4,t =

0.2
T
+ 0.7, !1,t =

15
T

t + 5, and !2,t = − 10
T

t + 15.
We also considered three different scenarios for the values of ,1,1,2,t, and ,2,1,2,t, namely (i) ,1,1,2,t = ,2,1,2,t = 0
for all t; (ii) ,1,1,2,t = −0.8 and ,2,1,2,t = 0 for all t; and (iii) ,1,1,2,t = r3,t and ,2,1,2,t = r4,t.

The true 2 × 2 spectral matrix of this process is given by

g(t,') = %−1(t,') × ! ×%∗(t,')−1,

where %(t,') = I2 −%1,t exp{−2(i'} −%2,t exp{−4(i'}, and ! = I2. The spectral matrix g(t,') is symmetric,
with corresponding components g11(t,'), g12(t,'), and g22(t,'), representing, respectively, the spectrum of the
!rst component, the co-spectrum between the !rst and the second components, and the spectrum of the second
component. The squared coherence between the !rst and second components is given by

)2
12(t,') =

|g12(t,')|2
g11(t,')g22(t,')

.

Note that when ,1,1,2,t = 0 and ,2,1,2,t = 0 for all t (scenario (i)), the two processes are uncorrelated and g1,2(t,') =
)2

12(t,') = 0 for all t and '. Figure 1 shows the true log spectral densities g11(t,') and g22(t,') in this scenario.
The true log spectral densities and square coherences for scenarios (ii) and (iii) are shown, respectively, in the top
row plots of Figures 2 and 3.

We !t bivariate TV-VPARCOR models to each of the 50 simulated bivariate time series for t =1:1024 under
cases (i), (ii), and (iii). We assess the forecasting performance of the model in all cases using the last 10 observations
not included in the !t, that is, t = 1025:1034. We set a maximum of order Pmax = 5. The elements of the diagonal
component of discount factor matrices $f ,m and $b,m, $f ,m, and $b,m respectively, were chosen from a grid of values
in (0.995, 1). We set the hyperparameters nf ,m,0 = nb,m,0 = 1, S0,f ,m = S0,b,m = I2, m0,f ,m = m0,b,m = (0, 0, 0, 0)′
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Figure 2. Case with,1,1,2,t = −0.8 and,2,1,2,t = 0 for all t. Top: True log spectral density g11(t,') (left), true log spectral density
g22(t,') (middle), true squared coherence )2

1,2(t,') (right). Bottom: Estimated ĝ11(t,') (left), estimated ĝ22(t,') (middle),
estimated )̂2

1,2(', t) (right) [Color !gure can be viewed at wileyonlinelibrary.com]

and C0,f ,m = C0,b,m = I4. For comparison, we also !t TV-VAR models to the simulated bivariate data with model
orders ranging from 1 to 5. Multivariate DLM representations of bivariate TV-VAR(m) processes were considered
for each m = 1,… , 5. Each TV-VAR representation has an 4m-dimensional state parameter vector. For each
model order a single optimal discount factor, $m was chosen from a grid of values in (0.995, 1). Furthermore, to
provide a similar model setting to the one we used in our TV-VPARCOR approach, the covariance matrix at the
observational level in the DLM formulation for each TV-VAR(m) was also speci!ed following the approach of
Triantafyllopoulos (2007).

Figure 4 shows the BLF-scree plots obtained from the PARCOR approach for each of the 50 datasets under the
three scenarios for model orders m = 1,… , 5. We see that in all scenarios the BLF-scree plots indicate that the
optimal model order is P = 2. We also computed the DIC as explained in the previous section for each model order
m = 1,… , 5 and each dataset under the three scenarios. The bottom right plot in Figure 4 shows the distributions
of the optimal model orders chosen by the TV-VPARCOR and TV-VAR approaches for scenario (ii). We see that
the TV-VPARCOR and TV-VAR approaches lead to very similar results and model order 2 is adequately chosen
as the optimal model order in this scenario for most of the 50 datasets. Similar results were obtained for scenarios
(i) and (iii).

Figures 2, 3, and 5 summarize posterior inference obtained from the TV-VPARCOR approach using a model
order of 2 for the three scenarios. Estimated spectral densities were obtained from the posterior means of the
approximate smoothing distributions of the forward and backward PARCOR coef!cient matrices over time. The
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Figure 3. Case with ,1,1,2,t = r3,t and ,2,1,2,t = r4,t. Top: True log spectral density g11(t,') (left), true log spectral density
g22(t,') (middle), true squared coherence )2

1,2(t,') (right). Bottom: Estimated ĝ11(t,') (left), estimated ĝ22(t,') (middle),
estimated )̂2

1,2(', t) (right) [Color !gure can be viewed at wileyonlinelibrary.com]

estimated log spectral densities displayed in the !gures were obtained by averaging over the 50 simulated datasets.
The bivariate TV-VPARCOR model is able to adequately capture the structure of the individual spectral densities
and also that of the squared coherences. From these !gures we also see that in scenarios (ii) and (iii) the second
series has stronger impact on the !rst one and therefore their coherence is stronger. The TV-VPARCOR model
is able to adapt and adequately capture this feature in the case in which the off-diagonal coef!cients in the VAR
process are non-zero and constant over time (scenario (ii)), and also when these coef!cients are non-zero and
time-varying (scenario (iii)).

To compare the performance of the TV-VPARCOR and TV-VAR models in estimating the various
time-frequency representations, we computed the mean and standard deviations of the ASE for each of the models
in each of the three simulation scenarios. The ASE is de!ned as follows (Ombao et al., 2001)

ASEn = (TL)−1
T∑

t=1

L∑
l=1

(
log ĝ(t,'l) − log g(t,'l)

)2 , (18)

where 'l = 0, 0.001, 0.011,… , 0.5. Note that we have n = 50 simulated datasets for each of the three scenarios.
Table I summarizes the mean and standard deviations of the ASE based on ASEn for the three scenarios. Note
that the simulated data are actually generated from TV-VAR models, not from TV-VPARCOR models, so we
expect TV-VAR models to do better in terms of ASE for this speci!c simulation study. Nevertheless the proposed
TV-VPARCOR approach has comparable performance in terms of estimating the time-frequency characteristics
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Figure 4. Top: BLF-scree plots of the 50 realizations of the for scenarios (i) and (ii). Bottom: BLF-scree plot for scenario (iii)
and optimal model orders for scenario (ii) [Color !gure can be viewed at wileyonlinelibrary.com]

Figure 5. Case with,1,1,2,t = ,2,1,2,t = 0. Left: Estimated average log spectral density of the !rst component. Middle: Estimated
average log spectral density of the second component. Right: Estimated average squared coherence [Color !gure can be viewed

at wileyonlinelibrary.com]
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Table I. Mean ASE values and corresponding standard deviations (in parentheses) for the log-spectral densities and log squared
coherences obtained from TV-VPARCOR and TV-VAR models of order 2 for the TV-VAR(2) simulated data for t = 1:1024

Case (i): ,1,1,2,t = ,2,1,2,t = 0

Model g11 g22 )2
12

TV-VPARCOR 0.0246(0.0183) 0.0255(0.0147) 0.0008(0.0006)
TV-VAR 0.0171(0.0068) 0.0186(0.0080) 0.0009(0.0005)

Case (ii): ,1,1,2,t = −0.8,,2,1,2,t = 0

Model g11 g22 )2
12

TV-VPARCOR 0.0284(0.0118) 0.0238(0.0086) 0.0027(0.0023)
TV-VAR 0.0254(0.0073) 0.0253(0.0081) 0.0023(0.0011)

Case (iii): ,1,1,2,t = r3,t,,2,1,2,t = r4,t

Model g11 g22 )2
12

TV-VPARCOR 0.1227 (0.0418) 0.3289 (0.0732) 0.0281 (0.0189)
TV-VAR 0.1001 (0.0258) 0.3747 (0.0729) 0.0188 (0.0062)

Table II. Computation times (in seconds) for TV-VPARCOR and TV-VAR models

Model Case (i) Case (ii) Case (iii)

TV-VPARCOR 2.54 seconds 2.48 seconds 2.71 seconds
TV-VAR 8.98 seconds 8.95 seconds 8.36 seconds

of the original process while being computationally more ef!cient. In fact, Table II presents the computation times
for both models averaging over the 50 realizations in each case. We see that even for this example with only
two time series components and a model order of 2, the TV-VPARCOR models require almost a quarter of the
computation time required by the TV-VAR models. As the model order and the number of time series components
increase, differences in computational time will be more pronounced, making the TV-VPARCOR approach more
ef!cient for modeling large temporal datasets.

Finally, Table III shows the MSE values for the 10-steps ahead forecasts (t = 1025:1034) and corresponding
standard deviations for the TV-VPARCOR and the TV-VAR models for the 3 scenarios. The MSE values for both
models are comparable, with the TV-VPARCOR MSE being smaller than that for the TV-VAR in case (iii), which
corresponds to the case in which some of the off-diagonal parameters are non-zero and varying over time.

Table III. MSE values for the 10-steps ahead forecast (t = 1025:1034) and corresponding standard deviations (in parentheses)
obtained from TV-VPARCOR and TV-VAR models for the TV-VAR(2) simulated data

Model Case (i) Case (ii) Case (iii)

TV-VPARCOR 2.556 5.624 6.378
TV-VAR 2.548 5.408 6.594
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3.2. 20-Dimensional TV-VAR(1)

We analyze data simulated from a 20-dimensional non-stationary TV-VAR(1) process with T = 300 in which the
(i, j) elements of the matrix of VAR coef!cients at time t, %t, are given as follows:

%t(i, j) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0.7 + 0.2
299

× t for all i = j, i = 1,… , 10,
−0.95 + 0.2

299
× t for all i = j, i = 11,… , 20,

0.9 for (i, j) ∈ {(1, 5), (2, 15)},
−0.9 for (i, j) ∈ {(6, 12), (15, 20)},

0 otherwise.

for t = 1,… , 300. In addition, we assume ! = 0.1I20.
We !t TV-VPARCOR models considering Pmax = 3. Note that the PARCOR approach with Pmax = 3 requires

!tting 6 multivariate DLMs with state-space parameter vectors of dimension 400. Alternatively, working directly
with TV-VAR representations with Pmax = 3 requires !tting 3 multivariate DLMs with state-space parameter vec-
tors of dimension 400 for model order 1, 800 for model order 2, and 1200 for model order 3. The TV-VAR model
representation leads to a rapid increase of the dimension of the state-space vector with the model order, which sig-
ni!cantly reduces the computational ef!ciency, particularly for large and even moderate T . The TV-VPARCOR
approach requires !tting more multivariate DLMs, but the dimensionality of the state-space vectors remains
constant with the model order. This is an important advantage of the TV-VPARCOR approach. In fact, the
TV-VPARCOR model required 585 seconds of computation time for Pmax = 3, while the TV-VAR model required
3379 seconds with the same Pmax = 3 value. Posterior computations were completed in both cases using a Mac-
BookPro13 with Intel Core i5, with 2 GHz (1 Processor). Note also that, for a given model order the PARCOR
approach can be further optimized in terms of computational ef!ciency, as the forward and backward DLMs can
run in parallel.

We assumed prior hyperparameters m0,⋅,m = 0 and C0,⋅,m = I400 for the forward and backward PARCOR models.
The elements of the diagonal component of discount factor matrices, $f ,m and $b,m, were chosen from a grid of
values in (0.99, 1). As mentioned above we also !t TV-VAR models with model orders going from 1 to 3 using
similar prior hyperparameters and discount factors. For both types of models the DIC picked model order 1 as the
optimal model order, which is the corresponding true model order in this case. Both types of models led to similar
posterior inference of the time-frequency spectra.

Here we only show the results from the TV-VPARCOR approach. Figure 6 shows the true and estimated log
spectral densities from the TV-VPARCOR model for 4 components of the 20-dimensional time series, namely,
components 1, 2, 8, and 15. Figure 7 shows the true and estimated coherences between components 1 and 5,
components 2 and 15, components 5 and 12, and components 15 and 20. Overall we see that the TV-VPARCOR
approach adequately captures the space–time characteristics of the original multivariate non-stationary time series
process. Furthermore, the TV-VPARCOR approach led to similar posterior estimates of the VAR coef!cients over
time to those obtained from using a DLM representation of a TV-VAR (see Figure 1 in the Supporting information).

3.3. Additional Simulation Studies

Here we consider two additional simulation studies with higher model orders to highlight the performance of the
TV-VPARCOR in multivariate cases that require a much larger number of parameters.

We !rst evaluate the impact on model performance in terms of the number of time series for models with
model order P = 10. We simulated data from multivariate non-stationary TV-VAR(10) models with a number
of series increasing from 2 to 5. We simulated the 2-dimensional time series as follows. We took 2 of the EEG
channels analyzed in Section 4.1 and !tted a 2-dimensional TV-VAR(10) to such series. We then simulated a
2-dimensional dataset using the estimated TV-VAR(10) parameters for these EEG series. Similarly, we then gen-
erated a 3-dimensional time series dataset by using the estimated parameters obtained from !tting a TV-VAR(10)
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Figure 6. Top: True log spectral densities of time series components 1, 2, 8, and 15. Bottom: estimated log spectral den-
sities of the same components obtained from the PARCOR approach with model order 1 [Color !gure can be viewed at

wileyonlinelibrary.com]

Figure 7. Top: True coherence between components 1 and 5, 2 and 15, 5 and 12, and 15 and 20. Bottom: Corresponding
estimated coherences obtained from the PARCOR model [Color !gure can be viewed at wileyonlinelibrary.com]
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Figure 8. Left plot: Running time against number of time series. Right plot: estimated ASE against number of time series
[Color !gure can be viewed at wileyonlinelibrary.com]

Figure 9. Left: True spectral density of the !rst time series in the !rst simulation. Middle: PARCOR estimated spectral den-
sity of the !rst time series. Right: TV-VAR estimated spectral density of the !rst time series [Color !gure can be viewed at

wileyonlinelibrary.com]

to 3 EEG channels (including the previous 2 channels). We repeated this procedure to obtain 4-dimensional and
5-dimensional datasets, adding one EEG time series at the time. We then !t TV-VAR(10) and TV-VPARCOR(10)
to the 4 simulated datasets of dimensions 2, 3, 4, and 5. Figure 8 compares the performance of the two approaches
in terms of the running time and the ASE as the number of time series increases. We see that in both cases
the TV-VPARCOR approach leads to much smaller running times and also smaller ASE values as the num-
ber of time series increases. Figure 9 shows the true and estimated spectral density estimates obtained from the
TV-VAR(10) and TV-VPARCOR(10) for the !rst time series component obtained from the 5-dimensional models
that considered 5 channels. We see that the TV-VPARCOR leads to more accurate estimates of the spectral density.

We then consider another simulated scenario to evaluate the performance of the TV-VPARCOR approach in
terms of the model order. For this we simulated data from 6-dimensional TV-VAR models with model orders
ranging from 1 to 10. Again we used the EEG data to simulate these data by !rst !tting TV-VAR models of orders
1–10 to the EEG data and then using the estimated parameters from these models to simulate the data. Figure 10
shows a graph of the ASE values obtained from !tting TV-VAR and TV-VPARCOR models to the different datasets
simulated under different models orders. The plot shows that the TV-VPARCOR approach leads to lower ASE
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Figure 10. ASE values against model order [Color !gure can be viewed at wileyonlinelibrary.com]

values, or comparable values, to those obtained from the TV-VAR models for all the model orders. Note that ASE
values for different model orders are not comparable, as they are based on different datasets.

Finally, we also considered a study in which the data were simulated from a piecewise time series process. Once
again the proposed TV-VPARCOR approach outperformed the TV-VAR approach. The results of this study are
included in the Supporting information.

4. CASE STUDIES

4.1. Analysis of Multi-Channel EEG Data

We analyze multi-channel EEG data recorded on a patient that received electroconvulsive therapy (ECT) as a
treatment for major depression. These data are part of a larger dataset, code named Ictal19, that corresponds
to recordings of 19 EEG channels from one subject during ECT. As an illustration, we use our multivariate
TV-VPARCOR model to analyze 9 of the channels, speci!cally channels F3,Fz,F4,C3,Cz, C4,P3,Pz,P4 shown in
Figure 11. We chose these channels because they are closely located and because based on previous analyses we
expect strong similarities in their temporal structure over time. The full multi-channel dataset was analyzed in West
et al. (1999) and Prado et al. (2001) using univariate TVARs separately for each channel, and also using dynamic
regression models. The original recordings of about 26,000 observations per channel were subsampled every sixth
observation from the highest amplitude portion of the seizure, leading to a set of series of 3600 observations
(corresponding to 83.72 seconds) per channel (Prado et al., 2001).

We analyzed the K = 9 series listed above jointly using a multivariate TV-VPARCOR model. We considered a
maximum model order of Pmax = 20 and discount factor values on a grid in the (0.99, 1] range (with equal spacing
of 0.001). We further assumed that the discount factor values were the same across channels. This assumption
was based on previous analyses of the individual channels using univariate TVAR models that showed similar
optimal discount values for the different channels. We set n0,f ,m = n0,b,m = 1, and S0,f ,m = S0,b,m = 2000I9 for all
m. In addition, we set the same initial prior parameters m0,f ,m = m0,b,m = 0 and C0,f ,m = C0,b,m = 1000I81. The
computation time to run the search for the optimal model with Pmax = 20 in this dataset was 1142 seconds in an
Inter(R) Xeon(R) server with CPU E5-4650 with 2 cores and 2.70 GHz. The optimal model order was found to be
5 (see Figure 4 in the Supporting information) and so, the results presented here correspond to a TV-VPARCOR
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Figure 11. Representation of the lctal19 electrode placement. Here we focus on the nine channels in the region highlighted
[Color !gure can be viewed at wileyonlinelibrary.com]

Figure 12. Estimated log-spectral densities for channels Cz, Pz, and F4 [Color !gure can be viewed at wileyonlinelibrary.com]

model with this order. Higher-order models were also !tted leading to similar but slightly smoother results in terms
of the estimated spectral density, coherence, and partial coherence.

Figure 12 displays estimated log spectral densities of channels Cz, Pz, and F4. We note that the multi-channel
EEG data are dominated by frequency components in the lower frequency band (below 18 Hz). Furthermore, each
EEG channel shows a decrease in the dominant frequency over time, starting around 5 Hz and ending around
approximately 3 Hz. This decrease in the dominant frequency was also found in West et al. (1999). Channels Cz
and Pz are more similar to each other than to channel F4 in terms of their log-spectral densities. The three channels
show the largest power around the same frequencies; however, channel F4 displays smaller values in the power
log-spectra than those for channels Cz and Pz. The remaining channels also show similarities in their spectral
content (not shown).

Figure 13 shows estimated squared coherences (top) and estimated squared partial coherences (bottom) between
channels Pz and Cz, F4 and Cz, and F4 and Pz. Channels Pz and Cz show a very strong coherence over time across
almost all the frequency bands under 35 Hz. On the other hand, channel F4 shows strong coherence with channels
Pz and Cz across frequencies below 15–18 Hz at the beginning of the seizure. After the initial 10—15 seconds,
and approximately until about 50 seconds, there is a strong coherence between F4 and Pz and Cz only at the
dominant frequency of 3–5 Hz that dissipates towards the end of the seizure. The partial coherence across pairs of
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Figure 13. Top plots: Squared coherence between Pz and Cz, F4 and Cz, and F4 and Pz respectively. Bottom plots: Squared
partial coherence between Pz and Cz, F4 and Cz, and F4 and Pz [Color !gure can be viewed at wileyonlinelibrary.com]

channels is the frequency domain version of the squared correlation coef!cient between relationship between pairs
of components after the removal of the effects of all the other components. Figure 13 shows that the estimated
squared partial coherences between Pz and Cz, F4 and Cz, and F4 and Pz are essentially negligible for most
frequency bands over the seizure course. This makes sense due to the fact that most of the 9 EEG channels are
so strongly coherent across different frequency bands over the entire period of recording. The estimated squared
partial coherence between channels Pz and Cz is large for frequencies below 5 Hz only at the very beginning of
the seizure. These !ndings are consistent with results from the analysis of these data in West et al. (1999) and
Prado et al. (2001).

Finally, we also estimated DTFs and PDC between channels as explained in Section 2.4. Figure 14 shows the
estimated time-varying PDC among channels Pz, Cz, and F4. Channel Pz is located in the parietal region, channel
Cz is a central channel, and F4 is a frontal right channel. From the PDC and DTF (not shown) results we see that
channel Pz has the largest directed and cascade "ow towards channels Cz and F4. There is also some PDC activity
"ow between channels Cz and Pz.

4.2. Analysis of Multi-Location Wind Data

We analyze wind component data derived from median wind speed and direction measurements taken every 4 hours
from 1 June 2010 to 15 August in 3 stations in Northern California. These data were obtained from the Iowa
Environmental Mesonet Automated Surface Observing System (ASOS) Network, a publicly available database
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Figure 14. Estimated partial directed coherence among channels Pz, Cz, and F4 [Color !gure can be viewed at
wileyonlinelibrary.com]

(see http://mesonet.agron.iastate.edu/ASOS/). ASOS stations are located at airports and take
observations and basic reports from the National Weather Service, the Federal Aviation Administration, and the
Department of Defense. For additional information about the ASOS measurements see NOAA (1998). Here we
analyze time series data from Monterey, Salinas, and Watsonville, 3 stations located near the Monterey Bay.

We use the TV-VPARCOR approach for joint analysis of the six-dimensional time series corresponding to the
wind time series components for the 3 stations. We set Pmax = 10 and consider discount factor values on a grid
in the (0.9, 1] range. We assume that discount factor values were the same across components for the 3 stations.
We set the prior hyperparameters as follows: n0,f ,m = n0,b,m = 1, and S0,f ,m = S0,b,m = 5I6, m0,f ,m = m0,b,m =
0 and C0,f ,m = C0,b,m = 10I36 for all m. The computation time to run the search for the optimal model with
Pmax = 10 in this dataset was 35.72 seconds in an Inter(R) Xeon(R) server with CPU E5-4650 with 2 cores and
2.70 GHz. The optimal model order chosen by the approximate DIC calculation is P = 3 (see Figure 5 in the
Supporting information). For this model order we found that the optimal discount factors were 0.97, 0.97, and
0.99, respectively, for each of the 3 levels of the forward PARCOR model, and 0.98, 0.98, and 0.99 for each of the
3 levels of the backward PARCOR model.

Figure 15 shows the estimated log spectral densities of the east–west component (X component) and the
north–south component (Y component) for each location. We can observe that there is a dominant quasi-periodic
behavior around the 24-hour period for the east–west (X) components in Monterey and Salinas, as well as the
north–south (Y) component in Watsonville. This quasi-periodic behavior is also present, although is less persistent
over time, in the east–west component in Watsonville and the north–south components in Monterey and Salinas.
The observed quasi-periodic pattern observed in the estimated log-spectral for these three locations is consistent
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Figure 15. Top row: Estimated log-spectral densities of the east–west (X) components for Monterey, Salinas, and Watsonville.
Middle row: Estimated log-spectral densities of the north–south (Y) components for Monterey, Salinas, and Watsonville [Color

!gure can be viewed at wileyonlinelibrary.com]

with the fact that stronger winds are usually observed in the afternoons/evenings during the summer in these loca-
tions, while calmer winds are observed during the rest of the day. Note also that the quasi-periodic daily behavior
is more persistent over the entire set of summer months for the north–south component than the east–west compo-
nent in Watsonville, while the quasi-periodic behavior is more persistent in the east–west component than in the
north–south component in Monterey and Salinas.

Approximate uncertainty quanti!cation for the spectral density matrix estimates, or any functions of this matrix,
can also be obtained by sampling from the approximate posterior distributions of the TV-VPARCOR model param-
eters as illustrated in Figure 16. The !gure provides approximate 95% posterior bounds for the log-spectral density
of the north–south wind component in Watsonville. The dominant quasi-periodic behavior around the 24 hours
period also appears in the lower and upper uncertainty bands, indicating that there is less uncertainty around this
frequency band than around, say, higher periods (low-frequency) bands that display a much larger uncertainty.
There is also very low power estimated at relatively low periods (higher frequencies) of 14 hours and below and
these estimates also show very low uncertainty.

Figure 17 shows the estimated squared coherences between each pair of wind components across the three loca-
tions. There is a very strong coherence between Monterey and Salinas in the east–west (X) components for periods
above 15 hours, with the strongest relationship observed around 24 hours. We also observe that in general, there
is a strong coherence between all the components around the 24 hours period. This coherence relationship tends
to be more marked across some locations during the month of June (e.g., between the north–south components
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Figure 16. Left: Lower bound of a 95% posterior interval of the log-spectral density of the north–south (Y) component in
Watsonville. Middle: Estimated mean log-spectral density of the north–south (Y) component in Watsonville. Right: Upper
bound of 95% posterior interval of the log-spectral density of the north–south (Y) component in Watsonville [Color !gure can

be viewed at wileyonlinelibrary.com]

of Monterey and Salinas). Furthermore, the estimated squared partial coherence (see Figure 6 in the Supporting
information) between the east–west components of Monterey and Salinas also shows that there is a relatively large
linear relationship between these components for periods above 13 hours even after removing of the effect of all
the other components for these locations and also after removing the effect of the wind components in Watsonville.

The TV-VPARCOR model can also be used for forecasting as described in Section 2.5. Figure 18 shows 72 hours
forecasts obtained from the TV-VPARCOR model for the north–south wind component in Monterey. We see that
the model adequately captures the general future behavior of this time series component.

5. DISCUSSION

We present a computationally ef!cient approach for analysis and forecasting of non-stationary multivariate time
series. We propose a multivariate dynamic linear modeling framework to describe the evolution of the PAR-
COR coef!cients of a multivariate time series process over time. We use approximations in this multivariate
TV-VPARCOR setting to obtain computationally ef!cient and stable inference and forecasting in the time and
time-frequency domains. The approximate posterior distributions derived from our approach are all of standard
form. We also provide a method to choose the optimal number of stages in the TV-VPARCOR model based on an
approximate DIC calculation. In addition, our model can provide reliable short term forecasting.

The proposed framework provides computational ef!ciency and excellent performance in terms of the ASE
between the true and estimated time-varying spectral densities as shown in extensive simulation studies and in
the analysis of two multivariate time series datasets. The TV-VPARCOR model representations also lead to very
signi!cant reduction in computational time when compared to TV-VAR model representations, particularly for
cases in which we have model orders larger than 2–3 and more than a handful of time series components.

In addition to simulation studies we have shown that the TV-VPARCOR approach can be successfully used to
analyze real multivariate non-stationary time series data. We presented the analysis of non-stationary multi-channel
EEG data and also the analysis and forecasting of multi-location wind data. In the EEG case, our model was
able to adequately detect the main time-frequency characteristics of individual EEG channels as well as the rela-
tionships across multiple channels over time. For the multi-location wind component data, our model detected a
quasi-periodic pattern through the estimated spectral densities of each time series component which is consistent
with the expected behavior of these components during the summer for locations near the Monterey Bay area. The
model was also able to describe the time-varying relationships across multiple components and locations and led
to reasonable short term forecasting.
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Figure 17. Top row: Estimated squared coherences between the east–west (X) component and north–south (Y) component
in Monterey, Salinas, and Watsonville. Middle row: Estimated squared coherences between the east–west (X) components of
Monterey and Salinas, Monterey and Watsonville, and Salinas and Watsonville. Bottom row: Estimated squared coherences
between the north–south components in Monterey and Salinas, Monterey and Watsonville, and Salinas and Watsonville [Color

!gure can be viewed at wileyonlinelibrary.com]

The proposed dynamic multivariate TV-VPARCOR approach is computationally ef!cient when compared to
state-space representations TV-VAR models. However, in many practical settings we may expect sparsity in the
model parameters or situations in which some parameters change over time and others do not. Future work will
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Figure 18. Observed Monterey north–south wind component (dots); smoothed estimates obtained from the posterior mean
values of the TV-VPARCOR model (solid red line) and corresponding 90% bands (gray shade); 72 hours forecast (dotted red

line) and corresponding 90% bands (gray shade) [Color !gure can be viewed at wileyonlinelibrary.com]

explore inducing, possibly time-varying, sparsity and dimension reduction in these multivariate TV-VPARCOR
models while maintaining computational ef!ciency and accuracy in inference and forecasting.
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