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Distributed Zero-Order Algorithms for
Nonconvex Multiagent Optimization
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Abstract—Distributed  multiagent  optimization  finds
many applications in distributed learning, control, estima-
tion, etc. Most existing algorithms assume knowledge
of first-order information of the objective and have
been analyzed for convex problems. However, there are
situations where the objective is nonconvex, and one can
only evaluate the function values at finitely many points.
In this article, we consider derivative-free distributed
algorithms for nonconvex multiagent optimization, based
on recent progress in zero-order optimization. We develop
two algorithms for different settings, provide detailed
analysis of their convergence behavior, and compare
them with existing centralized zero-order algorithms and
gradient-based distributed algorithms.

Index Terms—Distributed optimization, nonconvex opti-
mization, zero-order information.

I. INTRODUCTION

CONSIDER a set ofnagents connected over a network,
each of which is associated with a smooth local objective

functionfithat can be nonconvex. The goal is to solve the
optimization problem

min
x∈Rd

f(x):=
1

n

n

i=1

fi(x)

with the restriction thatfiis only known to agentiand each
agent can exchange information only with its neighbors in the
network during the optimization procedure. We focus on the
situation where only zero-order information offiis available to
agenti.
Distributed multiagent optimization lies at the core of a wide

range of applications, and a large body of literature has been con-
tributed toward distributed multiagent optimization algorithms.
One line of research combines (sub)gradient-based methods
with a consensus/averaging scheme, where each iteration of a
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local agent consists of one or multiple consensus steps and a
local gradient evaluation step. It has been shown that for convex
functions, the convergence rates of distributed gradient-based
algorithms can match or nearly match those of centralized
gradient-based algorithms. Specifically, papers [3] and [10]
proposed and analyzed consensus-based decentralized gradient
descent (DGD) algorithms withO(logt/

√
t)convergence for

nonsmooth convex functions; papers [8], [11], and [12] em-
ployed thegradient trackingscheme and showed that the DGD
with gradient tracking achievesO(1/t)convergence for smooth
convex functions and linear convergence for strongly convex
functions; and paper [13] employed Nesterov’s gradient de-
scent method and showedO(1/t1.4−)convergence for smooth
convex functions and improved linear convergence for strongly
convex functions where is an arbitrarily small positive number.
Besides convergence rates, some works have additional focuses,
such as time-varying/directed graphs [14], uncoordinated step
sizes [15], and stochastic (sub)gradient [16].
While distributed convex optimization has broad applicabil-
ity, nonconvex problems also appear in important applications,
such as distributed learning [17], robotic networks [18], and
operation of wind farms [19]. Several works have considered
nonconvex multiagent optimization and developed various dis-
tributed gradient-based methods to converge to stationary points
with convergence rate analysis, e.g., [4], [6], [7], [20]. We notice
that for smooth functions, either convex or nonconvex, in general
DGD withgradient trackingconverges faster than the method
without gradient tracking, and its convergence rate has the same
big-O dependence on the number of iterations as the centralized
vanilla gradient descent method (see Table I).
Further, there has been an increasing interest in zero-order
optimization, where one does not have access to the gradi-
ent of the objective. Such situations can occur, for example,
when only black-box procedures are available for computing
the values of the functional characteristics of the problem, or
when resource limitations restrict the use of fast or automatic
differentiation techniques. Many existing works [9], [21]–[24]
on zero-order optimization are based on constructing gradient
estimators using finitely many function evaluations, e.g., gradi-
ent estimator based on Kiefer–Wolfowitz scheme [21] by using
2d-point function evaluations wheredis the dimension of the
problem. However, this estimator does not scale up well with
high-dimensional problems. Paper [22] proposed and analyzed
a single-point gradient estimator, and paper [23] further studied
the convergence rate for highly smooth objectives. Paper [9]
proposed two-point gradient estimators and showed that the
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TABLE I
COMPARISON OFDIFFERENTALGORITHMS FORDISTRIBUTEDOPTIMIZATION ANDZERO-ORDEROPTIMIZATION

Note: The table summarizes best known convergence rates for deterministic nonconvex unconstrained optimization with 1) smooth, 2) gradient dominated objectives.

The convex counterparts are listed if results for nonconvex cases have not been established.

m denotes the number of function value queries,tdenotes the number of iterations,ddenotes the dimension of the decision variable,c’s represent numerical

constants that can be different for different algorithms.

M denotes the total number of function value queries andTdenotes the total number of iterations provided before the optimization procedure. The rates in [2] and

[6] assume constant step sizes chosen based onM orT.

The listed convergence rates are the ergodic rates of ∇f2for the smooth case, and the objective error rates for the gradient dominated case, respectively.

The rates provided in [2] do not include explicit dependence on(d); we useγ(d)to denote this dependence.

The cited results in this table may apply to more general settings (e.g., stochastic gradients [5], [6]).

We do not include algorithms with Nesterov-type acceleration in this comparison.

convergence rates of the resulting algorithms are comparable to
their first-order counterparts (seeTable I). For instance, gradient
descent with two-point gradient estimators converges with a rate
ofO(d/m), wherem denotes the number of function value
queries. Papers [24] and [25] showed that two-point gradient
estimators achieve the optimal rateO( d/m)of stochastic
zero-order convex optimization.
Some recent works have started to combine zero-order and
distributed optimization methods [2], [26], [27]. For example,
paper [2] proposed the ZONE algorithm for stochastic noncon-
vex problems based on the method of multipliers. Paper [26]
proposed a distributed zero-order algorithm over random net-
works and established its convergence for strongly convex ob-
jectives. Paper [27] considered distributed zero-order methods
for constrained convex optimization. However, there are still
many questions remaining to be studied in distributed zero-order
optimization. In particular,how do zero-order and distributed
methods affect the performance of each other, andcould their
fundamental structural properties be kept when combining the
two?For instance, it would be ideal if we could combine both
2-point zero-order methods with DGD with gradient tracking
and maintain the nice properties for both methods, leading to
an “optimal” distributed zero-order algorithm if possible. This
is unclearapriori, and indeed, as we shall show later, the
2-point gradient estimator and DGD with gradient tracking do
not reconcile with each other well.
Contributions.Motivated by the above observations, we pro-
pose two distributed zero-order algorithms: Algorithm 1 is based

on the 2-point estimator and DGD; and Algorithm 2 is based on
the2d-point gradient estimator and DGD with gradient tracking.
We analyze the performance of the two algorithms for determin-
istic nonconvex optimization, and compare their convergence
rates with their distributed first-order and centralized zero-order
counterparts. The convergence rates of the two algorithms are
summarized in Table I. Specifically, it can be seen that the rates
of Algorithm 1 are comparable with the first-order DGD but
are inferior to the centralized zero-order method; the rates of
Algorithm 2 are comparable with the centralized zero-order
method and the first-order DGD with gradient tracking. On the
other hand, Algorithm 1 uses the 2-point gradient estimator that
requires only two function value queries, whereas Algorithm 2
employs the2d-point gradient estimator whose computation
involves2dfunction value queries, indicating that Algorithm 1
could be favored for high-dimensional problems even though
its convergence is slower asymptotically, whereas Algorithm 2
could handle problems of relatively low dimensions better with
faster convergence. These results shed light on how zero-order
evaluations affect distributed optimization and how the presence
of network structure affects zero-order algorithms. Different
problems and different computation requirements would fa-
vor different integration of zero-order methods and distributed
methods.
Compared to the existing literature on distributed zero-order
optimization, our Algorithm 1 is similar to the algorithms pro-
posed in [26] and [27], but our analysis assumes nonconvex
objectives and considers gradient dominated functions. While
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paper [2] analyzed the performance of the ZONE algorithm
for unconstrained nonconvex problems, we shall see that our
Algorithm 1 achieves comparable convergence behavior with
ZONE-M, and Algorithm 2 converges faster than ZONE-M in
the deterministic setting due to the use of the gradient track-
ing technique. A more detailed comparison will be given in
Section III-D.
Notation: We denote the2-norm of vectors and matrices by
·. The standard basis ofRdwill be denoted by{ek}

d
k=1. We

let1n∈R
ndenote the vector of all ones. We letBddenote

the closed unit ball inRd, and letSd−1:={x∈R
d:x =1}

denote the unit sphere. The uniform distributions overBdand
Sd−1will be denoted byU(Bd)andU(Sd−1).Iddenotes the
d×didentity matrix. For two matricesA=[aij]∈R

p×qand
B=[bij]∈R

r×s, their tensor productA⊗Bis

A⊗B=

⎡

⎢
⎢
⎣

a11B  ··· a1qB
...

...
...

ap1B  ··· apqB

⎤

⎥
⎥
⎦∈R

pr×qs.

II. FORMULATION ANDALGORITHMS

A. Problem Formulation

LetN ={1,2,...,n}be the set of agents. Suppose the
agents are connected by a communication network, whose
topology is represented by an undirected, connected graphG=
(N,E)where the edges inErepresent communication links.
Each agentiis associated with a local objective functionfi:
Rd→ R. The goal of the agents is to collaboratively solve the
optimization problem

min
x∈Rd

f(x):=
1

n

n

i=1

fi(x). (1)

We assume that at each time step, agent ican only query the
function values offiat finitely many points, and can only
communicate with its neighbors. Similar to [9] and other works
on zero-order optimization, we assume a deterministic setting
where the queries of the function values are noise-freeand
error-free. The analysis of the deterministic setting will provide
a baseline for extension to stochastic optimization, which we
leave as future work.
The following definitions will be useful later in this article.
Definition 1:

1) A functionf:Rd→ R is said to beL-smoothiffis
continuously differentiable and satisfies

∇f(x)−∇f(y) ≤L x−y  ∀x, y∈Rd.

2) A functionf:Rd→ Ris said to beG-Lipschitzif

|f(x)−f(y)|≤G x−y  ∀x, y∈Rd.

3) A functionf:Rd→ R is said to beμ-gradient domi-
natediffis differentiable, has a global minimizerx∗,
and

2μ(f(x)−f(x∗))≤ ∇f(x)2 ∀x∈Rd.

The notion of gradient domination is also known as Polyak–
Łojasiewicz inequality, first introduced by papers [28] and [29].

It can be viewed as a nonconvex analogy of strong convex-
ity, as the centralized vanilla gradient descent achieves linear
convergence for gradient dominated objective functions. The
gradient domination condition has been frequently discussed in
nonconvex optimization [28], [30]. Also, nonconvex but gradient
dominated objective functions appear in many applications, e.g.,
linear quadratic control problems [31] and deep linear neural
networks [32].

B. Preliminaries on Zero-Order and Distributed
Optimization

We present some preliminaries to motivate our algorithm
development.
Zero-order optimization based on gradient estimation:In

zero-order optimization, one tries to minimize a function with
the limitation that only function values at finitely many points
may be obtained. One basic approach of designing zero-order
optimization algorithms is to construct gradient estimators from
zero-order information and substitute them for the true gradients.
Here, we introduce two types of zero-order gradient estimators
for the noiseless setting.
1) The2d-point gradient estimatoris given by

G
(2d)
f (x;u)=

d

k=1

f(x+uek)−f(x−uek)

2u
ek (2)

where uis some given positive number. Basically, it
approximates the gradient∇f(x)by taking finite differ-
ences alongdorthogonal directions, and can be viewed
as a noise-free version of the classical Kiefer–Wolfowitz
type method [21]. Given anL-smooth functionf:Rd→
R, it can be shown that

G
(2d)
f (x;u)−∇f(x) ≤

1

2
uL
√
d

for anyx∈Rd. The right-hand side decreases to zero

asu→ 0. In other words,G
(2d)
f (x;u)can be arbitrarily

close to∇f(x)(as long as the finite differences can be
evaluated accurately). One drawback of this estimator is
that it requires2dzero-order queries, which may not be
computationally efficient for high-dimensional problems.

2) The2-point gradient estimatoris given by

G
(2)
f (x;u, z):=d·

f(x+uz)−f(x−uz)

2u
z  (3)

wherez∈Rdis a random vector that is sampled from
the distributionU(Sd−1), andu>0is a given positive
number. The following proposition indicates that whenz
is uniformly sampled from the sphereSd−1, the expecta-

tion ofG
(2)
f (x;u, z)is the gradient of a “locally averaged”

version off.
Proposition 1 (see [22]):Supposef:Rd→ RisL-smooth.

Then, for anyu>0andx∈Rd,wehave

Ez∼U(Sd−1)G
(2)
f (x;u, z) =∇f

u(x)

wherefu(x):=Ey∼U(Bd)[f(x+uy)].
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It has been shown in [9] that if we substituteG
(2)
f (x;u, z)for

the gradient in the gradient descent algorithm, we have

1

t

t−1

τ=0

∇f(xτ)
2=O

d

m

for nonconvex smooth objectives, and

f(xt)−f
∗=O  1−c

μ/L

d

m

for smooth and strongly convex objectives, wherexτdenotes
theτth iterate andm denotes the number of zero-order queries
intiterations (see Table I). These rates are comparable to the
rates of the (centralized) vanilla gradient descent method, i.e.,
O(1/t)for nonconvex smooth objectives and linear convergence
for smooth and strongly convex objectives.
Distributed optimization: In this article, we mainly focus on

consensus-based algorithms for distributed optimization, where
each agent maintains a local copy of the global variables, and
weighs its neighbors’ information to update its own local vari-
able. Specifically, for a time-invariant and bidirectional com-
munication network, we introduce a consensus matrix W =
[Wij]∈R

n×nthat satisfies the following assumption.
Assumption 1:

1)W is a doubly stochastic matrix.
2)Wii>0for alli∈N, and for two distinct agentsiand
j,Wij>0if and only if(i, j)∈E.

When Assumption 1 is satisfied, we have [12]

ρ:= W −n−11n1n <1.  (4)

We present two consensus-based algorithms that will serve as
the basis for designing distributed zero-order algorithms.
1) TheDGDalgorithm [3], [10] is given by the following
iterations:

xi(t)=

n

j=1

Wijx
j(t−1)−ηt∇fi(x

i(t−1))  (5)

wherexi(t)∈Rddenotes the local copy of the decision
variable for theith agent, andηtis the step size. It has
been shown that DGD in general converges more slowly
than the centralized gradient descent algorithm [3], [12]
for smooth functions. This is because the local gradient
∇fidoes not vanish at the stationary point, and a dimin-
ishing step sizeηtis necessary, which slows down the
convergence.

2) TheDGD gradient trackingmethod incorporates addi-
tional local variablessi(t)to track the global gradient
∇f=1

n i∇fi

si(t)=

n

j=1

Wijs
j(t−1) +∇fi(x

i(t−1))

−∇fi(x
i(t−2))

xi(t)=
n

j=1

Wijx
j(t−1)−ηts

i(t)

where we setsi(1) =∇fi(x
i(0))for eachi. Since gra-

dient tracking has been proposed, it has attracted much

Algorithm 1:2-Point Gradient Estimator Without Global
Gradient Tracking.

fort=1,2,3,...do
foreachi∈Ndo
1) Generatezi(t)∼U(Sd−1)independently from
(zi(τ))t−1τ=1and(z

j(τ))tτ=1forj=i.;
2) Updatexi(t)by

gi(t)=G
(2)
fi
(xi(t−1);ut,z

i(t)),  (6)

xi(t)=

n

j=1

Wij(x
j(t−1)−ηtg

j(t)).  (7)

end
end

attention and inspired many recent studies [7], [8], [12],
[15], [20], as it can accelerate the convergence for smooth
objectives compared to DGD. Here, we provide a high-
level explanation of how gradient tracking works: For
smooth functions, whenxi(t)approaches consensus,
∇fi(x

i(t))will not change much because of the smooth-
ness and, therefore, the local variablessi(t)will eventu-
ally reach a consensus; on the other hand, by induction,
it can be shown that

1

n

n

i=1

si(t)=
1

n

n

i=1

∇fi(x
i(t−1)).

Therefore, the sequence(si(t))t≥1will eventually con-
verge to the global gradient, and a constant step size
ηt=ηis allowed, leading to comparable convergence
rates as the centralized gradient methods. See [12, Sec.
III and IV.B] for more discussion.

C. Our Algorithms

Following the previous discussions, it would be ideal if we
can combine the 2-point gradient estimator and the DGD with
gradient tracking and maintain a convergence rate comparable
to the centralized vanilla gradient descent method. However, it
turns out that such combination does not lead to the desired
convergence rate. This is mainly because gradient tracking re-
quires increasingly accurate local gradient information as one
approaches the stationary point to achieve faster convergence
compared to DGD, whereas the 2-point gradient estimator can
produce a variance that does not decrease to zero even if the
radiusudecreases to zero; a more detailed explanation will be
provided in Section III-C.
We propose the following two distributed zero-order algo-

rithms for the problem (1).1

1) Algorithm 1 employs the 2-point gradient estimator
(3), and adopts the consensus procedure of the DGD

1For both algorithms, we employ theadapt-then-combine(ATC) strategy [33],
a commonly used variant for consensus optimization that is slightly different
from the combine-then-adapt (CTA) strategy in (5). Both ATC and CTA can be
used in our algorithms, and the convergence results will be similar.
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Algorithm 2: 2d-Point Gradient Estimator With Global
Gradient Tracking.

Setsi(0) =gi(0) = 0for eachi∈N.
fort=1,2,3,...do
foreachi∈Ndo
1) Updatesi(t)by

gi(t)=G
(2d)
fi
(xi(t−1);ut), (8)

si(t)=
n

j=1

Wijs
j(t−1)+gj(t)−gj(t−1).(9)

2) Updatexi(t)by

xi(t)=

n

j=1

Wij(x
j(t−1)−ηsj(t)).  (10)

end
end

algorithm that only involves averaging over the local
decision variables.

2) Algorithm 2 employs the2d-point gradient estimator
(2), and adopts the consensus procedure of the gradient
tracking method where the auxiliary variablesi(t)is
introduced to track the global gradient∇f=1

n i∇fi.
We shall see in Theorems 3 and 4 that si(t)converges
to the gradient of the global objective function ast→ ∞
under mild conditions.

III. MAINRESULTS

In this section, we present the convergence results of our
algorithms. Due to space limit, we only provide proof sketches
in the main text (Theorem 1) and in the Appendix (Theor. 2, 3,
and 4) and refer to [34] for complete proofs.

A. Convergence of Algorithm 1

Letxi(t)denote the sequence generated by Algorithm 1 with
a positive, nonincreasing sequence of step sizesηt. Denote

x̄(t):=
1

n

n

i=1

xi(t),  R0:=
1

n

n

i=1

xi(0)−x̄(0)2.

We first analyze the case with general nonconvex smooth
objective functions.
Theorem 1:Assume that each local objective functionfiis
uniformlyG-Lipschitz andL-smooth for some positive con-
stantsGandL, and thatf∗:= infx∈Rdf(x)>−∞.
1) Supposeη1L≤1/4,

∞
t=1ηt=+∞,

∞
t=1η

2
t<+∞,

and ∞
t=1ηtu

2
t<+∞. Then almost surely, x

i(t)−
x̄(t) converges to zero for alli∈N,∇f(̄x(t))con-
verges to zero, andlimt→∞f(̄x(t))exists.

2) Suppose that

ηt=
αη

4L
√
d
·
1
√
t
,  ut≤

αuG

L
√
d
·

1

tγ/2−1/4

with αη∈(0,1],αu≥0, andγ >1. Then almost
surely, xi(t)−x̄(t) converges to zero for alli, and

lim inft→∞ ∇f(̄x(t)) =0. Furthermore, we have

t−1
τ=0ητ+1E ∇f(̄x(τ))

2

t−1
τ=0ητ+1

≤
d

t

αηG
2

3n
ln(2t+1)+

8L(f(̄x(0))−f∗)

αη
+
6R0L

2

(1−ρ2)
√
d

+
9α2ηκ

2ρ2G2

(1−ρ2)2
√
d
+
9α2uγG

2

4(γ−1)
+o

1
√
t

(11)

whereκis some positive numerical constant, and

1

n

n

i=1

E xi(t)−x̄(t)2 ≤
α2ηκ

2ρ2

(1−ρ2)2
G2/L2

t
+o(t−1).

(12)
Proof Sketch of Theorem 1:We shall only provide a proof

sketch of the bounds (11) and (12). Denote

x(t):= x1(t)  ··· xn(t)

g(t):= g1(t)  ··· gn(t)

and ̄g(t):=1n
n
i=1g

i(t), δ(t):=f(̄x(t))−f∗, ec(t):=
E[x(t)−1n⊗x̄(t)

2].
The proof relies on three lemmas. The first lemma analyzes

how the objective value at the averaged iteratef(̄x(t))evolves
as the iterations proceed. Its proof is based on theL-smoothness
of the functionfand Proposition 1.
Lemma 1:We have

E[f(̄x(t))]≤E[f(̄x(t−1))]−
ηt
2
E ∇f(̄x(t−1))2

+
ηtL

2

n
ec(t−1) +

η2tL

2
E ḡ(t)2 +ηtu

2
tL

2. (13)

This lemma suggests that we further need to bound two terms,
the second moment of̄g(t)and the expected consensus error
ec(t−1). This is tackled by the following two lemmas.
Lemma 2:We have

E ḡ(t)2 ≤
4G2d

3n
+2E ∇f(̄x(t−1))2

+
4L2

n
ec(t−1)+u

2
tL

2d2.

Lemma 3:We have

ec(t)≤
1+ρ2

2

t

ec(0) +
8nρ2κ2

1−ρ2
G2d

t−1

τ=0

1+ρ2

2

τ

η2t−τ

(14)
whereκ>0is some numerical constant.
We mention that Lemmas 2 and 3 are based on [25, Lemma

10] and a standard result in consensus optimization (see
Appendix A).
Now, by plugging the bound of Lemma 2 into (13) and

noticing thatηtL≤1/4, we get

E[δ(t)]≤ E[δ(t−1)]−
ηt
4
∇f(̄x(t−1))2+

3ηtL
2

2n
ec(t−1)

+
2η2tLG

2d

3n
+ηtu

2
tL

2 1+
1

2
d2ηtL .  (15)
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By telescoping sum and noting thatδ(t)≥0, we get

t

τ=1

ητE ∇f(̄x(t−1))
2

≤ 4δ(0) +
6L2

n

t

τ=1

ητec(τ−1) +
8LG2d

3n

t

τ=1

η2τ

+4L2
t

τ=1

ητu
2
τ+
1

2
d2Lη2τu

2
τ .

(16)

Sinceηt=αη/(4L
√
d·t)andut≤αuG/(L

√
dtγ/2−1/4)with

αη≤1andγ >1, it can be shown that

t

τ=1

ητ≥2η1(
√
t+1−1),

t

τ=1

η2τ≤η
2
1ln(2t+1)

t

τ=1

ητu
2
τ+
1

2
d2Lη2τu

2
τ ≤η1

9α2uG
2
√
d

8L2
γ

γ−1

and by Lemma 3, we can show that

t

τ=1

ητ
ec(τ−1)

n
≤ η1

ec(0)

n

∞

t=1

1+ρ2

2

t−1

+η31
8ρ2κ2

1−ρ2
G2d

×

∞

t=2

t−2

τ=0

1
√
t(t−1−τ)

1+ρ2

2

τ

≤
2η1ec(0)

n(1−ρ2)
+η31

48κ2ρ2

(1−ρ2)2
G2d.

By plugging these bounds into (16), we get the bound (11). The
bound (12) is a direct consequence of Lemma 3 and the fact that
t−1
τ=0λ

τ/(t−τ) = ((1−λ)t)−1+o(t−1).
Remark 1:Note that in (11), we use the squared norm of
the gradient to assess the suboptimality of the iterates, and
characterize the convergence byergodicrates. This type of
convergence rate bound is common for local methods of uncon-
strained nonconvex problems where we do not aim for global
optimal solutions [9], [35].
Remark 2:Each iteration of Algorithm 1 requires two queries
of function values. Thus, the convergence rate (11) can also be
interpreted asO( d/mlogm)wheremdenotes the number of
function value queries. Characterizing convergence rate in terms
of the number of function value queriesm and the dimensiond
is conventional for zero-order optimization. In scenarios where
zero-order methods are applied, the computation of the function
values is usually one of the most time-consuming procedures. In
addition, it is also of interest to characterize how the convergence
scales with the dimensiond.
The following theorem shows that for a gradient dominated
global objective, a better convergence rate can be achieved.
Theorem 2:Assume that each local objective function fi

is uniformlyL-smooth for someL>0. Furthermore, assume
thatinfx∈Rdfi(x)=f

∗
i>−∞for eachi, and that the global

objective functionfisμ-gradient dominated and has a minimum

value denoted byf∗. Suppose

ηt=
2αη

μ(t+t0)
, ut≤

αu√
t+t0

for someαη>1andαu>0, where

t0≥
2αηL

μ(1−ρ2)

32Ld

3μ
+9ρ −1.

Then, using Algorithm 1, we have

E[f(̄x(t))−f∗]≤
32α2ηL

2Δ

μ2
+
6αηα

2
uL

2

μ

d

t
+o(t−1)

(17)

and

1

n

n

i=1

E xi(t)−x̄(t)2 ≤
32α2ηρ

2LΔ

μ2(1−ρ2)

4d

3
+
6ρ2

1−ρ2
1

t2

+o(t−2) (18)

whereΔ:= f∗−1
n

n
i=1f

∗
i.

Remark 3:The convergence rate (17) can also be described as
E[f(̄x(t))−f∗]=O(d/m), wheremis the number of function
value queries.
Table I summarizes that, while Algorithm 1 employs a ran-
domized 2-point zero-order estimator of∇fi, its convergence
rates are comparable with the DGD algorithm [6], [36]. How-
ever, its convergence rates are inferior to its centralized zero-
order counterpart in [9].

B. Convergence of Algorithm 2

Let (xi(t),si(t)) denote the sequence generated by
Algorithm 2 with a constant step sizeη. Denote

x̄(t):=
1

n

n

i=1

xi(t)

R0:=
1

n

n

i=1

ηρ2

2L
∇fi(x

i(0))2+ xi(0)−x̄(0)2

+
ηρ2u21Ld

4
.

We first analyze the case where the local objectives are noncon-
vex and smooth.
Theorem 3:Assume that each local objective functionfiis
uniformlyL-smooth for some positive constantL, and thatf∗:=
infx∈Rdf(x)>−∞. Suppose

ηL≤min
1

6
,
(1−ρ2)2

4ρ2(3 + 4ρ2)
,  Ru:=d

∞

t=1

u2t<+∞

and thatutis nonincreasing. Then,limt→∞f(̄x(t))exists

1

t

t−1

τ=0

∇f(̄x(τ))2

≤
1

t

3.2(f(̄x(0))−f∗)

η
+
12.8L2R0
1−ρ2

+2.4RuL
2

(19)
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and

1

t

t−1

τ=0

1

n

n

i=1

xi(τ)−x̄(τ)2

≤
1

t
1.6η(f(̄x(0))−f∗)+

3.2R0
1−ρ2

+0.35Ru (20)

1

t

t

τ=1

1

n

n

i=1

si(τ)−∇f(̄x(τ−1))2

≤
1

t
9.6L(f(̄x(0))−f∗)+

19.2LR0
η(1−ρ2)

+
2.35

η
LRu .

(21)

Remark 4:Theorem 3 shows that Algorithm 2 achieves a
convergence rate ofO(1/t)in terms of the averaged squared
norm of∇f(̄x(t)), and has a consensus rate ofO(1/t)for the
averages of the squared consensus error xi(t)−x̄(t)2and the
squared gradient tracking error si(t)−∇f(̄x(t−1))2.They
match the rates for distributed nonconvex optimization with
gradient tracking [7]. On the other hand, since each iteration
requires2dqueries of function values, we get aO(d/m)rate in
terms of the number of function value queriesm. This matches
the convergence rate of centralized zero-order algorithms with-
out Nesterov-type acceleration [9].
Now we proceed to the situation with a gradient dominated
global objective.
Theorem 4:Assume that each local objective functionfiis
uniformlyL-smooth for some positive constantL, and that the
global objective functionfisμ-gradient dominated and achieves
its global minimum atx∗. Suppose the step sizeηsatisfies

ηL=α·
μ

L

1
3 (1−ρ2)2

14
(22)

for someα∈(0,1], and(ut)t≥1is nonincreasing. Let

λ:= 1−α
1−ρ2

5

2
μ

L

4
3

.

Then

f(̄x(t))−f(x∗)≤O(λt)+5(1−ρ2)Ld
t−1

τ=0

λτu2t−τ (23)

1

n

n

i=1

xi(t)−x̄(t)2≤O(λt)+
3ηLd

1−ρ2

t−1

τ=0

λτu2t−τ (24)

1

n

n

i=1

si(t)−∇f(̄x(t−1))2≤O(λt)+
18L2d

1−ρ2

t−1

τ=0

λτu2t−τ.

(25)

Remark 5:If we use an exponentially decreasing sequence
ut∝λ̃

t/2withλ̃<λ, then both the objective errorf(̄x(t))−
f(x∗)and the consensus errors xi(t)−x̄(t)2and si(t)−
∇f(̄x(t−1))2 achieve linear convergence rateO(λt),or
O(λm/d)in terms of the number of function value queries.
In addition, we notice that the decaying factorλgiven by
Theorem 4 has a better dependence onμ/Lthan in [8] for

convex problems. We point out that this is not a result of using
zero-order techniques, but rather a more refined analysis of the
gradient tracking procedure.
Remark 6:Note that the conditions on the step sizes in
Theorems 2–4 depend onρ, a measure of the connectivity of the
network. In order to choose step sizes to satisfy these conditions
in the distributed setting, one possible approach is as follows:
Assuming that each agent knows an upper boundnon the total
number of agents, by [37, Lemma 2], if one choosesW to be
the lazy Metropolis matrix, thenρ≤1−1/(71n2), based on
which the agents can then derive their step sizes according to
the conditions in the theorems. We also note that some existing
works (e.g., [38]) attempt to get rid of the dependence of step
sizes on the graph topology, and whether those techniques can
be applied in our work is beyond the scope of this article but is
an interesting future direction.

C. Comparison of the Two Algorithms

We see from the above results that Algorithm 2 converges
faster than Algorithm 1 asymptotically asm → ∞ in theory.
However, each iteration of Algorithm 2 makes progress only
after2dqueries of function values, which could be an issue if
dis very large. On the contrary, each iteration of Algorithm 1
only requires two function value queries, meaning that progress
can be made relatively immediately without exploring all the
ddimensions. This observation suggests that, when neglecting
communication delays, Algorithm 1 is more favorable for high-
dimensional problems, whereas Algorithm 2 could handle prob-
lems of relatively low dimensions better with faster convergence.
We emphasize that there still exists a tradeoff between the
convergence rate and the ability to handle high-dimensional
problems even if one combines the 2-point gradient estimator
(2) with the gradient tracking method as

gi(t)=G
(2)
fi
(xi(t−1);ut,z

i(t)), zi(t)∼U(Sd−1)

si(t)=

n

j=1

Wijs
j(t−1) +gj(t)−gj(t−1)

xi(t)=

n

j=1

Wij(x
j(t−1)−ηsj(t)).

(26)

Theoretical analysis suggests that, in order forsi(t)to reach a
consensus in the sense thatE[si(t)−sj(t)2]→ 0, we need

lim
t→∞
E gi(t)−gi(t−1)2 → 0.

On the other hand, we have the following lemma regarding the

variance of the 2-point gradient estimatorG
(2)
f (x;u, z).

Lemma 4:Letf:Rd→ Rbe an arbitraryL-smooth func-
tion. Then

lim
u→0+

Ez G
(2)
f (x;u, z)−∇f

u(x)2 =(d−1)∇f(x)2

wherez∼U(Sd−1).
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Proof:Notice that for anyz∈Sd−1andu∈(0,1],wehave

f(x+uz)−f(x−uz)

2u
≤ sup
y∈Bd

∇f(x+y).

Therefore

lim
u→0
Ez G

(2)
f (x;u, z)

2

= d2Ez lim
u→0

f(x+uz)−f(x−uz)

2u

2

=d2Ez ∇f(x)z
2

= d2∇f(x)Ezzz ∇f(x)=d∇f(x)
2

where in the second step we exchanged the order of limit and
expectation by the bounded convergence theorem, and in the last
step we useddEz[zz ]=Idforz∼U(Sd−1). Then, noticing
that∇fu(x)→ ∇f(x)asu→ 0, we get

lim
u→0
Ez G

(2)
f (x;u, z)−∇f

u(x)2

= lim
u→0

Ez G
(2)
f (x;u, z)

2 − ∇fu(x)2

=(d−1)∇f(x)2.

Lemma 4 suggests that each gradient estimatorG
(2)
fi
(xi(t−

1);ut,z
i(t))in (26) will produce a nonvanishing variance ap-

proximately equal to(d−1)E[∇fi(x
i(t−1))2]even if we

letu→ 0asxi(t)approaches a stationary point. Consequently,
E[gi(t)−gi(t−1)2]is not guaranteed to converge to zero
ast→ ∞. The nonvanishing variance will then be reflected in
si(t)that tracks the global gradient, and consequently the overall
convergence will be slowed down. We refer to [8], [12], and [39]
for related analysis, and to Section IV for a numerical example.

D. Comparison With Existing Algorithms

In this section, we provide a detailed comparison with existing
literature on distributed zero-order optimization, specifically [2],
[26], and [27].
1) Papers [26] and [27] discuss convex problems, whereas
paper [2] and our work focus on nonconvex problems.

2) In terms of the assumptions on the noisy function queries,
paper [27] and our work consider a noise-free case.
Paper [2] considers stochastic queries but assumes two
function values can be obtained for a single random
sample. Paper [26] assumes independent additive noise on
each function value query. We expect that our Algorithm 1
can be generalized to the setting adopted in [2] with
heavier mathematics. Extensions to general stochastic
cases remain our ongoing work.

3) In terms of the approach to reach consensus among agents,
our algorithms are similar to [26] and [27], where some
weighted average of the neighbors’ local variables is
utilized, whereas paper [2] uses the method of multipliers
to design their algorithms. We also mention that our
Algorithm 2 employs the gradient tracking technique,
which, to our best knowledge, has not been discussed in

existing literature on distributed zero-order optimization
yet.

4) Regarding the convergence rates for nonconvex optimiza-
tion, paper [2] proved that its proposed ZONE algorithm
achievesO(1/T)rate if each iteration also employsO(T)
function value queries, whereTis the number of iterations
planned in advance. Therefore, in terms of the number
of function value queriesM, its convergence rate is in
factO(1/

√
M), which is roughly comparable with Algo-

rithm 1 and slower than Algorithm 2 in our article. Also,
paper [2] did not discuss the dependence on the problem
dimensiond. Moreover, our algorithms only require con-
stant numbers (2 or2d) of function value queries which
is more appealing for practical implementation whenT
is set to be very large for achieving sufficiently accurate
solutions.

IV. NUMERICALEXAMPLES

We consider a multiagent nonconvex optimization problem
formulated as

min
x∈Rd

1

n

n

i=1

fi(x)

fi(x)=
ai

1 + exp(−ξix−νi)
+biln(1 +x

2)

(27)

whereai,bi,νi∈Randξi∈R
dfor eachi=1,...,N.

For the numerical example, we set the dimension to bed=64
and the number of agents to ben=50. The parametersai,νi
and each entry ofξiare randomly generated from the standard
Gaussian distribution, and(b1,...,bn)is generated from the dis-
tributionN(1n,In−

1
n1n1n)so that

1
n ibi=1. The graph

G=(N,E)is generated by uniformly randomly samplingn
points onS2, and then connecting pairs of points with spherical
distances less thanπ/4. The Metropolis–Hastings weights [40]
are employed for constructingW.
We compare the following algorithms on the problem (27):
1) Algorithm 1 withηt=0.02/

√
tandut=4/

√
t.

2) Algorithm 2 withη=0.02andut=4/t
3/4.

3) ZONE-M [2], where we test two setupsJ=1,ρt=4
√
t,

ut=4/
√
tandJ= 100,ρt=0.4

√
t,ut=4/

√
t.

4) 2-point gradient estimator combined with gradient track-
ing [see (26)] withη=2×10−4andut=4/t

3/4.
All algorithms start from the same initial points, which are

randomly generated from the distributionN(0,25dId)for each
agent.

A. Comparison of Algorithms 1 and 2

Fig. 1shows the convergence behavior of Algorithms 1 and 2,
where the top figure illustrates the squared norm of the gradient
atx̄(t), and the bottom figure illustrates the consensus error
1
n

n
i=1 x

i(t)−x̄(t)2. The horizontal axis has been normal-
ized as the number of function value queriesm. We can see that
Algorithm 1 converges faster during the initial stage, but then
slows down and converges at a relatively stable sublinear rate.
The convergence of Algorithm 2 is relatively slow initially, but
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Fig. 1.  Convergence of Algorithms 1 and 2. For Algorithm 1, the light
blue shaded areas represent the results for 50 random instances, and
the dark blue curves represent their average.

then becomes faster asm  0.5×104, and whenm  2×104,
Algorithm 2 achieves smaller squared gradient norm and con-
sensus error compared to Algorithm 1; the convergence slows
down asmexceeds2.5×104but is still faster than Algorithm 1.
Further investigation of the simulation results suggests that the
speed-up of Algorithm 2 within0.5×104 m  2.5×104

is due tōx(t)becoming sufficiently close to a local optimal,
around which the objective function is locally strongly convex;
the slow-down afterm exceeds2.5×104is caused by the
zero-order gradient estimation error that becomes dominant,
and can be postponed or avoided if we letutdecrease more
aggressively.
From these results, it can be seen that, if the total number

of function value queries is limited by, saym  1.5×104, then
Algorithm 1 might be favorable compared to Algorithm 2 despite
slower asymptotic convergence rate, whereas if more function
value queries are allowed, then Algorithm 2 could be favored. We
observe that this is related with the discussion in Section III-C.

B. Comparison With Other Algorithms

Fig. 2compares the convergence of Algorithm 1 and the
two setups of ZONE-M, including the curves for the squared
norm of the gradient ∇f(̄x(t))2and the consensus error
1
n

n
i=1 x

i(t)−x̄(t)2. The horizontal axis has been normal-
ized as the number of function value queriesm. It can be
seen that Algorithm 1 and ZONE-M withρt∝

√
t, J=1have

similar convergence behavior. For ZONE-M withρt∝
√
tand

J= 100, while the convergence of∇f(̄x(t))2is comparable
with Algorithm 1 and ZONE-M with J=1, the consensus
error decreases much more slowly, as ZONE-M withJ= 100
conducts much fewer consensus averaging steps per function
value query compared to Algorithm 1 and ZONE-M withJ=1.
Fig. 3compares the convergence of Algorithm 2 and the 2-

point estimator combined with gradient tracking (26), including
the curves for the squared norm of the gradient∇f(̄x(t))2,the
consensus error1n

n
i=1 x

i(t)−x̄(t)2, and also the gradient

Fig. 2.  Convergence of Algorithm 1 and ZONE-M withJ=1 andJ=
100. For each algorithm, the light shaded areas represent the results for
50 random instances, and the dark curves represent their average.

Fig. 3.  Convergence of Algorithm 2 and 2-point estimator combined
with gradient tracking. For 2-point estimator combined with gradient
tracking, the light pink shaded areas represent the results for 50 random
instances, and the dark purple curves represent their average.

tracking error1n
n
i=1 s

i(t)−∇f(̄x(t−1))2. It is straight-
forward to see that Algorithm 2 has better asymptotic con-
vergence behavior than the 2-point estimator combined with
gradient tracking. Moreover, for the 2-point estimator combined
with gradient tracking, the gradient tracking error does not
converge to zero but remains at a constant level, indicating that
the gradient tracking technique is ineffective in this case. These
observations are in accordance with our theoretical discussion
in Section III-C.

V. CONCLUSION

We proposed two distributed zero-order algorithms for non-
convex multiagent optimization, established theoretical results
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on their convergence rates, and showed that they achieve com-
parable performance with their distributed gradient-based or
centralized zero-order counterparts. We also provided a brief
discussion on how the dimension of the problem will affect their
performance in practice. There are many lines of future work,
such as follows:
1) introducing noise or errors when evaluatingfi(x);
2) investigating how to escape from saddle point for dis-
tributed zero-order methods;

3) extension to nonsmooth problems;
4) investigating whether the step sizes can be independent
of the network topology;

5) studying time-varying graphs;
6) investigating the fundamental gap between centralized
methods and distributed methods, especially for high-
dimensional problems.

APPENDIXA
AUXILIARYRESULTS ANDNOTATIONS

The following lemma is a standard result in consensus opti-
mization [12].
Lemma 5:Letρbe defined by (4). Then, for anyx1,...,xn∈
Rd,wehave

(W ⊗Id)(x−1n⊗x̄) ≤ρx−1n⊗x̄

wherex= x1 ··· xn ∈Rnd,̄x=1
n

n
i=1x

i.

We will use the notations

x(t):= x1(t)  ··· xn(t)

g(t):= g1(t)  ··· gn(t)

and ̄x(t):=1n
n
i=1x

i(t), ̄g(t):=1n
n
i=1g

i(t), δ(t):=
f(̄x(t))−f∗for all subsequent analysis of Algorithms 1 and 2.

APPENDIXB
PROOFSKETCH OFTHEOREM2

Letec(t):=E[x(t)−1n⊗x̄(t)
2]. We recall that eachfiis

L-smooth and is lower bounded byf∗ioverR
d, and thatΔ:=

f∗−1
n

n
i=1f

∗
i.

Note that Lemma 1 still applies here. On the other hand, as
eachfiis not uniformly Lipschitz continuous overR

d, we need
new lemmas characterizing the consensus procedure and the
second moment of̄g(t).
Lemma 6:Suppose the step sizes satisfy the condition of

Theorem 2. Then for eacht≥1,wehave

ec(t)

n
≤
1+ρ2

2

ec(t−1)

n
+4η2tρ

2L
4d

3
+
6ρ2

1−ρ2
E[δ(t−1)]

+4η2tρ
2LΔ

4d

3
+
6ρ2

1−ρ2
+η2tρ

2u2tL
2 d2+

6ρ2

1−ρ2
.

(28)

Lemma 7:We have

E ḡ(t)2 ≤
8L2d

n
ec(t−1) +

32Ld

3
E[δ(t−1)]

+
32LdΔ

3
+u2tL

2d2.

(29)

By plugging (29) into (13) and using the fact thatfisμ-
gradient dominated, we can get

E[δ(t)]≤  1−
ηtμ

2
E[δ(t−1)] +

3ηtL
2

2n
ec(t−1)

+
16η2tL

2dΔ

3
+2ηtu

2
tL

2d

(30)

where we have also used the fact that ηt≤3μ/(32L
2d)≤

1/(8Ld)under the conditions of Theorem 2. By combining this
bound with Lemma 6, we get

ec(t)/n

E[δ(t)]
≤

1+ρ2

2 4ρ2L4d
3+

6ρ2

1−ρ2 η
2
t

3L2

2 ηt 1−ηtμ2

ec(t−1)/n

E[δ(t−1)]
+υt

(31)
where

υt=
4η2tρ

2LΔ 4d
3+

6ρ2

1−ρ2 +η
2
tu
2
tρ
2L2 d2+6ρ

2

1−ρ2

16η2tL
2Δd
3 +2ηtu

2
tL

2d
.

Sinceηt=2αη/(t+t0)andut=O(1/
√
t), straightforward

calculation shows that

1+ρ2

2 4ρ2L4d
3+

6ρ2

1−ρ2 η
2
t

3L2

2 ηt 1−ηtμ2

=1−
αη
t
+O(1/t2)

and υt =O(1/t
2). By (31) and the inequality

t2

s=t1

1−
αη
2s

≤
t1
t2+1

αη/2

(32)

for arbitraryt1≤t2+1, one can show thatE[δ(t)] =O(t
−1/2).

Finally, by (28) and mathematical induction, one can show
that

ec(t)

n
≤
16α2ηρ

2L

μ2
4d

3
+
6ρ2

1−ρ2

t

τ=1

E[δ(τ−1)]

(τ+t0)2
1+ρ2

2

t−τ

+
32α2ηρ

2LΔ

μ2(1−ρ2)

4d

3
+
6ρ2

1−ρ2
1

t2
+o(t−2).

SinceE[δ(t)] =O(t−1/2)and t−1
τ=0λ

τ/(t−τ)=O(t−)for
arbitrary >0, the first term on the right-hand side of the above
inequality can be bounded byo(t−2), which then leads to (18).
By plugging (18) into (30) and using mathematical induction
and (32), one can show (17).

APPENDIXC
PROOFSKETCH OFTHEOREM3

We further denote

s(t):=s1(t)  ··· sn(t)
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and ec(t):= x(t)−1n⊗x̄(t)
2, eg(t):= s(t)−1n⊗

ḡ(t)2. We recall that eachfiis assumed to beL-smooth, and
note that1n

n
i=1s

i(t)=̄g(t).
We shall only provide a proof sketch of the bound (19). We

first provide a lemma on the consensus procedure.
Lemma 8:SupposeηL≤1/6. Then

5η

2
√
57L
eg(t)

ec(t−1)
≤A

5η

2
√
57L
eg(t−1)

ec(t−2)
+υ(t−2)  (33)

where

A:=
1+2ρ2

3 +18ρ
4(1+2ρ2)
1−ρ2 η2L2 2

√
57ρ2(1+2ρ2)
5(1−ρ2) ηL

2
√
57ρ2(1+2ρ2)
5(1−ρ2) ηL 1+2ρ2

3

υ(t):=
2nη3Lρ2(1+2ρ2)

3(1−ρ2)

2∇f(̄x(t))2+54
u2t−1d

η2

0
.

Proof Sketch:We first observe that

s(t)−1n⊗ḡ(t)= (W ⊗Id)[s(t−1)−1n⊗ḡ(t−1)

+g(t)−g(t−1)−1n⊗(̄g(t)−ḡ(t−1))].

By Lemma 5, the Peter–Paul inequality andL-smoothness offi,
it can be shown that

eg(t)≤
1+2ρ2

3
eg(t−1)

+
2ρ2(1+2ρ2)L2

1−ρ2
x(t−1)−x(t−2)2+nu2t−1d .

Then, by using(W ⊗Id)(1n⊗v)=1n⊗vfor anyv∈R
d,it

can be shown that

x(t−1)−x(t−2)

=(W ⊗Id−Ind)(x(t−2)−1n⊗x̄(t−2))

−η(W ⊗Id)(s(t−1)−1n⊗ḡ(t−1))

−η1n⊗(̄g(t−1)−∇f(̄x(t−2)))−η1n⊗∇f(̄x(t−2))

and by using Lemma 5, the Peter–Paul inequality,L-smoothness
offi, and thatηL≤1/6, it can be further shown that

x(t−1)−x(t−2)2≤
114

25
ec(t−2) + 9η

2ρ2eg(t−1)

2η2n∇f(̄x(t−2))2+
1

4
nu2t−1d.

Therefore

eg(t)≤
1+2ρ2

3
+
18ρ4(1+2ρ2)

1−ρ2
η2L2 eg(t−1)

+
228ρ2(1 + 2ρ2)

25(1−ρ2)
L2ec(t−2)

+
2ρ2(1+2ρ2)

1−ρ2
2η2L2n∇f(̄x(t−2))2+

5

4
nL2u2t−1d.

On the other hand, we have

ec(t−1) = (W ⊗Id)[x(t−2)−1n⊗x̄(t−2)

−η(s(t−1)−1n⊗ḡ(t−1))]
2

≤
1+2ρ2

3
ec(t−2) +

ρ2(1+2ρ2)

1−ρ2
η2eg(t−1).

We then get (33) by combining the last two inequalities. We
makeAsymmetric so that it is more straightforward to compute
its spectral norm.
Then, we have the following lemma on the evolution ofδ(t).
Lemma 9:SupposeηL≤1/6. Then

δ(t)≤ δ(t−1)−
η

3
∇f(̄x(t−1))2

+
4ηL2

3n
ec(t−1) +

ηu2tL
2d

3
.

(34)

We are now ready to derive the results of Theorem 3. It can
be shown that A ≤(2 +ρ2)/3when ηL≤min{1/6,(1−
ρ2)2/(4ρ2(3 + 4ρ2))}. By taking the norms of both sides of
(33) and using mathematical induction, it can be shown that

max

t−1

τ=0

ec(τ),
3η

10L

t

τ=1

eg(τ)

≤
3nR0
1−ρ2

+
4nη3Lρ2(1 + 2ρ2)

(1−ρ2)2

t−2

τ=0

∇f(̄x(τ))2

+
5nηLdρ2(1 + 2ρ2)

2(1−ρ2)2

t−1

τ=1

u2τ.

By plugging this bound into (34) and taking the telescoping sum,
we get the bound (19).

APPENDIXD
PROOFSKETCH OFTHEOREM4

We shall only provide a proof sketch of the bound (23). We
still denote

s(t):=s1(t)  ··· sn(t)

and ec(t):= x(t)−1n⊗x̄(t)
2, eg(t):= s(t)−1n⊗

ḡ(t)2. In addition, we letθ:=μ/L.BytheL-smoothness of
f,wehave

f∗≤f(̄x(t)−L−1∇f(̄x(t)))≤f(̄x(t))−
1

2L
∇f(̄x(t))2

which implies ∇f(̄x(t))2≤2Lδ(t). It can be shown by te-
dious calculation that whenηis given by (22), we haveA ≤
1−(1−ρ2)2/21. We also see that Lemma 8 still applies here
asηL≤1/6. By employing these observations and introducing

χ:= 1−
4

49
max
ρ∈[0,1]

ρ2(1 + 2ρ2)(1−ρ2)3≈0.9865

σ(t−1) :=
2
√
2L

nαθ
1
3
√
1−χ

5η

2
√
57L
eg(t)

ec(t−1)
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we can show that

σ(t−1)≤ 1−
(1−ρ2)2

21
σ(t−2)+

√
2αθ

1
3
√
1−χ

3
ηLδ(t−2)

+
5
√
2ρ2(1+2ρ2)(1−ρ2)

42
√
1−χ

u2t−1Ld.

Then, by Lemma 9 and the assumption thatfisμ-gradient
dominated, we have

δ(t−1)≤ 1−
2ημ

3
δ(t−2) +

4ηL2

3n
ec(t−2) +

ηL2u2t−1d

3

≤  1−
2ημ

3
δ(t−2)+

√
2αθ

1
3
√
1−χ

3
ηLσ(t−2)

+
ηL2u2t−1d

3
.

Therefore

σ(t−1)

δ(t−1)
≤B

σ(t−2)

δ(t−2)
+

5
√
2ρ2(1+2ρ2)(1−ρ2)
14
√
1−χ

ηL

u2t−1Ld

3

(35)
where

B:=
1− 1

21(1−ρ
2)2 1

3 2(1−χ)αθ
1
3ηL

1
3 2(1−χ)αθ

1
3ηL  1−23ημ

.

It can be shown that

B ≤1−
(1−ρ2)2

25
αθ

4
3.

By plugging this bound into (35) and using mathematical induc-
tion, the bound (23) can be proved.
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