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Amplification and spectral evidence of squeezing in the response
of a strongly driven nanoresonator to a probe field
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Because of their small decay rates, nanomechanical modes enable studying strongly nonlinear phenomena for
a moderately strong resonant driving. Here we study the response of a driven resonator to an additional probe
field. We experimentally demonstrate resonant amplification and resonant absorption of the probe field. The

corresponding spectral peaks lie on the opposite sides of the strong-drive frequency. Even though the fluctuation-
dissipation theorem does not apply, we show that the response to the probe field allows us to characterize the
squeezing of fluctuations about the stable states of forced oscillations. Our two-tone experiment is done in
the classical regime, but our findings should equally apply to quantum fluctuations as well. In quantum terms, the

observed response is due to multiphoton processes. The squeezing parameter extracted from the spectra of the
response is in excellent agreement with the calculated value with no free parameters.
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I. INTRODUCTION

Nanomechanical vibrational systems have been tradition-
ally studied in the context of mesoscopic condensed-matter
physics and nonlinear dynamics and more recently also from
the perspective of quantum and classical nonlinear optics
[1-3] and quantum information [4-6]. Different nanome-
chanical vibrational modes are strongly localized within the
resonator; they are well separated in frequency and well char-
acterized. They often have a very high quality factor Q, which
is determined by the ratio of the vibration frequency to the
decay rate and can exceed 108 [7,8]. The modes can be eas-
ily driven into a nonlinear regime, and a host of nonlinear
phenomena has been explored, from vibration bistability and
associated effects (cf. [9—16]) to nonlinear mode coupling,
frequency mixing, chaos, and a frequency comb generation
(cf. [17-28]) and to processes that involve spontaneous or
stimulated Raman scattering and are largely exploited in the
context of cavity optomechanics [29].

An important group of applications of nanomechanical
systems is related to the mass, charge, and force sensing. A
fundamental constraint on the sensitivity of a measurement is
imposed by noise. The noise comes from classical sources as
well as from quantum fluctuations. A by now well-established
approach to suppressing quantum noise is based on using
squeezed states [30]. It has been implemented recently in
laser interferometers for gravitational wave detection [31,32].
With the techniques of cavity optomechanics, squeezing in
the quantum regime has been achieved also in mechanical
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systems [33-35]. In quantum squeezing, the variance of one of
the quadratures of the vibrations is reduced below its value in
the ground vibrational state, whereas fluctuations of the other
quadrature are increased. The reduction and the increase come
together as a consequence of the uncertainty principle, since
the quadrature operators correspond to the scaled vibration
coordinate and momentum in the rotating frame and do not
commute.

However, squeezing is not limited to the quantum domain.
One may expect squeezing to occur for classical fluctuations
too, in which case fluctuations of one of the quadratures
are smaller than in thermal equilibrium. For a degenerate
parametric mechanical amplifier, squeezing of classical fluc-
tuations was first demonstrated by Rugar and Griitter [36].

Squeezing should generically emerge in periodically
driven vibrational systems. This is a consequence of the
broken continuous-time-translation symmetry. Indeed, the
quadratures are the vibration components that oscillate as
cos wot and sin wyt, where wy is the vibration frequency. If
the system has a continuous symmetry, the origin of time
can be shifted. A shift of 7w /2w, results in the interchange
of the quadratures, which shows that the variances should be
equal. A periodically driven system, in contrast, has a discrete-
time-translation symmetry. It is symmetric only with respect
to changing time by the period of the drive. Therefore, the
quadratures may no longer be interchanged and their variances
are generally different.

It follows from the above argument that, along with the tra-
ditionally explored squeezing due to parametric driving [37],
one may expect squeezing of fluctuations in a driven nonlinear
vibrational mode, and for resonant driving the effect may be
resonantly strong. The occurrence of squeezing in this case
could be inferred from the early work on resonantly driven
nonlinear modes [38,39]. A theory of squeezing was devel-
oped by Buks and Yurke [40], and a strong suppression of a
spectral component of one of the quadrature was first observed

©2021 American Physical Society
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in a nanomechanical Duffing resonator by Almog et al. [41].
This observation was based on the conventional homodyne
detection scheme and was done in a narrow parameter range
near the cusp on the bifurcation curve.

Homodyne measurements are strongly impeded by fre-
quency fluctuations, which play an important role in nanome-
chanical systems. The limitations are particularly strong in
systems with small damping, where the uncertainty in the in-
phase component due to slow frequency fluctuations becomes
large [42]. No homodyne measurements of squeezing have
been reported for strongly underdamped vibrational systems,
to the best of our knowledge. However, it was demonstrated
[43] that the squeezing of classical fluctuations in under-
damped resonantly driven systems can be found by measuring
their power spectrum, which is profoundly asymmetric. The
asymmetry comes along with the squeezing [44] as a conse-
quence of a resonant driving, which allows one to find the
squeezing parameter in the classical regime.

In this paper we demonstrate that the squeezing parameter
of a strongly driven underdamped nanomechanical system
can also be determined by measuring the spectrum of the
response of the system to an additional weak probe force. A
major advantageous feature of this result is that, although the
experiment is carried out where the dynamics of the system
is classical, the method is not limited to the classical regime
which is addressed by our experiment. It can be equally well
applied to characterize squeezing of quantum fluctuations in
a strong resonant field, since the features of the response to a
weak field are temperature independent.

For weak damping the absorption spectrum of the probe
field should display two peaks, where the mode has one stable
state of forced vibrations and up to five peaks where there
are two stable vibrational states [38,44,45]. Expanding on
the previous results, we show that the difference between the
two peaks is determined by the squeezing parameter, which
is similar to the case of the power spectrum in the classical
regime [43]. The onset of the two peaks induced by a probe
force in the vibration amplitude of a mechanical mode was
seen by Antoni et al. [22], but the question of squeezing was
not addressed in this paper.

Besides the squeezing, we wish to highlight another as-
pect of the response of the resonantly driven system to an
additional probe force. One of the two peaks corresponds to
an amplification of the corresponding field." In other terms,
rather than taking energy from the field, the mode gives energy
to it. Such amplification can be thought of in terms of paramet-
ric amplification in nonlinear optics, where a probe light beam
is amplified by a strong beam [46]. However, in the present
case the process is strongly nonlinear and cannot be described
as a regular four-wave mixing for which the response of a
driven nonlinear mode to a probe field [38,45] can be thought
of as a combination of the signal and idler components. In a
micromechanical resonator these components were observed

'Both the strong drive and the probe force come from electromag-
netic fields. Therefore, we are using the term field whenever we want
to emphasize the physical source of the force and the energy aspect
of the driving.
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FIG. 1. (a) Scanning electron micrograph of the doubly clamped
silicon nitride string resonator (green) and two adjacent gold elec-
trodes (yellow) for dielectric drive and detection. The inset displays
a schematic of the experimental setup. LA stands for lock-in am-
plifier. (b) Linear response of the fundamental flexural out-of-plane
mode at a drive voltage of V;, = 1 mV (black dots). A Lorentzian fit
(red solid line) yields an eigenfrequency of 6.528 MHz, a linewidth
of 2I'/2mr = 20 Hz, and a quality factor of approximately 325 000.
(c) Duffing response at a drive voltage of V; = 20 mV (black dots)
and fit to the Duffing model (red solid line). The resulting Duffing
nonlinearity is y /(27)? = 2.8 x 10" V2572,

in Ref. [18]. Rather, the amplification discussed here is a mul-
tiphoton process, in optics terms, as we explain in Sec. [V. We
report a direct observation of this effect in our classical setting.

We describe in Sec. II the setup of the experiment and in
Sec. I1I the experimental observation of the two-peak response
spectrum, with one of the peaks corresponding to the ampli-
fication of the probe drive. In Sec. IV we briefly overview
fluctuations about the stable states of forced vibrations of a
weakly damped mode and introduce the squeezing parameter.
Section V gives explicit expressions of the susceptibility in
terms of this parameter. Section VI describes the results of the
measurements of the squeezing parameter and its dependence
on the driving force using the response to the weak probe field.
Section VII contains a summary.

II. SETUP AND CHARACTERIZATION

The nanomechanical resonator under investigation is a
doubly clamped, strongly pre-stressed silicon nitride string
resonator fabricated on a fused silica substrate, similar to the
one depicted in Fig. 1(a) and described in Ref. [43]. It is
270 nm wide, 100 nm thick, and 55 um long. The string
resonator (green) is flanked by two adjacent gold electrodes
(yellow), enabling the dielectric transduction combined with
a microwave-cavity-enhanced heterodyne detection scheme
discussed in [47-49]. A schematic circuitry of the setup is
displayed in the inset of Fig. 1(a). The microwave cavity is
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pumped on resonance at approximately 3.6 GHz to facilitate
displacement detection while avoiding unwanted dynamical
backaction effects. Actuation and eigenfrequency tuning of
the string is accomplished by applying a dc voltage along with
a near-resonant ac drive voltage V; cos(wgt). A weak probe
tone V), cos(w,t) is additionally scanned across the resonance
to record the response spectrum of the device within a small
frequency span. The two-tone measurements are performed
using a fast lock-in amplifier with a multifrequency option.
For all measurements presented in the following, a constant
dc voltage of 5 V is applied such that the fundamental flexural
out-of-plane mode can be considered independently, avoiding
a hybridization with the in-plane mode [50]. The experiment
is performed at room temperature of 293 K and under vacuum
at a pressure below 10~* mbar.

The displacement g(¢) of the single mode can be described
by the equation of motion

qg+2'g+ wéq + yq3 = Fy cos(wgt) + F, cos(wpt) + &(2).
(L

Here wy = 27 fj is the angular eigenfrequency, I" the damping
rate, and y the Duffing nonlinearity parameter. A compar-
atively strong driving force with amplitude F; o V; and
frequency wy = 27 f; is applied; in this experiment, we use
a resonant drive and set w; = wy. The additionally applied
weaker force probing the response of the device in the vicinity
of the resonance has amplitude F, « V, and frequency w, =
27 f,. The third force term & (¢) represents the thermal noise.
The effective mass of the resonator is set to m = 1, for the
time being. As both the drive tones and the measured signal
are voltage signals, we calibrate the system in units of volts, as
discussed in detail in the Supplemental Material of Ref. [43].

In the absence of the weak probe tone (V, = 0) and using
a small amplitude of the drive V;, we sweep the frequency w,
to study the linear response of the fundamental out-of-plane
mode at an eigenfrequency of fy = 6.528 MHz. It is shown
for a drive of V; = 1 mV as a function of the detuning f; — fo
in Fig. 1(b) as black dots. A Lorentzian fit (red solid line)
yields a linewidth 2I" /2w = 20 Hz and a quality factor of Q =~
325 000.

Increasing the drive voltage leads to the well-known Duff-
ing response. A bidirectional response curve at a drive voltage
of V; = 20 mV is plotted in Fig. 1(c) as black dots. A fit to the
Duffing model (red solid line) allowed us to extract the Duff-
ing nonlinearity parameter y /(277)* = 2.8 x 10" V72572,

III. LINEAR-RESPONSE SPECTRUM AND
AMPLIFICATION OF THE PROBE FIELD

The measurements described in the following are per-
formed using the two-tone scheme introduced in Fig. 1(a). The
resonant drive tone applied at f; = fj is increased from O to
100 mV. As the drive is applied on resonance, the nonlinear
resonator exhibits only one stable state. The weak probe tone
with amplitude V), is swept across the resonance with a band-
width of 5 Hz and an eighth-order filter of the fast lock-in
amplifier. We record the in-phase and quadrature components
of the vibrations at the probe frequency. We verified that the
amplitude of these vibrations is proportional to V), in the stud-
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FIG. 2. (a) Color-coded response spectra for increasing drive
voltages at f; = f;. The probe tone is fixed to V, =3 mV. A cen-
tral band and two satellite peaks are clearly visible. The satellites
have strongly different brightness. Their splitting increases with the
increasing amplitude of the drive, in good agreement with the theo-
retical model of Eq. (3), which is plotted as red dots. The blue dotted
line indicates the line cut discussed in (b). (b) Amplitude (blue dotted
line) and quadrature component (black solid line) of the vibrations at
the probe frequency for V;, = 50 mV.

ied range of V,, indicating that the results refer to the regime
of the linear response to the probe force. Figure 2(a) displays
the spectra of this response to a probe of V, =3 mV for
different amplitudes of the strong force V; using a color-coded
amplitude.

Two distinct peaks, equally spaced from the line at the
frequency of the strong drive (i.e., f, — f4 = 0) and with a
power-dependent splitting are observed. As will be discussed
in Sec. V, these two peaks originate from the probe-induced
small-amplitude vibrations about the stable state of the vibra-
tions induced by the strong drive. The bright horizontal band
centered at the strong-drive frequency indicates the response
of the resonator to the probe interfering with the strong-drive
tone.

The blue dotted line in Fig. 2(a) indicates a single line scan
of the response to the probe. It refers to a driving voltage of
V4 =50 mV. The amplitude of the vibrations at the probe
frequency w), is shown as a blue dotted line in Fig. 2(b). In
addition, the quadrature component of these vibrations is plot-
ted as a black solid line. These will be the signal components,
which will be discussed in more detail below. In both data
sets the higher-frequency satellite is much brighter than that at
the lower frequency. As we will also discuss in the following,
this is spectral evidence of the thermomechanical squeezing
induced by the strong drive, similar to what has been reported
for the power spectrum [43]. In contrast to the amplitude
data which features two positive satellites, the quadrature data
exhibit different signs for the two satellites, a positive higher-
frequency satellite and a negative lower-frequency satellite.
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Both satellites in the quadrature data have a Lorentzian
line shape with the same linewidth 2I' /27 = 20 Hz as the
resonator. In contrast, the dependence of the amplitude on w,
is not Lorentzian, whereas the peaks of the squared amplitude
again have a Lorentzian shape (see Sec. V).

IV. SQUEEZING OF UNDERDAMPED VIBRATIONS
IN THE ROTATING FRAME

Prior to analyzing the manifestation of squeezing in the
response to the probe force, we consider the dynamics in
the absence of the probe force and noise, i.e., for F, =0
and £(t) = 0 in Eq. (1). This extends the results of Ref. [43]
to the semiclassical domain for the sake of a more general
analysis of the susceptibility in the following sections. The
driving force in this case is just sinusoidal, F; cos wyt. The
stable states of forced vibrations of a mode are formed by
the balance of the energy absorption from the driving force
and the energy drain to a thermal reservoir. The underlying
process is strongly nonlinear. The mode frequency depends
on the amplitude and thus, by changing the vibration ampli-
tude, the driving field “prepares” the absorption coefficient.
For the considered resonant field, weakly damped modes dis-
play strong nonlinearity even when the field is comparatively
weak. The forced vibrations are essentially sinusoidal, but
their amplitudes (and phases) can take two values in a certain
parameter range. The stable values of the squared amplitude
A% and A% are determined, respectively, by the largest and
smallest roots of the equation [51]

9(p)) =0, p;=3lylA7/8wal,
3|y |F}
— _ Q 2 1 _ d ,
@(p) = pl(p — Q2sgny)” + 1] 207
Wy — wo
Q=" 2
T 2)

In what follows we assume y > 0; this condition holds in our
system. The occurrence of two stable values of A; is seen in
Fig. 1(c). The higher and lower branches of A; as a function
of wy, in this figure correspond to j =1 and 2 in Eq. (2),
respectively.

For weak damping and weak nonlinearity it is convenient
to describe the dynamics of the mode by switching to the rotat-
ing frame at the drive frequency w,. We introduce the scaled
coordinate and momentum Q and P, respectively, which cor-
respond to the in-phase and the quadrature components of the
vibrations,

q(t) + iw; ' p(t) = (Q + iP)exp(—iwgt), p(t) = 4(t)

[we note that the variables Q and P differ from the dimen-
sionless variables Q and P in the previous work of one of us
(M.LD.) (cf. [44]) by a factor (Sa)dFQ/Sy)l/z]. The equa-
tions of motion for Q(¢) and P(¢) follow from Eq. (1). If
we disregard small fast-oscillating corrections, i.e., use the
rotating-wave approximation [51], the coefficients in these
equations are independent of time. A jth stable state cor-
responds to a stable stationary solution (Q;, P;) of these
equations, and Q? + sz = A?.

The dynamics near a stable state is described by lineariz-
ing the equations of motion in Q — Q; and P — P;. In the

weak-damping limit the trajectories Q(t) — Q; and P(¢) — P;
correspond to weakly decaying oscillations. The oscillation
frequency is

w; =T[GBp; — Q)(p; — DI 3)
The weak-damping condition that we refer to is
w; > T. @)

We emphasize that w; is the oscillation frequency in the ro-
tating frame, w; < wy. Therefore, the inequality I' < w; is a
much stronger constraint on the decay rate I" than the condi-
tion I' < wy that the mode is underdamped. In our experiment
the condition I' « w; was satisfied except for a narrow range
of small drive amplitudes F;. We note that, in the weak-
damping limit (4), A7 ~ Q7 and thus p; ~ 3|y |Q3/8w,T .

In the presence of a weak noise the driven mode mostly
performs small-amplitude fluctuations about the stable state j
it occupies. The power spectrum of these fluctuations (mea-
sured in the laboratory frame) has peaks at the frequencies
wg £ wj. Such well-resolved peaks were seen in our previous
experiment [43]. The experiment was done in the classical
regime kgT >> hwy and it was found that the areas of the
peaks are different. Moreover, the area of one of the peaks
was smaller than the area of the peak in the power spectrum
at frequency wy in the absence of the driving as given by the
fluctuation-dissipation theorem. This is a clear demonstration
of the effect of squeezing of thermal fluctuations.

The squeezing is immediately seen in the expressions for
the variances of the in-phase and quadrature components.
With account taken of both classical and quantum fluctuations
[43,44]

h 7 _ .
<8Q§> (Q—0)") = E(Zn—i- (1 + e %),

h
(8P)) = (P = P)) = —QA+ DA +¢¥),  (5)
J 4wd
where 7 is the Planck number of the mode, 7=
[exp(fiwy/ksT) — 117'. The squeezing parameter ¢; is given
by the equation

130; — )12 — 1p; — "2

tanh ¢p; = .
an ¢j |3pj_g2)|1/2+|pj_9|1/2

(6)

The sign of the parameter ¢; is determined by the sign of
pj — 2 (which coincides with the sign of 3p; — ). One can
see from Egs. (2) and (3) that, on the high-amplitude branch
in Fig. 1(c), i.e., for j = 1, we have ¢; > 0. This means that
the fluctuations of the in-phase component Q are squeezed,
whereas those of the quadrature component P are enhanced.
For the lower branch j = 2, the squeezing parameter is nega-
tive, ¢, < 0.

As seen from Egs. (2) and (6), in the considered weak-
damping limit, the squeezing parameter depends on a single
combination of the parameters of the driven mode

B =3yE} /32w (wa — @)’ (v > 0). (7)

As indicated in Eq. (7), the expression for § is written for
the considered case y > 0; an extension to the case y < 0 is
straightforward. The parameter B characterizes the strength
of the drive. It is proportional to the squared drive amplitude
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Jp=——- ——

FIG. 3. Dependence of the squeezing parameter ¢ on the di-
mensionless strength of the drive 8 [Eq. (7)] in the limit of weak
damping and for y > 0. In this limit (w; > I" and, where applicable,
w, > IN) the bistability of forced vibrations, and thus the vibrational
branch j = 2, exists in the range 0 < 8 < %. The red line shows
exp(4¢,) in this range. The blue lines show exp(4¢,). Outside the
bistability region the system has only one stable vibrational state and
¢ = ¢. The dashed lines show the limit of exp(4¢,) for |8| — oo,
which physically corresponds to the driving frequency approaching
the mode eigenfrequency, |w; — wy| — 0. The weak-damping limit
breaks down for small § — 0 and, for the branch j =2, for 8
approaching %,

scaled by the cube of the detuning of the drive frequency
from the mode eigenfrequency. It is particularly convenient
for studying the mode dynamics for weak damping, where the
vibration frequencies w; , are high compared to the decay rate
[38].

The squeezing parameter ¢ as a function of 8 is shown
in Fig. 3; in fact, we show directly the relevant parameter
exp(4¢) [see Eq. (5)]. As seen from Egs. (3) and (6) and from
Fig. 3, ¢ monotonically decreases to zero as § increases from
—oo to 0 (i.e., |B] decreases from oo to 0). In this range of
B the driven mode has only one stable vibrational state, and
the fluctuations are less squeezed as the vibration amplitude
decreases with decreasing |8]|. For f <0 and || < 1 we
have exp(4¢1) =~ 1 4 2|B|; the constraint on the applicability
of this expression imposed by the weak-damping condition
w1 > s 2] > 1.

In the range of bistability 0 < 8 < %, both ¢; and ¢,
decrease with increasing . The function exp(4¢) ) is approxi-
mately equal to 2/+/B for small 8 > 0. This large value of ¢,
for small 8 > 0 is a consequence of the strong asymmetry of
the phase portrait near the states on branch 1 [38]. The weak-
damping constraint on 8 from below in this case is Q84 >
1. For the branch 2, close to the weak-damping bifurca-
tion point g = 24—7, we have exp(4¢,) =~ 94/(Bp — B)/4. The
weak-damping condition in this region is Q(8z — B)/4 > 1.

It follows from Eq. (5) that the variance of the in-
phase component is below the standard limit (%/2wo)(272 + 1)
for an undriven mode, which indicates the squeezing. At
the same time, the product of the root-mean-square devi-
ations [((Q — 02){(P — PYA)]'? = (1/2w,)(27 + DI(1 +
coshd4¢;)/2]"/? is larger than this product for an undriven

mode. This indicates that, overall, the driving enhances fluc-
tuations. Such an increase can be interpreted as an efficient
heating of the mode at the expense of the energy absorbed
from the strong-driving field.

V. EFFECT OF SQUEEZING ON THE SUSCEPTIBILITY
SPECTRUM OF A STRONGLY DRIVEN MODE

The response of a driven mode to an additionally applied
weak probe force F, cos(wpt) can be described by the linear-
response theory [38,45]. We are interested in the case of
resonant driving, where the frequencies of both the strong
drive and the weak probe are close to the mode eigenfre-
quency, |wp, — agl, |wg — wo| K wy. For the mode localized
near a jth stable state, the resonant increment in the displace-
ment, which is linear in the probe field, has the form

(8g,;@)) = %Fp[xj(wp)e_i‘”f” + Xj(wp)e = + c.c.
®)

Generally, there is also a characteristic term that comes from
the probe-field-induced change of the rates of fluctuation-
induced switching between the states j = 1,2 [38,45]; in
micromechanical systems the effect of this term was studied
by Stambaugh and Chan [52].

The susceptibility y;(w,) describes the response at the
probe frequency w, (the signal component, in the optics
terms). In contrast, the susceptibility X’; shows the occurrence
of the probe-induced vibrations at the combination frequency
2wq — w), (the idler component, in the optics terms). Equation
(8) has the form of the nonlinear susceptibility that describes
four-wave mixing, which involves two photons of the strong
drive and one photon of the probe [46]. Formally, the higher-
order terms that involve more than two photons of the strong
field seem to have been disregarded. However, in reality both
susceptibilities x; and X; are multiphoton: The strong drive
prepares the stable state j as a result of a process in which
many photons of the strong field participate. The classical
language adequately describes such multiphoton dynamics
exactly because it is multiphoton; in quantum terms, the anal-
ysis corresponds to the WKB approximation, as indicated
below.

A. Resonant features of the susceptibilities

A clear manifestation of the multiphoton nature of the sus-
ceptibilities x; and &; in the weak-damping case is that they
display sharp resonant structure at the probe field frequencies
w, ~ wg + w;. For completeness, the explicit general expres-
sions for the susceptibilities x; and X; [45] are reproduced in
Eq. (A1). Simplifying these expressions for the case of weak
damping w; > I in the region of resonance,

lw, — wqg — Swj| K w;, &==I1,

and using Eq. (6), one can write the susceptibilities in the form

©) i 14 (—1Y"'Scosh2¢;
(w,) ~ — ,
X \@p 4wy T — i(wp, — wg — Swj)

—i  (—1)"'Ssinh2¢;
X; = — .
i(@p) 4wy T —i(wp — wg — Sw;)

9
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Equation (9) expresses both susceptibilities in terms of the
squeezing parameter ¢;. It suggests a way of measuring this
parameter by measuring the susceptibilities.

The parameters |x;|* and |.X;|* give the squares of the am-
plitudes of the probe-field induced vibrations at frequencies
w, and 2w, — w,. The dependence of the squared amplitudes
on w, is described by the Lorentzian peaks centered at w, =
wg £ wj, with half-width I'. For y;(w), the areas of the peaks

+ 2
Aj = / |Xj(wp)| dwp
lwp—wiFo;| <o,

are
T

16w3

AP = [1+ (—1)""cosh2¢,]. (10

The ratio A;r / AJT = (tanh ¢;)™ for j = 1 and (tanh ¢, )* for
Jj =2, which makes it possible to immediately extract the
parameter ¢; from the experiment.

It is instructive to compare the result of Eq. (9) with the
susceptibility of the mode in the absence of strong driving. In
the weak-noise limit, this susceptibility has the form x (w,) =
i/ 20)IT" — i(wp — wo)]~'. This expression coincides with
Eq. (9) for x;(w,) if in the latter expression we set j = S =1
(there is only one vibrational branch), w; = wy, and ¢; = 0.

The imaginary part of the susceptibility

I' 14 (-=1Y"'Scosh2¢;
I ) - 11
IIlXj((l)p) 4wd F2 T (a)p —wg — S(l)j)z ( )

describes the absorption of the probe field by the mode. It
displays a Lorentzian peak at w, = w; + Swj, as seen in
Fig. 2(b). In equilibrium it is always positive. However, as
seen from Eq. (11), the peak at frequency w, = w; + Sw; is
negative for (—1)/~'S < 0 and would be more appropriately
called a dip. In other words, for a given branch of the forced
vibrations j, one of the peaks of Imy;(w,) is positive and the
other is negative. The negative sign of Imx ; (w,) indicates that
the mode is amplifying the probe drive rather than absorbing
energy from it. The amplification comes at the expense of the
strong drive. Overall [ dwpImy;(w,) = 7 /2w, is positive, a
well-known feature of an oscillator [53].

We note that the amplitude of the vibrations at frequency
w), is positive by definition. However, where this amplitude is
large it does not mean that the mode is amplifying the external
drive (the ac voltage, in our case). In particular, it does not
mean that, in the presence of an appropriately tuned feedback
loop, the mode can generate an ac voltage. A well-known
necessary condition for generation is that the imaginary part
of the susceptibility is negative. The ratio of the areas of the
peaks of |Im x;(w,)| at wp, = wg + w; is

Qf/Q; =tanh 2 ¢y,

0F = / Imxj(@pldw,.  (12)
|wp—waFo;|<Lw;

Q7 /Q; = tanh® ¢,

B. Extension to the quantum domain

In the quantum domain, the theory applies for sufficiently
large vibration amplitude where, beside the condition w; >

I, the condition that many quantum levels of the mode are
occupied, a)dA% /h >> 1, also holds. The other quantum restric-
tion on the applicability of Eq. (9) is that the nonequidistance
of the quasienergy levels (Floquet eigenvalues) of the driven
mode, which is a consequence of the nonlinearity, is small
compared to dissipative level broadening. To the order of mag-
nitude, it corresponds to 7|y | < Fwﬁ(Zﬁ + 1); a more exact
condition is given in Ref. [2]. Even where this condition does
not hold, the expressions for the areas of the spectral peaks
(10) still apply.

VI. SQUEEZING FOR THE STRONG DRIVE TUNED
TO EXACT RESONANCE

The analytical expressions simplify in the case where the
frequency of the strong driving force w, is equal to the mode
eigenfrequency wyp. In this case there is only one branch of
forced vibrations, j = 1. As seen from Egs. (6) and (12), the
squeezing parameter ¢ and the ratio of the peak areas are

b= = In3
= I—Ta
- (13)
Q_l_ =74+4V3~13.9 (w4 = ).
1

The squeezing parameter is independent of the force ampli-
tude F;. The corresponding value of exp(4¢) = 3 is shown by
the dashed lines in Fig. 3. It is this case that we study in the
experiment to demonstrate the efficiency of the method. For
the classical mode under investigation kgT > hw,, we have
from Eq. (5)

(80%) = (807) ~ 2ksT /3],
(8P%) = (8P}) ~ 2kpT | ). (14)

For comparison, in thermal equilibrium in the classical limit
we have ((SQz)eq = (8P2)eq = kpT [y ~ kBT/a)ﬁ.

We note that the independence of ¢ = ¢, from the drive
amplitude F; occurs only for sufficiently strong drive. From
Egs. (2) and (3), the weak-damping condition w; > T for the
exact resonance has the form p; ~ 3|y |Fd2/32wZF3)1/3 > 1,
which imposes the constraint on F; from below.

In order to compare the theoretical model with the experi-
mental data, we add the expected position of the two satellites
according to Eq. (3) as a red dotted line in Fig. 2(a). We find
excellent agreement between the model (with no free parame-
ters) and the experiment. To further analyze our data, we focus
on the imaginary part of the susceptibility. It determines the
quadrature component, which is directly determined from the
response measurement [see the black trace in Fig. 2(b)].

Clearly, the different signs of the satellite peaks predicted
by the model and attributed to the absorption and amplifi-
cation of the probe field are recovered. The absorption is
observed for the higher-frequency satellite with the higher
intensity, whereas the amplification is visible in the weaker-
and lower-frequency satellite. We do not measure the power
of the probe field at the output, but the very fact that the
resonantly absorbed power (a)pr2 /2)Imy ;(w,) is negative for
Imy;(w,) < 0 unambiguously indicates that the nanostring
pumps energy into the probe field.
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FIG. 4. (a) Ratio of the areas of the satellites peaks obtained
form the quadrature data as a function of the drive voltage
(black dots). The red line corresponds to the theoretical prediction
Eq. (13). (b) Normalized dimensionless variances of the in-phase
and quadrature fluctuations (802) = (w2 /ksT)(8Q%) and (5P2) =
(w2 /kpT)(8P?) around the stable state of the forced vibration as
functions of the drive voltage. Black and blue dots show the in-
phase and quadrature values extracted from the experimentally
determined satellite area ratio from (a), whereas the red lines show
the corresponding theoretical model of Eq. (14). The gray dashed
line illustrates the thermomechanical fluctuations at the temperature
293 K used in the experiment.

According to Eq. (11), the satellites in the imaginary part
of the susceptibility [Imy;(w,)| have a Lorentzian line shape.
Thus, Lorentzian fits are employed to extract the area enclosed
under the satellites @ and Q. The area ratio Qf /9| ex-
tracted from the imaginary part of the susceptibility is plotted
in Fig. 4(a) as black dots and compared with the theoretical
prediction (13), which is included as a red line. No free param-
eters are employed. We find excellent agreement between the
experiment and the theory. We note that the amplitude of the
signal, i.e., the blue dotted line in Fig. 2(b), which is given by
|xj(wp)| o % + (wp — w4)*171/2, is a non-Lorentzian func-
tion of wp. It falls off slower than the Lorentzian with the
increasing |w, — wy|, as indeed seen in Fig. 2(b). However,
|x;(w,)|? is again fitted by a Lorentzian.

It is expected from Eq. (13) that the squeezing param-
eter is independent of the drive amplitude Fy if the drive
frequency coincides with the eigenfrequency of the mode.
Such independence is indeed seen in the experiment, which
yields an average squeezing parameter of ¢ ~ 0.28 £ 0.03
in good agreement with the theoretically obtained value of
arctanh[1/(7 + 4+/3)"/2] ~ 0.27. This confirms not only the
analysis of the squeezing, but also the model we use to de-
scribe the mode dynamics.

In Fig. 4(b), the result is reexpressed in terms of the mean-
square fluctuations of the in-phase and quadrature component
(8Q?%) and (8P?) [Eq. (14)]. The experimental data are plotted
as black and gray dots, respectively, whereas the theoretical
predictions obtained using Eq. (14) are shown as red lines. For
the sake of clarity, we chose a normalized dimensionless rep-
resentation. This obviates reintroducing the effective mass of
the resonator, which would otherwise reappear in the denom-
inator of Eqgs. (5) and (14). The gray dashed line indicates the
mean square of the thermomechanical fluctuations at 293 K,
clearly showing that a significant squeezing of the in-phase
component is observed.

We note that the data spread in Figs. 4(a) and 4(b) is larger
for weak drive power as a result of an insufficient separation of
the satellite peaks. There is also a small systematic tilt arising
from a deviation from the Duffing model that comes into
play for large drive powers, presumably due to higher-order
nonlinearities.

VII. CONCLUSION

We have presented in this paper the spectra of the response
of a moderately strongly driven nanomechanical mode to a
weak probe drive. The frequencies of the strong drive and the
probe tone are close to the mode eigenfrequency. We found
that the response spectra of our very weakly damped mode
have a peculiar structure. Both the amplitude of the response
and the quadrature component display two pronounced fea-
tures symmetrically located with respect to the strong-drive
frequency. For the considered driving on exact resonance, the
features on the high-frequency side are more pronounced than
on the low-frequency side. In the case of the amplitude, the
features are non-Lorentzian peaks. In contrast, the quadrature
component displays a peak on the high-frequency side and a
dip on the low-frequency side. Both have a Lorentzian shape
with the same half-width as the peak in the spectrum of the
mode in the absence of strong driving.

The theory predicts the onset of these features. The dis-
tance along the frequency axis between the features and the
frequency of the strong drive is expected to be equal to the
frequency of oscillations of the strongly driven nonlinear
mode about its stable state of forced vibrations in the rotating
frame. This frequency in turn is determined by the interplay
of the strong drive and the mode nonlinearity. Therefore, in
terms of quantum optics, the occurrence of the features of
the response is a result of multiphoton processes that involve
multiple quanta of the strong drive.

The amplitude and the quadrature component of the
probe-induced vibrations are determined, respectively, by the
absolute value and the imaginary part of the susceptibility of
the mode with respect to the probe. The dip in the quadrature
spectrum corresponds to a negative imaginary part of the
susceptibility. This indicates that the weak probe field is am-
plified by the mode. The amplification comes at the expense
of the energy provided by the strong drive.

The strongly driven mode is a system away from thermal
equilibrium. Therefore, there is no standard relation between
the imaginary part of the susceptibility and the spectrum of
fluctuations of the mode. Nevertheless, it is clear on the physi-
cal grounds that there should be some relations between these
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spectra for the considered weakly damped mode. Indeed, in
the rotating frame, the stable state of forced vibrations is a
stationary state. The weakly damped mode performs random
oscillations about this state due to thermal and quantum noise,
but these oscillations can also be resonantly excited by an
external drive. Therefore, the power spectrum and the sus-
ceptibility should display features at the same frequencies.
The susceptibility thus encodes some information about the
fluctuations.

The theoretical analysis shows that one of the components
of the random oscillations should be squeezed and that the
squeezing determines the ratio of the areas of the dip and the
peak in the imaginary part of the susceptibility. Therefore, by
measuring these areas one can extract the squeezing param-
eter. Moreover, the theory predicts that, if the frequency of
the strong drive is equal to the mode eigenfrequency, the ratio
of the areas should be independent of the drive amplitude in a
broad amplitude range. This is in excellent agreement with the
experiment. Our findings have been independently reproduced
on a second sample (see Appendix B).

The agreement between the experiment and the theory
regarding the positions of the peaks of the susceptibility, their
shape, and their areas, with no adjustable parameters, provides
strong evidence of the squeezing of fluctuations. It comple-
ments and significantly extends the results on the shape and
the area of the classical power spectra of a driven mode
[43]. The extension is particularly important as the method
presented in Ref. [43] to extract the squeezing parameter is
applicable only in the classical regime, whereas both classical
and quantum fluctuations are squeezed in a strongly driven
systems. Although the experiment is done in the classical
regime, our method does not rely on and does not require that
the fluctuations be classical. To the best of our knowledge,
reports of an observation of a multiphoton resonant amplifica-
tion by a driven nonlinear vibrational mode are lacking in the
literature. The presented results demonstrate interdisciplinary
aspects of the studies of nanomechanical systems.

Data and analysis code are available from [54].
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APPENDIX A: SUSCEPTIBILITY OF A STRONGLY
DRIVEN DUFFING OSCILLATOR

The susceptibilities x;(w) and X;(w) of a driven classical
Duffing oscillator in the stable vibrational state j (with j =
1, 2) have the form [45]

i T'—i(w—wy)—il'Qp; — Q)
1(@) = 53— —— -
wq @ — 2iT(w — wy) — (0 — wy)

Al
- p,» (A1)

Xi(@) = ——— ,
@) == @7 — 2T (0 — ) — (@ — 0g)?

where p; is the scaled squared amplitude of the forced vibra-
tions in the state j, which is given by Eq. (2), and

& =T[14+@p; — Qo — D= +w). (A2

Here w; is the frequency of vibrations about the stable state
j in the rotating frame. It is given by Eq. (3). In the weak-
damping limit defined in Eq. (4) &; ~ w;.

The total susceptibility of the driven classical oscillator
is the sum of the partial susceptibilities (A1) weighted with
the populations w; of the corresponding stable states and the
susceptibility x(w) related to the modulation of the popu-
lations w; by the probe force. This term has a characteristic
very narrow feature centered at w = wy [38,45,52]. The ex-
pression (Al) for y;(w) was also later given in Ref. [24].
The experimental results in this paper show the dependence of
argmax y ;wjlxj(@)| on the drive frequency wq. The set of
equations that give the susceptibilities x;(w) and X;(w) was
also given in Ref. [18]. We note that the two-peak structure of
Imy;(w) is pronounced in the weak-damping limit w; > I'.
Near a bifurcation point, where x; was considered analyti-
cally in Ref. [18], Imy ;(w) has a single peak, as @; =0 at a
bifurcation point.

The expressions for the susceptibilities have to be modified
in the deeply quantum regime. The corresponding analysis is
given in Ref. [44].

(a) (b)

%-\12 : 5120-
_§ 8t :ggj 80}
g_ 4t §.40-

0 0
-04 -02 0 0204 -0.4
Detuning (kHz)

0 04 08
Detuning (kHz)

FIG. 5. (a) Linear response of the fundamental flexural out-
of-plane mode at a drive voltage of V; =3 mV (black dots).
A Lorentzian fit (red solid line) yields an eigenfrequency of
6.562 MHz, a linewidth of 2I" /27 = 35 Hz, and a quality factor
0 = 190 000. (b) Duffing response at a drive voltage of V; = 35 mV
(black dots) and fit with the Duffing model (red solid line). The
resulting Duffing nonlinearity is y /(27)* = 7.6 x 107 V72572,
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FIG. 6. (a) Color-coded response spectra for increasing drive
voltages at f; = fo. The probe tone is fixed to V, = 5 mV. A central
feature and two satellite peaks are clearly visible. The satellites
have strongly different brightness. Their splitting increases with the
increasing amplitude of the drive, in good agreement with the theo-
retical model of Eq. (3), which is plotted as red dots. The blue line
indicates the line cut discussed in (b). (b) Amplitude (blue solid line)
and quadrature component (black solid line) of the vibrations at the
probe frequency for V; = 0.6 V.

APPENDIX B: ADDITIONAL EXPERIMENTAL DATA
FROM SAMPLE 2

We repeated the experiment discussed in Secs. II, III, and
VI on another sample (sample 2) using the same measurement
technique as described in Fig. 1(a). For all measurements on
the second sample, a constant dc voltage of 10 V is applied
and the fundamental flexural out-of-plane mode can be con-
sidered as a single mode.

1. Characterization

The linear response of the fundamental out-of-plane mode
is found at an eigenfrequency of fy = 6.562 MHz. It is shown
for a drive of V; = 3 mV as a function of the detuning f; — fo
in Fig. 5(a) as black dots along with a Lorentzian fit (red solid
line). From the fit, we extract a linewidth of 2I"' /27 = 35 Hz
and a quality factor of Q ~ 190 000. A bidirectional response
curve in the Duffing regime at a drive voltage of V; = 35 mV
is plotted in Fig. 5(b). A fit with the Duffing model yields the
Duffing nonlinear parameter y /(27)* = 7.6 x 107 V2572,
Details on the fitting procedure are given in the Supplemental
Material of Ref. [43].

2. Squeezing and amplification

The same measurements as discussed in Secs. III and VI
are repeated and the experimental results are plotted in Figs. 6

(@) 25 - - -

20 ) [ ) b

0.2 0.4 0.6 0.8 1
Drive Voltage (V)

FIG. 7. (a) Ratio of the areas of the satellites peaks obtained
from the quadrature data as a function of the drive voltage (black
dots). The red solid line corresponds to the theoretical predic-
tion (13). (b) Normalized dimensionless variances of the in-phase
and quadrature fluctuations (§Q?) = (w?/kgT){8Q*) and (5P2) =
(w2 /kgT)(8P*) around the stable state of the forced vibration as
functions of the drive voltage. Black and blue dots show the in-phase
and quadrature values extracted from the experimentally determined
satellite area ratio from (a), whereas the red solid lines show the
corresponding theoretical model of Eq. (14). The gray dashed line il-
lustrates the thermomechanical fluctuations at the temperature 293 K
used in the experiment.

and 7. Figure 6 shows the color-coded response spectra for
increasing drive voltage. For sample 2 much stronger drive
voltages have to be applied to resolve the satellite peaks.
The two distinct peaks, equally spaced from the frequency
of the strong drive and with a power-dependent splitting, are
well resolved and show good agreement with the theoretical
predicted position (red dotted line). In Fig. 6(b) a line scan
of the amplitude (blue) and quadrature component (black) at
Vs = 600 mV is plotted. The dip in the quadrature data at
the position of the lower-frequency satellite peak indicates the
amplification of the driving force.

The data taken on sample 2 are analyzed in the same
way as described for sample 1 in Sec. VI. Figures 7(a) and
7(b) show the results for the ratio of the areas of the satel-
lite peaks and the normalized variances of the in-phase and
quadrature fluctuations obtained from the quadrature data as
a function of the drive voltage. The theoretical model is
plotted in both panels as a red solid line and good agree-
ment between theory and experiment is found. The averaged
squeezing parameter amounts to 0.27 &£ 0.03 and is again in
very good agreement with the theoretically obtained value
of 0.27.
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